File size: 144,100 Bytes
837b615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
{
    "id": "2211.00053",
    "annotator": "jiangshu",
    "input": [
        "\\documentclass{article} \n",
        "\\usepackage{iclr2023_conference,times}\n",
        "\\usepackage{amsmath,amsfonts,bm}\n",
        "\\newcommand{\\figleft}{{\\em (Left)}}\n",
        "\\newcommand{\\figcenter}{{\\em (Center)}}\n",
        "\\newcommand{\\figright}{{\\em (Right)}}\n",
        "\\newcommand{\\figtop}{{\\em (Top)}}\n",
        "\\newcommand{\\figbottom}{{\\em (Bottom)}}\n",
        "\\newcommand{\\captiona}{{\\em (a)}}\n",
        "\\newcommand{\\captionb}{{\\em (b)}}\n",
        "\\newcommand{\\captionc}{{\\em (c)}}\n",
        "\\newcommand{\\captiond}{{\\em (d)}}\n",
        "\\newcommand{\\newterm}[1]{{\\bf #1}}\n",
        "\\def\\figref#1{figure~\\ref{#1}}\n",
        "\\def\\Figref#1{Figure~\\ref{#1}}\n",
        "\\def\\twofigref#1#2{figures \\ref{#1} and \\ref{#2}}\n",
        "\\def\\quadfigref#1#2#3#4{figures \\ref{#1}, \\ref{#2}, \\ref{#3} and \\ref{#4}}\n",
        "\\def\\secref#1{section~\\ref{#1}}\n",
        "\\def\\Secref#1{Section~\\ref{#1}}\n",
        "\\def\\twosecrefs#1#2{sections \\ref{#1} and \\ref{#2}}\n",
        "\\def\\secrefs#1#2#3{sections \\ref{#1}, \\ref{#2} and \\ref{#3}}\n",
        "\\def\\eqref#1{equation~\\ref{#1}}\n",
        "\\def\\Eqref#1{Equation~\\ref{#1}}\n",
        "\\def\\plaineqref#1{\\ref{#1}}\n",
        "\\def\\chapref#1{chapter~\\ref{#1}}\n",
        "\\def\\Chapref#1{Chapter~\\ref{#1}}\n",
        "\\def\\rangechapref#1#2{chapters\\ref{#1}--\\ref{#2}}\n",
        "\\def\\algref#1{algorithm~\\ref{#1}}\n",
        "\\def\\Algref#1{Algorithm~\\ref{#1}}\n",
        "\\def\\twoalgref#1#2{algorithms \\ref{#1} and \\ref{#2}}\n",
        "\\def\\Twoalgref#1#2{Algorithms \\ref{#1} and \\ref{#2}}\n",
        "\\def\\partref#1{part~\\ref{#1}}\n",
        "\\def\\Partref#1{Part~\\ref{#1}}\n",
        "\\def\\twopartref#1#2{parts \\ref{#1} and \\ref{#2}}\n",
        "\\def\\ceil#1{\\lceil #1 \\rceil}\n",
        "\\def\\floor#1{\\lfloor #1 \\rfloor}\n",
        "\\def\\1{\\bm{1}}\n",
        "\\newcommand{\\train}{\\mathcal{D}}\n",
        "\\newcommand{\\valid}{\\mathcal{D_{\\mathrm{valid}}}}\n",
        "\\newcommand{\\test}{\\mathcal{D_{\\mathrm{test}}}}\n",
        "\\def\\eps{{\\epsilon}}\n",
        "\\def\\reta{{\\textnormal{$\\eta$}}}\n",
        "\\def\\ra{{\\textnormal{a}}}\n",
        "\\def\\rb{{\\textnormal{b}}}\n",
        "\\def\\rc{{\\textnormal{c}}}\n",
        "\\def\\rd{{\\textnormal{d}}}\n",
        "\\def\\re{{\\textnormal{e}}}\n",
        "\\def\\rf{{\\textnormal{f}}}\n",
        "\\def\\rg{{\\textnormal{g}}}\n",
        "\\def\\rh{{\\textnormal{h}}}\n",
        "\\def\\ri{{\\textnormal{i}}}\n",
        "\\def\\rj{{\\textnormal{j}}}\n",
        "\\def\\rk{{\\textnormal{k}}}\n",
        "\\def\\rl{{\\textnormal{l}}}\n",
        "\\def\\rn{{\\textnormal{n}}}\n",
        "\\def\\ro{{\\textnormal{o}}}\n",
        "\\def\\rp{{\\textnormal{p}}}\n",
        "\\def\\rq{{\\textnormal{q}}}\n",
        "\\def\\rr{{\\textnormal{r}}}\n",
        "\\def\\rs{{\\textnormal{s}}}\n",
        "\\def\\rt{{\\textnormal{t}}}\n",
        "\\def\\ru{{\\textnormal{u}}}\n",
        "\\def\\rv{{\\textnormal{v}}}\n",
        "\\def\\rw{{\\textnormal{w}}}\n",
        "\\def\\rx{{\\textnormal{x}}}\n",
        "\\def\\ry{{\\textnormal{y}}}\n",
        "\\def\\rz{{\\textnormal{z}}}\n",
        "\\def\\rvepsilon{{\\mathbf{\\epsilon}}}\n",
        "\\def\\rvtheta{{\\mathbf{\\theta}}}\n",
        "\\def\\rva{{\\mathbf{a}}}\n",
        "\\def\\rvb{{\\mathbf{b}}}\n",
        "\\def\\rvc{{\\mathbf{c}}}\n",
        "\\def\\rvd{{\\mathbf{d}}}\n",
        "\\def\\rve{{\\mathbf{e}}}\n",
        "\\def\\rvf{{\\mathbf{f}}}\n",
        "\\def\\rvg{{\\mathbf{g}}}\n",
        "\\def\\rvh{{\\mathbf{h}}}\n",
        "\\def\\rvu{{\\mathbf{i}}}\n",
        "\\def\\rvj{{\\mathbf{j}}}\n",
        "\\def\\rvk{{\\mathbf{k}}}\n",
        "\\def\\rvl{{\\mathbf{l}}}\n",
        "\\def\\rvm{{\\mathbf{m}}}\n",
        "\\def\\rvn{{\\mathbf{n}}}\n",
        "\\def\\rvo{{\\mathbf{o}}}\n",
        "\\def\\rvp{{\\mathbf{p}}}\n",
        "\\def\\rvq{{\\mathbf{q}}}\n",
        "\\def\\rvr{{\\mathbf{r}}}\n",
        "\\def\\rvs{{\\mathbf{s}}}\n",
        "\\def\\rvt{{\\mathbf{t}}}\n",
        "\\def\\rvu{{\\mathbf{u}}}\n",
        "\\def\\rvv{{\\mathbf{v}}}\n",
        "\\def\\rvw{{\\mathbf{w}}}\n",
        "\\def\\rvx{{\\mathbf{x}}}\n",
        "\\def\\rvy{{\\mathbf{y}}}\n",
        "\\def\\rvz{{\\mathbf{z}}}\n",
        "\\def\\erva{{\\textnormal{a}}}\n",
        "\\def\\ervb{{\\textnormal{b}}}\n",
        "\\def\\ervc{{\\textnormal{c}}}\n",
        "\\def\\ervd{{\\textnormal{d}}}\n",
        "\\def\\erve{{\\textnormal{e}}}\n",
        "\\def\\ervf{{\\textnormal{f}}}\n",
        "\\def\\ervg{{\\textnormal{g}}}\n",
        "\\def\\ervh{{\\textnormal{h}}}\n",
        "\\def\\ervi{{\\textnormal{i}}}\n",
        "\\def\\ervj{{\\textnormal{j}}}\n",
        "\\def\\ervk{{\\textnormal{k}}}\n",
        "\\def\\ervl{{\\textnormal{l}}}\n",
        "\\def\\ervm{{\\textnormal{m}}}\n",
        "\\def\\ervn{{\\textnormal{n}}}\n",
        "\\def\\ervo{{\\textnormal{o}}}\n",
        "\\def\\ervp{{\\textnormal{p}}}\n",
        "\\def\\ervq{{\\textnormal{q}}}\n",
        "\\def\\ervr{{\\textnormal{r}}}\n",
        "\\def\\ervs{{\\textnormal{s}}}\n",
        "\\def\\ervt{{\\textnormal{t}}}\n",
        "\\def\\ervu{{\\textnormal{u}}}\n",
        "\\def\\ervv{{\\textnormal{v}}}\n",
        "\\def\\ervw{{\\textnormal{w}}}\n",
        "\\def\\ervx{{\\textnormal{x}}}\n",
        "\\def\\ervy{{\\textnormal{y}}}\n",
        "\\def\\ervz{{\\textnormal{z}}}\n",
        "\\def\\rmA{{\\mathbf{A}}}\n",
        "\\def\\rmB{{\\mathbf{B}}}\n",
        "\\def\\rmC{{\\mathbf{C}}}\n",
        "\\def\\rmD{{\\mathbf{D}}}\n",
        "\\def\\rmE{{\\mathbf{E}}}\n",
        "\\def\\rmF{{\\mathbf{F}}}\n",
        "\\def\\rmG{{\\mathbf{G}}}\n",
        "\\def\\rmH{{\\mathbf{H}}}\n",
        "\\def\\rmI{{\\mathbf{I}}}\n",
        "\\def\\rmJ{{\\mathbf{J}}}\n",
        "\\def\\rmK{{\\mathbf{K}}}\n",
        "\\def\\rmL{{\\mathbf{L}}}\n",
        "\\def\\rmM{{\\mathbf{M}}}\n",
        "\\def\\rmN{{\\mathbf{N}}}\n",
        "\\def\\rmO{{\\mathbf{O}}}\n",
        "\\def\\rmP{{\\mathbf{P}}}\n",
        "\\def\\rmQ{{\\mathbf{Q}}}\n",
        "\\def\\rmR{{\\mathbf{R}}}\n",
        "\\def\\rmS{{\\mathbf{S}}}\n",
        "\\def\\rmT{{\\mathbf{T}}}\n",
        "\\def\\rmU{{\\mathbf{U}}}\n",
        "\\def\\rmV{{\\mathbf{V}}}\n",
        "\\def\\rmW{{\\mathbf{W}}}\n",
        "\\def\\rmX{{\\mathbf{X}}}\n",
        "\\def\\rmY{{\\mathbf{Y}}}\n",
        "\\def\\rmZ{{\\mathbf{Z}}}\n",
        "\\def\\ermA{{\\textnormal{A}}}\n",
        "\\def\\ermB{{\\textnormal{B}}}\n",
        "\\def\\ermC{{\\textnormal{C}}}\n",
        "\\def\\ermD{{\\textnormal{D}}}\n",
        "\\def\\ermE{{\\textnormal{E}}}\n",
        "\\def\\ermF{{\\textnormal{F}}}\n",
        "\\def\\ermG{{\\textnormal{G}}}\n",
        "\\def\\ermH{{\\textnormal{H}}}\n",
        "\\def\\ermI{{\\textnormal{I}}}\n",
        "\\def\\ermJ{{\\textnormal{J}}}\n",
        "\\def\\ermK{{\\textnormal{K}}}\n",
        "\\def\\ermL{{\\textnormal{L}}}\n",
        "\\def\\ermM{{\\textnormal{M}}}\n",
        "\\def\\ermN{{\\textnormal{N}}}\n",
        "\\def\\ermO{{\\textnormal{O}}}\n",
        "\\def\\ermP{{\\textnormal{P}}}\n",
        "\\def\\ermQ{{\\textnormal{Q}}}\n",
        "\\def\\ermR{{\\textnormal{R}}}\n",
        "\\def\\ermS{{\\textnormal{S}}}\n",
        "\\def\\ermT{{\\textnormal{T}}}\n",
        "\\def\\ermU{{\\textnormal{U}}}\n",
        "\\def\\ermV{{\\textnormal{V}}}\n",
        "\\def\\ermW{{\\textnormal{W}}}\n",
        "\\def\\ermX{{\\textnormal{X}}}\n",
        "\\def\\ermY{{\\textnormal{Y}}}\n",
        "\\def\\ermZ{{\\textnormal{Z}}}\n",
        "\\def\\vzero{{\\bm{0}}}\n",
        "\\def\\vone{{\\bm{1}}}\n",
        "\\def\\vmu{{\\bm{\\mu}}}\n",
        "\\def\\vtheta{{\\bm{\\theta}}}\n",
        "\\def\\va{{\\bm{a}}}\n",
        "\\def\\vb{{\\bm{b}}}\n",
        "\\def\\vc{{\\bm{c}}}\n",
        "\\def\\vd{{\\bm{d}}}\n",
        "\\def\\ve{{\\bm{e}}}\n",
        "\\def\\vf{{\\bm{f}}}\n",
        "\\def\\vg{{\\bm{g}}}\n",
        "\\def\\vh{{\\bm{h}}}\n",
        "\\def\\vi{{\\bm{i}}}\n",
        "\\def\\vj{{\\bm{j}}}\n",
        "\\def\\vk{{\\bm{k}}}\n",
        "\\def\\vl{{\\bm{l}}}\n",
        "\\def\\vm{{\\bm{m}}}\n",
        "\\def\\vn{{\\bm{n}}}\n",
        "\\def\\vo{{\\bm{o}}}\n",
        "\\def\\vp{{\\bm{p}}}\n",
        "\\def\\vq{{\\bm{q}}}\n",
        "\\def\\vr{{\\bm{r}}}\n",
        "\\def\\vs{{\\bm{s}}}\n",
        "\\def\\vt{{\\bm{t}}}\n",
        "\\def\\vu{{\\bm{u}}}\n",
        "\\def\\vv{{\\bm{v}}}\n",
        "\\def\\vw{{\\bm{w}}}\n",
        "\\def\\vx{{\\bm{x}}}\n",
        "\\def\\vy{{\\bm{y}}}\n",
        "\\def\\vz{{\\bm{z}}}\n",
        "\\def\\evalpha{{\\alpha}}\n",
        "\\def\\evbeta{{\\beta}}\n",
        "\\def\\evepsilon{{\\epsilon}}\n",
        "\\def\\evlambda{{\\lambda}}\n",
        "\\def\\evomega{{\\omega}}\n",
        "\\def\\evmu{{\\mu}}\n",
        "\\def\\evpsi{{\\psi}}\n",
        "\\def\\evsigma{{\\sigma}}\n",
        "\\def\\evtheta{{\\theta}}\n",
        "\\def\\eva{{a}}\n",
        "\\def\\evb{{b}}\n",
        "\\def\\evc{{c}}\n",
        "\\def\\evd{{d}}\n",
        "\\def\\eve{{e}}\n",
        "\\def\\evf{{f}}\n",
        "\\def\\evg{{g}}\n",
        "\\def\\evh{{h}}\n",
        "\\def\\evi{{i}}\n",
        "\\def\\evj{{j}}\n",
        "\\def\\evk{{k}}\n",
        "\\def\\evl{{l}}\n",
        "\\def\\evm{{m}}\n",
        "\\def\\evn{{n}}\n",
        "\\def\\evo{{o}}\n",
        "\\def\\evp{{p}}\n",
        "\\def\\evq{{q}}\n",
        "\\def\\evr{{r}}\n",
        "\\def\\evs{{s}}\n",
        "\\def\\evt{{t}}\n",
        "\\def\\evu{{u}}\n",
        "\\def\\evv{{v}}\n",
        "\\def\\evw{{w}}\n",
        "\\def\\evx{{x}}\n",
        "\\def\\evy{{y}}\n",
        "\\def\\evz{{z}}\n",
        "\\def\\mA{{\\bm{A}}}\n",
        "\\def\\mB{{\\bm{B}}}\n",
        "\\def\\mC{{\\bm{C}}}\n",
        "\\def\\mD{{\\bm{D}}}\n",
        "\\def\\mE{{\\bm{E}}}\n",
        "\\def\\mF{{\\bm{F}}}\n",
        "\\def\\mG{{\\bm{G}}}\n",
        "\\def\\mH{{\\bm{H}}}\n",
        "\\def\\mI{{\\bm{I}}}\n",
        "\\def\\mJ{{\\bm{J}}}\n",
        "\\def\\mK{{\\bm{K}}}\n",
        "\\def\\mL{{\\bm{L}}}\n",
        "\\def\\mM{{\\bm{M}}}\n",
        "\\def\\mN{{\\bm{N}}}\n",
        "\\def\\mO{{\\bm{O}}}\n",
        "\\def\\mP{{\\bm{P}}}\n",
        "\\def\\mQ{{\\bm{Q}}}\n",
        "\\def\\mR{{\\bm{R}}}\n",
        "\\def\\mS{{\\bm{S}}}\n",
        "\\def\\mT{{\\bm{T}}}\n",
        "\\def\\mU{{\\bm{U}}}\n",
        "\\def\\mV{{\\bm{V}}}\n",
        "\\def\\mW{{\\bm{W}}}\n",
        "\\def\\mX{{\\bm{X}}}\n",
        "\\def\\mY{{\\bm{Y}}}\n",
        "\\def\\mZ{{\\bm{Z}}}\n",
        "\\def\\mBeta{{\\bm{\\beta}}}\n",
        "\\def\\mPhi{{\\bm{\\Phi}}}\n",
        "\\def\\mLambda{{\\bm{\\Lambda}}}\n",
        "\\def\\mSigma{{\\bm{\\Sigma}}}\n",
        "\\DeclareMathAlphabet{\\mathsfit}{\\encodingdefault}{\\sfdefault}{m}{sl}\n",
        "\\SetMathAlphabet{\\mathsfit}{bold}{\\encodingdefault}{\\sfdefault}{bx}{n}\n",
        "\\newcommand{\\tens}[1]{\\bm{\\mathsfit{#1}}}\n",
        "\\def\\tA{{\\tens{A}}}\n",
        "\\def\\tB{{\\tens{B}}}\n",
        "\\def\\tC{{\\tens{C}}}\n",
        "\\def\\tD{{\\tens{D}}}\n",
        "\\def\\tE{{\\tens{E}}}\n",
        "\\def\\tF{{\\tens{F}}}\n",
        "\\def\\tG{{\\tens{G}}}\n",
        "\\def\\tH{{\\tens{H}}}\n",
        "\\def\\tI{{\\tens{I}}}\n",
        "\\def\\tJ{{\\tens{J}}}\n",
        "\\def\\tK{{\\tens{K}}}\n",
        "\\def\\tL{{\\tens{L}}}\n",
        "\\def\\tM{{\\tens{M}}}\n",
        "\\def\\tN{{\\tens{N}}}\n",
        "\\def\\tO{{\\tens{O}}}\n",
        "\\def\\tP{{\\tens{P}}}\n",
        "\\def\\tQ{{\\tens{Q}}}\n",
        "\\def\\tR{{\\tens{R}}}\n",
        "\\def\\tS{{\\tens{S}}}\n",
        "\\def\\tT{{\\tens{T}}}\n",
        "\\def\\tU{{\\tens{U}}}\n",
        "\\def\\tV{{\\tens{V}}}\n",
        "\\def\\tW{{\\tens{W}}}\n",
        "\\def\\tX{{\\tens{X}}}\n",
        "\\def\\tY{{\\tens{Y}}}\n",
        "\\def\\tZ{{\\tens{Z}}}\n",
        "\\def\\gA{{\\mathcal{A}}}\n",
        "\\def\\gB{{\\mathcal{B}}}\n",
        "\\def\\gC{{\\mathcal{C}}}\n",
        "\\def\\gD{{\\mathcal{D}}}\n",
        "\\def\\gE{{\\mathcal{E}}}\n",
        "\\def\\gF{{\\mathcal{F}}}\n",
        "\\def\\gG{{\\mathcal{G}}}\n",
        "\\def\\gH{{\\mathcal{H}}}\n",
        "\\def\\gI{{\\mathcal{I}}}\n",
        "\\def\\gJ{{\\mathcal{J}}}\n",
        "\\def\\gK{{\\mathcal{K}}}\n",
        "\\def\\gL{{\\mathcal{L}}}\n",
        "\\def\\gM{{\\mathcal{M}}}\n",
        "\\def\\gN{{\\mathcal{N}}}\n",
        "\\def\\gO{{\\mathcal{O}}}\n",
        "\\def\\gP{{\\mathcal{P}}}\n",
        "\\def\\gQ{{\\mathcal{Q}}}\n",
        "\\def\\gR{{\\mathcal{R}}}\n",
        "\\def\\gS{{\\mathcal{S}}}\n",
        "\\def\\gT{{\\mathcal{T}}}\n",
        "\\def\\gU{{\\mathcal{U}}}\n",
        "\\def\\gV{{\\mathcal{V}}}\n",
        "\\def\\gW{{\\mathcal{W}}}\n",
        "\\def\\gX{{\\mathcal{X}}}\n",
        "\\def\\gY{{\\mathcal{Y}}}\n",
        "\\def\\gZ{{\\mathcal{Z}}}\n",
        "\\def\\sA{{\\mathbb{A}}}\n",
        "\\def\\sB{{\\mathbb{B}}}\n",
        "\\def\\sC{{\\mathbb{C}}}\n",
        "\\def\\sD{{\\mathbb{D}}}\n",
        "\\def\\sF{{\\mathbb{F}}}\n",
        "\\def\\sG{{\\mathbb{G}}}\n",
        "\\def\\sH{{\\mathbb{H}}}\n",
        "\\def\\sI{{\\mathbb{I}}}\n",
        "\\def\\sJ{{\\mathbb{J}}}\n",
        "\\def\\sK{{\\mathbb{K}}}\n",
        "\\def\\sL{{\\mathbb{L}}}\n",
        "\\def\\sM{{\\mathbb{M}}}\n",
        "\\def\\sN{{\\mathbb{N}}}\n",
        "\\def\\sO{{\\mathbb{O}}}\n",
        "\\def\\sP{{\\mathbb{P}}}\n",
        "\\def\\sQ{{\\mathbb{Q}}}\n",
        "\\def\\sR{{\\mathbb{R}}}\n",
        "\\def\\sS{{\\mathbb{S}}}\n",
        "\\def\\sT{{\\mathbb{T}}}\n",
        "\\def\\sU{{\\mathbb{U}}}\n",
        "\\def\\sV{{\\mathbb{V}}}\n",
        "\\def\\sW{{\\mathbb{W}}}\n",
        "\\def\\sX{{\\mathbb{X}}}\n",
        "\\def\\sY{{\\mathbb{Y}}}\n",
        "\\def\\sZ{{\\mathbb{Z}}}\n",
        "\\def\\emLambda{{\\Lambda}}\n",
        "\\def\\emA{{A}}\n",
        "\\def\\emB{{B}}\n",
        "\\def\\emC{{C}}\n",
        "\\def\\emD{{D}}\n",
        "\\def\\emE{{E}}\n",
        "\\def\\emF{{F}}\n",
        "\\def\\emG{{G}}\n",
        "\\def\\emH{{H}}\n",
        "\\def\\emI{{I}}\n",
        "\\def\\emJ{{J}}\n",
        "\\def\\emK{{K}}\n",
        "\\def\\emL{{L}}\n",
        "\\def\\emM{{M}}\n",
        "\\def\\emN{{N}}\n",
        "\\def\\emO{{O}}\n",
        "\\def\\emP{{P}}\n",
        "\\def\\emQ{{Q}}\n",
        "\\def\\emR{{R}}\n",
        "\\def\\emS{{S}}\n",
        "\\def\\emT{{T}}\n",
        "\\def\\emU{{U}}\n",
        "\\def\\emV{{V}}\n",
        "\\def\\emW{{W}}\n",
        "\\def\\emX{{X}}\n",
        "\\def\\emY{{Y}}\n",
        "\\def\\emZ{{Z}}\n",
        "\\def\\emSigma{{\\Sigma}}\n",
        "\\newcommand{\\etens}[1]{\\mathsfit{#1}}\n",
        "\\def\\etLambda{{\\etens{\\Lambda}}}\n",
        "\\def\\etA{{\\etens{A}}}\n",
        "\\def\\etB{{\\etens{B}}}\n",
        "\\def\\etC{{\\etens{C}}}\n",
        "\\def\\etD{{\\etens{D}}}\n",
        "\\def\\etE{{\\etens{E}}}\n",
        "\\def\\etF{{\\etens{F}}}\n",
        "\\def\\etG{{\\etens{G}}}\n",
        "\\def\\etH{{\\etens{H}}}\n",
        "\\def\\etI{{\\etens{I}}}\n",
        "\\def\\etJ{{\\etens{J}}}\n",
        "\\def\\etK{{\\etens{K}}}\n",
        "\\def\\etL{{\\etens{L}}}\n",
        "\\def\\etM{{\\etens{M}}}\n",
        "\\def\\etN{{\\etens{N}}}\n",
        "\\def\\etO{{\\etens{O}}}\n",
        "\\def\\etP{{\\etens{P}}}\n",
        "\\def\\etQ{{\\etens{Q}}}\n",
        "\\def\\etR{{\\etens{R}}}\n",
        "\\def\\etS{{\\etens{S}}}\n",
        "\\def\\etT{{\\etens{T}}}\n",
        "\\def\\etU{{\\etens{U}}}\n",
        "\\def\\etV{{\\etens{V}}}\n",
        "\\def\\etW{{\\etens{W}}}\n",
        "\\def\\etX{{\\etens{X}}}\n",
        "\\def\\etY{{\\etens{Y}}}\n",
        "\\def\\etZ{{\\etens{Z}}}\n",
        "\\newcommand{\\pdata}{p_{\\rm{data}}}\n",
        "\\newcommand{\\ptrain}{\\hat{p}_{\\rm{data}}}\n",
        "\\newcommand{\\Ptrain}{\\hat{P}_{\\rm{data}}}\n",
        "\\newcommand{\\pmodel}{p_{\\rm{model}}}\n",
        "\\newcommand{\\Pmodel}{P_{\\rm{model}}}\n",
        "\\newcommand{\\ptildemodel}{\\tilde{p}_{\\rm{model}}}\n",
        "\\newcommand{\\pencode}{p_{\\rm{encoder}}}\n",
        "\\newcommand{\\pdecode}{p_{\\rm{decoder}}}\n",
        "\\newcommand{\\precons}{p_{\\rm{reconstruct}}}\n",
        "\\newcommand{\\laplace}{\\mathrm{Laplace}} \n",
        "\\newcommand{\\E}{\\mathbb{E}}\n",
        "\\newcommand{\\Ls}{\\mathcal{L}}\n",
        "\\newcommand{\\R}{\\mathbb{R}}\n",
        "\\newcommand{\\emp}{\\tilde{p}}\n",
        "\\newcommand{\\lr}{\\alpha}\n",
        "\\newcommand{\\reg}{\\lambda}\n",
        "\\newcommand{\\rect}{\\mathrm{rectifier}}\n",
        "\\newcommand{\\softmax}{\\mathrm{softmax}}\n",
        "\\newcommand{\\sigmoid}{\\sigma}\n",
        "\\newcommand{\\softplus}{\\zeta}\n",
        "\\newcommand{\\KL}{D_{\\mathrm{KL}}}\n",
        "\\newcommand{\\Var}{\\mathrm{Var}}\n",
        "\\newcommand{\\standarderror}{\\mathrm{SE}}\n",
        "\\newcommand{\\Cov}{\\mathrm{Cov}}\n",
        "\\newcommand{\\normlzero}{L^0}\n",
        "\\newcommand{\\normlone}{L^1}\n",
        "\\newcommand{\\normltwo}{L^2}\n",
        "\\newcommand{\\normlp}{L^p}\n",
        "\\newcommand{\\normmax}{L^\\infty}\n",
        "\\newcommand{\\parents}{Pa} \n",
        "\\DeclareMathOperator*{\\argmax}{arg\\,max}\n",
        "\\DeclareMathOperator*{\\argmin}{arg\\,min}\n",
        "\\DeclareMathOperator{\\sign}{sign}\n",
        "\\DeclareMathOperator{\\Tr}{Tr}\n",
        "\\let\\ab\\allowbreak\n",
        "\\usepackage{hyperref}\n",
        "\\usepackage{paralist}\n",
        "\\usepackage{amsmath}\n",
        "\\usepackage{amssymb}\n",
        "\\usepackage{wrapfig}\n",
        "\\usepackage{multirow}\n",
        "\\usepackage{multicol}\n",
        "\\usepackage{multirow}\n",
        "\\usepackage{dsfont}\n",
        "\\usepackage{tabularx}\n",
        "\\usepackage{graphicx}\n",
        "\\usepackage{xcolor}\n",
        "\\usepackage{soul}\n",
        "\\usepackage{xspace}\n",
        "\\usepackage{booktabs}\n",
        "\\usepackage{caption}\n",
        "\\usepackage{enumitem}\n",
        "\\usepackage{algorithm}\n",
        "\\usepackage[noend]{algorithmic}\n",
        "\\usepackage{pythonhighlight}\n",
        "\\usepackage{pifont}\n",
        "\\usepackage[most]{tcolorbox}\n",
        "\\usepackage[framemethod=tikz]{mdframed}\n",
        "\\definecolor{qualcolor}{RGB}{128,64,0}\n",
        "\\gdef\\Sepline{\n",
        "  \\par\\noindent\\makebox[\\linewidth][l]{\n",
        "  \\hspace*{-\\mdflength{innerleftmargin}}\n",
        "   \\tikz\\draw[thick,dashed,gray!60] (0,0) --\n",
        "        (\\textwidth+\\the\\mdflength{innerleftmargin}+\\the\\mdflength{innerrightmargin},0);\n",
        "  }\\par\\nobreak}\n",
        "\\newcommand{\\cmark}{\\ding{51}}\n",
        "\\newcommand{\\xmark}{\\ding{55}}\n",
        "\\newcommand{\\sbf}{\\ensuremath{\\mathbf{s}}}\n",
        "\\newcommand{\\txb}{\\ensuremath{\\tilde{\\mathbf{x}}}}\n",
        "\\newcommand{\\tyb}{\\ensuremath{\\tilde{\\mathbf{y}}}}\n",
        "\\newcommand{\\ty}{\\ensuremath{\\tilde{y}}}\n",
        "\\newcommand{\\xb}{\\ensuremath{\\mathbf{x}}}\n",
        "\\newcommand{\\eb}{\\ensuremath{\\mathbf{e}}}\n",
        "\\newcommand{\\yb}{\\ensuremath{\\mathbf{y}}}\n",
        "\\newcommand{\\Tmc}{\\ensuremath{\\mathcal{T}}}\n",
        "\\newcommand{\\Pmc}{\\ensuremath{\\mathcal{P}}}\n",
        "\\newcommand{\\Omc}{\\ensuremath{\\mathcal{O}}}\n",
        "\\newcommand{\\Vmc}{\\ensuremath{\\mathcal{V}}}\n",
        "\\newcommand{\\Emc}{\\ensuremath{\\mathcal{E}}}\n",
        "\\newcommand{\\Yhatmc}{\\ensuremath{\\hat{\\mathcal{Y}}}}\n",
        "\\newcommand{\\vocab}{\\ensuremath{\\mathcal{V}}}\n",
        "\\DeclareMathOperator*{\\argtopK}{arg\\,\\mathrm{top}\\text{-}\\mathrm{K}}\n",
        "\\newcommand{\\corr}{\\xspace}\n",
        "\\usepackage[normalem]{ulem}\n",
        "\\setlength{\\marginparwidth}{2cm}\n",
        "\\usepackage[colorinlistoftodos]{todonotes}\n",
        "\\definecolor{green(pigment)}{rgb}{0.0, 0.65, 0.31}\n",
        "\\usepackage{array}\n",
        "\\usepackage{makecell}\n",
        "\\renewcommand\\theadfont{}\n",
        "\\usepackage{framed}\n",
        "\\usepackage{hhline}\n",
        "\\usepackage{courierten}\n",
        "\\usepackage[T1]{fontenc}    \n",
        "\\newcommand\\modelfont[1]{{\\usefont{T1}{courierten}{m}{n}#1}}\n",
        "\\newcommand\\myfontsize{\\fontsize{8.3pt}{10.3pt}\\selectfont}\n",
        "\\newcommand{\\methodnamelong}{\\modelfont{Self-Correction for Sequence Generation}\\xspace}\n",
        "\\newcommand{\\methodnamewithacronymhighlighted}{\\modelfont{\\ul{Pre}diction-\\ul{C}orrect\\ul{i}on for \\ul{Se}quence Generation}\\xspace}\n",
        "\\newcommand{\\methodnameshort}{\\modelfont{Self-Correction}\\xspace}\n",
        "\\newcommand{\\methodnamenospace}{\\modelfont{Self-Correction}\\xspace}\n",
        "\\newcommand{\\method}{\\textsc{Self-Correct}\\xspace}\n",
        "\\newcommand{\\myparagraph}[1]{\\par\\noindent\\textbf{{#1}}} \n",
        "\\newcommand{\\myparagraphsmall}[1]{\\par\\noindent\\textit{{#1}}}\n",
        "\\title{Generating Sequences by \\\\Learning to [Self-]Correct}\n",
        "\\author{Sean Welleck\\textsuperscript{1,3,*} \\hspace{1pt}\n",
        "Ximing Lu\\textsuperscript{1,*}\n",
        "\\AND Peter West\\textsuperscript{3,$\\dagger$} \\hspace{1pt} Faeze Brahman\\textsuperscript{1,$\\dagger$}\n",
        "\\AND Tianxiao Shen\\textsuperscript{3} \\hspace{1pt} Daniel Khashabi\\textsuperscript{2} \\hspace{1pt} Yejin Choi\\textsuperscript{1,3} \\\\\n",
        "\\textsuperscript{1}Allen Institute for Artificial Intelligence\\\\\n",
        " \\textsuperscript{2}Center for Language and Speech Processing,  Johns Hopkins University \\\\\n",
        "  \\textsuperscript{3}Paul G. Allen School of Computer Science \\& Engineering, University of Washington \\\\\n",
        "}\n",
        "\\newcommand{\\fix}{\\marginpar{FIX}}\n",
        "\\newcommand{\\new}{\\marginpar{NEW}}\n",
        "\\iclrfinalcopy \n",
        "\\begin{document}\n",
        "\\maketitle\n",
        "\\renewcommand*\\thefootnote{\\textbf{$*$}}\\footnotetext{First authors, contributed equally. \\textbf{$\\dagger$}Second authors, contributed equally.}\n",
        "\\renewcommand*{\\thefootnote}{\\arabic{footnote}}\n",
        "\\setcounter{footnote}{0}\n",
        "\\begin{abstract}\n",
        "Language models, whether fine-tuned or prompted with few-shot demonstrations, frequently violate these constraints, and lack a mechanism to iteratively revise their outputs.\n",
        "Moreover, some powerful language models are  of extreme scale or inaccessible, making it inefficient, if not  infeasible, to update their parameters for task-specific adaptation. \n",
        "We present \\textsc{self-correction}, \n",
        "\\end{abstract}\n",
        "\\section{Introduction}\n",
        "The standard practice for natural language generation tasks is inherently single-pass: applying a decoding procedure \n",
        "to either a few-shot prompted language model or one tuned for a given task, then considering the generation as ``finished''~(e.g. \\citet{radford2019language,brown2020,chen2021codex}).\n",
        "Powerful generation models\n",
        "often meet most of the task requirements, yet miss a few\n",
        "(e.g., omitting a subset of keywords), \n",
        "or generate incorrect hypotheses that nevertheless provide useful structure \n",
        "(e.g., a correct problem solving strategy with a missing step). \n",
        "However, after generating even a slightly sub-optimal sequence, the single-pass paradigm requires models to ``start from scratch'',  \n",
        "effectively discarding work already done. \n",
        "A more natural, intuitive approach\n",
        "is leveraging the generation as a useful starting point\n",
        "to refine \n",
        "into a higher quality output.\n",
        "To formalize this intuition, we introduce \\methodnamelong. \n",
        "\\autoref{fig:teaser} demonstrates its central principle: a generation model is re-framed as a base\n",
        "\\begin{figure}[t]\n",
        "    \\centering\n",
        "    \\includegraphics[width=0.99\\textwidth]{images/summary_figure}\n",
        "    \\caption{\\textsc{Self-corrector}s decompose generation into a base generator that proposes an initial hypothesis, and a corrector that iteratively improves its quality.}\n",
        "    \\label{fig:teaser}\n",
        "\\end{figure}\n",
        "\\section{Self-correcting sequence generators}\n",
        "\\label{sec:method}\n",
        "A typical autoregressive text generator (e.g. GPT-3~\\citep{brown2020}) maps an input prompt to a distribution over outputs using a single parameterized module (e.g. a large transformer), $p_0(y|x)$.\n",
        "\\begin{align}\n",
        "\\label{eqn:model-onestep}\n",
        "p(y|x)=\\sum_{y_0}\\underbrace{p_0(y_0|x)}_{\\text{generator}}\\underbrace{p_\\theta(y|y_0,x)}_{\\text{corrector}}\n",
        "\\end{align}\n",
        "Since a model of this form can both generate and correct its generations, we call it a \\modelfont{Self-Corrector}.\n",
        "Self-correctors have several unique properties compared to typical generators.\n",
        "First, a self-corrector \n",
        "decouples generation and correction, \n",
        "allowing us to \\emph{freely parameterize each module} -- \n",
        "for instance, by prompting a single language model or using two different language models.  \n",
        "In this paper, we develop a framework to train a separate corrector model\n",
        "(\\S\\ref{ssec:learning}).\n",
        "In \\S\\ref{ssec:learning}, we propose a training algorithm for the corrector that is dedicated to improving generations, where the improvement can be in any aspect, measured by scalar values.\n",
        "The feedback can be of many forms, e.g. a sentence, a compiler trace, etc. \n",
        "In contrast, a typical generator that generates in a single pass does not leverage feedback on its own generation.\n",
        "In this paper, \n",
        "Next, we describe our training framework of the corrector.\n",
        "\\subsection{Learning a Corrector}\n",
        "\\label{ssec:learning}\n",
        "Our goal is to have the generator generate an initial hypothesis, \n",
        "Here, quality is measured with a scalar value function $v(y)$ which we assume is accessible at training time (e.g. a classifier).\n",
        "Since direct supervision on how to improve hypotheses is not available, we design a new algorithm to train the corrector, which we refer to as self-corrective learning.\n",
        "The algorithm collects a pool of generations, \n",
        "groups them and \n",
        "As training progresses, more \n",
        "Algorithm~\\ref{alg:main} summarizes self-corrective learning, detailed below.\n",
        "\\begin{figure}[t]\n",
        "    \\centering\n",
        "    \\includegraphics[width=0.99\\textwidth]{images/learning_figure_v2.png}\n",
        "    }\n",
        "    \\label{fig:learning}\n",
        "\\end{figure}\n",
        "\\myparagraph{Initialization.}\n",
        "Self-corrective learning begins with a generator $p_0(y_0|x)$, a corrector \n",
        "$p_\\theta(y'|y,x)$\n",
        ", a set of training prompts $X$, and a value function \n",
        "$v:\\mathcal Y \\rightarrow\\mathbb R$.\n",
        "Optionally,\n",
        "$f: \\mathcal Y \\rightarrow \\mathcal F$ and learn $p_\\theta(y'|y,x,f(y))$,\n",
        "where $\\mathcal F$ \n",
        "is arbitrary.\n",
        "Formally, \n",
        "\\begin{align}\n",
        "D_x=\\{(x,y,v(y), f(y))\\ |\\ \\text{for all } y\\in y^{1:N}\\sim q(p_0(\\cdot|x))\\},\\quad D=\\bigcup_{x\\in X} D_x,\n",
        "\\label{eqn:d0}\n",
        "\\end{align}\n",
        "where $y^{1:N}$ denotes $N$ outputs generated with decoding algorithm $q$ (e.g. temperature sampling).\n",
        "When available, $(x, y, v(y), f(y))$ examples from another source (e.g. a dataset) can also be added.\n",
        "\\newcommand{\\algcomment}[1]{{\\footnotesize \\fontfamily{cmtt}\\selectfont // #1}}\n",
        "\\renewcommand{\\algorithmiccomment}[1]{\\hfill{\\(\\triangleright\\)~#1}\\par}\n",
        "\\begin{figure}[t]\n",
        "\\vspace{-1em}\n",
        "\\begin{algorithm}[H]\n",
        "\\small\n",
        "\\begin{algorithmic}\n",
        "\\\\\n",
        "\\text{Initialize datapool }$D$ by sampling from $p_0$\\algorithmiccomment{Initialization: Eq.~\\ref{eqn:d0}}\n",
        "\\FOR{$\\text{iteration}\\in\\{1,2,\\ldots\\}$}\n",
        "\\FOR{$x \\in X$} \n",
        "\\STATE Sample hypotheses $y$ from datapool $D$  \n",
        "\\STATE Generate corrections $y'\\sim p_\\theta(\\cdot|y,x,f(y))$\n",
        "\\STATE Add all $(x,y',v(y'),f(y'))$ to the datapool $D$\n",
        "\\ENDFOR\n",
        "\\FOR{step in $1,2,\\ldots,M$ }\n",
        "\\item Compute the loss and update $\\theta$ using gradient descent\n",
        "\\algorithmiccomment{Learning}\n",
        "\\ENDFOR\n",
        "\\ENDFOR\n",
        "\\end{algorithmic}\n",
        "\\caption{Self-corrective learning}\n",
        "\\label{alg:main}\n",
        "\\end{algorithm}\n",
        "\\vspace{-1em}\n",
        "\\end{figure}\n",
        "We use \n",
        "\\begin{align}\n",
        "\\label{eqn:pairing}\n",
        "    P_x=\\{(x,y,y')\\mid v(y)<v(y')\\text{ for all } y,y'\\in D_x\\times D_x\\},\\quad P=\\bigcup_{x\\in X} P_x,\n",
        "\\end{align}\n",
        "\\myparagraph{Learning.}\n",
        "\\begin{align}\n",
        "\\label{eqn:residual-subsample}\n",
        "  \\mathds P[(x, y,y')]&\\propto \\exp\\big(\\underbrace{\\alpha\\cdot(v(y')-v(y))}_{\\text{improvement}}+\\underbrace{\\beta\\cdot s(y,y')}_{\\text{proximity}}\\big)/Z(y), \n",
        "\\end{align}\n",
        "where $s(y,y')$ is a similarity function and $Z(y)$\n",
        "normalizes over the available corrections for $y$ in $P_x$.\n",
        "Increasing the hyperparameter $\\alpha\\in\\mathbb{R}_{\\geq 0}$ puts more weight on targets that add more value, while\n",
        "increasing  $\\beta\\in\\mathbb{R}_{\\geq 0}$ retains more similar targets. \n",
        "We update the corrector using the cross-entropy loss $\\mathcal{L}(\\theta) = -\\log p_\\theta(y'|y,x,f(y))$ on batches sampled in this way.\n",
        "\\begin{align}\n",
        "\\label{eqn:exploration}\n",
        "D'_x&=\\{(x,y',v(y'), f(y'))\\ |\\ \\text{for all } y'\\in y'^{1:N}\\sim q(p_\\theta(\\cdot|y,x,f(y))\\},\\quad D'=\\bigcup_{x\\in X} D'_x\n",
        "\\end{align}\n",
        "and updating the datapool $D\\leftarrow D\\cup D'$.\n",
        "or from the datapool; \n",
        "we use the latter in our experiments.\n",
        "\\myparagraph{Inference.}\n",
        "Since marginalizing over the intermediate generations in Eq.~\\ref{eqn:model-onestep} is intractable, we approximate each summation with a single sequence generated with a decoding algorithm $q(\\cdot)$.\n",
        "\\begin{itemize}[leftmargin=*,topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex]\n",
        "    \\item Generation: $y_0\\sim q(p_0(y_0|x))$;\n",
        "    \\item Correction: $y_{t+1}\\sim q(p_\\theta(y_{t+1}|y_{t},x, f(y_t)))$,\\quad $t=0,1,\\dots,T-1$.\n",
        "\\end{itemize}\n",
        "The stopping time $T$ is either fixed, or when a target value is obtained (if $v(y)$ is available).\n"
    ],
    "output": {
        "What experiments do you suggest doing?": [
            "1. Evaluating Self-Correction on diverse tasks: The authors should evaluate the proposed self-correction on a diversity of tasks. The evaluation task should be the ones that require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content.",
            "2. Improvement with self-correctors: The authors should apply self-correctors on the base generators on different tasks. Then compare if self-correctors bring improvements upon generators.",
            "3. Correcting generators that are much larger than the corrector: The authors should evaluate the performance of using a small corrector to correct a large generator. They can compare the performance in the following two cases: (1) training with a small generator, then swapping in the larger generator at test time; (2) training with the larger generator, i.e. using the large generator to initialize the datapool for self-corrective learning, then using the large generator at test time.",
            "4. Self-correctors leveraging explicit feedback during training and inference: The authors should incorporate natural language feedbacks that pointing out the downsides of the generated content to the self-correctors. Then compare the performance among the generator-only, generator+self-correct, and  generator+self-correct with feedbacks.",
            "5. Effect of multiple corrections: The authors should apply multiple corrections on different tasks and report the performance change when the number of corrections increases.",
            "6. Effect of pairing and proportional sampling: The authors should ablate two components in the proposed self-correction: (i) samples pairs for learning proportional to Equation 4. (ii) only pairs sequences that improve value. Then show the performance change.",
            "7. Effect of exploration: The authors should ablate the effect of exploration. They could train a baseline only on correction pairs induced from the base generator and show the results."
        ],
        "Why do you suggest these experiments?": [
            "1. To show that Self-Correction is effective on various tasks that aligns with the paper\u2019s motivation.",
            "2. To show that self-correctors is effective in correcting the original generators and thus improve the generation quality.",
            "3. To show that a self-corrector can improve the outputs of a generator that is much larger than the corrector.",
            "4. To demonstrate self-correct\u2019s capacity to incorporate explicit natural language feedback and leveraging such feed backs could further improve the performance.",
            "5. To explore if multiple corrections lead to better performance.",
            "6. This is an ablation study to show how different components in the proposed self-correct method effect the performance.",
            "7. To understand how exploration effects the self-correct performance."
        ]
    },
    "paper_info": {
        "title": "Generating Sequences by Learning to Self-Correct",
        "authors": [
            "Sean Welleck",
            "Ximing Lu",
            "Peter West",
            "Faeze Brahman",
            "Tianxiao Shen",
            "Daniel Khashabi",
            "Yejin Choi"
        ],
        "abstract": "Sequence generation applications require satisfying semantic constraints,\nsuch as ensuring that programs are correct, using certain keywords, or avoiding\nundesirable content. Language models, whether fine-tuned or prompted with\nfew-shot demonstrations, frequently violate these constraints, and lack a\nmechanism to iteratively revise their outputs. Moreover, some powerful language\nmodels are of extreme scale or inaccessible, making it inefficient, if not\ninfeasible, to update their parameters for task-specific adaptation. We present\nSelf-Correction, an approach that decouples an imperfect base generator (an\noff-the-shelf language model or supervised sequence-to-sequence model) from a\nseparate corrector that learns to iteratively correct imperfect generations. To\ntrain the corrector, we propose an online training procedure that can use\neither scalar or natural language feedback on intermediate imperfect\ngenerations. We show that Self-Correction improves upon the base generator in\nthree diverse generation tasks - mathematical program synthesis,\nlexically-constrained generation, and toxicity control - even when the\ncorrector is much smaller than the base generator.",
        "comments": null
    },
    "raw_data": {
        "context_before_exp": [
            "\n",
            "\\documentclass{article} \n",
            "\\usepackage{iclr2023_conference,times}\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\\usepackage{amsmath,amsfonts,bm}\n",
            "\n",
            "\n",
            "\\newcommand{\\figleft}{{\\em (Left)}}\n",
            "\\newcommand{\\figcenter}{{\\em (Center)}}\n",
            "\\newcommand{\\figright}{{\\em (Right)}}\n",
            "\\newcommand{\\figtop}{{\\em (Top)}}\n",
            "\\newcommand{\\figbottom}{{\\em (Bottom)}}\n",
            "\\newcommand{\\captiona}{{\\em (a)}}\n",
            "\\newcommand{\\captionb}{{\\em (b)}}\n",
            "\\newcommand{\\captionc}{{\\em (c)}}\n",
            "\\newcommand{\\captiond}{{\\em (d)}}\n",
            "\n",
            "\n",
            "\\newcommand{\\newterm}[1]{{\\bf #1}}\n",
            "\n",
            "\n",
            "\n",
            "\\def\\figref#1{figure~\\ref{#1}}\n",
            "\n",
            "\\def\\Figref#1{Figure~\\ref{#1}}\n",
            "\\def\\twofigref#1#2{figures \\ref{#1} and \\ref{#2}}\n",
            "\\def\\quadfigref#1#2#3#4{figures \\ref{#1}, \\ref{#2}, \\ref{#3} and \\ref{#4}}\n",
            "\n",
            "\\def\\secref#1{section~\\ref{#1}}\n",
            "\n",
            "\\def\\Secref#1{Section~\\ref{#1}}\n",
            "\n",
            "\\def\\twosecrefs#1#2{sections \\ref{#1} and \\ref{#2}}\n",
            "\n",
            "\\def\\secrefs#1#2#3{sections \\ref{#1}, \\ref{#2} and \\ref{#3}}\n",
            "\n",
            "\\def\\eqref#1{equation~\\ref{#1}}\n",
            "\n",
            "\\def\\Eqref#1{Equation~\\ref{#1}}\n",
            "\n",
            "\\def\\plaineqref#1{\\ref{#1}}\n",
            "\n",
            "\\def\\chapref#1{chapter~\\ref{#1}}\n",
            "\n",
            "\\def\\Chapref#1{Chapter~\\ref{#1}}\n",
            "\n",
            "\\def\\rangechapref#1#2{chapters\\ref{#1}--\\ref{#2}}\n",
            "\n",
            "\\def\\algref#1{algorithm~\\ref{#1}}\n",
            "\n",
            "\\def\\Algref#1{Algorithm~\\ref{#1}}\n",
            "\\def\\twoalgref#1#2{algorithms \\ref{#1} and \\ref{#2}}\n",
            "\\def\\Twoalgref#1#2{Algorithms \\ref{#1} and \\ref{#2}}\n",
            "\n",
            "\\def\\partref#1{part~\\ref{#1}}\n",
            "\n",
            "\\def\\Partref#1{Part~\\ref{#1}}\n",
            "\\def\\twopartref#1#2{parts \\ref{#1} and \\ref{#2}}\n",
            "\n",
            "\\def\\ceil#1{\\lceil #1 \\rceil}\n",
            "\\def\\floor#1{\\lfloor #1 \\rfloor}\n",
            "\\def\\1{\\bm{1}}\n",
            "\\newcommand{\\train}{\\mathcal{D}}\n",
            "\\newcommand{\\valid}{\\mathcal{D_{\\mathrm{valid}}}}\n",
            "\\newcommand{\\test}{\\mathcal{D_{\\mathrm{test}}}}\n",
            "\n",
            "\\def\\eps{{\\epsilon}}\n",
            "\n",
            "\n",
            "\n",
            "\\def\\reta{{\\textnormal{$\\eta$}}}\n",
            "\\def\\ra{{\\textnormal{a}}}\n",
            "\\def\\rb{{\\textnormal{b}}}\n",
            "\\def\\rc{{\\textnormal{c}}}\n",
            "\\def\\rd{{\\textnormal{d}}}\n",
            "\\def\\re{{\\textnormal{e}}}\n",
            "\\def\\rf{{\\textnormal{f}}}\n",
            "\\def\\rg{{\\textnormal{g}}}\n",
            "\\def\\rh{{\\textnormal{h}}}\n",
            "\\def\\ri{{\\textnormal{i}}}\n",
            "\\def\\rj{{\\textnormal{j}}}\n",
            "\\def\\rk{{\\textnormal{k}}}\n",
            "\\def\\rl{{\\textnormal{l}}}\n",
            "\n",
            "\\def\\rn{{\\textnormal{n}}}\n",
            "\\def\\ro{{\\textnormal{o}}}\n",
            "\\def\\rp{{\\textnormal{p}}}\n",
            "\\def\\rq{{\\textnormal{q}}}\n",
            "\\def\\rr{{\\textnormal{r}}}\n",
            "\\def\\rs{{\\textnormal{s}}}\n",
            "\\def\\rt{{\\textnormal{t}}}\n",
            "\\def\\ru{{\\textnormal{u}}}\n",
            "\\def\\rv{{\\textnormal{v}}}\n",
            "\\def\\rw{{\\textnormal{w}}}\n",
            "\\def\\rx{{\\textnormal{x}}}\n",
            "\\def\\ry{{\\textnormal{y}}}\n",
            "\\def\\rz{{\\textnormal{z}}}\n",
            "\n",
            "\n",
            "\\def\\rvepsilon{{\\mathbf{\\epsilon}}}\n",
            "\\def\\rvtheta{{\\mathbf{\\theta}}}\n",
            "\\def\\rva{{\\mathbf{a}}}\n",
            "\\def\\rvb{{\\mathbf{b}}}\n",
            "\\def\\rvc{{\\mathbf{c}}}\n",
            "\\def\\rvd{{\\mathbf{d}}}\n",
            "\\def\\rve{{\\mathbf{e}}}\n",
            "\\def\\rvf{{\\mathbf{f}}}\n",
            "\\def\\rvg{{\\mathbf{g}}}\n",
            "\\def\\rvh{{\\mathbf{h}}}\n",
            "\\def\\rvu{{\\mathbf{i}}}\n",
            "\\def\\rvj{{\\mathbf{j}}}\n",
            "\\def\\rvk{{\\mathbf{k}}}\n",
            "\\def\\rvl{{\\mathbf{l}}}\n",
            "\\def\\rvm{{\\mathbf{m}}}\n",
            "\\def\\rvn{{\\mathbf{n}}}\n",
            "\\def\\rvo{{\\mathbf{o}}}\n",
            "\\def\\rvp{{\\mathbf{p}}}\n",
            "\\def\\rvq{{\\mathbf{q}}}\n",
            "\\def\\rvr{{\\mathbf{r}}}\n",
            "\\def\\rvs{{\\mathbf{s}}}\n",
            "\\def\\rvt{{\\mathbf{t}}}\n",
            "\\def\\rvu{{\\mathbf{u}}}\n",
            "\\def\\rvv{{\\mathbf{v}}}\n",
            "\\def\\rvw{{\\mathbf{w}}}\n",
            "\\def\\rvx{{\\mathbf{x}}}\n",
            "\\def\\rvy{{\\mathbf{y}}}\n",
            "\\def\\rvz{{\\mathbf{z}}}\n",
            "\n",
            "\n",
            "\\def\\erva{{\\textnormal{a}}}\n",
            "\\def\\ervb{{\\textnormal{b}}}\n",
            "\\def\\ervc{{\\textnormal{c}}}\n",
            "\\def\\ervd{{\\textnormal{d}}}\n",
            "\\def\\erve{{\\textnormal{e}}}\n",
            "\\def\\ervf{{\\textnormal{f}}}\n",
            "\\def\\ervg{{\\textnormal{g}}}\n",
            "\\def\\ervh{{\\textnormal{h}}}\n",
            "\\def\\ervi{{\\textnormal{i}}}\n",
            "\\def\\ervj{{\\textnormal{j}}}\n",
            "\\def\\ervk{{\\textnormal{k}}}\n",
            "\\def\\ervl{{\\textnormal{l}}}\n",
            "\\def\\ervm{{\\textnormal{m}}}\n",
            "\\def\\ervn{{\\textnormal{n}}}\n",
            "\\def\\ervo{{\\textnormal{o}}}\n",
            "\\def\\ervp{{\\textnormal{p}}}\n",
            "\\def\\ervq{{\\textnormal{q}}}\n",
            "\\def\\ervr{{\\textnormal{r}}}\n",
            "\\def\\ervs{{\\textnormal{s}}}\n",
            "\\def\\ervt{{\\textnormal{t}}}\n",
            "\\def\\ervu{{\\textnormal{u}}}\n",
            "\\def\\ervv{{\\textnormal{v}}}\n",
            "\\def\\ervw{{\\textnormal{w}}}\n",
            "\\def\\ervx{{\\textnormal{x}}}\n",
            "\\def\\ervy{{\\textnormal{y}}}\n",
            "\\def\\ervz{{\\textnormal{z}}}\n",
            "\n",
            "\n",
            "\\def\\rmA{{\\mathbf{A}}}\n",
            "\\def\\rmB{{\\mathbf{B}}}\n",
            "\\def\\rmC{{\\mathbf{C}}}\n",
            "\\def\\rmD{{\\mathbf{D}}}\n",
            "\\def\\rmE{{\\mathbf{E}}}\n",
            "\\def\\rmF{{\\mathbf{F}}}\n",
            "\\def\\rmG{{\\mathbf{G}}}\n",
            "\\def\\rmH{{\\mathbf{H}}}\n",
            "\\def\\rmI{{\\mathbf{I}}}\n",
            "\\def\\rmJ{{\\mathbf{J}}}\n",
            "\\def\\rmK{{\\mathbf{K}}}\n",
            "\\def\\rmL{{\\mathbf{L}}}\n",
            "\\def\\rmM{{\\mathbf{M}}}\n",
            "\\def\\rmN{{\\mathbf{N}}}\n",
            "\\def\\rmO{{\\mathbf{O}}}\n",
            "\\def\\rmP{{\\mathbf{P}}}\n",
            "\\def\\rmQ{{\\mathbf{Q}}}\n",
            "\\def\\rmR{{\\mathbf{R}}}\n",
            "\\def\\rmS{{\\mathbf{S}}}\n",
            "\\def\\rmT{{\\mathbf{T}}}\n",
            "\\def\\rmU{{\\mathbf{U}}}\n",
            "\\def\\rmV{{\\mathbf{V}}}\n",
            "\\def\\rmW{{\\mathbf{W}}}\n",
            "\\def\\rmX{{\\mathbf{X}}}\n",
            "\\def\\rmY{{\\mathbf{Y}}}\n",
            "\\def\\rmZ{{\\mathbf{Z}}}\n",
            "\n",
            "\n",
            "\\def\\ermA{{\\textnormal{A}}}\n",
            "\\def\\ermB{{\\textnormal{B}}}\n",
            "\\def\\ermC{{\\textnormal{C}}}\n",
            "\\def\\ermD{{\\textnormal{D}}}\n",
            "\\def\\ermE{{\\textnormal{E}}}\n",
            "\\def\\ermF{{\\textnormal{F}}}\n",
            "\\def\\ermG{{\\textnormal{G}}}\n",
            "\\def\\ermH{{\\textnormal{H}}}\n",
            "\\def\\ermI{{\\textnormal{I}}}\n",
            "\\def\\ermJ{{\\textnormal{J}}}\n",
            "\\def\\ermK{{\\textnormal{K}}}\n",
            "\\def\\ermL{{\\textnormal{L}}}\n",
            "\\def\\ermM{{\\textnormal{M}}}\n",
            "\\def\\ermN{{\\textnormal{N}}}\n",
            "\\def\\ermO{{\\textnormal{O}}}\n",
            "\\def\\ermP{{\\textnormal{P}}}\n",
            "\\def\\ermQ{{\\textnormal{Q}}}\n",
            "\\def\\ermR{{\\textnormal{R}}}\n",
            "\\def\\ermS{{\\textnormal{S}}}\n",
            "\\def\\ermT{{\\textnormal{T}}}\n",
            "\\def\\ermU{{\\textnormal{U}}}\n",
            "\\def\\ermV{{\\textnormal{V}}}\n",
            "\\def\\ermW{{\\textnormal{W}}}\n",
            "\\def\\ermX{{\\textnormal{X}}}\n",
            "\\def\\ermY{{\\textnormal{Y}}}\n",
            "\\def\\ermZ{{\\textnormal{Z}}}\n",
            "\n",
            "\n",
            "\\def\\vzero{{\\bm{0}}}\n",
            "\\def\\vone{{\\bm{1}}}\n",
            "\\def\\vmu{{\\bm{\\mu}}}\n",
            "\\def\\vtheta{{\\bm{\\theta}}}\n",
            "\\def\\va{{\\bm{a}}}\n",
            "\\def\\vb{{\\bm{b}}}\n",
            "\\def\\vc{{\\bm{c}}}\n",
            "\\def\\vd{{\\bm{d}}}\n",
            "\\def\\ve{{\\bm{e}}}\n",
            "\\def\\vf{{\\bm{f}}}\n",
            "\\def\\vg{{\\bm{g}}}\n",
            "\\def\\vh{{\\bm{h}}}\n",
            "\\def\\vi{{\\bm{i}}}\n",
            "\\def\\vj{{\\bm{j}}}\n",
            "\\def\\vk{{\\bm{k}}}\n",
            "\\def\\vl{{\\bm{l}}}\n",
            "\\def\\vm{{\\bm{m}}}\n",
            "\\def\\vn{{\\bm{n}}}\n",
            "\\def\\vo{{\\bm{o}}}\n",
            "\\def\\vp{{\\bm{p}}}\n",
            "\\def\\vq{{\\bm{q}}}\n",
            "\\def\\vr{{\\bm{r}}}\n",
            "\\def\\vs{{\\bm{s}}}\n",
            "\\def\\vt{{\\bm{t}}}\n",
            "\\def\\vu{{\\bm{u}}}\n",
            "\\def\\vv{{\\bm{v}}}\n",
            "\\def\\vw{{\\bm{w}}}\n",
            "\\def\\vx{{\\bm{x}}}\n",
            "\\def\\vy{{\\bm{y}}}\n",
            "\\def\\vz{{\\bm{z}}}\n",
            "\n",
            "\n",
            "\\def\\evalpha{{\\alpha}}\n",
            "\\def\\evbeta{{\\beta}}\n",
            "\\def\\evepsilon{{\\epsilon}}\n",
            "\\def\\evlambda{{\\lambda}}\n",
            "\\def\\evomega{{\\omega}}\n",
            "\\def\\evmu{{\\mu}}\n",
            "\\def\\evpsi{{\\psi}}\n",
            "\\def\\evsigma{{\\sigma}}\n",
            "\\def\\evtheta{{\\theta}}\n",
            "\\def\\eva{{a}}\n",
            "\\def\\evb{{b}}\n",
            "\\def\\evc{{c}}\n",
            "\\def\\evd{{d}}\n",
            "\\def\\eve{{e}}\n",
            "\\def\\evf{{f}}\n",
            "\\def\\evg{{g}}\n",
            "\\def\\evh{{h}}\n",
            "\\def\\evi{{i}}\n",
            "\\def\\evj{{j}}\n",
            "\\def\\evk{{k}}\n",
            "\\def\\evl{{l}}\n",
            "\\def\\evm{{m}}\n",
            "\\def\\evn{{n}}\n",
            "\\def\\evo{{o}}\n",
            "\\def\\evp{{p}}\n",
            "\\def\\evq{{q}}\n",
            "\\def\\evr{{r}}\n",
            "\\def\\evs{{s}}\n",
            "\\def\\evt{{t}}\n",
            "\\def\\evu{{u}}\n",
            "\\def\\evv{{v}}\n",
            "\\def\\evw{{w}}\n",
            "\\def\\evx{{x}}\n",
            "\\def\\evy{{y}}\n",
            "\\def\\evz{{z}}\n",
            "\n",
            "\n",
            "\\def\\mA{{\\bm{A}}}\n",
            "\\def\\mB{{\\bm{B}}}\n",
            "\\def\\mC{{\\bm{C}}}\n",
            "\\def\\mD{{\\bm{D}}}\n",
            "\\def\\mE{{\\bm{E}}}\n",
            "\\def\\mF{{\\bm{F}}}\n",
            "\\def\\mG{{\\bm{G}}}\n",
            "\\def\\mH{{\\bm{H}}}\n",
            "\\def\\mI{{\\bm{I}}}\n",
            "\\def\\mJ{{\\bm{J}}}\n",
            "\\def\\mK{{\\bm{K}}}\n",
            "\\def\\mL{{\\bm{L}}}\n",
            "\\def\\mM{{\\bm{M}}}\n",
            "\\def\\mN{{\\bm{N}}}\n",
            "\\def\\mO{{\\bm{O}}}\n",
            "\\def\\mP{{\\bm{P}}}\n",
            "\\def\\mQ{{\\bm{Q}}}\n",
            "\\def\\mR{{\\bm{R}}}\n",
            "\\def\\mS{{\\bm{S}}}\n",
            "\\def\\mT{{\\bm{T}}}\n",
            "\\def\\mU{{\\bm{U}}}\n",
            "\\def\\mV{{\\bm{V}}}\n",
            "\\def\\mW{{\\bm{W}}}\n",
            "\\def\\mX{{\\bm{X}}}\n",
            "\\def\\mY{{\\bm{Y}}}\n",
            "\\def\\mZ{{\\bm{Z}}}\n",
            "\\def\\mBeta{{\\bm{\\beta}}}\n",
            "\\def\\mPhi{{\\bm{\\Phi}}}\n",
            "\\def\\mLambda{{\\bm{\\Lambda}}}\n",
            "\\def\\mSigma{{\\bm{\\Sigma}}}\n",
            "\n",
            "\n",
            "\\DeclareMathAlphabet{\\mathsfit}{\\encodingdefault}{\\sfdefault}{m}{sl}\n",
            "\\SetMathAlphabet{\\mathsfit}{bold}{\\encodingdefault}{\\sfdefault}{bx}{n}\n",
            "\\newcommand{\\tens}[1]{\\bm{\\mathsfit{#1}}}\n",
            "\\def\\tA{{\\tens{A}}}\n",
            "\\def\\tB{{\\tens{B}}}\n",
            "\\def\\tC{{\\tens{C}}}\n",
            "\\def\\tD{{\\tens{D}}}\n",
            "\\def\\tE{{\\tens{E}}}\n",
            "\\def\\tF{{\\tens{F}}}\n",
            "\\def\\tG{{\\tens{G}}}\n",
            "\\def\\tH{{\\tens{H}}}\n",
            "\\def\\tI{{\\tens{I}}}\n",
            "\\def\\tJ{{\\tens{J}}}\n",
            "\\def\\tK{{\\tens{K}}}\n",
            "\\def\\tL{{\\tens{L}}}\n",
            "\\def\\tM{{\\tens{M}}}\n",
            "\\def\\tN{{\\tens{N}}}\n",
            "\\def\\tO{{\\tens{O}}}\n",
            "\\def\\tP{{\\tens{P}}}\n",
            "\\def\\tQ{{\\tens{Q}}}\n",
            "\\def\\tR{{\\tens{R}}}\n",
            "\\def\\tS{{\\tens{S}}}\n",
            "\\def\\tT{{\\tens{T}}}\n",
            "\\def\\tU{{\\tens{U}}}\n",
            "\\def\\tV{{\\tens{V}}}\n",
            "\\def\\tW{{\\tens{W}}}\n",
            "\\def\\tX{{\\tens{X}}}\n",
            "\\def\\tY{{\\tens{Y}}}\n",
            "\\def\\tZ{{\\tens{Z}}}\n",
            "\n",
            "\n",
            "\n",
            "\\def\\gA{{\\mathcal{A}}}\n",
            "\\def\\gB{{\\mathcal{B}}}\n",
            "\\def\\gC{{\\mathcal{C}}}\n",
            "\\def\\gD{{\\mathcal{D}}}\n",
            "\\def\\gE{{\\mathcal{E}}}\n",
            "\\def\\gF{{\\mathcal{F}}}\n",
            "\\def\\gG{{\\mathcal{G}}}\n",
            "\\def\\gH{{\\mathcal{H}}}\n",
            "\\def\\gI{{\\mathcal{I}}}\n",
            "\\def\\gJ{{\\mathcal{J}}}\n",
            "\\def\\gK{{\\mathcal{K}}}\n",
            "\\def\\gL{{\\mathcal{L}}}\n",
            "\\def\\gM{{\\mathcal{M}}}\n",
            "\\def\\gN{{\\mathcal{N}}}\n",
            "\\def\\gO{{\\mathcal{O}}}\n",
            "\\def\\gP{{\\mathcal{P}}}\n",
            "\\def\\gQ{{\\mathcal{Q}}}\n",
            "\\def\\gR{{\\mathcal{R}}}\n",
            "\\def\\gS{{\\mathcal{S}}}\n",
            "\\def\\gT{{\\mathcal{T}}}\n",
            "\\def\\gU{{\\mathcal{U}}}\n",
            "\\def\\gV{{\\mathcal{V}}}\n",
            "\\def\\gW{{\\mathcal{W}}}\n",
            "\\def\\gX{{\\mathcal{X}}}\n",
            "\\def\\gY{{\\mathcal{Y}}}\n",
            "\\def\\gZ{{\\mathcal{Z}}}\n",
            "\n",
            "\n",
            "\\def\\sA{{\\mathbb{A}}}\n",
            "\\def\\sB{{\\mathbb{B}}}\n",
            "\\def\\sC{{\\mathbb{C}}}\n",
            "\\def\\sD{{\\mathbb{D}}}\n",
            "\n",
            "\n",
            "\\def\\sF{{\\mathbb{F}}}\n",
            "\\def\\sG{{\\mathbb{G}}}\n",
            "\\def\\sH{{\\mathbb{H}}}\n",
            "\\def\\sI{{\\mathbb{I}}}\n",
            "\\def\\sJ{{\\mathbb{J}}}\n",
            "\\def\\sK{{\\mathbb{K}}}\n",
            "\\def\\sL{{\\mathbb{L}}}\n",
            "\\def\\sM{{\\mathbb{M}}}\n",
            "\\def\\sN{{\\mathbb{N}}}\n",
            "\\def\\sO{{\\mathbb{O}}}\n",
            "\\def\\sP{{\\mathbb{P}}}\n",
            "\\def\\sQ{{\\mathbb{Q}}}\n",
            "\\def\\sR{{\\mathbb{R}}}\n",
            "\\def\\sS{{\\mathbb{S}}}\n",
            "\\def\\sT{{\\mathbb{T}}}\n",
            "\\def\\sU{{\\mathbb{U}}}\n",
            "\\def\\sV{{\\mathbb{V}}}\n",
            "\\def\\sW{{\\mathbb{W}}}\n",
            "\\def\\sX{{\\mathbb{X}}}\n",
            "\\def\\sY{{\\mathbb{Y}}}\n",
            "\\def\\sZ{{\\mathbb{Z}}}\n",
            "\n",
            "\n",
            "\\def\\emLambda{{\\Lambda}}\n",
            "\\def\\emA{{A}}\n",
            "\\def\\emB{{B}}\n",
            "\\def\\emC{{C}}\n",
            "\\def\\emD{{D}}\n",
            "\\def\\emE{{E}}\n",
            "\\def\\emF{{F}}\n",
            "\\def\\emG{{G}}\n",
            "\\def\\emH{{H}}\n",
            "\\def\\emI{{I}}\n",
            "\\def\\emJ{{J}}\n",
            "\\def\\emK{{K}}\n",
            "\\def\\emL{{L}}\n",
            "\\def\\emM{{M}}\n",
            "\\def\\emN{{N}}\n",
            "\\def\\emO{{O}}\n",
            "\\def\\emP{{P}}\n",
            "\\def\\emQ{{Q}}\n",
            "\\def\\emR{{R}}\n",
            "\\def\\emS{{S}}\n",
            "\\def\\emT{{T}}\n",
            "\\def\\emU{{U}}\n",
            "\\def\\emV{{V}}\n",
            "\\def\\emW{{W}}\n",
            "\\def\\emX{{X}}\n",
            "\\def\\emY{{Y}}\n",
            "\\def\\emZ{{Z}}\n",
            "\\def\\emSigma{{\\Sigma}}\n",
            "\n",
            "\n",
            "\n",
            "\\newcommand{\\etens}[1]{\\mathsfit{#1}}\n",
            "\\def\\etLambda{{\\etens{\\Lambda}}}\n",
            "\\def\\etA{{\\etens{A}}}\n",
            "\\def\\etB{{\\etens{B}}}\n",
            "\\def\\etC{{\\etens{C}}}\n",
            "\\def\\etD{{\\etens{D}}}\n",
            "\\def\\etE{{\\etens{E}}}\n",
            "\\def\\etF{{\\etens{F}}}\n",
            "\\def\\etG{{\\etens{G}}}\n",
            "\\def\\etH{{\\etens{H}}}\n",
            "\\def\\etI{{\\etens{I}}}\n",
            "\\def\\etJ{{\\etens{J}}}\n",
            "\\def\\etK{{\\etens{K}}}\n",
            "\\def\\etL{{\\etens{L}}}\n",
            "\\def\\etM{{\\etens{M}}}\n",
            "\\def\\etN{{\\etens{N}}}\n",
            "\\def\\etO{{\\etens{O}}}\n",
            "\\def\\etP{{\\etens{P}}}\n",
            "\\def\\etQ{{\\etens{Q}}}\n",
            "\\def\\etR{{\\etens{R}}}\n",
            "\\def\\etS{{\\etens{S}}}\n",
            "\\def\\etT{{\\etens{T}}}\n",
            "\\def\\etU{{\\etens{U}}}\n",
            "\\def\\etV{{\\etens{V}}}\n",
            "\\def\\etW{{\\etens{W}}}\n",
            "\\def\\etX{{\\etens{X}}}\n",
            "\\def\\etY{{\\etens{Y}}}\n",
            "\\def\\etZ{{\\etens{Z}}}\n",
            "\n",
            "\n",
            "\\newcommand{\\pdata}{p_{\\rm{data}}}\n",
            "\n",
            "\\newcommand{\\ptrain}{\\hat{p}_{\\rm{data}}}\n",
            "\\newcommand{\\Ptrain}{\\hat{P}_{\\rm{data}}}\n",
            "\n",
            "\\newcommand{\\pmodel}{p_{\\rm{model}}}\n",
            "\\newcommand{\\Pmodel}{P_{\\rm{model}}}\n",
            "\\newcommand{\\ptildemodel}{\\tilde{p}_{\\rm{model}}}\n",
            "\n",
            "\\newcommand{\\pencode}{p_{\\rm{encoder}}}\n",
            "\\newcommand{\\pdecode}{p_{\\rm{decoder}}}\n",
            "\\newcommand{\\precons}{p_{\\rm{reconstruct}}}\n",
            "\n",
            "\\newcommand{\\laplace}{\\mathrm{Laplace}} \n",
            "\n",
            "\\newcommand{\\E}{\\mathbb{E}}\n",
            "\\newcommand{\\Ls}{\\mathcal{L}}\n",
            "\\newcommand{\\R}{\\mathbb{R}}\n",
            "\\newcommand{\\emp}{\\tilde{p}}\n",
            "\\newcommand{\\lr}{\\alpha}\n",
            "\\newcommand{\\reg}{\\lambda}\n",
            "\\newcommand{\\rect}{\\mathrm{rectifier}}\n",
            "\\newcommand{\\softmax}{\\mathrm{softmax}}\n",
            "\\newcommand{\\sigmoid}{\\sigma}\n",
            "\\newcommand{\\softplus}{\\zeta}\n",
            "\\newcommand{\\KL}{D_{\\mathrm{KL}}}\n",
            "\\newcommand{\\Var}{\\mathrm{Var}}\n",
            "\\newcommand{\\standarderror}{\\mathrm{SE}}\n",
            "\\newcommand{\\Cov}{\\mathrm{Cov}}\n",
            "\n",
            "\n",
            "\n",
            "\\newcommand{\\normlzero}{L^0}\n",
            "\\newcommand{\\normlone}{L^1}\n",
            "\\newcommand{\\normltwo}{L^2}\n",
            "\\newcommand{\\normlp}{L^p}\n",
            "\\newcommand{\\normmax}{L^\\infty}\n",
            "\n",
            "\\newcommand{\\parents}{Pa} \n",
            "\n",
            "\\DeclareMathOperator*{\\argmax}{arg\\,max}\n",
            "\\DeclareMathOperator*{\\argmin}{arg\\,min}\n",
            "\n",
            "\\DeclareMathOperator{\\sign}{sign}\n",
            "\\DeclareMathOperator{\\Tr}{Tr}\n",
            "\\let\\ab\\allowbreak\n",
            "\n",
            "\\usepackage{hyperref}\n",
            "\\usepackage{paralist}\n",
            "\\usepackage{amsmath}\n",
            "\\usepackage{amssymb}\n",
            "\\usepackage{wrapfig}\n",
            "\\usepackage{multirow}\n",
            "\\usepackage{multicol}\n",
            "\\usepackage{multirow}\n",
            "\n",
            "\\usepackage{dsfont}\n",
            "\\usepackage{tabularx}\n",
            "\\usepackage{graphicx}\n",
            "\\usepackage{xcolor}\n",
            "\\usepackage{soul}\n",
            "\\usepackage{xspace}\n",
            "\\usepackage{booktabs}\n",
            "\\usepackage{caption}\n",
            "\\usepackage{enumitem}\n",
            "\\usepackage{algorithm}\n",
            "\\usepackage[noend]{algorithmic}\n",
            "\\usepackage{pythonhighlight}\n",
            "\\usepackage{pifont}\n",
            "\n",
            "\\usepackage[most]{tcolorbox}\n",
            "\\usepackage[framemethod=tikz]{mdframed}\n",
            "\\definecolor{qualcolor}{RGB}{128,64,0}\n",
            "\\gdef\\Sepline{\n",
            "  \\par\\noindent\\makebox[\\linewidth][l]{\n",
            "  \\hspace*{-\\mdflength{innerleftmargin}}\n",
            "   \\tikz\\draw[thick,dashed,gray!60] (0,0) --\n",
            "        (\\textwidth+\\the\\mdflength{innerleftmargin}+\\the\\mdflength{innerrightmargin},0);\n",
            "  }\\par\\nobreak}\n",
            "  \n",
            "\\newcommand{\\cmark}{\\ding{51}}\n",
            "\\newcommand{\\xmark}{\\ding{55}}\n",
            "\\newcommand{\\sbf}{\\ensuremath{\\mathbf{s}}}\n",
            "\\newcommand{\\txb}{\\ensuremath{\\tilde{\\mathbf{x}}}}\n",
            "\\newcommand{\\tyb}{\\ensuremath{\\tilde{\\mathbf{y}}}}\n",
            "\\newcommand{\\ty}{\\ensuremath{\\tilde{y}}}\n",
            "\\newcommand{\\xb}{\\ensuremath{\\mathbf{x}}}\n",
            "\\newcommand{\\eb}{\\ensuremath{\\mathbf{e}}}\n",
            "\\newcommand{\\yb}{\\ensuremath{\\mathbf{y}}}\n",
            "\\newcommand{\\Tmc}{\\ensuremath{\\mathcal{T}}}\n",
            "\\newcommand{\\Pmc}{\\ensuremath{\\mathcal{P}}}\n",
            "\\newcommand{\\Omc}{\\ensuremath{\\mathcal{O}}}\n",
            "\\newcommand{\\Vmc}{\\ensuremath{\\mathcal{V}}}\n",
            "\\newcommand{\\Emc}{\\ensuremath{\\mathcal{E}}}\n",
            "\\newcommand{\\Yhatmc}{\\ensuremath{\\hat{\\mathcal{Y}}}}\n",
            "\\newcommand{\\vocab}{\\ensuremath{\\mathcal{V}}}\n",
            "\\DeclareMathOperator*{\\argtopK}{arg\\,\\mathrm{top}\\text{-}\\mathrm{K}}\n",
            "\n",
            "\n",
            "\\newcommand{\\corr}{\\xspace}\n",
            "\\usepackage[normalem]{ulem}\n",
            "\\setlength{\\marginparwidth}{2cm}\n",
            "\\usepackage[colorinlistoftodos]{todonotes}\n",
            "\n",
            "\\definecolor{green(pigment)}{rgb}{0.0, 0.65, 0.31}\n",
            "\\usepackage{array}\n",
            "\\usepackage{makecell}\n",
            "\\renewcommand\\theadfont{}\n",
            "\\usepackage{framed}\n",
            "\\usepackage{hhline}\n",
            "\n",
            "\\usepackage{courierten}\n",
            "\\usepackage[T1]{fontenc}    \n",
            "\\newcommand\\modelfont[1]{{\\usefont{T1}{courierten}{m}{n}#1}}\n",
            "\\newcommand\\myfontsize{\\fontsize{8.3pt}{10.3pt}\\selectfont}\n",
            "\n",
            "\n",
            "\\newcommand{\\methodnamelong}{\\modelfont{Self-Correction for Sequence Generation}\\xspace}\n",
            "\\newcommand{\\methodnamewithacronymhighlighted}{\\modelfont{\\ul{Pre}diction-\\ul{C}orrect\\ul{i}on for \\ul{Se}quence Generation}\\xspace}\n",
            "\\newcommand{\\methodnameshort}{\\modelfont{Self-Correction}\\xspace}\n",
            "\\newcommand{\\methodnamenospace}{\\modelfont{Self-Correction}\\xspace}\n",
            "\\newcommand{\\method}{\\textsc{Self-Correct}\\xspace}\n",
            "\\newcommand{\\myparagraph}[1]{\\par\\noindent\\textbf{{#1}}} \n",
            "\\newcommand{\\myparagraphsmall}[1]{\\par\\noindent\\textit{{#1}}}\n",
            "\n",
            "\\title{Generating Sequences by \\\\Learning to [Self-]Correct}\n",
            "\n",
            "\n",
            "\\author{Sean Welleck\\textsuperscript{1,3,*} \\hspace{1pt}\n",
            "Ximing Lu\\textsuperscript{1,*}\n",
            "\\AND Peter West\\textsuperscript{3,$\\dagger$} \\hspace{1pt} Faeze Brahman\\textsuperscript{1,$\\dagger$}\n",
            "\\AND Tianxiao Shen\\textsuperscript{3} \\hspace{1pt} Daniel Khashabi\\textsuperscript{2} \\hspace{1pt} Yejin Choi\\textsuperscript{1,3} \\\\\n",
            "\\textsuperscript{1}Allen Institute for Artificial Intelligence\\\\\n",
            " \\textsuperscript{2}Center for Language and Speech Processing,  Johns Hopkins University \\\\\n",
            "  \\textsuperscript{3}Paul G. Allen School of Computer Science \\& Engineering, University of Washington \\\\\n",
            "}\n",
            "\n",
            "\n",
            "\n",
            "\\newcommand{\\fix}{\\marginpar{FIX}}\n",
            "\\newcommand{\\new}{\\marginpar{NEW}}\n",
            "\n",
            "\\iclrfinalcopy \n",
            "\\begin{document}\n",
            "\n",
            "\n",
            "\\maketitle\n",
            "\\renewcommand*\\thefootnote{\\textbf{$*$}}\\footnotetext{First authors, contributed equally. \\textbf{$\\dagger$}Second authors, contributed equally.}\n",
            "\n",
            "\\renewcommand*{\\thefootnote}{\\arabic{footnote}}\n",
            "\\setcounter{footnote}{0}\n",
            "\\begin{abstract}\n",
            "Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct,\n",
            "using certain keywords, \n",
            "or avoiding undesirable content. \n",
            "Language models, whether fine-tuned or prompted with few-shot demonstrations, frequently violate these constraints, and lack a mechanism to iteratively revise their outputs.\n",
            "Moreover, some powerful language models are  of extreme scale or inaccessible, making it inefficient, if not  infeasible, to update their parameters for task-specific adaptation. \n",
            "We present \\textsc{self-correction}, \n",
            "an approach that decouples an imperfect base generator (an off-the-shelf language model or supervised sequence-to-sequence model) from a separate corrector that learns to iteratively correct  imperfect generations.\n",
            "To train the corrector, we propose an online training procedure that can use either scalar or natural language feedback on intermediate imperfect generations. \n",
            "We show that  \\textsc{self-correction} improves upon the base generator in three diverse generation tasks-- mathematical program synthesis, lexically-constrained generation, and toxicity control-- even\n",
            "when the corrector is much smaller than the base generator. \n",
            "\n",
            "\n",
            "\\end{abstract}\n",
            "\n",
            "\\section{Introduction}\n",
            "The standard practice for natural language generation tasks is inherently single-pass: applying a decoding procedure \n",
            "to either a few-shot prompted language model or one tuned for a given task, then considering the generation as ``finished''~(e.g. \\citet{radford2019language,brown2020,chen2021codex}).\n",
            "Powerful generation models\n",
            "often meet most of the task requirements, yet miss a few\n",
            "(e.g., omitting a subset of keywords), \n",
            "or generate incorrect hypotheses that nevertheless provide useful structure \n",
            "(e.g., a correct problem solving strategy with a missing step). \n",
            "However, after generating even a slightly sub-optimal sequence, the single-pass paradigm requires models to ``start from scratch'',  \n",
            "effectively discarding work already done. \n",
            "A more natural, intuitive approach\n",
            "is leveraging the generation as a useful starting point\n",
            "to refine \n",
            "into a higher quality output.\n",
            "\n",
            "To formalize this intuition, we introduce \\methodnamelong. \n",
            "\\autoref{fig:teaser} demonstrates its central principle: a generation model is re-framed as a base\n",
            " \\emph{generator}, which produces a reasonable initial hypothesis but does not need to solve the task in one pass, and a second module--the \\emph{corrector}--trained to \n",
            "make up the difference between the hypothesis and an optimal solution. Neither the generator nor the corrector must solve the full task in one pass, and the corrector can be applied multiple times\n",
            "to iteratively improve the output (\\S\\ref{subsec:ablation}). We propose a simple, general procedure for training the corrector (\\autoref{fig:learning}) by pairing generator outputs with carefully selected targets. \n",
            "The result is a system which self-corrects, producing outputs through multiple generation passes and breaking the task into steps that can be solved by dedicated and efficient sub-systems.\n",
            "\n",
            "\\begin{figure}[t]\n",
            "    \\centering\n",
            "    \\includegraphics[width=0.99\\textwidth]{images/summary_figure}\n",
            "    \\caption{\\textsc{Self-corrector}s decompose generation into a base generator that proposes an initial hypothesis, and a corrector that iteratively improves its quality.}\n",
            "    \\label{fig:teaser}\n",
            "\\end{figure}\n",
            "\n",
            "We find that \\methodnameshort is broadly applicable. Training a corrector model improves the base generator on 3 diverse tasks: mathematical program synthesis (\\S\\ref{ssec:math}), lexically constrained generation (\\S\\ref{ssec:constrained}), and toxicity reduction (\\S\\ref{ssec:toxicity}). The trained corrector model can even be applied to a larger generator with similar performance to training a new corrector (\\S\\ref{sec:modularity}), showing that the sub-task of correction is transferable, even to stronger generators. Finally, we explore the prospect of introducing a third module to the \\methodnameshort system (\\S\\ref{sec:feedback})--explicitly using natural language feedback to guide corrections--with promising results. \\methodnameshort offers an exciting opportunity to build on existing generation models and the sequences they generate, with efficient, effective, and transferable corrector networks.\n",
            "\n",
            "\\section{Self-correcting sequence generators}\n",
            "\\label{sec:method}\n",
            "\n",
            "A typical autoregressive text generator (e.g. GPT-3~\\citep{brown2020}) maps an input prompt to a distribution over outputs using a single parameterized module (e.g. a large transformer), $p_0(y|x)$.\n",
            "We explore an alternative that decomposes into two modules, a base \\textit{generator}, and a \\textit{corrector},\n",
            "\\begin{align}\n",
            "\\label{eqn:model-onestep}\n",
            "p(y|x)=\\sum_{y_0}\\underbrace{p_0(y_0|x)}_{\\text{generator}}\\underbrace{p_\\theta(y|y_0,x)}_{\\text{corrector}}\n",
            "\\end{align}\n",
            "where the generator provides an initial hypothesis that is refined by the corrector.\n",
            "In practice, the corrector can be applied multiple times, $p(y_T|x)=\\sum_{y_0}\\sum_{y_1}\\cdots \\sum_{y_{T-1}}p_0(y_0|x)\\prod_t p_\\theta(y_{t+1}|y_t,x)$.\n",
            "Since a model of this form can both generate and correct its generations, we call it a \\modelfont{Self-Corrector}.\n",
            "\n",
            "Self-correctors have several unique properties compared to typical generators.\n",
            "First, a self-corrector \n",
            "decouples generation and correction, \n",
            "allowing us to \\emph{freely parameterize each module} -- \n",
            "for instance, by prompting a single language model or using two different language models.  \n",
            "In this paper, we develop a framework to train a separate corrector model\n",
            "(\\S\\ref{ssec:learning}).\n",
            "We find that the resulting self-corrector improves upon the generator alone (\\S\\ref{sec:exprs}), even when the corrector is much smaller (\\S\\ref{sec:modularity}).\n",
            "\n",
            "Second, since the generator and the corrector are separated, we can keep the generator as a general-purpose language model and \\emph{train the corrector with different objectives} for different task requirements.\n",
            "In \\S\\ref{ssec:learning}, we propose a training algorithm for the corrector that is dedicated to improving generations, where the improvement can be in any aspect, measured by scalar values.\n",
            "\n",
            "Third, the corrector can receive \\textit{explicit feedback} about intermediate generations to guide subsequent generations.\n",
            "Formally, $p(y|x)=\\sum_{y_0}p_0(y_0|x)p_\\theta(y|y_0,x,f(y_0))$, where $f$ is the feedback.\n",
            "The feedback can be of many forms, e.g. a sentence, a compiler trace, etc. \n",
            "In contrast, a typical generator that generates in a single pass does not leverage feedback on its own generation.\n",
            "In this paper, \n",
            "we show that the corrector can learn to exploit explicit natural language feedback to achieve better performance~(\\S\\ref{sec:feedback}).\n",
            "Next, we describe our training framework of the corrector.\n",
            "\n",
            "\\subsection{Learning a Corrector}\n",
            "\\label{ssec:learning}\n",
            "Our goal is to have the generator generate an initial hypothesis, \n",
            "then improve the hypothesis with the corrector (Eq.~\\ref{eqn:model-onestep}).\n",
            "We train the corrector to improve the quality of a hypothesis, while staying as close as possible to the original hypothesis. \n",
            "Here, quality is measured with a scalar value function $v(y)$ which we assume is accessible at training time (e.g. a classifier).\n",
            "\n",
            "Since direct supervision on how to improve hypotheses is not available, we design a new algorithm to train the corrector, which we refer to as self-corrective learning.\n",
            "The algorithm collects a pool of generations, \n",
            "groups them and \n",
            " selects pairs of generation \n",
            "that increase in value and are nearby, then updates the corrector on these pairs.\n",
            "As training progresses, more \n",
            "generations are added to the pool using the current corrector.\n",
            "Algorithm~\\ref{alg:main} summarizes self-corrective learning, detailed below.\n",
            "\n",
            "\\begin{figure}[t]\n",
            "    \\centering\n",
            "\n",
            "    \\includegraphics[width=0.99\\textwidth]{images/learning_figure_v2.png}\n",
            "    \n",
            "    \\caption{\\textsc{Self-corrective learning} iteratively trains a corrector by generating hypotheses and corrections, forming value-improving pairs, and selecting those with high similarity for learning.\n",
            "    }\n",
            "    \\label{fig:learning}\n",
            "\\end{figure}\n",
            "\n",
            "\\myparagraph{Initialization.}\n",
            "Self-corrective learning begins with a generator $p_0(y_0|x)$, a corrector \n",
            "$p_\\theta(y'|y,x)$\n",
            ", a set of training prompts $X$, and a value function \n",
            "$v:\\mathcal Y \\rightarrow\\mathbb R$.\n",
            "Optionally,\n",
            "we can use additional feedback \n",
            "$f: \\mathcal Y \\rightarrow \\mathcal F$ and learn $p_\\theta(y'|y,x,f(y))$,\n",
            "where $\\mathcal F$ \n",
            "is arbitrary.\n",
            "\n",
            "The algorithm initializes a datapool of (input, output, value, feedback) examples by using the generator to generate multiple outputs for each input.\n",
            "Formally, \n",
            "\\begin{align}\n",
            "D_x=\\{(x,y,v(y), f(y))\\ |\\ \\text{for all } y\\in y^{1:N}\\sim q(p_0(\\cdot|x))\\},\\quad D=\\bigcup_{x\\in X} D_x,\n",
            "\\label{eqn:d0}\n",
            "\\end{align}\n",
            "where $y^{1:N}$ denotes $N$ outputs generated with decoding algorithm $q$ (e.g. temperature sampling).\n",
            "When available, $(x, y, v(y), f(y))$ examples from another source (e.g. a dataset) can also be added.\n",
            "\n",
            "\n",
            "\\newcommand{\\algcomment}[1]{{\\footnotesize \\fontfamily{cmtt}\\selectfont // #1}}\n",
            "\\renewcommand{\\algorithmiccomment}[1]{\\hfill{\\(\\triangleright\\)~#1}\\par}\n",
            "\\begin{figure}[t]\n",
            "\\vspace{-1em}\n",
            "\\begin{algorithm}[H]\n",
            "\\small\n",
            "\\begin{algorithmic}\n",
            "\\INPUT{Generator $p_0$, corrector $p_\\theta$, prompts $X$, value $v(\\cdot)$, feedback $f(\\cdot)$}\n",
            "\\\\\n",
            "\\text{Initialize datapool }$D$ by sampling from $p_0$\\algorithmiccomment{Initialization: Eq.~\\ref{eqn:d0}}\n",
            "\n",
            "\\FOR{$\\text{iteration}\\in\\{1,2,\\ldots\\}$}\n",
            "\\FOR{$x \\in X$} \n",
            "\\STATE Sample hypotheses $y$ from datapool $D$  \n",
            "\\STATE Generate corrections $y'\\sim p_\\theta(\\cdot|y,x,f(y))$\n",
            "\\STATE Add all $(x,y',v(y'),f(y'))$ to the datapool $D$\n",
            "\\algorithmiccomment{Exploration: Eq.~\\ref{eqn:exploration}}\n",
            "\n",
            "\\ENDFOR\n",
            "Form value-improving pairs $P$ from $D$\\algorithmiccomment{Pairing: Eq.~\\ref{eqn:pairing}}\n",
            "\\FOR{step in $1,2,\\ldots,M$ }\n",
            "\\item Sample a batch of value-improving pairs from $P$ using Eq.~\\ref{eqn:residual-subsample}\n",
            "\\item Compute the loss and update $\\theta$ using gradient descent\n",
            "\\algorithmiccomment{Learning}\n",
            "\\ENDFOR\n",
            "\\ENDFOR\n",
            "\n",
            "\\end{algorithmic}\n",
            "\n",
            "\\caption{Self-corrective learning}\n",
            "\\label{alg:main}\n",
            "\\end{algorithm}\n",
            "\\vspace{-1em}\n",
            "\\end{figure}\n",
            "\n",
            "\\myparagraph{Pairing.}\n",
            "Next, self-corrective learning forms \\textit{value-improving pairs}: examples of mapping a hypothesis to a higher-valued correction.\n",
            "We use \n",
            "the  datapool $D$ to form a set of (input, hypothesis, correction) pairs. \n",
            "A pair is formed when an output has a higher value than another\n",
            "\\footnote{We also store the value and feedback for $y$ and $y'$ along with $(x,y,y')$, which we omit to reduce clutter.}:\n",
            "\\begin{align}\n",
            "\\label{eqn:pairing}\n",
            "    P_x=\\{(x,y,y')\\mid v(y)<v(y')\\text{ for all } y,y'\\in D_x\\times D_x\\},\\quad P=\\bigcup_{x\\in X} P_x,\n",
            "\\end{align}\n",
            "\n",
            "\\myparagraph{Learning.}\n",
            "Next, self-corrective learning selects (input, hypothesis, correction) pairs to update the corrector with.\n",
            "We sample a $(x,y,y')$ pair proportional to its improvement in value as well as the proximity between the hypothesis $y$ and the correction $y'$:\n",
            "\\begin{align}\n",
            "\\label{eqn:residual-subsample}\n",
            "   \n",
            "  \\mathds P[(x, y,y')]&\\propto \\exp\\big(\\underbrace{\\alpha\\cdot(v(y')-v(y))}_{\\text{improvement}}+\\underbrace{\\beta\\cdot s(y,y')}_{\\text{proximity}}\\big)/Z(y), \n",
            "\\end{align}\n",
            "\n",
            "where $s(y,y')$ is a similarity function and $Z(y)$\n",
            "normalizes over the available corrections for $y$ in $P_x$.\n",
            "\n",
            "Increasing the hyperparameter $\\alpha\\in\\mathbb{R}_{\\geq 0}$ puts more weight on targets that add more value, while\n",
            "increasing  $\\beta\\in\\mathbb{R}_{\\geq 0}$ retains more similar targets. \n",
            "\n",
            "We update the corrector using the cross-entropy loss $\\mathcal{L}(\\theta) = -\\log p_\\theta(y'|y,x,f(y))$ on batches sampled in this way.\n",
            "\n",
            "\\myparagraph{Exploration.}\n",
            "During exploration, self-corrective learning adds \n",
            "new generations to the datapool by generating from the current corrector:\n",
            "\\begin{align}\n",
            "\\label{eqn:exploration}\n",
            "D'_x&=\\{(x,y',v(y'), f(y'))\\ |\\ \\text{for all } y'\\in y'^{1:N}\\sim q(p_\\theta(\\cdot|y,x,f(y))\\},\\quad D'=\\bigcup_{x\\in X} D'_x\n",
            "\\end{align}\n",
            "and updating the datapool $D\\leftarrow D\\cup D'$.\n",
            "The hypotheses $y$ to correct can come from any source, e.g. newly sampled from the base generator,\n",
            "or from the datapool; \n",
            "we use the latter in our experiments.\n",
            "\n",
            "\\myparagraph{Inference.}\n",
            "We use the trained corrector along with a generator to generate a trajectory $y_0,y_1,\\ldots,y_T$, and consider $y_T$ the final output.\n",
            "Since marginalizing over the intermediate generations in Eq.~\\ref{eqn:model-onestep} is intractable, we approximate each summation with a single sequence generated with a decoding algorithm $q(\\cdot)$.\n",
            "That is, we decode from the generator, then repeatedly from the corrector:\n",
            "\\begin{itemize}[leftmargin=*,topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex]\n",
            "    \\item Generation: $y_0\\sim q(p_0(y_0|x))$;\n",
            "    \\item Correction: $y_{t+1}\\sim q(p_\\theta(y_{t+1}|y_{t},x, f(y_t)))$,\\quad $t=0,1,\\dots,T-1$.\n",
            "\\end{itemize}\n",
            "The stopping time $T$ is either fixed, or when a target value is obtained (if $v(y)$ is available).\n",
            "\n",
            "\n",
            "\n"
        ],
        "context_after_exp": [
            "\\section{Experiments}\n",
            "\\label{sec:exprs}\n",
            "We evaluate \\textsc{self-correction} on a diversity of tasks: \\textbf{mathematical program synthesis}, in which generations are strictly correct or incorrect, \n",
            "and generators typically have low performance; \n",
            "\\textbf{lexically-constrained generation}, which allows for partial credit, and generators usually give partially-correct solutions (e.g. matching 3 out of 5 constraints); and \\textbf{toxicity control}, \n",
            "where `correctness' is more loosely defined, \n",
            "and the output space is much more open-ended.\n",
            "\n",
            "Our experiments are organized to study three settings:\n",
            "\\begin{enumerate}[leftmargin=*,topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex]\n",
            "\\item  Using self-correctors to improve upon generators (\\S\\ref{ssec:math},\\ref{ssec:constrained},\\ref{ssec:toxicity}).\n",
            "\\item Correcting generators that are much larger than the corrector (\\S\\ref{sec:modularity}).\n",
            "\\item Leveraging explicit feedback during training and inference (\\S\\ref{sec:feedback}).\n",
            "\\end{enumerate}\n",
            "Next, we describe the self-correction setup and baselines for each task, along with their results.  \\footnote{Code will be publicly available upon acceptance.}\n",
            "\n",
            "\n",
            "\\subsection{Mathematical Program Synthesis}\n",
            "\\label{ssec:math}\n",
            "First, we consider mathematical program synthesis~\\citep{austin2021ProgramSW,mishra2022lila}.\n",
            "Given a natural language problem specification $x$, the task is to generate a  program $y$ that upon execution returns the correct answer to $x$.\n",
            "The task is challenging as it draws on language understanding, multiple-step mathematical problem solving (e.g. identifying a solution strategy, decomposing a problem), and leveraging symbolic tools (e.g. built-in operations, variables).\n",
            "Furthermore, the task demands a high level of precision, e.g. a single misplaced operation  makes the program incorrect.\n",
            "\n",
            "\\myparagraph{Experimental setup.}\n",
            "As the corrector we use GPT-Neo 1.3B~\\citep{gpt-neo}, an open-source autoregressive language model.\n",
            "GPT-Neo is pre-trained on language and code~\\citep{pile}, and hence is widely used \n",
            "for code-related generation (e.g. \\citet{chen2021codex,ni2022learning,mishra2022lila}).\n",
            "We consider two settings for the initial generator: (1) a separate fine-tuned instance of GPT-Neo 1.3B, and (2) few-shot prompted GPT-3~\\citep{brown2020}.\n",
            "For GPT-3, we evaluate the davinci and text-davinci-002 engines, representative of large ($\\approx 175B$\\footnote{Estimated size of \\textit{davinci} ({\\scriptsize \\url{https://blog.eleuther.ai/gpt3-model-sizes}}). Further details not available.}) generators that are state-of-the-art in related tasks~\\citep{Wei2022ChainOT}.\n",
            "See the Appendix for additional details.\n",
            "\n",
            "\\myparagraph{Self-correction setup.} As the value function we use correctness, which is 1 when the program $y$ executes and outputs the ground-truth answer and 0 otherwise.\n",
            "Our main experiments do not use explicit feedback, i.e. $f(y)=\\emptyset$.\n",
            "At inference time, we study two settings for the corrector: (1) applying $k$ corrections and selecting the final generation, (2) an oracle  setting that only corrects a draft if the draft is incorrect.\n",
            "We use greedy decoding for the generator and corrector, and $k=1$.\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\\begin{table}[t]\n",
            "\\begin{minipage}[t]{0.45\\linewidth}\n",
            "\\centering\\footnotesize\n",
            "\\renewcommand\\arraystretch{1.14}\n",
            "   \\begin{tabular}{clcc}\n",
            "    \\toprule\n",
            "         \\textbf{Dataset} & \\textbf{Model} & \\textbf{Correct}\\\\\n",
            "         \\midrule\n",
            "         \\textbf{Multiarith} & GPT-NEO 1.3B & 60.00\\\\\n",
            "         & +\\textsc{Self-Correct} & \\textbf{98.33}\\\\\n",
            "         & +$\\textsc{Self-Correct}_*$ & \\textbf{99.17}\\\\\n",
            "         \\midrule\n",
            "         \\textbf{Multitask} \n",
            "         & GPT-NEO  1.3B  & 49.02\\\\\n",
            "         & +\\textsc{Self-Correct}& \\textbf{73.53}\\\\\n",
            "         & +$\\textsc{Self-Correct}_*$ & \\textbf{78.24}\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "\\end{minipage}\n",
            "\\hfill\n",
            "\\begin{minipage}[t]{0.54\\linewidth}\n",
            "\\centering \\footnotesize\n",
            "     \\begin{tabular}{clcc}\n",
            "    \\toprule\n",
            "         \\textbf{Dataset} & \\textbf{Model} & \\textbf{Params} & \\textbf{Correct}\\\\\n",
            "         \\midrule\n",
            "         \\textbf{GSM} \n",
            "         & \\textit{OpenAI 3B}~[\\citenum{cobbe2021gsm8k}] & 3B& 15.50\\\\\n",
            "         & \\textit{OpenAI 6B}~[\\citenum{cobbe2021gsm8k}] & 6B\\citenum{}& 20.00\\\\\n",
            "         & GPT-NEO~[\\citenum{ni2022learning}] & 2.7B\\citenum{}& 18.80\\\\\n",
            "         & NEO FCP+PCP~[\\citenum{ni2022learning}] & 2.7B\\citenum{}& 19.50\\\\\n",
            "         \n",
            "         \\cmidrule(lr){2-4}\n",
            "         & GPT-NEO & 1.3B & 8.57\\\\\n",
            "         & +\\textsc{Self-Correct} & 1.3B & \\textbf{21.26}\\\\\n",
            "         & +$\\textsc{Self-Correct}_*$ & 1.3B & \\textbf{24.22}\\\\\n",
            "         \n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \n",
            "\\end{minipage}\n",
            "\\caption{Evaluation results of mathematical program synthesis experiments. GPT-NEO (1.3B) is the initial generator for \\textsc{Self-Correct}. \n",
            "    $\\textsc{Self-Correct}_*$ means only applying the corrector to incorrect outputs.\n",
            "    \\textit{Italicized}: original non-program version of GSM. \n",
            "    }\n",
            "    \\label{tab:math_results}\n",
            "\\end{table}\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{figure}[t]\n",
            "\\begin{multicols}{2}\n",
            "\n",
            "\\vspace{2mm}\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "It takes Jennifer 20 minutes to groom each of her 2 long hair dachschunds. If she grooms her dogs every day, how many hours does she spend grooming her dogs in 30 days?\n",
            "\\vspace{1.1em}\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=20*2\n",
            "b=a*30\n",
            "answer=b\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\vspace{1.1em}\n",
            "\\columnbreak\n",
            "\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=20*2\n",
            "b=a*30\n",
            "c=b/60 #fix\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\vspace{-2em}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "Mrs. Wilsborough saved \\$500 to buy concert tickets for her family. She bought 2 VIP tickets at \\$100 each and 3 regular tickets at \\$50 each. How much of her savings does Mrs. Wilsborough have after she buys the tickets?\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=2*100\n",
            "b=3*50\n",
            "c=a+b\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\columnbreak\n",
            "\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=2*100\n",
            "b=3*50\n",
            "c=500-a-b #fix\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\vspace{-2em}\n",
            "\\end{tcolorbox}\n",
            "\\end{multicols}\n",
            "\\vspace{-1.7em}\n",
            "\\caption{\\textbf{Grade-school-math (GSM) self-corrections.} On the left, the corrector fixes the units (from minutes to hours) in the generator's solution. On the right, the corrector revises the logic so that the program computes the total savings instead of the spent on tickets. We add \\textit{\\#fix} here to indicate the change.\n",
            "See \\autoref{fig:math-examples2} and \\autoref{fig:math-examples3} for additional examples.\\small}\n",
            "\\label{fig:examples}\n",
            "\\end{figure}\n",
            "\n",
            "\\myparagraph{Datasets.} We evaluate on problems from 5 problem solving datasets: MultiArith~\\citep{roy2015multiarith}, AddSub~\\citep{hosseini2014addsub}, SingleOp~\\citep{roy2015multiarith}, SVAMP~\\citep{patel2021svamp}, and GSM8k~\\citep{cobbe2021gsm8k}.\n",
            "As in prior work \\citep{austin2021ProgramSW,ni2022learning,mishra2022lila}, we frame these as program synthesis by converting their solutions to Python programs.\\footnote{{We use data from the Lila benchmark ({\\scriptsize \\url{https://github.com/allenai/Lila}).}}}\n",
            "We separate our experiments into three increasingly difficult settings: \n",
            "\\begin{enumerate}[leftmargin=*,topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex]\n",
            "    \\item \\textbf{MultiArith}, using problems from the MultiArith arithmetic word problem dataset.\n",
            "    \\item \\textbf{Multitask}, using problems from 4  arithmetic datasets (MultiArith,  AddSub, SingleOp, SVAMP).\n",
            "    \\item \\textbf{GSM}, using problems from the challenging GSM8k dataset.\n",
            "\\end{enumerate} \n",
            "For the MultiArith and Multitask settings, we make train/valid/test splits using 60/20/20\\\n",
            "Similar to \\citet{ni2022learning}, for the GSM setting we use the official GSM8k test split, and create a validation split using 20\\\n",
            "Note that the problems and answers in all datasets are the same as those from the original non-program datasets.\n",
            "\n",
            "\\myparagraph{Baselines.} We compare \\textsc{self-correct} with its baseline generator (GPT-Neo 1.3B) in all three settings. For the GSM setting, we compare with existing work that uses models within the same magnitude of scale, including NEO FCP+PCP~\\citep{ni2022learning}, which tunes GPT-NEO 2.7B with additional self-sampled programs, and their fine-tuned GPT-NEO 2.7B baseline.\n",
            "We also report 3B and 6B fine-tuned GPT3-like language models from \\citet{cobbe2021gsm8k}, which were trained on the non-program version of GSM8k.\n",
            "We evaluate larger models later in (\\S\\ref{sec:modularity}).\n",
            "\n",
            "\\myparagraph{Results.} \n",
            "As seen in \\autoref{tab:math_results},\n",
            "the self-corrector improves upon the generator in all three settings, using either inference strategy:  always correcting  (\\textsc{self-correct}), or only correcting incorrect solutions  (\\textsc{self-correct}$_*$).\n",
            "The self-corrector's performance on Multiarith is very high after correction (98-99\\\n",
            "On the challenging GSM dataset, the self-corrector achieves 21\\\n",
            "Notably, this is higher than previous work based on the larger 2.7B GPT-Neo, \n",
            "or larger models tuned on the language version of GSM.\n",
            "The results show that self-corrective learning can improve task performance via training a corrector.\n",
            "Qualitatively, the self-corrector can correct values in a correctly structured solution, fix the order of operations within a multistep solution, adjust unit conversions, and make larger multipart revisions (see Figures~\\ref{fig:examples},\\ref{fig:math-examples2},\\ref{fig:math-examples3}). Notably, these are learned automatically through self-corrective learning.\n",
            "\n",
            "\n",
            "\\subsection{Lexically Constrained Generation}\n",
            "\\label{ssec:constrained}\n",
            "Next, we consider lexically constrained generation. Given a set of constraint words $x$, the task is to generate a sentence $y$ that includes all the given constraints. \n",
            "Faithful constraint satisfaction is crucial for many downstream tasks, e.g., those that require converting information to text~\\citep{mckeown_1985}.\n",
            "\n",
            "\\myparagraph{Datasets and Metrics.} We experiment on \\textsc{CommonGen}~\\citep{lin-etal-2020-commongen} and E2E~\\citep{novikova-etal-2017-e2e}. \\textsc{CommonGen} is a benchmark for generative commonsense reasoning where the task is to generate a coherent sentence given a set of words (e.g., dog, catch). \n",
            "E2E involves converting structured inputs into natural language.\n",
            "For both tasks, we report standard metrics including \n",
            "human/automatic measures of fluency (BLEU, CIDER, etc.) as well as constraint coverage. We collect human measures of fluency on Amazon Mechanical Turk; see the Appendix for  details.\n",
            "\n",
            "\\myparagraph{Setup.} We parameterize the base generator with GPT-2 \\cite{radford2019language} (large-size for \\textsc{CommonGen} and medium-size for E2E).  \n",
            "We fine-tuned the generator for each task. \n",
            "As the value function for self-corrective learning we use coverage, i.e. the percentage of constraints that are present in the output.\n",
            "For inference, we use beam search with the generator, then do up to 3 corrections using beam search, stopping early if all constraints are met.\n",
            "See the Appendix for additional details.\n",
            "\n",
            "\n",
            "\\begin{table}[t]\n",
            "\\begin{minipage}[t]{0.54\\linewidth}\n",
            "\\centering\\footnotesize\n",
            "\\setlength{\\tabcolsep}{4pt}\n",
            "\n",
            "   \\begin{tabular}{lccc}\n",
            "    \\toprule\n",
            "         \\textbf{Method} & \\textbf{Runtime} & \\textbf{CIDER} & \\textbf{Constraints} \\\\\n",
            "         \\midrule\n",
            "         NeuroLogic~[\\citenum{lu-etal-2021-neurologic}] &  2.04s & 14.70 & 97.70\\\\\n",
            "         NeuroLogic-A*~[\\citenum{lu2022neurologicastar}]& 19.24s & 15.20 & 97.80 \\\\\n",
            "         \\midrule\n",
            "         GPT-2 & 0.20s & 14.97 & 91.38 \\\\\n",
            "         \\method & 0.80s& 15.30 & 94.58 \\\\\n",
            "         \\ \\ +NeuroLogic & 2.24s& 15.28 & \\textbf{97.80} \\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "\\end{minipage}\n",
            "\\hfill\n",
            "\\begin{minipage}[t]{0.45\\linewidth}\n",
            "\\centering \\footnotesize\n",
            "\\renewcommand\\arraystretch{1.2}\n",
            "\\scalebox{.86}{\n",
            "     \\begin{tabular}{lcc}\n",
            "    \\toprule\n",
            "         \\textbf{Method} & \\textbf{Fluency} & \\textbf{Constraints} \\\\\n",
            "         \\midrule\n",
            "         \n",
            "         Prefix-Tuning~[\\citenum{li-liang-2021-prefix}] & 2.96 & 91.16 \\\\\n",
            "          NeuroLogic~[\\citenum{lu-etal-2021-neurologic}] & 2.80 &  96.91\\\\\n",
            "          NeuroLogic-A*~[\\citenum{lu2022neurologicastar}] & 2.85 &  96.97\\\\\n",
            "         \\midrule\n",
            "         GPT-2 & 2.94 & 91.50 \\\\\n",
            "         \\method& \\textbf{2.98} & \\textbf{98.77}\\\\\n",
            "         \n",
            "        \n",
            "        \n",
            "        \n",
            "        \n",
            "        \n",
            "    \\bottomrule\n",
            "    \\end{tabular}}\n",
            "    \n",
            "\\end{minipage}\n",
            "\\caption{\\textbf{Lexically-constrained generation.} By training a corrector to optimize constraint satisfaction, \\method improves constraints while maintaining fluency, without modifying the underlying generator. Due to space, we show CIDER for \\textsc{CommonGen} and human judgement for E2E as measures of fluency. Other metrics show similar trends and can be found in the Appendix.\n",
            "\n",
            "\n",
            "\n",
            "}\n",
            "    \\label{tab:lexical_results}\n",
            "\\end{table}\n",
            "\n",
            "\n",
            "\\myparagraph{Results.} Table~\\ref{tab:lexical_results} shows the evaluation results. \n",
            "The self-corrector substantially improves constraint coverage over its GPT-2 generator for both tasks, while maintaining or improving its  language quality.\n",
            "On the \\textsc{CommonGen} benchmark, the self-corrector paired with the NeuroLogic constrained decoding algorithm ~\\citep{lu-etal-2021-neurologic} achieves the best results, outperforming the more sophisticated NeuroLogic-A* decoding algorithm, while being an order of magnitude faster. \n",
            "Notably, on E2E, self-correction \\textit{outperforms} Neurologic-A* decoding, despite only using standard beam search. \n",
            "This suggests that a corrector can be viewed as an alternative to using a more sophisticated decoding procedure (A*) for improving performance without modifying the underlying model. See \\autoref{fig:examples-cg-e2e} for qualitative examples.\n",
            "\n",
            "\\subsection{Toxicity Reduction}\n",
            "\\label{ssec:toxicity}\n",
            "Next, we consider the task of toxicity reduction~\\citep{gehman-etal-2020-realtoxicityprompts,liu-etal-2021-dexperts}.\n",
            "Given a prompt $x$, the task is to generate a fluent continuation $y$ while avoiding offensive content. \n",
            "This task is important for ensuring safe  language model deployment, yet challenging: due to misaligned pretraining objectives (i.e. modeling internet text vs. non-toxic text), \n",
            "language models are susceptible to generating toxic completions, even when prompted with seemingly innocuous text~\\citep{gehman-etal-2020-realtoxicityprompts}.\n",
            "Along with its practical importance, the task tests whether (self-)correctors can be an effective mechanism for controlling the outputs of language models in an open-ended setting. \n",
            "\n",
            "\\myparagraph{Datasets and Metrics.} We use the \\textsc{RealToxicityPrompts} benchmark~\\citep{gehman-etal-2020-realtoxicityprompts} which contains 100k prompts designed to elicit toxic generations. Following the experimental setup of~\\citet{liu-etal-2021-dexperts}, during training we use 85K prompts from the training set, and for evaluation we use the same 10K non-toxic prompts from test set as \\citet{liu-etal-2021-dexperts}.\n",
            "We use Perspective API to measure \\textit{maximum toxicity}, defined as the average maximum toxicity over 25 sampled generations, and the (empirical) \\textit{toxicity probability} of at least 1 out of 25 generations being toxic.\n",
            "\n",
            "\\myparagraph{Baselines.}\n",
            "We compare \\method with its generator (GPT-2) and previously reported baselines from~\\citet{quark22}, including PPLM~\\citep{Dathathri2020PlugAP}, GeDi~\\citep{krause-etal-2021-gedi-generative}, DExpert~\\citep{liu-etal-2020-unsupervised}, DAPT~\\citep{gururangan-etal-2020-dont}, PPO~\\citep{quark22}, and Quark~\\citep{quark22}.\n",
            "The latter two -- Proximal Policy Optimization (PPO) and Quantized Reward Konditioning (Quark) -- represent strong, state-of-the art approaches based on reinforcement learning.\n",
            "\n",
            "\\myparagraph{Setup.}\n",
            "We use the off-the-shelf GPT-2 Large as the generator, and finetune another GPT-2 Large as the corrector. \n",
            "During inference, we use nucleus sampling with $p=0.9$ to generate 25 samples for all baselines.\n",
            "As the value function, we use the Perspective API score, $v(y) \\in [0,1]$, which measures the toxicity of the completed sequence.\n",
            "We do up to three corrections with the corrector model.\n",
            "\n",
            "\\myparagraph{Results.}\n",
            "\\begin{table}[t!]\n",
            "\n",
            "\\begin{minipage}{0.63\\linewidth}\n",
            "\\setlength{\\tabcolsep}{4pt}\n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lcccccccc}\n",
            "    \\toprule\n",
            "         & \\multicolumn{2}{c}{\\textbf{Toxicity}}& \\textbf{Fluency}& \\multicolumn{2}{c}{\\textbf{Diversity}}\\\\\n",
            "         \\cmidrule(lr){2-3}\\cmidrule(lr){4-4}\\cmidrule(lr){5-6}\n",
            "         & \\textbf{Avg.~Max}. & \\textbf{Prob.} & \\textbf{Perplexity} & \\textbf{dist-2} & \\textbf{dist-3} \\\\\n",
            "         \\midrule\n",
            "         GPT-2    & 0.527 & 0.520 & 11.31 & 0.85 & 0.85 \\\\\n",
            "         \\midrule\n",
            "         PPLM~[\\citenum{Dathathri2020PlugAP}]         & 0.520 & 0.518 & 32.58 & 0.86 & 0.86 \\\\\n",
            "         GeDi~[\\citenum{krause-etal-2021-gedi-generative}]          & 0.363 & 0.217 & 43.44 & 0.84 & 0.83 \\\\\n",
            "         DExpert~[\\citenum{liu-etal-2020-unsupervised}]     & 0.314 & 0.128 & 25.21 & 0.84 & 0.84 \\\\\n",
            "         DAPT~[\\citenum{gururangan-etal-2020-dont}]         & 0.428 & 0.360 & 31.22 & 0.84 & 0.84 \\\\\n",
            "         PPO~[\\citenum{quark22}]  & 0.218 & 0.044 & 14.27 & 0.79 & 0.82 \\\\\n",
            "         Quark~[\\citenum{quark22}]    & 0.196 & 0.035 & 12.47 & 0.80 & 0.84 \\\\\n",
            "         \\midrule\n",
            "         \\textsc{Self-Correct} & \\textbf{0.171} & \\textbf{0.026} & \\textbf{11.81} & 0.80 & 0.83\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{\\textbf{Toxicity reduction.} GPT-2 is the base generator.}\n",
            "    \n",
            "    \\label{tab:toxicity_results}\n",
            "    \\end{minipage}\n",
            "    \\hfill\n",
            "    \\begin{minipage}{0.34\\linewidth}\n",
            "\\centering \n",
            "\\includegraphics[width=1.0\\linewidth]{images/feedback_iterations_toxicity.png}\n",
            "\\vspace{-1.5em}\n",
            "\\captionof{figure}{Applying multiple corrections reduces toxicity.}\n",
            "\\label{fig:toxicity}\n",
            "\n",
            "\\end{minipage}\\hfill\n",
            "\\end{table}\n",
            "\\autoref{tab:toxicity_results} shows that \\method reduces the rate of toxic generations substantially, while also maintaining fluency and diversity.\n",
            "\\method outperforms all baselines.\n",
            "This includes inference-time algorithms (PPLM, GeDi, DExpert), which do not modify the generator but degrade fluency and yield higher toxicity compared to \\method, as well as reinforcement learning methods (PPO, Quark) that adjust the generator using toxicity as a (negative) reward.\n",
            "The results show that \\method is  effective for detoxification, without having to modify the underlying generator. \n",
            "We study implications of this latter property further in the next section.\n",
            "\n",
            "\n",
            "\\subsection{Changing Modules -- Correcting GPT-3}\n",
            "\\label{sec:modularity}\n",
            "Next, we show that a self-corrector can improve the outputs of a generator that is much larger than the corrector.\n",
            "We consider two cases: (1) training with a small generator, then swapping in the larger generator at test time; (2) training with the larger generator, i.e. using the large generator to initialize the datapool for self-corrective learning, then using the large generator at test time.\n",
            "\n",
            "\\myparagraph{Toxicity.} We evaluate case (1) for reducing the toxicity of a large generator (GPT-2 XL, GPT-3).\n",
            "We generate an initial sequence using the large generator, then refine it with our corrector trained in the previous experiments (\\S\\ref{ssec:toxicity}). \\autoref{tab:modularity_combined} shows that\n",
            "the resulting self-corrector (large generator + corrector) has substantially reduced toxicity compared to the large generator.\n",
            "This shows the promise of using (self-)correctors for controlling the outputs of large language models.\n",
            "\n",
            "\\myparagraph{Math program synthesis.} \\autoref{tab:modularity_combined} shows results for math.\n",
            "Analogous to toxicity, \n",
            "the corrector \n",
            "is able to correct larger generators swapped in at test-time. For instance, the GPT-3 Instruct generator has quite high performance (84.90 Multitask, 36.80 GSM), which improves to 90.90 and 45.00, respectively, by adding in a corrector.\n",
            "The self-corrector (large generator + corrector) improves further by training with the GPT-3 Instruct generator, \n",
            " to 92.75 and 45.92, respectively.\n",
            "\n",
            "\\begin{table*}[t!]\n",
            "    \\centering\\footnotesize\n",
            "     \\scalebox{.98}{\n",
            "    \\begin{tabular}{llllcccc}\n",
            "    \\toprule\n",
            "     \\textbf{Task} &    \\textbf{Dataset} & \\textbf{Generator (train)} & \\textbf{Generator (test)} & \\textbf{Generator} & \\textbf{Self-corrector}\\\\\n",
            "         \\midrule\n",
            "       \\multirow{6}{*}{Math Synthesis $\\uparrow$} & \n",
            "                            & Neo 1.3B & GPT-3 & 46.70 & 80.00\\\\\n",
            "                          &  Multitask  & Neo 1.3B & GPT-3 Instruct & 84.90 & 90.90\\\\\n",
            "                          &  & GPT-3 Instruct  & GPT-3 Instruct & 84.90 & 92.75\\\\\n",
            "         \\cmidrule{2-6}\n",
            "        &  \n",
            "                        & Neo 1.3B & GPT-3  & 6.96 & 24.30 \\\\\n",
            "                       & GSM & Neo 1.3B & GPT-3 Instruct  & 36.80 & 45.00\\\\\n",
            "                       & & GPT-3 Instruct  & GPT-3 Instruct  & 36.80 & 45.92\\\\\n",
            "    \\midrule\n",
            "           \\multirow{3}{*}{Detoxification \\hspace{1.3mm}$\\downarrow$} &   \n",
            "                            & GPT2-L & GPT2-XL & 0.383 & 0.027\\\\\n",
            "                          & RTPrompts & GPT2-L & GPT-3  & 0.182 & 0.025 \\\\\n",
            "                          &  & GPT2-L  & GPT-3 Instruct &  0.275 & 0.023 \\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}}\n",
            "    \\caption{\\textbf{Modularity (program synthesis and detoxification).} Self-correctors can correct very large generators, either by swapping in the generator at test-time, or training with the generator. For math synthesis, the corrector is GPT-Neo 1.3B, and here we only correct incorrect outputs. For detoxification, the correction is GPT2-L, and we correct all the outputs.\n",
            "    \n",
            "    }\n",
            "    \\label{tab:modularity_combined}\n",
            "\\end{table*}\n",
            "\n",
            "\\subsection{Leveraging Explicit Feedback}\n",
            "\\label{sec:feedback}\n",
            "\n",
            "Next, we demonstrate \\method's capacity to incorporate explicit natural language feedback.\n",
            "This amounts to defining a feedback function $f$, then using the same self-corrective learning and inference algorithms (\\S\\ref{ssec:learning}) as in our preceding experiments (in those experiments, $f$ returned $\\emptyset$).\n",
            "We show that correctors learn to use the feedback, as evidenced by higher performance.\n",
            "\n",
            "\\myparagraph{Toxicity.} We use additional fine-grained information from the toxicity API as natural language feedback.\n",
            " Specifically, besides the overall toxicity score, Perspective API also provides scores for fine-grained attributes of toxicity (e.g. identity attack, profanity, flirtation, etc.). \n",
            " At training time, we compare the attribute scores from a hypothesis and its selected correction, and use the attribute with the largest decrease as natural language feedback (e.g. \"decrease toxicity in \\textit{profanity}\").\n",
            " At inference time, \n",
            " we call the API on the current hypothesis, and use the attribute with the highest score. \n",
            " Here we use the API at inference time, which is \\textit{not} required in our previous experiments. \n",
            "\n",
            "\n",
            "\\myparagraph{Lexical constraints.}\n",
            "\n",
            "In training time, we generate natural language feedback for every example pair $(x, y, y')$ by elaborating the extra lexical constraints satisfied by $y'$ but not $y$. e.g. \n",
            "\\textit{``adding constraint word: read''}.\n",
            "\n",
            "At inference time, we elaborate all missing constraints in the current hypothesis.\n",
            "\n",
            "\\myparagraph{Math program synthesis.}\n",
            "Math program synthesis contains a variety of problem types and errors, without an automated means  for identifying the errors (e.g. an API). \n",
            "We explore obtaining natural language feedback about the current program by \n",
            "\n",
            " prompting a large language model.\n",
            " We prompt the model with a problem, hypothesis program, a gold solution, and few-shot demonstrations\n",
            "\n",
            "that show feedback on one part of the program; e.g.\n",
            "\\textit{In the initial guess, 3 should be subtracted.}\n",
            "When the program is correct, the feedback is \\textit{Correct.}\n",
            "At inference time, we also use feedback from the language model.\n",
            " We allow the feedback model access to a gold solution, which we expect makes the feedback higher quality, with the risk of\n",
            " solution leakage at inference-time.\n",
            " Our results in this task are thus used only to study the feasibility of explicit feedback for math program synthesis.\n",
            " \n",
            "\n",
            "\\begin{table*}[t!]\n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lcccccccc}\n",
            "    \\toprule\n",
            "         & \\multicolumn{3}{c}{\\textbf{Toxicity $\\downarrow$}} & \\multicolumn{2}{c}{\\textbf{Constrained Gen. $\\uparrow$}} & \\multicolumn{2}{c}{\\textbf{Math $\\uparrow$}}\\\\\n",
            "         \\cmidrule(lr){2-4}\\cmidrule(lr){5-6}\\cmidrule(lr){7-8}\n",
            "          & \\textbf{Avg.~Max}. & \\textbf{Prob.} & \\textbf{Fluency} & \\textbf{Fluency} & \\textbf{Constraints} & \\textbf{Correct} & \\textbf{Correct$_*$}\\\\\n",
            "         \\midrule\n",
            "         Generator & 0.527 & 0.520 & 11.31 & 14.97 & 91.38 & 49.02 & 49.02\\\\\n",
            "         \\method   & 0.171 & 0.026 & 11.81 & 15.30 & 94.58 & 74.31 & 79.80\\\\\n",
            "         \\ \\ \\textsc{+ feedback} &\\textbf{0.156} & \\textbf{0.020} & 11.86 & 15.24 & \\textbf{95.88} & \\textbf{81.76} & \\textbf{82.35}\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{\\textbf{Explicit natural language feedback.} Correct$_*$ means only correcting incorrect outputs.\n",
            "    }\n",
            "    \\label{tab:feedback-all}\n",
            "\\end{table*}\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{figure*}[t]\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{multicols}{2}\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "Melanie had 19 dimes in her bank. Her dad gave her 39 dimes and her mother gave her 25 dimes. How many dimes does Melanie have now? \n",
            "\n",
            "\\Sepline\n",
            "\n",
            "\\textbf{Generator (GPT-Neo):}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "answer = 19 + 25\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\textbf{Feedback (GPT-3):}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "# In the initial guess, \n",
            "# 39 is not included.\n",
            "\\end{python}\n",
            "\\textbf{Corrector (GPT-Neo):}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "answer = 19 + 25 + 39\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{small}\n",
            "\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "Lana\u2019s favorite band was holding a concert where tickets were 6 dollars each. Lana bought 8\n",
            "tickets for herself and her friends and 2 extra tickets in case anyone else wanted to go. How much did\n",
            "she spend?\n",
            "\\Sepline\n",
            "\n",
            "\\textbf{Generator (GPT-Neo):}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "answer=(6.0*8.0)\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\textbf{Feedback (GPT-3):}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "# In the initial guess, \n",
            "# 2 tickets are not included.\n",
            "\\end{python}\n",
            "\\textbf{Corrector (GPT-Neo):}\n",
            "\\vspace{-0.5em}\n",
            "\\begin{python}\n",
            "answer=(6.0*(8.0+2.0))\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{small}\n",
            "\\vspace{-0.9em}\n",
            "\\end{tcolorbox}\n",
            "\\end{multicols}\n",
            "\\vspace{-1.7em}\n",
            "\\caption{\\textbf{Self-correction with natural language feedback.}\n",
            "}\n",
            "\\label{fig:math-feedback-examples}\n",
            "\\end{figure*}\n",
            "\n",
            "\\myparagraph{Setup.} For toxicity, lexical constraints, and math we use \\textsc{RealToxicityPrompts}, \\textsc{CommonGen}, and the \\textsc{Multitask} arithmetic setting, respectively. We follow the setup of each task's previous experiments (\\S\\ref{ssec:toxicity},\\S\\ref{ssec:constrained},\\S\\ref{ssec:math}), except for math we use 5 correction iterations (previously 1).\n",
            "For math, we use GPT-3 (text-davinci-002) with 6 demonstrations as the feedback model.\n",
            "\n",
            "\n",
            "\\myparagraph{Results.}\n",
            "\\autoref{tab:feedback-all} shows that explicit natural language feedback improves performance in all three tasks.\n",
            "For toxicity, this means that providing fine-grained attributes (e.g. identity attack, profanity, etc.) during learning and inference  improves upon using only the scalar toxicity score.\n",
            "Intuitively, feedback may help the model to focus on a useful correction; e.g., see \\autoref{fig:math-feedback-examples}.\n",
            "\n",
            "\\subsection{Additional Ablations and Analysis}\n",
            "\\label{subsec:ablation}\n",
            "\n",
            "\\myparagraph{Effect of multiple corrections.}\n",
            "Previously, Figure~\\ref{fig:toxicity} showed that multiple corrections led to better toxicity reduction.\n",
            "On math (Multitask setting), Figure~\\ref{fig:math-feedback} shows that performance improves with more than one correction, and that\n",
            "multiple corrections are more beneficial with feedback.\n",
            "Intuitively, in this math task, after 2-3 corrections the model needs additional guidance.\n",
            "\n",
            "\\myparagraph{Effect of pairing and proportional sampling.}\n",
            "Self-corrective learning (i) samples pairs for learning proportional to \\autoref{eqn:residual-subsample}, (ii) only pairs sequences that improve value.\n",
            "We ablate these features by training on Multitask using a  data pool that samples a pair for learning uniformly (rather than  \\autoref{eqn:residual-subsample}), and a data pool without value pairing.\n",
            "\\autoref{tab:pairing} shows that both improve performance. \n",
            "\n",
            "\\myparagraph{Effect of exploration.}\n",
            "To ablate the effect of exploration, we train a baseline only on correction pairs induced from the base generator. \n",
            "\\autoref{tab:multiple-corrections}\n",
            " shows results on the three math datasets, indicating that exploration improves performance. \n",
            "\n",
            "\\begin{table}[t!]\n",
            "\\begin{minipage}{0.44\\linewidth}\n",
            "\\centering \n",
            "\\includegraphics[width=0.9\\linewidth]{images/feedback_iterations.png}\n",
            "\\vspace{-1em}\n",
            "\\captionof{figure}{Math: multiple corrections.}\n",
            "\\label{fig:math-feedback}\n",
            "\n",
            "\\end{minipage}\\hfill\n",
            "\\begin{minipage}{0.54\\linewidth}\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\\centering\\footnotesize\n",
            " \\scalebox{.98}{\n",
            "    \\begin{tabular}{lccc}\n",
            "    \\toprule\n",
            "    \\textbf{Ablation} & \\multicolumn{1}{c}{\\textbf{Math}}& \\textbf{\\textsc{CommonGen}} \\\\\n",
            "    \\midrule\n",
            "    \\method & \\textbf{78.24} & \\textbf{94.55}\\\\\n",
            "     \\ \\ \\xmark\\ proportional sampling &  77.25 & 93.49\\\\\n",
            "     \\ \\ \\xmark\\ value pairing &  62.35 & 91.76 \\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}}\n",
            "    \\vspace{-0.5em}\n",
            "    \\caption{Effect of pairing and proportional sampling.}\n",
            "    \\label{tab:pairing}\n",
            "\\begin{tabular}{ccccccccc}\n",
            "    \\toprule\n",
            "    \\textbf{Exploration} & \\textbf{Multiarith} & \\textbf{Multitask} & \\textbf{GSM8k}\\\\\n",
            "    \\midrule\n",
            "    \\xmark & 89.20 & 73.49 & 17.60 \\\\\n",
            "    \\cmark & \\textbf{99.17} & \\textbf{78.24} & \\textbf{23.96}\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\vspace{-0.5em}\n",
            "    \\caption{Effect of exploration on program synthesis.}\n",
            "    \\label{tab:multiple-corrections}\n",
            "\\end{minipage}\n",
            "\\end{table}\n",
            "\n",
            "\\section{Related Work}\n",
            "\\vspace{-0.5em}\n",
            "Self-correction relates to recent works on editing text, including modeling Wikipedia edits \\citep{reid2022learning,faltings-etal-2021-text,schick2022peer}, which relies on supervised edits, unsupervised methods \\citep{Miao_Zhou_Mou_Yan_Li_2019,liu-etal-2020-unsupervised} that perturb sequences with simple operations (e.g. insertion, deletion),\n",
            " editing with models trained on human-written critiques~\\citep{saunders2022self}, or iteratively updating continuous variables~\\citep{lee-etal-2020-iterative,Li2022DiffusionLMIC,qin2022cold}.\n",
            "In contrast to these, self-correction learns an expressive text-to-text corrector that is trained online to improve a quality measure, without requiring a supervised dataset of edits or critiques.\n",
            "Separately, denoising ground-truth sequences is a common pretraining objective~\\citep{devlin-etal-2019-bert,lewis-etal-2020-bart,RaffelT5}, while self-correction `denoises' generations to improve a scalar quality measure.\n",
            "Scalar measures are often improved with reinforcement learning (RL) on a base generator~\\citep{ziegler2019finetuning,stiennon2020,quark22}, which is infeasible for improving many language models (e.g. those accessed through an API), and uses only scalar feedback. \n",
            "Moreover, self-correction learns the difference between a generation and solution, and is  complementary to RL-tuned generators, which can be used within a self-corrector.\n",
            "Finally, self-correction decomposes  generation into multiple steps, which relates to methods \n",
            "that generate rationales before a response~\\citep{Wei2022ChainOT,Dohan2022LanguageMC}.\n",
            "Self-correction also produces  intermediate steps, but each step is of the same form as the output, allowing for re-using previous generations.\n",
            "\n",
            "\\section{Conclusion}\n",
            "\\vspace{-0.5em}\n",
            "We introduced self-correctors, a class of models that decompose generation into initial generation and correction steps.\n",
            "We study self-correctors with a fixed base generator along with a corrector trained to improve outputs according to a scalar measure of quality.\n",
            "We presented a simple, general procedure for training the corrector, and find that self-correction is applicable and effective for improving  performance, and controlling the outputs of both small and large generators.\n",
            "Moreover, we found that self-correction along with our learning framework provides a promising mechanism for using natural language feedback to improve generation.\n",
            "These findings, along with exploring alternative self-correctors, open up many avenues that we leave for future work.\n",
            "\n",
            "\\section*{Acknowledgments}\n",
            "This work was funded in part by the DARPA MCS program through NIWC Pacific (N66001-19-2-4031), and the Allen Institute for AI.\n",
            "\n",
            "\\bibliography{iclr2023_conference}\n",
            "\\bibliographystyle{iclr2023_conference}\n",
            "\n",
            "\\clearpage\n",
            "\\newpage\n",
            "\\appendix\n",
            "\n",
            "\\begin{center}\n",
            "{\\LARGE \\textsc{\n",
            "Appendix\n",
            "}}\n",
            "\\vspace{40pt}\n",
            "\\end{center}\n",
            "\n",
            "\\section{Additional Experimental Details}\n",
            "\\subsection{Mathematical Program Synthesis}\n",
            "We fine-tune a separate instance of GPT-Neo 1.3B as an initial generator, using the Huggingface library with default hyperparameters, except for evaluation steps, which we set to a small number to ensure a strong checkpoint is selected for each dataset.\n",
            "We use the fine-tuned initial generator as initialization for the corrector,\n",
            "and tune the corrector on sequences\n",
            "${\\small\n",
            "\\texttt{[SC]x[CURR]yi[START]yj[END]},\n",
            "}$\n",
            "where $x$ is a problem, $y_i$ and $y_j$ form a residual pair, and $[\\cdot]$ are special tokens.\n",
            "The loss is on tokens after $\\texttt{[START]}$.\n",
            "\n",
            "\\paragraph{Feedback.}\n",
            "We write 6 demonstrations using training problems and generations from our GPT-Neo base generator, and use GPT-3 (text-davinci-002) as a feedback model.\n",
            "\n",
            "We use the same training procedure and hyperparameters, except that the sequences now include feedback,\n",
            "${\\small\n",
            "\\texttt{[SC]x[CURR]yi[FEEDBACK]F(x,yi)[START]yj[END]},\n",
            "}$\n",
            "where $x$ is a problem, $y_i$ and $y_j$ form a residual pair, and $F(x,y_i)$ is feedback.\n",
            "We include loss on tokens after $\\texttt{[FEEDBACK]}$.\n",
            "\n",
            "\\subsection{Lexically-constrained Generation}\n",
            "\n",
            "\\textbf{Hyper-parameters.  }\\autoref{tab:hyper-cg} and \\autoref{tab:hyper-e2e} show hyperparameters for CommonGen and E2E.\n",
            "\n",
            "\\textbf{Human Evaluation. } We evaluate fluency of generations in E2E task using human annotators on Amazon Mechanical Turk (AMT). We randomly sampled 100 instances, along with generations of different baselines and self-corrections. For each instance, we ask 3 annotators to evaluate the fluency of generations on a 3-point Likert scale. We aggregate annotations from 3 annotators using majority vote. We restricted the pool of annotators to those who are located in US or CA, and had 98\\\n",
            "\\begin{table}[h]\n",
            "\\begin{minipage}{0.48\\linewidth}\n",
            "\\centering \n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lc}\n",
            "    \\toprule\n",
            "    \\textbf{Hyperparameter} & \\textbf{Assignment}\\\\\n",
            "    \\midrule\n",
            "    Predictor & GPT-2$_{Large}$ \\\\\n",
            "    \\# steps & 6000\\\\\n",
            "    batch size & 128\\\\\n",
            "    optimizer & Adam\\\\\n",
            "    learning rate & $1.e^-5$ \\\\\n",
            "    decoding alg. & beam search (k=5) \\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{\n",
            "Hyperparameters for \\textsc{CommonGen}.\n",
            "    }\n",
            "    \\label{tab:hyper-cg}\n",
            "\\end{minipage}\\hfill\n",
            "\\begin{minipage}{0.5\\linewidth}\n",
            "\\centering\\footnotesize\n",
            "    \\begin{tabular}{lc}\n",
            "    \\toprule\n",
            "    \\textbf{Hyperparameter} & \\textbf{Assignment}\\\\\n",
            "    \\midrule\n",
            "    Predictor & GPT-2$_{Medium}$  \\\\\n",
            "    \\# steps & 10000\\\\\n",
            "    batch size & 100 \\\\\n",
            "    optimizer & Adam\\\\\n",
            "    learning rate & $1.e^-5$ \\\\\n",
            "    decoding alg. & beam search (k=5) \\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{Hyperparameters for E2E.\n",
            "    }\n",
            "    \\label{tab:hyper-e2e}\n",
            "\\end{minipage}\n",
            "\\end{table}\n",
            "\n",
            "\\section{Additional Results}\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\\begin{table*}[h]\n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lcccccccc}\n",
            "    \\toprule\n",
            "         & \\multicolumn{2}{c}{\\textbf{Toxicity}}& \\textbf{Fluency}& \\multicolumn{2}{c}{\\textbf{Diversity}}\\\\\n",
            "         \\cmidrule(lr){2-3}\\cmidrule(lr){4-4}\\cmidrule(lr){5-6}\n",
            "         & \\textbf{Avg.~Max}. & \\textbf{Prob.} & \\textbf{Perplexity} & \\textbf{dist-2} & \\textbf{dist-3} \\\\\n",
            "         \\midrule\n",
            "         GPT2-L        & 0.527 & 0.520 & 11.31 & 0.85 & 0.85 \\\\\n",
            "         \\textsc{Self-Correct} & 0.171 & 0.026 & 11.81 & 0.80 & 0.83\\\\\n",
            "         \\textsc{Self-Correct + feedback} & \\textbf{0.156} & \\textbf{0.020} & 11.86 & 0.80 & 0.83\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{Evaluation results of toxicity reduction experiments with  natural language feedback.}\n",
            "    \\label{tab:toxicity_feedback}\n",
            "\\end{table*}\n",
            "\n",
            "\n",
            "\\begin{table*}[h]\n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lcccccccc}\n",
            "    \\toprule\n",
            "         & \\textbf{Bleu-4} & \\textbf{CIDER} & \\textbf{Coverage} & \\textbf{Runtime}\\\\\n",
            "         \\midrule\n",
            "         \n",
            "         NeuroLogic~[\\citenum{lu-etal-2021-neurologic}]          & 26.70 & 14.70 & 97.70& 2.04s/sent\\\\\n",
            "         NeuroLogic-A*esque~[\\citenum{lu2022neurologicastar}]       & 28.20 & 15.20 & 97.80   & 19.24s/sent\\\\\n",
            "         \\midrule\n",
            "         GPT-2        & 27.90 & 14.97 & 91.38 & 0.2s/sent\\\\\n",
            "         \\textsc{Self-Correct}  & 27.98 & 15.30 & 94.58 & 0.8s/sent\\\\\n",
            "          \\textsc{Self-Correct} + feedback & 27.82 & 15.24 & 95.88 & 0.8s/sent\\\\\n",
            "         \\textsc{Self-Correct}+NeuroLogic  & 28.17 & 15.28 & \\textbf{97.80} & 2.24s/sent\\\\\n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{Evaluation rresults of lexically-constrained generation on \\textsc{CommonGen}.\n",
            "    \n",
            "    \n",
            "    }\n",
            "    \\label{tab:commongen_results}\n",
            "\\end{table*}\n",
            "\n",
            "\\begin{table*}[h]\n",
            "\\setlength\\tabcolsep{2.5pt}\n",
            "\n",
            "    \\centering\\footnotesize\n",
            "    \\begin{tabular}{lcccccccc}\n",
            "    \\toprule\n",
            "         & \\textbf{Coverage} &  \\textbf{BLEU-4} & \\textbf{NIST} & \\textbf{R-L}  & \\textbf{METEOR} & \\textbf{CIDER} \\\\\n",
            "         \\midrule\n",
            "        \n",
            "        \n",
            "        \n",
            "        \\textsc{Prefix-Tuning}~\\citep{li-liang-2021-prefix} & 91.16 & 70.30 & 8.82 & 72.10 & 46.30 & 2.46 \\\\\n",
            "         \\midrule\n",
            "         GPT-2    & 91.50 & 67.12 & 8.67 & 70.25  & 45.58 & 2.33\\\\\n",
            "         \n",
            "         \\textsc{Self-Correct} & \\textbf{98.77} & 68.81  & 8.78 & 68.60 & 45.11 & 2.38  \\\\\n",
            "        \n",
            "        \n",
            "        \n",
            "         \n",
            "    \\bottomrule\n",
            "    \\end{tabular}\n",
            "    \\caption{Evaluation results of lexically-constrained generation on E2E. \n",
            "    \n",
            "    }\n",
            "    \\label{tab:e2e_results}\n",
            "\\end{table*}\n",
            "\n",
            "\\section{Qualitative Examples}\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{figure}[t]\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{multicols}{2}\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "Ralph watches TV for 4 hours a day from Monday to Friday, and 6 hours a day on Saturday and Sunday. How many hours does Ralph spend watching TV in one week?\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=4*7\n",
            "b=6*7\n",
            "c=a+b\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\columnbreak\n",
            "\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=4*5\n",
            "b=6*2\n",
            "c=a+b\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "The pirates plan to explore 4 islands. Two islands require walking 20 miles per day while the other two islands require 25 miles per day. How many miles will they have to walk if it takes 1.5 days to explore each island?\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=20*2\n",
            "b=25*2\n",
            "c=a+b\n",
            "d=c*1.5\n",
            "e=d+b\n",
            "answer=e\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\columnbreak\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-0.5em}\n",
            "\\begin{python}\n",
            "a=20*2\n",
            "b=25*2\n",
            "c=a+b\n",
            "d=c*1.5\n",
            "answer=d\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\end{tcolorbox}\n",
            "\\end{multicols}\n",
            "\\vspace{-1.7em}\n",
            "\\caption{\\textbf{Grade school math (GSM) self-corrections.} Left: the structure of the generator's solution is valid, but it incorrectly uses the total number of days in a week for both \\textit{a} and \\textit{b}; the corrector fixes the program to correctly account for the 5 weekdays and 2 weekend days. Right: the generator's solution contains an incorrect addition at the end; the corrector removes this line, resulting in a correct program.\n",
            "}\n",
            "\\label{fig:math-examples2}\n",
            "\n",
            "\\begin{multicols}{2}\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "A spiral notebook costs 15, and a personal planner costs \\$10. How much would it cost in total to buy 4 spiral notebooks and 8 personal planners at a 20\\\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=4*15\n",
            "b=8*10\n",
            "c=a+b\n",
            "answer=c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\columnbreak\n",
            "\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=4*15\n",
            "b=8*10\n",
            "c=a+b\n",
            "d=c*20/100\n",
            "e=c-d\n",
            "answer=e\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{small}\n",
            "\\textbf{Problem:}\\\\\n",
            "Julia has \\$40. She spends half of her money to buy a new game for her phone. She spends a quarter of what she has left on in-game purchases. How much money does she have left?\n",
            "\\Sepline\n",
            "\\vspace{-1.2em}\n",
            "\\begin{multicols}{2}\n",
            "\\textbf{Generator:}\n",
            "\\vspace{-0.3em}\n",
            "\\begin{python}\n",
            "a=40/2\n",
            "b=40-a\n",
            "c=b/4  \n",
            "d=b-c\n",
            "e=d+40 \n",
            "answer=e \n",
            "print(answer)\n",
            "\\end{python}\n",
            "\\columnbreak\n",
            "\\textbf{Corrector:}\n",
            "\\vspace{-1.5em}\n",
            "\\begin{python}\n",
            "a=40/2\n",
            "b=a/4\n",
            "c=a-b\n",
            "answer= c\n",
            "print(answer)\n",
            "\\end{python}\n",
            "\n",
            "\\end{multicols}\n",
            "\\end{small}\n",
            "\\end{tcolorbox}\n",
            "\\end{multicols}\n",
            "\\vspace{-1.7em}\n",
            "\\caption{\\textbf{Grade school math (GSM) self-corrections.} Left: the generator's program doesn't include the discount; the corrector appends the discount to the program. Right: a more sophisticated multipart correction. The generator's assignment of \\textit{b} (line 2), and addition to \\textit{e} (line 5) are incorrect. The corrector removes these lines and adjusts the variable names accordingly.\n",
            "}\n",
            "\\label{fig:math-examples3}\n",
            "\\end{figure}\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{figure}[t]\n",
            "\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{scriptsize}\n",
            "\\textbf{Constraints:}\\\\\n",
            "`table', `paper',  `read' \\\\\n",
            "\\textbf{Generator:} \\\\\n",
            "\\texttt{A man is reading book on a table.} \\\\\n",
            "\n",
            "\\textbf{Corrector:} \\\\\n",
            "\\texttt{A man is reading a book on a table and writing on a piece of \\textcolor{green(pigment)}{paper}. }\n",
            "\\Sepline\n",
            "\n",
            "\\textbf{Constraints:} \\\\'stand', 'wait', 'look'\\\\\n",
            "\\textbf{Generator:}\\\\\n",
            "\\texttt{He waits for someone to look at him.}\\\\\n",
            "\\textbf{Corrector:}\\\\\n",
            "\\texttt{He waits for someone to \\textcolor{green(pigment)}{stand} and look him in the eye.}\n",
            "\\Sepline\n",
            "\n",
            "\\textbf{Constraints:} \\\\'walk', 'park', 'bench', 'dog', 'sit'\\\\\n",
            "\\textbf{Generator:}\\\\\n",
            "\\texttt{A dog sitting on a bench in a park.}\\\\\n",
            "\\textbf{Corrector:}\\\\\n",
            "\\texttt{A dog sitting on a bench and a man \\textcolor{green(pigment)}{walking} a dog in a park.}\n",
            "\n",
            "\\end{scriptsize}\n",
            "\\vspace{-0.5em}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{scriptsize}\n",
            "\n",
            "\\textbf{Constraints:}\\\\\n",
            "name : The Mill | Type : restaurant | food : English | price : high | customer rating : average | area : riverside | family friendly : yes | near : Cafe Rouge \\\\\n",
            "\\textbf{Generator:} \\\\\n",
            "\\texttt{The Mill is an expensive, three star restaurant located near Cafe Rouge.} \\\\\n",
            "\n",
            "\\textbf{Corrector:} \\\\\n",
            "\\texttt{The Mill is a \\textcolor{green(pigment)}{children friendly} \\textcolor{green(pigment)}{English} restaurant \\textcolor{green(pigment)}{in the riverside area} near Cafe Rouge. It has an average customer rating and a high price range.}\n",
            "\n",
            "\\Sepline\n",
            "\n",
            "\\textbf{Constraints:}\\\\\n",
            "name : Blue Spice | Type : restaurant | food : Chinese | area : riverside | family friendly : yes | near : Rainbow Vegetarian Cafe\n",
            "\\textbf{Generator:} \\\\\n",
            "\\texttt{Blue Spice is a restaurant providing Chinese food. It is located in the riverside. It is near Rainbow Vegetarian Cafe.} \\\\\n",
            "\n",
            "\\textbf{Corrector:} \\\\\n",
            "\\texttt{Blue Spice is a \\textcolor{green(pigment)}{family friendly} Chinese restaurant in the riverside area near Rainbow Vegetarian Cafe.}\n",
            "\n",
            "\\end{scriptsize}\n",
            "\\vspace{-0.6em}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\n",
            "\n",
            "\\caption{\\textbf{Constrained generation self-corrections.} Top: \\textsc{CommonGen}, and Bottom: E2E. Words in \\textcolor{green(pigment)}{green} indicate constraints that were previously missing.\n",
            "}\n",
            "\\label{fig:examples-cg-e2e}\n",
            "\\end{figure}\n",
            "\n",
            "\n",
            "\n",
            "\\setlength{\\columnsep}{0.2cm}\n",
            "\\begin{figure}[t]\n",
            "\n",
            "\\begin{tcolorbox}[colback=qualcolor!5!white,colframe=qualcolor!75!black]\n",
            "\\begin{scriptsize}\n",
            "\\textbf{Prompt:}\\\\\n",
            "Waters then went on to call the Trump \\\\\n",
            "\\textbf{Generator:} \\\\\n",
            "\\texttt{administration a \\textcolor{red}{\"bunch of idiots\" and \"insolent clowns} [who are] running\"} \\\\\n",
            "\\textbf{Corrector:} \\\\\n",
            "\\texttt{Administration's support for the Trans-Pacific Partnership on trade \"a total non-event.\"} \\\\\n",
            "\\texttt{}\n",
            "\n",
            "\n",
            "\\end{scriptsize}\n",
            "\\vspace{-0.5em}\n",
            "\\end{tcolorbox}\n",
            "\n",
            "\n",
            "\\caption{\\textbf{Toxicity control self-corrections.} Words in \\textcolor{red}{red} indicate toxic language.\n",
            "}\n",
            "\\label{fig:examples-toxicity}\n",
            "\\end{figure}\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\n",
            "\\end{document}\n"
        ],
        "del_percentage": 0.0641
    }
}