RiccardoMaso commited on
Commit
8075a4c
·
verified ·
1 Parent(s): 9472272

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +263 -0
  2. gitattributes +27 -0
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-nc-nd-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|other-wider
16
+ task_categories:
17
+ - object-detection
18
+ task_ids:
19
+ - face-detection
20
+ paperswithcode_id: wider-face-1
21
+ pretty_name: WIDER FACE
22
+ dataset_info:
23
+ features:
24
+ - name: image
25
+ dtype: image
26
+ - name: faces
27
+ sequence:
28
+ - name: bbox
29
+ sequence: float32
30
+ length: 4
31
+ - name: blur
32
+ dtype:
33
+ class_label:
34
+ names:
35
+ '0': clear
36
+ '1': normal
37
+ '2': heavy
38
+ - name: expression
39
+ dtype:
40
+ class_label:
41
+ names:
42
+ '0': typical
43
+ '1': exaggerate
44
+ - name: illumination
45
+ dtype:
46
+ class_label:
47
+ names:
48
+ '0': normal
49
+ '1': 'exaggerate '
50
+ - name: occlusion
51
+ dtype:
52
+ class_label:
53
+ names:
54
+ '0': 'no'
55
+ '1': partial
56
+ '2': heavy
57
+ - name: pose
58
+ dtype:
59
+ class_label:
60
+ names:
61
+ '0': typical
62
+ '1': atypical
63
+ - name: invalid
64
+ dtype: bool
65
+ splits:
66
+ - name: train
67
+ num_bytes: 12049881
68
+ num_examples: 12880
69
+ - name: test
70
+ num_bytes: 3761103
71
+ num_examples: 16097
72
+ - name: validation
73
+ num_bytes: 2998735
74
+ num_examples: 3226
75
+ download_size: 3676086479
76
+ dataset_size: 18809719
77
+ ---
78
+
79
+ # Dataset Card for WIDER FACE
80
+
81
+ ## Table of Contents
82
+ - [Table of Contents](#table-of-contents)
83
+ - [Dataset Description](#dataset-description)
84
+ - [Dataset Summary](#dataset-summary)
85
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
86
+ - [Languages](#languages)
87
+ - [Dataset Structure](#dataset-structure)
88
+ - [Data Instances](#data-instances)
89
+ - [Data Fields](#data-fields)
90
+ - [Data Splits](#data-splits)
91
+ - [Dataset Creation](#dataset-creation)
92
+ - [Curation Rationale](#curation-rationale)
93
+ - [Source Data](#source-data)
94
+ - [Annotations](#annotations)
95
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
96
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
97
+ - [Social Impact of Dataset](#social-impact-of-dataset)
98
+ - [Discussion of Biases](#discussion-of-biases)
99
+ - [Other Known Limitations](#other-known-limitations)
100
+ - [Additional Information](#additional-information)
101
+ - [Dataset Curators](#dataset-curators)
102
+ - [Licensing Information](#licensing-information)
103
+ - [Citation Information](#citation-information)
104
+ - [Contributions](#contributions)
105
+
106
+ ## Dataset Description
107
+
108
+ - **Homepage:** http://shuoyang1213.me/WIDERFACE/index.html
109
+ - **Repository:**
110
+ - **Paper:** [WIDER FACE: A Face Detection Benchmark](https://arxiv.org/abs/1511.06523)
111
+ - **Leaderboard:** http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html
112
+ - **Point of Contact:** [email protected]
113
+
114
+ ### Dataset Summary
115
+
116
+ WIDER FACE dataset is a face detection benchmark dataset, of which images are
117
+ selected from the publicly available WIDER dataset. We choose 32,203 images and
118
+ label 393,703 faces with a high degree of variability in scale, pose and
119
+ occlusion as depicted in the sample images. WIDER FACE dataset is organized
120
+ based on 61 event classes. For each event class, we randomly select 40%/10%/50%
121
+ data as training, validation and testing sets. We adopt the same evaluation
122
+ metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
123
+ we do not release bounding box ground truth for the test images. Users are
124
+ required to submit final prediction files, which we shall proceed to evaluate.
125
+
126
+ ### Supported Tasks and Leaderboards
127
+
128
+ - `face-detection`: The dataset can be used to train a model for Face Detection. More information on evaluating the model's performance can be found [here](http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html).
129
+
130
+ ### Languages
131
+
132
+ English
133
+
134
+ ## Dataset Structure
135
+
136
+ ### Data Instances
137
+
138
+ A data point comprises an image and its face annotations.
139
+
140
+ ```
141
+ {
142
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x755 at 0x19FA12186D8>, 'faces': {
143
+ 'bbox': [
144
+ [178.0, 238.0, 55.0, 73.0],
145
+ [248.0, 235.0, 59.0, 73.0],
146
+ [363.0, 157.0, 59.0, 73.0],
147
+ [468.0, 153.0, 53.0, 72.0],
148
+ [629.0, 110.0, 56.0, 81.0],
149
+ [745.0, 138.0, 55.0, 77.0]
150
+ ],
151
+ 'blur': [2, 2, 2, 2, 2, 2],
152
+ 'expression': [0, 0, 0, 0, 0, 0],
153
+ 'illumination': [0, 0, 0, 0, 0, 0],
154
+ 'occlusion': [1, 2, 1, 2, 1, 2],
155
+ 'pose': [0, 0, 0, 0, 0, 0],
156
+ 'invalid': [False, False, False, False, False, False]
157
+ }
158
+ }
159
+ ```
160
+
161
+ ### Data Fields
162
+
163
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
164
+ - `faces`: a dictionary of face attributes for the faces present on the image
165
+ - `bbox`: the bounding box of each face (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
166
+ - `blur`: the blur level of each face, with possible values including `clear` (0), `normal` (1) and `heavy`
167
+ - `expression`: the facial expression of each face, with possible values including `typical` (0) and `exaggerate` (1)
168
+ - `illumination`: the lightning condition of each face, with possible values including `normal` (0) and `exaggerate` (1)
169
+ - `occlusion`: the level of occlusion of each face, with possible values including `no` (0), `partial` (1) and `heavy` (2)
170
+ - `pose`: the pose of each face, with possible values including `typical` (0) and `atypical` (1)
171
+ - `invalid`: whether the image is valid or invalid.
172
+
173
+ ### Data Splits
174
+
175
+ The data is split into training, validation and testing set. WIDER FACE dataset is organized
176
+ based on 61 event classes. For each event class, 40%/10%/50%
177
+ data is randomly selected as training, validation and testing sets. The training set contains 12880 images, the validation set 3226 images and test set 16097 images.
178
+
179
+ ## Dataset Creation
180
+
181
+ ### Curation Rationale
182
+
183
+ The curators state that the current face detection datasets typically contain a few thousand faces, with limited variations in pose, scale, facial expression, occlusion, and background clutters,
184
+ making it difficult to assess for real world performance. They argue that the limitations of datasets have partially contributed to the failure of some algorithms in coping
185
+ with heavy occlusion, small scale, and atypical pose.
186
+
187
+ ### Source Data
188
+
189
+ #### Initial Data Collection and Normalization
190
+
191
+ WIDER FACE dataset is a subset of the WIDER dataset.
192
+ The images in WIDER were collected in the following three steps: 1) Event categories
193
+ were defined and chosen following the Large Scale Ontology for Multimedia (LSCOM) [22], which provides around 1000 concepts relevant to video event analysis. 2) Images
194
+ are retrieved using search engines like Google and Bing. For
195
+ each category, 1000-3000 images were collected. 3) The
196
+ data were cleaned by manually examining all the images
197
+ and filtering out images without human face. Then, similar
198
+ images in each event category were removed to ensure large
199
+ diversity in face appearance. A total of 32203 images are
200
+ eventually included in the WIDER FACE dataset.
201
+
202
+ #### Who are the source language producers?
203
+
204
+ The images are selected from publicly available WIDER dataset.
205
+
206
+ ### Annotations
207
+
208
+ #### Annotation process
209
+
210
+ The curators label the bounding boxes for all
211
+ the recognizable faces in the WIDER FACE dataset. The
212
+ bounding box is required to tightly contain the forehead,
213
+ chin, and cheek.. If a face is occluded, they still label it with a bounding box but with an estimation on the scale of occlusion. Similar to the PASCAL VOC dataset [6], they assign an ’Ignore’ flag to the face
214
+ which is very difficult to be recognized due to low resolution and small scale (10 pixels or less). After annotating
215
+ the face bounding boxes, they further annotate the following
216
+ attributes: pose (typical, atypical) and occlusion level (partial, heavy). Each annotation is labeled by one annotator
217
+ and cross-checked by two different people.
218
+
219
+ #### Who are the annotators?
220
+
221
+ Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang.
222
+
223
+ ### Personal and Sensitive Information
224
+
225
+ [More Information Needed]
226
+
227
+ ## Considerations for Using the Data
228
+
229
+ ### Social Impact of Dataset
230
+
231
+ [More Information Needed]
232
+
233
+ ### Discussion of Biases
234
+
235
+ [More Information Needed]
236
+
237
+ ### Other Known Limitations
238
+
239
+ [More Information Needed]
240
+
241
+ ## Additional Information
242
+
243
+ ### Dataset Curators
244
+
245
+ Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang
246
+
247
+ ### Licensing Information
248
+
249
+ [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/).
250
+
251
+ ### Citation Information
252
+
253
+ ```
254
+ @inproceedings{yang2016wider,
255
+ Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
256
+ Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
257
+ Title = {WIDER FACE: A Face Detection Benchmark},
258
+ Year = {2016}}
259
+ ```
260
+
261
+ ### Contributions
262
+
263
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text