blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
9aa43822098b1d19715a01e7607e3f68485f1762
e422af828a758368fa7a16745b7ae7d0e6c800e8
/804_UniqueMorseCodeWords.py
3811f21858311a91bdadb404e90903673715033a
[ "MIT" ]
permissive
xyp8023/LeetCode_Python
8b2eb8f4d036c6510f83a3d50e34ce9383cee0f7
09281f9a1eafb262b06336a6969c97d2418899b4
refs/heads/master
2020-03-30T20:26:21.966605
2019-09-08T09:32:52
2019-09-08T09:32:52
151,588,098
0
0
null
null
null
null
UTF-8
Python
false
false
1,287
py
# class Solution: # def uniqueMorseRepresentations(self, words): # """ # :type words: List[str] # :rtype: int # """ # MorseCode = [".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", ".---", "-.-", ".-..", "--", "-.", # "---", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.."] # res = [] # ascii_a = ord('a') # 97 # for i in words: # Str = '' # for j in i: # Str += MorseCode[ord(j) - ascii_a] # res.append(Str) # return len(set(res)) # another solution class Solution: def uniqueMorseRepresentations(self, words): """ :type words: List[str] :rtype: int """ MorseCode = [".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.."] ascii_a = ord('a') # 97 seen = {''.join(MorseCode[ord(c)-ascii_a] for c in word) for word in words} return len(seen) words = ["gin", "zen", "gig", "msg"] sol = Solution() res = sol.uniqueMorseRepresentations(words) print(res)
a5a47498059620de02d04269f2c99b0f5501de51
bb986a65799c427efb36032c0e8020d0e4647eea
/ScoreCardModel/feature_selection/distribution.py
1e0e98efae96d1c8d59adb1c8d98d51f8105a17a
[]
no_license
likaituo/ScoreCardModel
a743d4573a1627f8e248a3193ab00e3176d805ef
1c19405e9bb2a76bb65208751ee3a6e228a85c81
refs/heads/master
2020-12-02T11:06:24.674264
2017-06-05T10:27:02
2017-06-05T10:27:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,387
py
__all__ = ["Distribution"] import numpy as np from typing import Tuple import matplotlib.pyplot as plt class Distribution: """ Property: x (np.ndarray): - 输入的数组 X (np.ndarray): - 数组分段的下表 Y (np.ndarray): - 数组中的元素每个分段中的出现的个数 xticks (np.ndarray): - 均分的分段信息 segment (int): - 均分的分段数 """ @staticmethod def calculate(x: np.ndarray, segment: int = 5)->Tuple[np.ndarray, np.ndarray]: """计算分布 Parameters: x (np.ndarray): - 复杂的多层序列 segment (int): - 均分的分段数,默认100 Returns: Tuple[np.ndarray, np.ndarray]: - 返回用于画图的X,Y """ min_val = min(x) max_val = max(x) step = (min_val - max_val) / segment Y, X = np.histogram(x, bins=segment, range=(min_val, max_val)) return Y, X @property def x(self): return self.__x @property def X(self): return self.__X @property def Y(self): return self.__Y @property def xticks(self): return self.__xticks @property def segment(self)->int: return self.__segment @segment.setter def segment(self, n: int): if isinstance(n, int) and n > 0: self.__segment = n else: raise AttributeError("segment must be a positive integer") def __call__(self): """输出不同分段中数组中的元素每个分段中的出现的个数 """ return dict(list(zip(self.xticks, self.Y))) def __init__(self, x: np.ndarray, segment: int = 100)->None: self.__x = x self.segment = segment self.calcul_distribution() def calcul_distribution(self): self.__Y, self.__X = Distribution.calculate(self.x, self.segment) self.__xticks = [str(self.X[i]) + '~' + str(self.X[i + 1]) for i in range(len(self.Y))] def draw(self): """画出分布情况 """ xticks = self.xticks plt.bar(range(len(self.Y)), self.Y) for i, j in zip(range(len(self.Y)), self.Y): plt.text(i, j + 0.5, str(float(self.Y[i]) / sum(self.Y) * 100) + "%") plt.xlim(-1, self.segment * 1.1) plt.xticks(range(len(self.xticks))) plt.show()
7c6d1222f99c5f665ac6b7c7951cb4aef9e82116
bfe81fda7d7b444e57d03571e619002d74af50c1
/homework/hw5/layers.py
a15d5cfb4b3c3ca6240f18ea328e40971e0dc3dc
[]
no_license
irishsoul0/Comp-540-----Statistical-Machine-Learning
562284e9eb0f3eda0418ff75e09422d9d5621ab2
e987e0eaf53964c865374ce647acf052fdc83734
refs/heads/master
2020-05-18T20:55:32.027388
2019-05-02T20:17:43
2019-05-02T20:17:43
184,645,865
0
0
null
null
null
null
UTF-8
Python
false
false
16,198
py
import numpy as np def affine_forward(x, theta, theta0): """ Computes the forward pass for an affine (fully-connected) layer. The input x has shape (m, d_1, ..., d_k) and contains a minibatch of m examples, where each example x[i] has shape (d_1, ..., d_k). We will reshape each input into a vector of dimension d = d_1 * ... * d_k, and then transform it to an output vector of dimension h. Inputs: - x: A numpy array containing input data, of shape (m, d_1, ..., d_k) - theta: A numpy array of weights, of shape (d, h) - theta0: A numpy array of biases, of shape (h,) Returns a tuple of: - out: output, of shape (m, h) - cache: (x, theta, theta0) """ out = None ############################################################################# # TODO: Implement the affine forward pass. Store the result in out. You # # will need to reshape the input into rows. # ############################################################################# # 2 lines of code expected m = x.shape[0] x_temp = x.reshape((m, -1)) out= np.dot(x_temp, theta) + theta0 ############################################################################# # END OF YOUR CODE # ############################################################################# cache = (x, theta, theta0) return out, cache def affine_backward(dout, cache): """ Computes the backward pass for an affine layer. Inputs: - dout: Upstream derivative, of shape (m, h) - cache: Tuple of: - x: Input data, of shape (m, d_1, ... d_k) - theta: Weights, of shape (d,h) - theta0: biases, of shape (h,) Returns a tuple of: - dx: Gradient with respect to x, of shape (m, d1, ..., d_k) - dtheta: Gradient with respect to theta, of shape (d, h) - dtheta0: Gradient with respect to theta0, of shape (1,h) """ x, theta, theta0 = cache dx, dtheta, dtheta0 = None, None, None ############################################################################# # TODO: Implement the affine backward pass. # ############################################################################# # Hint: do not forget to reshape x into (m,d) form # 4-5 lines of code expected dx = np.dot(dout,theta.T).reshape(x.shape) m = x.shape[0] x = x.reshape((m, -1)) dtheta = np.dot(x.T, dout) dtheta0 = np.sum(dout, axis=0) ############################################################################# # END OF YOUR CODE # ############################################################################# return dx, dtheta, dtheta0 def relu_forward(x): """ Computes the forward pass for a layer of rectified linear units (ReLUs). Input: - x: Inputs, of any shape Returns a tuple of: - out: Output, of the same shape as x - cache: x """ out = None ############################################################################# # TODO: Implement the ReLU forward pass. # ############################################################################# # 1 line of code expected out = np.maximum(x, 0) ############################################################################# # END OF YOUR CODE # ############################################################################# cache = x return out, cache def relu_backward(dout, cache): """ Computes the backward pass for a layer of rectified linear units (ReLUs). Input: - dout: Upstream derivatives, of any shape - cache: Input x, of same shape as dout Returns: - dx: Gradient with respect to x """ dx, x = None, cache ############################################################################# # TODO: Implement the ReLU backward pass. # ############################################################################# # 1 line of code expected. Hint: use np.where dx = np.where(x>0, dout.copy(), 0) ############################################################################# # END OF YOUR CODE # ############################################################################# return dx def dropout_forward(x, dropout_param): """ Performs the forward pass for (inverted) dropout. Inputs: - x: Input data, of any shape - dropout_param: A dictionary with the following keys: - p: Dropout parameter. We drop each neuron output with probability p. - mode: 'test' or 'train'. If the mode is train, then perform dropout; if the mode is test, then just return the input. - seed: Seed for the random number generator. Passing seed makes this function deterministic, which is needed for gradient checking but not in real networks. Outputs: - out: Array of the same shape as x. - cache: A tuple (dropout_param, mask). In training mode, mask is the dropout mask that was used to multiply the input; in test mode, mask is None. """ p, mode = dropout_param['p'], dropout_param['mode'] if 'seed' in dropout_param: np.random.seed(dropout_param['seed']) mask = None out = None if mode == 'train': ########################################################################### # TODO: Implement the training phase forward pass for inverted dropout. # # Store the dropout mask in the mask variable. # ########################################################################### # 2 lines of code expected mask = (np.random.rand(*x.shape) < (1-p))/(1-p) out = x*mask ########################################################################### # END OF YOUR CODE # ########################################################################### elif mode == 'test': ########################################################################### # TODO: Implement the test phase forward pass for inverted dropout. # ########################################################################### # 1 line of code expected out = x ########################################################################### # END OF YOUR CODE # ########################################################################### cache = (dropout_param, mask) out = out.astype(x.dtype, copy=False) return out, cache def dropout_backward(dout, cache): """ Perform the backward pass for (inverted) dropout. Inputs: - dout: Upstream derivatives, of any shape - cache: (dropout_param, mask) from dropout_forward. """ dropout_param, mask = cache mode = dropout_param['mode'] dx = None if mode == 'train': ########################################################################### # TODO: Implement the training phase backward pass for inverted dropout. # ########################################################################### # 1 line of code expected dx = dout * mask ########################################################################### # END OF YOUR CODE # ########################################################################### elif mode == 'test': dx = dout return dx def conv_forward_naive(x, theta, theta0, conv_param): """ A naive implementation of the forward pass for a convolutional layer. The input consists of m data points, each with C channels, height H and width W. We convolve each input with F different filters, where each filter spans all C channels and has height HH and width HH. Input: - x: Input data of shape (m, C, H, W) - theta: Filter weights of shape (F, C, HH, WW) - theta0: Biases, of shape (F,) - conv_param: A dictionary with the following keys: - 'stride': The number of pixels between adjacent receptive fields in the horizontal and vertical directions. - 'pad': The number of pixels that will be used to zero-pad the input. Returns a tuple of: - out: Output data, of shape (m, F, H', W') where H' and W' are given by H' = 1 + (H + 2 * pad - HH) / stride W' = 1 + (W + 2 * pad - WW) / stride - cache: (x, theta, theta0, conv_param) """ out = None ############################################################################# # TODO: Implement the convolutional forward pass. # # Hint: you can use the function np.pad for padding. # ############################################################################# m,C, H, W = x.shape F, C, HH, WW = theta.shape stride = conv_param['stride'] pad = conv_param['pad'] H_out = 1 + (H + 2*pad - HH)/stride W_out = 1 + (W + 2*pad - WW)/stride out = np.zeros((m, F, H_out, W_out)) x_pad = np.pad(x, [(0,0),(0,0),(pad, pad),(pad, pad)], mode='constant') for i in range(m): for j in range(F): for k in range(H_out): for p in range(W_out): conv = x_pad[ i, :, k*stride:k*stride + HH, p*stride:p*stride + WW] out[i, j, k, p] = np.sum(conv*theta[j]) + theta0[j] ############################################################################# # END OF YOUR CODE # ############################################################################# cache = (x, theta, theta0, conv_param) return out, cache def conv_backward_naive(dout, cache): """ A naive implementation of the backward pass for a convolutional layer. Inputs: - dout: Upstream derivatives. - cache: A tuple of (x, theta, theta0, conv_param) as in conv_forward_naive Returns a tuple of: - dx: Gradient with respect to x - dtheta: Gradient with respect to theta - dtheta0: Gradient with respect to theta0 """ dx, dtheta, dtheta0 = None, None, None ############################################################################# # TODO: Implement the convolutional backward pass. # ############################################################################# x, theta, theta0, conv_param = cache m, C, H, W = x.shape F, C, HH, WW = theta.shape stride = conv_param['stride'] pad = conv_param['pad'] dx = np.zeros_like(x) dtheta = np.zeros_like(theta) dtheta0 = np.zeros_like(theta0) H_out = 1 + (H + 2*pad - HH)/stride W_out = 1 + (W + 2*pad - WW)/stride x_pad = np.pad(x,[(0,0),(0,0),(pad, pad),(pad, pad)], mode='constant') dx_pad = np.pad(dx,[(0,0),(0,0),(pad, pad),(pad, pad)], mode='constant') for i in range(m): for j in range(F): for k in range(H_out): for p in range(W_out): dx_pad[i, :, k*stride:k*stride+HH, p*stride:p*stride+WW] += theta[j,:,:,:]*dout[i,j,k,p] dtheta[j,:,:,:] += x_pad[i,:,k*stride:k*stride+HH,p*stride:p*stride+WW]*dout[i,j,k,p] dx = dx_pad[:, :, pad:pad+H, pad:pad+W] dtheta0 = np.sum(dout ,axis=(0,2,3)) ############################################################################# # END OF YOUR CODE # ############################################################################# return dx, dtheta, dtheta0 def max_pool_forward_naive(x, pool_param): """ A naive implementation of the forward pass for a max pooling layer. Inputs: - x: Input data, of shape (m, C, H, W) - pool_param: dictionary with the following keys: - 'pool_height': The height of each pooling region - 'pool_width': The width of each pooling region - 'stride': The distance between adjacent pooling regions Returns a tuple of: - out: Output data - cache: (x, pool_param) """ out = None ############################################################################# # TODO: Implement the max pooling forward pass # ############################################################################# m, C, H, W = x.shape stride = pool_param['stride'] pool_height = pool_param['pool_height'] pool_width = pool_param['pool_width'] H_out = 1 + (H - pool_height)/stride W_out = 1 + (W - pool_width)/stride out = np.zeros((m,C,H_out,W_out)) for i in range(m): for j in range(C): for k in range(H_out): for p in range(W_out): p_orig = (p+1-1) * stride + pool_width -1 k_orig = (k+1-1) * stride + pool_height -1 out[i, j, k, p] = np.max(x[i, j,(k_orig-pool_height+1):(k_orig+1), (p_orig-pool_width+1):(p_orig+1)]) ############################################################################# # END OF YOUR CODE # ############################################################################# cache = (x, pool_param) return out, cache def max_pool_backward_naive(dout, cache): """ A naive implementation of the backward pass for a max pooling layer. Inputs: - dout: Upstream derivatives - cache: A tuple of (x, pool_param) as in the forward pass. Returns: - dx: Gradient with respect to x """ dx = None ############################################################################# # TODO: Implement the max pooling backward pass # ############################################################################# x, pool_param = cache m, C, H, W = x.shape stride = pool_param['stride'] pool_height = pool_param['pool_height'] pool_width = pool_param['pool_width'] N, C, H_out, W_out = dout.shape dx = np.zeros_like(x) for i in range(m): for j in range(C): for k in range(H_out): for p in range(W_out): p_orig = (p+1-1) * stride + pool_width -1 k_orig = (k+1-1) * stride + pool_height -1 grid_x = x[i, j,(k_orig-pool_height+1):(k_orig+1), (p_orig-pool_width+1):(p_orig+1)] grid_dx = dx[i, j,(k_orig-pool_height+1):(k_orig+1), (p_orig-pool_width+1):(p_orig+1)] max_value_index = np.unravel_index(grid_x.argmax(), grid_x.shape) grid_dx[max_value_index] = dout[i, j, k, p] ############################################################################# # END OF YOUR CODE # ############################################################################# return dx def svm_loss(x, y): """ Computes the loss and gradient using for multiclass SVM classification. Inputs: - x: Input data, of shape (m, C) where x[i, j] is the score for the jth class for the ith input. - y: Vector of labels, of shape (m,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ m = x.shape[0] correct_class_scores = x[np.arange(m), y] margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0) margins[np.arange(m), y] = 0 loss = np.sum(margins) / m num_pos = np.sum(margins > 0, axis=1) dx = np.zeros_like(x) dx[margins > 0] = 1 dx[np.arange(m), y] -= num_pos dx /= m return loss, dx def softmax_loss(x, y): """ Computes the loss and gradient for softmax classification. Inputs: - x: Input data, of shape (m, C) where x[i, j] is the score for the jth class for the ith input. - y: Vector of labels, of shape (m,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ probs = np.exp(x - np.max(x, axis=1, keepdims=True)) probs /= np.sum(probs, axis=1, keepdims=True) m = x.shape[0] loss = -np.sum(np.log(probs[np.arange(m), y])) / m dx = probs.copy() dx[np.arange(m), y] -= 1 dx /= m return loss, dx
9a3b95bdccdb7b503d60155acf43892274ec58d9
62d403765fce807597b33c284a4008c59beeb3e8
/第二组代码/爬虫/firstscrapy/firstscrapy/spiders/first.py
fedd9a7bc4ce473b56759b685e8391f742b073b9
[]
no_license
CS1803-SE/The-second-subsystem
aa19a26128da51268b7e8e8b492b4df9487417f3
fa0dc3d931c658bd8f42d4e95ff72049fe7db5f7
refs/heads/main
2023-05-26T08:49:49.599816
2021-05-30T15:27:49
2021-05-30T15:27:49
363,661,347
0
0
null
null
null
null
UTF-8
Python
false
false
6,543
py
#import scrapy from firstscrapy.items import FirstscrapyItem # # class FirstSpider(scrapy.Spider): # name = 'first' # #allowed_domains = ['https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd=%E5%8D%9A%E7%89%A9%E9%A6%86&medium=0'] # baseurl='https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd=%E5%8D%9A%E7%89%A9%E9%A6%86&medium=0&x_bfe_rqs=03E80&x_bfe_tjscore=0.100000&tngroupname=organic_news&newVideo=12&rsv_dl=news_b_pn&pn=' # # 第1页为小于10的数字 10为第2页,20为第三页,30为第四页,以此类推 # for i in range(10, 50, 10): # # 点击界面第二页可以看到网页变化截取关键部分 https://www.baidu.com/s?wd=python&pn=10 # start_urls = [baseurl+str(i)] # #start_urls = ['https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd=%E5%8D%9A%E7%89%A9%E9%A6%86&medium=0'] # # def parse(self, response): # div_list = response.xpath('//div[@class="result-op c-container xpath-log new-pmd"]') # #print(div_list) # for div in div_list: # title = div.xpath('.//h3/a/text()').getall() # title = "".join(title) # print(title) # # #创建item对象 # item = FirstscrapyItem() # item['title'] = title # # #返回item给pipelines # yield item # # -*- coding: utf-8 -*- import scrapy from scrapy import Spider,Request import re import datetime import time from _datetime import timedelta #URL = 'https://www.baidu.com/s?rtt=1&bsst=1&cl=2&tn=news&rsv_dl=ns_pc&word={museum}&bt={bt}&et={et}&x_bfe_rqs=03E80&x_bfe_tjscore=0.100000&tngroupname=organic_news&newVideo=12&pn={page}' URL = 'https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd={museum}&medium=2&x_bfe_rqs=03E80&x_bfe_tjscore=0.100000&tngroupname=organic_news&newVideo=12&rsv_dl=news_b_pn&pn={page}' class FirstSpider(scrapy.Spider): name = 'first' #allowed_domains = ['baidu.com'] page = 0 museum = None startTime = None endTime = None start_urls = [] end = False def __init__(self, museum="博物馆", startTime="2020-01-01", endTime=datetime.datetime.now().strftime("%Y-%m-%d"), *args, **kwargs): super(FirstSpider, self).__init__(*args, **kwargs) self.startTime = startTime self.endTime = endTime self.museum = museum self.start_urls = [URL.format(museum=museum, page=self.page * 10)] def parse(self, response): flag = 0 div_list = response.xpath('//div[@class="result-op c-container xpath-log new-pmd"]') if not div_list: self.end = True return for div in div_list: s_time = div.xpath('.//span[@class ="c-color-gray2 c-font-normal"]/text()').getall() s_time = "".join(s_time) time = self.parse_time(s_time) if time=="": continue if (time>self.startTime) and (time<self.endTime): detail_url = div.xpath('./@mu').getall() detail_url = "".join(detail_url) title = div.xpath('.//h3/a//text()').getall() title = "".join(title).replace("\n", "").replace(" ", "") author = div.xpath('.//span[@class="c-color-gray c-font-normal c-gap-right"]//text()').getall() author = "".join(author).replace("\n", "").replace(" ", "") # description = div.xpath('.//span[@class ="c-font-normal c-color-text"]/text()').getall() # description = "".join(description).replace("\n", "").replace(" ", "") print(title) print(author) print(time) # print(description) print(detail_url) item = FirstscrapyItem() item['title'] = title item['author'] = author item['museum'] = self.museum item['detail_url'] = detail_url item['time'] = time yield scrapy.Request(detail_url, callback=self.parse_detail, meta={'item': item}) elif time<self.startTime: flag = 1 break if flag==1: return print('page = {}'.format(self.page)) if (self.page<40) : self.page += 1 new_url = URL.format( museum=self.museum, bt=self.startTime, et=self.endTime, page=self.page * 10) print(new_url) yield Request(new_url, callback=self.parse, dont_filter=True) def parse_detail(self,response): item=response.meta['item'] content_list=response.xpath('//div[@class="index-module_textWrap_3ygOc"]') if not content_list: content_list = response.xpath('//p[@class="contentFont"]') content="" for div in content_list: c=div.xpath('.//text()').getall() c= "".join(c) content+=c+"\n" #print(content) item['content'] = content yield item def parse_time(self, s_time): result_time = '' regex = re.compile(r"[0-9]{4}年[0-9]{1,2}月[0-9]{1,2}日") # 1、2017年06月15日 13:41 if regex.match(s_time): t = time.strptime(s_time, '%Y年%m月%d日') y, m, d = t[0:3] result_time = datetime.datetime(y, m, d).strftime("%Y-%m-%d") # 6天前 elif u'天前' in s_time: days = re.findall(u'(\d+)天前', s_time)[0] result_time = (datetime.datetime.now() - timedelta(days=int(days))).strftime("%Y-%m-%d") # 昨天 18:03 elif u'昨天' in s_time: result_time = (datetime.datetime.now() - timedelta(days=int(1))).strftime("%Y-%m-%d") elif u'前天' in s_time: result_time = (datetime.datetime.now() - timedelta(days=int(2))).strftime("%Y-%m-%d") # 28分钟前 elif u'分钟前' in s_time: result_time = datetime.datetime.now().strftime("%Y-%m-%d") # 1小时前 elif u'小时前' in s_time: result_time = datetime.datetime.now().strftime("%Y-%m-%d") elif re.match(r"(\d+)月(\d+)日", s_time): g=re.search(r'(\d+)月(\d+)日',s_time) result_time = str(datetime.datetime.now().year)+"-"+str(g.group(1))+"-"+str(g.group(2)) t = time.strptime(result_time, "%Y-%m-%d") y, m, d = t[0:3] result_time = datetime.datetime(y, m, d).strftime("%Y-%m-%d") return result_time
5f6660405d8bf94af3a1d0da7c371a3746fb9c7b
8a4bc47685427204365b1668b3d7b5a6fd7546f1
/service/routing/registration.py
87716e98f4e46cd52db262f430ddd7eebf9214b7
[]
no_license
myronww/hello-service
3b1705ad8c25a6763d5a9673086b01d388b7817a
8b59054dd4cb09fb5f1697e14a050d8251b3ada8
refs/heads/master
2020-04-07T03:43:08.728638
2019-04-10T17:12:24
2019-04-10T17:12:24
158,027,190
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
import os from flask import Blueprint from routing.versions.v1 import apply_namespaces as apply_namespaces_v1 def register_blueprints(app, service_prefix): bp = Blueprint(service_prefix, __name__, url_prefix="/%s" % service_prefix) apply_namespaces_v1(bp) app.register_blueprint(bp) return
5e7a3f1c287c75701260d7609f3902f206f92a98
7e0619c2d4556659e4ae79bfc55e4902ea6ddc33
/django_learn/asgi.py
38f9ba67a6d1c3d7c0610d8951cf8096e3060506
[ "MIT" ]
permissive
nettaku2/django_learn
b2279310535a7ecc76f47b8281cf481fc6527da7
ce07c97c8b2dd4828cae1d1b176674c843e66b35
refs/heads/main
2023-08-24T04:03:22.291999
2021-10-30T17:12:05
2021-10-30T17:12:05
413,083,446
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" ASGI config for django_learn project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_learn.settings') application = get_asgi_application()
62a62155678e8901539b27446bc18682d86188ab
5609fb00d4ec730384565d551063a31de85e0f72
/tests/tester.py
6b2ead953ef5713cbbda786096e2b25f82bac625
[]
no_license
iron-claw-972/ScoutingApp2020
5bb9b5ab929f72a58d4a1cdd22a806631edfdb89
0b287b4405ec3cae493736c483dfd8e25d90a674
refs/heads/master
2020-05-30T08:57:33.565038
2020-03-01T02:43:37
2020-03-01T02:43:37
189,629,437
0
1
null
null
null
null
UTF-8
Python
false
false
386
py
import unittest from flask import Flask, request, Blueprint, render_template from ..util import DatabaseUtil bp = Blueprint('tester', __name__) class TestUM(unittest.TestCase): def setUp(self): DatabaseUtil.DatabaseUtil print("GOT DE DATABASE HHEHEHEHEHE") def test_False(self): self.assertTrue(True) if __name__ == "__main__": unittest.main()
730f554b7dc1eae5c4c877bb1803e310e3b7c464
394ccaa8496af51a3302edbe3f4314f781bb3f70
/src/syntaxAnalyser/helpers/subtreeGrouper.py
b4d3307100eb184670198f5cf5703fc53c59552b
[]
no_license
Banyc/SyntaxStructures
056415d7314fdfc53553493a71117e177891cae0
795534694ebdd1b9aaffc13078683f4ce9c79a91
refs/heads/master
2023-05-30T19:39:58.816201
2021-06-25T15:24:22
2021-06-25T15:24:22
379,916,963
0
0
null
null
null
null
UTF-8
Python
false
false
2,092
py
from typing import Dict, List from syntaxAnalyser.models.node import * from syntaxAnalyser.models.sentenceSet import * from syntaxAnalyser.models.treeInfo import * class SubtreeGrouper: def __init__(self) -> None: # tuple -> treeId self.treeIds: Dict[tuple, int] = {} # treeId -> treeInfos self.trees: Dict[int, TreeInfoSet] = {} def analyzeSentenceSet(self, sentenceSet: SentenceSet) -> None: for sentence in sentenceSet.sentences: _ = self.getTreeId(sentence.constituencyStructure, isUpdateCount=True, sourceSentence=sentence) def analyzeManySentenceSet(self, sentenceSets: List[SentenceSet]) -> None: for sentenceSet in sentenceSets: self.analyzeSentenceSet(sentenceSet) # return tree ID def getTreeId(self, root: Node, isUpdateCount: bool = False, sourceSentence: Sentence = None) -> int: if root is None: return 0 childTreeIds: List[int] = [] for child in root.children: childTreeId = self.getTreeId(child, isUpdateCount, sourceSentence) childTreeIds.append(childTreeId) treeIdsKey = (root.pos, tuple(childTreeIds)) treeId: int = -1 if treeIdsKey in self.treeIds.keys(): # this tree has already exists treeId = self.treeIds[treeIdsKey] else: # this tree does not exist treeId = len(self.treeIds) + 1 self.treeIds[treeIdsKey] = treeId # update self.trees if isUpdateCount: # only collect trees that begin with root node with more than one child if root.terminal is None and len(root.children) > 1: if not treeId in self.trees.keys(): self.trees[treeId] = TreeInfoSet() newTreeInfo = TreeInfo() newTreeInfo.root = root newTreeInfo.sourceSentence = sourceSentence newTreeInfo.treeId = treeId self.trees[treeId].treeInfos.append(newTreeInfo) return treeId
0a315b5bbce497aaba6fa8decae9c9d6b9178f62
babf0654a09a823693129655ba214f83ead74391
/preprocessing_code/task3.py
49ef0b11cf4c57d17c85f9ec34ed449624d11a4c
[]
no_license
rsriram-eth/DSPA-2019
6ab0e2ad48db2f60f3b903de3df80c10727e1ffd
9459e059a4576f8bdc9c28639eb88265c189a964
refs/heads/master
2022-11-17T09:30:08.307810
2019-06-09T21:48:45
2019-06-09T21:48:45
191,052,300
2
0
null
2022-11-16T10:56:57
2019-06-09T20:29:08
Java
UTF-8
Python
false
false
1,974
py
""" Preprocessing task: DSPA-2019 : step 3 : purge likes with original timestamp earlier than their post """ import pandas as pd import numpy as np import dateutil.parser # Common variables IP_DIR = "ip_data/1k-users-sorted/streams/" # Input directory MED_DIR = "scraps/" # Intermediate files OP_DIR = "op_data/" # Final output directory BL_DIR = "blacklist/" # Blacklisted files NUM_THREADS = 35 post_df = pd.read_csv(IP_DIR + "post_event_stream.csv", header=0, sep="|", usecols=['id', 'creationDate'] ) like_df = pd.read_csv(IP_DIR + "likes_event_stream.csv", header=0, sep="|", names=['personId', 'postId', 'creationDate'] ) print(post_df.head(n=1)) print(like_df.head(n=1)) """ Delete likes which are earlier than their post time """ num_likes = like_df.shape[0] print("Original number of likes:", num_likes) remove_ids = [] for index in range(num_likes): like_time = like_df.at[index, 'creationDate'] # ISO 8601 format like_time = dateutil.parser.parse(like_time) # print("\nLike time: ", like_time) post_id = like_df.at[index, 'postId'] # print("Post id: ", post_id) post_row = np.where(post_df['id'] == post_id)[0] # in post_df # print("Post row: ", post_row) post_time = post_df.at[post_row[0], 'creationDate'] post_time = dateutil.parser.parse(post_time) # print("Post time: ", post_time) if like_time <= post_time: # then drop remove_ids.append(index) print("\nLike time: ", like_time) print("Post time: ", post_time) print(index) # print(remove_ids) print("\nRemoving " + str(len(remove_ids)) + " comments .... ") like_df = like_df.drop(remove_ids, axis=0) num_likes = like_df.shape[0] print("Final number of likes:", num_likes) # Save cleaned results like_df.to_csv(OP_DIR + "like_stream.csv", sep='|', index=False)
d9d7d2571fc6feb5d0457b880d3af567d8dcc94e
fb50364834bed6ee1dfb0e3cfd260f13eb3c1b49
/Section5_Recursion/exploring_maze/maze_exploring.py
7460cf69536e06a38b3f9b39548e943499dfed65
[]
no_license
miguel-osuna/PS-Algos-and-DS-using-Python
521b36ceed26431f8d60c2927533fb1801bd0576
a9e0f8a7c77ff5b6a3befca5ab93030a9ae35313
refs/heads/master
2020-09-27T04:55:00.313981
2020-04-12T02:21:55
2020-04-12T02:21:55
226,435,735
0
0
null
null
null
null
UTF-8
Python
false
false
5,341
py
# Standard library imports import os # Third party imports import turtle PART_OF_PATH = "o" TRIED = "." OBSTACLE = "+" DEAD_END = "-" class Maze: """ Maze class """ def __init__(self, maze_file_name): """ Initialices a maze""" # Setup maze_file = open(maze_file_name, "r") self.maze_list = [] rows_in_maze = 0 columns_in_maze = 0 # Read file line by line for line in maze_file: col = 0 row_list = [] # Read character by character for char in line[:-1]: row_list.append(char) if char == "S": self.start_row = rows_in_maze self.start_col = col col += 1 rows_in_maze += 1 self.maze_list.append(row_list) columns_in_maze = len(row_list) # Sets num of rows and columns as class attributes self.rows_in_maze = rows_in_maze self.columns_in_maze = columns_in_maze # Sets axis self.x_translate = -columns_in_maze / 2 self.y_translate = rows_in_maze / 2 # Creates turtle and window object self.t = turtle.Turtle(shape="turtle") self.w = turtle.Screen() # Sets coordinates for bottom left and top right corners respectively self.w.set_world_coordinates( -(columns_in_maze - 1) / 2 - 0.5, -(rows_in_maze - 1) / 2 - 0.5, (columns_in_maze - 1) / 2 + 0.5, (rows_in_maze - 1) / 2 + 0.5, ) def __getitem__(self, idx): """ Operator overloading """ return self.maze_list[idx] def draw_centered_box(self, x, y, color): """" Draws box """ self.t.up() self.t.goto(x - 0.5, y - 0.5) self.t.color(color) self.t.fillcolor(color) self.t.setheading(90) self.t.down() self.t.begin_fill() for i in range(4): self.t.forward(1) self.t.right(90) self.t.end_fill() def draw_maze(self): """ Displays the representation of the Maze """ self.t.speed(10) self.w.tracer(0) for y in range(self.rows_in_maze): for x in range(self.columns_in_maze): if self.maze_list[y][x] == OBSTACLE: self.draw_centered_box( x + self.x_translate, -y + self.y_translate, "red" ) self.t.color("black") self.t.fillcolor("blue") self.w.update() self.w.tracer(1) def move_turtle(self, x, y): """ Move turtle in the box """ self.t.up() self.t.setheading(self.t.towards(x + self.x_translate, -y + self.y_translate)) self.t.goto(x + self.x_translate, -y + self.y_translate) def drop_bread_crumb(self, color): """ Drop a bread crumb """ self.t.dot(10, color) def update_position(self, row, col, val=None): """ Update position of the turtle """ if val: self.maze_list[row][col] = val self.move_turtle(col, row) if val == PART_OF_PATH: color = "green" elif val == OBSTACLE: color = "red" elif val == TRIED: color = "black" elif val == DEAD_END: color = "yellow" else: color = None if color: self.drop_bread_crumb(color) def is_exit(self, row, col): """ Check if turtle exits """ return ( row == 0 or row == self.rows_in_maze - 1 or col == 0 or col == self.columns_in_maze - 1 ) def search_from(maze, start_row, start_column): """ Search turtle position """ maze.update_position(start_row, start_column) # Try each of four directions from this point until we find a way out # Base cases # 1. If ran into obstacle, return False if maze[start_row][start_column] == OBSTACLE: return False # 2. If found a square that has already been explored, return False if ( maze[start_row][start_column] == TRIED or maze[start_row][start_column] == DEAD_END ): return False # 3. If found an outside edge not occupied by an obstacle if maze.is_exit(start_row, start_column): maze.update_position(start_row, start_column, PART_OF_PATH) return True # maze.update_position(start_row, start_column, TRIED) # Otherwise, use logic OR to test other directions found = ( search_from(maze, start_row - 1, start_column) or search_from(maze, start_row + 1, start_column) or search_from(maze, start_row, start_column - 1) or search_from(maze, start_row, start_column + 1) ) if found: maze.update_position(start_row, start_column, PART_OF_PATH) else: maze.update_position(start_row, start_column, DEAD_END) return found def main(): base_dir = os.path.dirname(os.path.abspath(__file__)) maze_file = os.path.join(base_dir, "maze_test.txt") myMaze = Maze(maze_file) myMaze.draw_maze() myMaze.update_position(myMaze.start_row, myMaze.start_col) search_from(myMaze, myMaze.start_row, myMaze.start_col) if __name__ == "__main__": main()
f3ac2e67d1f36ed5a9f2c18e6e7da8a7bc004fb6
1f1da172cbe7d9a973c2b668340c48fb0fce3aae
/src/ReverseComplement.py
a51d3cc91a3a4118a2f7e25878fdbf9f5026c3ce
[]
no_license
erb13020/coursera-bioinformatics-specialization
8353b21fc48bbc50a1ef7e66c21e3aa6e5179ab3
7a940cebe2cd7b8c69fca8e85dfec28e3a630482
refs/heads/master
2022-12-13T10:01:06.206965
2020-09-13T19:25:02
2020-09-13T19:25:02
274,309,538
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
def reverseComplement(genome): ''' Solve the Reverse Complement problem Input: A DNA string Pattern Output: Patternrc , the reverse complement of Pattern ''' genome = genome[::-1] # reverse text genome = genome.upper() # ensure text is uppercase nucleotide = { # dictionary for finding complements for nucleotides 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G' } complement = [] #variable to hold result for n in genome: complement.append(nucleotide[n]) return ''.join(complement)
db3e2088bfc29185f472eb8137fe2aecc73ab962
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r8/Gen/DecFiles/options/43900069.py
99e22a4ef36194235a12c7cff18970ba37ba0ea4
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,921
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r8/Gen/DecFiles/options/43900069.py generated: Fri, 27 Mar 2015 15:48:12 # # Event Type: 43900069 # # ASCII decay Descriptor: pp->( H_20 -> ( H_30 -> b anti-b ) ( H_30 -> b anti-b) ) # from Configurables import Generation Generation().EventType = 43900069 Generation().SampleGenerationTool = "Special" from Configurables import Special Generation().addTool( Special ) Generation().Special.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Higgs_AA,bbbb=mH125GeV,mA43GeV,tA10ps,HidValley.dec" Generation().Special.CutTool = "" Generation().FullGenEventCutTool = "LoKi::FullGenEventCut/FourTracksFromHVPionInAcceptance" from Configurables import LHCb__ParticlePropertySvc LHCb__ParticlePropertySvc().Particles = [ "H_20 88 35 0.0 125.0 1.65e-22 Higgs'0 35 4.0e-03" , "H_30 89 36 0.0 43.0 1.0e-11 A0 36 0.0e+00" ] from Gaudi.Configuration import * importOptions( "$DECFILESROOT/options/HidValleyH.py" ) Generation().Special.PythiaProduction.Commands[:0] = [ "pyinit pdtinput $DECFILESROOT/ppfiles/HiddenValleyHiggses_bbbar.pdt" ] Generation().Special.Pythia8Production.Commands += [ "36:onMode = off" , "36:onIfMatch = 5 -5" ] from Configurables import LoKi__FullGenEventCut Generation().addTool( LoKi__FullGenEventCut, "FourTracksFromHVPionInAcceptance" ) tracksInAcc = Generation().FourTracksFromHVPionInAcceptance tracksInAcc.Code = " count ( isGoodDVfromHVPion ) > 0 " tracksInAcc.Preambulo += [ "from GaudiKernel.SystemOfUnits import ns, GeV, mrad" , "isHVPion = ( 'H_30' == GID )" , "isGoodDVDaughter = ( (~GVEV) & GCHARGED & ( GP > 2.0*GeV ) & ( GTHETA < 400.0*mrad ) )" , "isGoodDVfromHVPion = ( isHVPion & ( GNINTREE( isGoodDVDaughter, HepMC.descendants ) > 3 ) )" ]
eaa0bc98d033d52b4c153cbc5339e5633d9227a1
82e9579ebe6fc76f49cb9d33351383eac6790a19
/exs/search/index.py
1e7da5b3e99124c7d6a08c90dcddc059b19a919b
[]
no_license
andtsa/experiments.py
f62be2b1712a756b57c5345b64b41c0c93778503
182de0c3b959a0a460bf6ba26e6937157e995610
refs/heads/master
2022-04-09T04:30:39.302430
2020-03-03T16:40:59
2020-03-03T16:40:59
109,993,173
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
########## Search ########## def search(query, field): place = 'Null' for i in range(len(field)): if field[i] == query: place = i break return place # print( search(10, [1,2,34,10,5,67,8,9,10,24,67,3,3]) )
920c5762a8970d91b790a58679726585c544c9fc
c9d839d04befa09ef8dffd249e0691910874c42b
/exercises/chapter-10/10.2.py
29bd51ef99b97f9a76535c5a9d55d2c8e7fa8b19
[]
no_license
imsamuel/pcc
d514278147257c8f63e0dc2aa455996ddaea8ea2
962dfc55ee72fc853d5a65ca485d7c364354c9f4
refs/heads/master
2022-11-24T17:04:41.184796
2020-07-26T07:14:13
2020-07-26T07:14:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
""" 10-2. Learning C: You can use the replace() method to replace any word in a string with a different word. Here’s a quick example showing how to replace 'dog' with 'cat' in a sentence: >>> message = "I really like dogs." >>> message.replace('dog', 'cat') 'I really like cats.' Read in each line from the file you just created, learning_python.txt, and replace the word Python with the name of another language, such as C. Print each modified line to the screen. """ with open("learning_python.txt") as file: lines = file.readlines() for line in lines: print(line.replace("Python", "C").rstrip())
3fc3ea410505a3bbf1773b01dadc2d31cc7d4e6b
26957ac501c8ec4d576009f40d2a8e6b561fa019
/bandapp/migrations/0018_auto_20200516_1427.py
187d21ed0c510f6f8e9bcc69dff97f68255de9f9
[]
no_license
Bimsickle/HIT237_Django_Punk
b29d25f2b3e305845682790cff5feb77dba8366a
a72a5e761e3d8b3353d6a14a7e2a818a899a7181
refs/heads/master
2022-11-23T23:09:43.121789
2020-08-03T09:31:01
2020-08-03T09:31:01
284,658,374
0
0
null
null
null
null
UTF-8
Python
false
false
508
py
# Generated by Django 3.0.3 on 2020-05-16 04:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bandapp', '0017_band_bio'), ] operations = [ migrations.AlterModelOptions( name='band', options={'ordering': ['band_name']}, ), migrations.AlterField( model_name='band', name='bio', field=models.TextField(blank=True, max_length=1000), ), ]
5855cf5c1bc23ba8483f55604d4385cc797f272d
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2180/60696/250099.py
ba5d6d479f9f6bc64cfa12e11cb5e09cf0a05adc
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
562
py
def tell_sub_strings(s): sub_strings = [] n = len(s) for i in range(n): for j in range(i+1, n+1): sub_strings.append(s[i:j]) return sub_strings if __name__ == '__main__': s1 = input() s2 = input() count = 0 if len(s1)<len(s2): sub_strings = tell_sub_strings(s1) for sub_string in sub_strings: count += s2.count(sub_string) else: sub_strings = tell_sub_strings(s2) for sub_string in sub_strings: count += s1.count(sub_string) print(count,end='')
af2a2cc65f022849e70a268c54ab6efbadc98166
0aeefc4dee24d50b71b40f273dc59526a2e25bc2
/trade.py
b85431546da798f776c8ea31364443db46e4a679
[ "MIT" ]
permissive
srirag-vuppala/Trader-bot
36f0b2e1030bf1c0abdf847e20a5da60639ce2f8
28659420a9bc32be79db77dfbdfed39447c53a32
refs/heads/master
2022-11-23T15:03:47.480936
2020-07-30T22:17:20
2020-07-30T22:17:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,369
py
import requests import json import os import alpaca_trade_api as tradeapi from config import * # Setting up environmental variables os.environ['APCA_API_KEY_ID'] = '[use your own key id here]' os.environ['APCA_API_SECRET_KEY'] = '[use your own key here]' os.environ['APCA_API_BASE_URL'] = 'https://paper-api.alpaca.markets' BASE_URL = "https://paper-api.alpaca.markets" ACCOUNT_URL = "{}/v2/account".format(BASE_URL) ORDERS_URL = "{}/v2/orders".format(BASE_URL) HEADERS = {'APCA-API-KEY-ID': API_KEY, 'APCA-API-SECRET-KEY': SECRET_KEY} api = tradeapi.REST(api_version='v2') def main(): response = create_order("VIX", 3, "buy", "limit", "gtc", 36.00) print(response) # orders = get_orders() # print(orders) account = api.get_account() aapl = api.alpha_vantage.historic_quotes('AAPL', adjusted=True, output_format='csv', cadence='weekly') # print(aapl) def create_order(symbol, qty, side, type, time_in_force, limit_price=None, stop_price=None, client_order_id=None, order_class=None, take_profit=None, stop_loss=None): # data = { # "symbol": symbol, # "qty": qty, # "side": side, # "type": type, # "time_in_force": time_in_force # } # api.submit_order(json=data) return api.submit_order(symbol=symbol, qty=qty, side=side, time_in_force=time_in_force, type=type, client_order_id=client_order_id, stop_price=stop_price, order_class=order_class, limit_price=limit_price, take_profit=dict( limit_price=limit_price, ), stop_loss=dict( stop_price=stop_price, limit_price=limit_price, ) ) # r = requests.post(ORDERS_URL, json=data, headers=HEADERS) # # return json.loads(r.content) def get_orders(): r = requests.get(ORDERS_URL, headers=HEADERS) return json.loads(r.content) if __name__ == '__main__': main()
39ecdc56ce356a15ab5aa007c86b1e29b1e6a38f
e223b7652a22a79e812d4909ea25cd7689383f9b
/tooner/__init__.py
056d14a6b2d64e44dafd1b5ed7993c7c25e20e37
[ "MIT" ]
permissive
jakebrehm/tooner
89974d79d2e76e2069a1e1ef3b6db877489fc28a
046034eeee1c5e33b713d8a4369c4d5d43a13aab
refs/heads/master
2023-07-17T02:27:40.259431
2021-09-11T01:12:32
2021-09-11T01:12:32
254,235,709
1
0
null
null
null
null
UTF-8
Python
false
false
49
py
from .invasions import * from .launcher import *
183322315b0144ca5291afec80efa5b97449663a
93f98dde611c138055629ae3b3b2cb1e301adc49
/DS/settings.py
2b725974d99e96e94544ee4b139fca8d8c4ebdf2
[ "BSD-3-Clause" ]
permissive
gitter-badger/djangochannel
ebd9a69bef62376d9877a5aece3f54b211880736
f9e33254739457c461e84b66879172007512f9b0
refs/heads/master
2020-08-06T01:43:26.679657
2019-10-04T10:16:32
2019-10-04T10:16:32
212,788,313
0
0
BSD-3-Clause
2019-10-04T10:18:48
2019-10-04T10:18:47
null
UTF-8
Python
false
false
5,094
py
import os import datetime from .ckeditor import * # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: don't run with debug turned on in production! ALLOWED_HOSTS = ['127.0.0.1', 'localhost', 'djangochannel.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.sites', 'django.contrib.staticfiles', 'django.contrib.sitemaps', 'debug_toolbar', 'bootstrap4', 'mptt', 'drf_yasg', # Editor 'ckeditor', 'ckeditor_uploader', 'rest_framework', # 'rest_framework.authtoken', # Auth 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.vk', # my apps 'backend.pages', 'backend.blog', 'backend.courses', 'backend.forum', 'backend.profile', 'backend.dc_tests', 'backend.reviews', 'backend.moderation', 'backend.pay', 'backend.contact', 'backend.message', 'backend.dc_task', 'backend.utils', 'backend.followers', 'backend.community', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'DS.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'DS.wsgi.application' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ) # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( # 'rest_framework.permissions.IsAdminUser', 'rest_framework.permissions.AllowAny', ), 'PAGE_SIZE': 10, 'DEFAULT_AUTHENTICATION_CLASSES': ( # 'rest_framework.authentication.TokenAuthentication', 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework_json_api.pagination.PageNumberPagination', } # JWT_AUTH = { # 'JWT_EXPIRATION_DELTA': datetime.timedelta(days=2), # 'JWT_ALLOW_REFRESH': True, # 'JWT_REFRESH_EXPIRATION_DELTA': datetime.timedelta(days=7) # default # } # # DJOSER = { # 'SEND_ACTIVATION_EMAIL': True, # # 'SEND_CONFIRMATION_EMAIL': True, # 'ACTIVATION_URL': 'auth/activate/{uid}/{token}/', # 'PASSWORD_RESET_SHOW_EMAIL_NOT_FOUND': True, # 'PASSWORD_RESET_CONFIRM_URL': 'auth/reset/confirm/{uid}/{token}/', # 'TOKEN_MODEL': None # } # Allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_UNIQUE = True ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = "username" ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS = 1 ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_USERNAME_BLACKLIST = ["admin", "administrator", "moderator", "DjangoSchool"] ACCOUNT_USERNAME_MIN_LENGTH = 4 LOGIN_REDIRECT_URL = "/" ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL = '/' ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True LANGUAGE_CODE = 'ru-ru' # TIME_ZONE = 'UTC' TIME_ZONE = 'Europe/Moscow' USE_I18N = True USE_L10N = True USE_TZ = True SITE_ID = 1 INTERNAL_IPS = '127.0.0.1' # CORS_ORIGIN_ALLOW_ALL = True MY_INFO = 80 MESSAGE_LEVEL = MY_INFO MY_PRIVAT_MESS = 81 MESSAGE_LEVEL = MY_PRIVAT_MESS TASK_MESS = 82 MESSAGE_LEVEL = TASK_MESS try: from .local_settings import * except ImportError: from .prod_settings import *
65d7a977a623f1cd517b77b86c50f00b23882fe2
a735ff9df57fa54eb136b0ae1d4f37cfb79a22cd
/main_app/cnn.py
a99f7e88aae1a97d296623a9ffcb08ef08f1c8c9
[]
no_license
arascry/pollock_ai
d95e7b4209f575f413a5a9064dbcd57238f1fb40
57372bee39dce71e6572ea5937998d422b99a4be
refs/heads/master
2023-07-27T03:00:44.957258
2020-09-22T16:13:52
2020-09-22T16:13:52
294,828,393
0
0
null
2020-09-11T23:01:10
2020-09-11T23:01:09
null
UTF-8
Python
false
false
2,696
py
import tensorflow as tf import os import matplotlib.pyplot as plt from tensorflow import keras from tensorflow.keras import layers image_size = (500, 500) batch_size = 2 path = '' train_ds = tf.keras.preprocessing.image_dataset_from_directory( path, validation_split=0.33, subset='training', seed=2000, image_size=image_size, batch_size=batch_size ) val_ds = tf.keras.preprocessing.image_dataset_from_directory( path, validation_split=0.33, subset='validation', seed=2000, image_size=image_size, batch_size=batch_size ) data_augmentation = keras.Sequential( [ layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"), layers.experimental.preprocessing.RandomRotation(0.1), ] ) def make_model(input_shape, num_classes): inputs = keras.Input(shape=input_shape) x = data_augmentation(inputs) x = layers.experimental.preprocessing.Rescaling(1.0 / 255)(x) x = layers.Conv2D(64, 3, strides=2, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.Conv2D(1024, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) previous_block_activation = x for size in [128, 256, 512, 728]: x = layers.Activation("relu")(x) x = layers.SeparableConv2D(size, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.SeparableConv2D(size, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D(3, strides=2, padding="same")(x) residual = layers.Conv2D(size, 1, strides=2, padding="same")( previous_block_activation ) x = layers.add([x, residual]) previous_block_activation = x x = layers.SeparableConv2D(2048, 3, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) x = layers.GlobalAveragePooling2D()(x) if num_classes == 2: activation = "sigmoid" units = 1 else: activation = "softmax" units = num_classes x = layers.Dropout(0.5)(x) outputs = layers.Dense(units, activation=activation)(x) return keras.Model(inputs, outputs) model = make_model(input_shape=image_size + (3,), num_classes=2) epochs = 75 callbacks = [ keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"), ] model.compile( optimizer=keras.optimizers.SGD(momentum=0.5), loss="binary_crossentropy", metrics=["accuracy"], ) model.fit( train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds, ) model.save(path)
eb86d2cf93f9a3d301e370ba3dc0c468bf5628b6
0839ca3b2d745dab0b23d2b9ccae9bd5e99f1883
/models/purchase.py
3f661932338674872dbda811d69fe716d0872527
[]
no_license
quanbuinovobi/purchase_order_enhancement
f0bc267956df3a90ea5d9e8bb08e3a25c283b7b3
25aee5edfd4b182c75213fbeb456d855206c4fd8
refs/heads/master
2020-05-18T22:32:07.039674
2019-05-16T04:18:30
2019-05-16T04:18:30
184,693,271
1
0
null
null
null
null
UTF-8
Python
false
false
2,579
py
import datetime from odoo import api, fields, models from odoo.exceptions import UserError, AccessError from logging import warning # logging.warning(vals) => console.log class PurchaseOrder(models.Model): # Inherit model _inherit = 'purchase.order' # Define fields (variables) active = fields.Boolean( 'Active', default=True, help="If unchecked, it will allow you to hide the purchase order without removing it.") # @api.multi # def action_toggle_active(self): # for order in self: # logging.warning(order.state) # if order.state not in ['cancel', 'done']: # raise UserError("Only 'Cancel' or 'Lock' Purchase Order is allowed ") # else: # order.active = not order.active @api.multi def write(self, values): # Check archived purchase order status self._check_archived_state(values) # Check user group self._check_archive_user_role(values) return super().write(values) @api.model def archive_purchase_order(self): warning("THIS IS MY CRON") self._check_old_purchase_order() # Check archived purchase order status function def _check_archived_state(self, values): if 'active' in values: for order in self: warning(order.state) if order.state not in ['cancel', 'done']: raise UserError("Only 'Cancel' or 'Lock' Purchase Order is allowed ") def _check_archive_user_role(self, values): if 'active' in values : if not self.env.user.has_group('purchase.group_purchase_manager') : raise UserError("Only 'Manager' can archive Purchase Order ") def _check_old_purchase_order(self): current_date = fields.datetime.now() for order in self.search([]): write_date = order.write_date # Get life span from global data lifespan = int(self.env['ir.config_parameter'].sudo().get_param('purchase.order.lifespan')) lifespan_unit = self.env['ir.config_parameter'].sudo().get_param('purchase.order.lifespan_unit') # Convert lifespan_unit from string to variable timestamp = str(lifespan_unit) + "=" + str(lifespan) # If current date > write date + lifespan if current_date > write_date + eval("datetime.timedelta(" + str(timestamp) + ")") : if order.state in ['cancel', 'done'] and order.active == True: order.active = False
9b214c98e4b30a70194d4fab96e9827e9da20c9c
0bf34f2fef64eb6d2c8cf7185a6a1d897b7a3ff4
/covidprojectss.py
96e712511c9ef4702d2b65aa3e1ae1abf2b0cf0f
[]
no_license
harshitaprabhu99/Covid19-Voice-Assistant-and-Visualiser
c17af044d5a414ab5e668b4cecef83546cdfc0c5
2679ec53bc12a2be8c49727dcdaa9bd873ba7f21
refs/heads/main
2023-05-22T10:51:04.251510
2021-06-15T14:11:03
2021-06-15T14:11:03
377,184,935
0
0
null
null
null
null
UTF-8
Python
false
false
4,504
py
import streamlit as st import pandas as pd import numpy as np import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go import matplotlib.pyplot as plt from PIL import Image def app(): st.title("COVID-19 DASHBOARD") st.markdown('The dashboard will help you visualize the Covid-19 Situation across the globe') st.sidebar.title("Visualization Selector") st.sidebar.markdown("Select the Charts/Plots accordingly:") df = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/covid dataset.csv") select = st.sidebar.selectbox('Visualization type', ['Bar plot'], key='1') if not st.sidebar.checkbox("Hide", True, key='1'): if select=='Bar plot': st.title("Country wise Total Cases and Total Deaths") fig = go.Figure(data=[ go.Bar(name='Deaths', x=df['country_name'][:10], y=df['country_total_deaths'][:10]), go.Bar(name='Total', x=df['country_name'][:10], y=df['country_total_cases'][:10]), go.Bar(name='Recovered', x=df['country_name'][:10], y=df['country_total_recovered'][:10])]) st.plotly_chart(fig) df2 = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/covid dataset.csv") select1 = st.sidebar.selectbox('Select', ['Death', 'total','Recovered'], key='3') if not st.sidebar.checkbox("Hide", True, key='3'): if select1 == 'Death': fig = px.line(df2, x="country_name", y="country_total_deaths") st.plotly_chart(fig) elif select1 == 'total': fig = px.line(df2, x="country_name", y="country_total_cases") st.plotly_chart(fig) elif select1=='Recovered': fig=px.line(df2,x="country_name",y="country_total_recovered") st.plotly_chart(fig) df = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/state_level_latest.csv") select = st.sidebar.selectbox('Visualization type', ['Bar plot'], key='4') if not st.sidebar.checkbox("Hide", True, key='5'): if select=='Bar plot': st.title("State wise Confirmed cases, Recovered cases and Death cases") fig = go.Figure(data=[ go.Bar(name='Confirmed', x=df['State'][:10], y=df['Confirmed'][:10]), go.Bar(name='Recovered', x=df['State'][:10], y=df['Recovered'][:10]), go.Bar(name='Deaths', x=df['State'][:10], y=df['Deaths'][:10])]) st.plotly_chart(fig) df2 = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/state_level_latest.csv") select1 = st.sidebar.selectbox('Select', ['Confirmed', 'Recovered','Deaths'], key='6') if not st.sidebar.checkbox("Hide", True, key='7'): if select1 == 'Confirmed': fig = px.line(df2, x="State", y="Confirmed") st.plotly_chart(fig) elif select1 == 'Recovered': fig = px.line(df2, x="State", y="Recovered") st.plotly_chart(fig) elif select1=='Deaths': fig=px.line(df2,x="State",y="Deaths") st.plotly_chart(fig) df2 = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/State wise ratio.csv") select = st.sidebar.selectbox('Visualization type', ['state ratios'], key='8') if not st.sidebar.checkbox("Hide", True, key='9'): if select=='state ratios': st.title("State wise cases in ratio") fig = go.Figure(data=[ go.Bar(name='active', x=df2['states_name'][:10], y=df2['states_active_ratio'][:10]), go.Bar(name='discharged', x=df2['states_name'][:10], y=df2['states_discharged_ratio'][:10]), go.Bar(name='death', x=df2['states_name'][:10], y=df2['states_death_ratio'][:10])]) st.plotly_chart(fig) df2 = pd.read_csv("C:/Users/Harshita/AppData/Local/Programs/Python/Python39/multi-page-app/apps/State wise ratio.csv") select1 = st.sidebar.selectbox('Select', ['active', 'discharged','Deaths'], key='10') if not st.sidebar.checkbox("Hide", True, key='11'): if select1 == 'active': fig = px.line(df2, x="states_name", y="states_active_ratio") st.plotly_chart(fig) elif select1 == 'discharged': fig = px.line(df2, x="states_name", y="states_discharged_ratio") st.plotly_chart(fig) elif select1=='Deaths': fig=px.line(df2,x="states_name",y="states_death_ratio") st.plotly_chart(fig)
f708463314792a83ec8427cd3f2ab0733c841f16
c90a08909c14f69b092731b6c122f0a555029947
/day5/part2/main.py
0988106a157bf37f7dc7c704b509dba27647b369
[]
no_license
tylerXMD/advent_of_code_2018
cb97302db355ef64b40604c9580d1df10565166d
20cc919d231f1129b346a0fb1fe2b28db450f538
refs/heads/master
2020-04-09T16:42:24.199678
2019-05-11T03:03:16
2019-05-11T03:03:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,032
py
#!/usr/bin/env python3 #only 1 line line = None with open("../input.txt", "r") as f: for thing in f: line = thing.strip() reaction_diff = abs(ord('A') - ord('a')) already_removed = [] #from part1 def compact_polymer(s): reacted = True while reacted: reacted = False i = 0 while i < len(s)-1: if abs(ord(s[i]) - ord(s[i+1])) == reaction_diff: s = s[:i] + s[i+2:] reacted = True else: i += 1 return len(s) min_size = len(line) #init to length of whole line, no reacting for char in line: if char not in already_removed: #don't try same char twice if ord(char) >= ord('a') and ord(char) <= ord('z'): #char is lowercase char_complement = chr(ord(char)-ord('a')+ord('A')) else: #char is uppercase char_complement = chr(ord(char)-ord('A')+ord('a')) already_removed.append(char) already_removed.append(char_complement) min_size = min(min_size, compact_polymer(line.replace(char,"").replace(char_complement,""))) print(min_size)
d1f76a5e460088e85766d92f36f6cece6cfc9b93
7e953f5361aae55a16b0361d44bf72ce025450aa
/Core/FFT/test_bx200_nand_rules_mixin.py
f8c40933d3e0e879a56c34164bc21bfa5d2ff3c4
[]
no_license
MicronShanghaiDE/SEV
d2d5048212f60ae6b4b9f02376b5799d4d0fd92d
31cd12b366b0ed8d8a6a8bb800485f68443e8ecc
refs/heads/master
2021-01-21T13:14:23.403348
2015-08-11T03:02:03
2015-08-11T03:02:03
40,517,224
0
0
null
null
null
null
UTF-8
Python
false
false
32,854
py
import dm3 import sys import time from Util.decorator import method_tracer class TestBX200NandRules: def set_up(self): self.unlock() self.ThrowException = True self.InterfaceMode = -1 # -1 indicates an unknown interface def tear_down(self): pass def genericNandCommand(self, nand_cmd, mode = 0, byte_size = 0, buf = None): ssd = self.ssd # @todo Need to figure out why a delay is needed to make this work. time.sleep(0.001) # Phase 1 command tfrBuf = dm3.Buffer(1) tfrBuf.FillZeros() buf_offset = 0 self.assertLess(len(nand_cmd), 32, "Only 32 commands can fit into a single sector") # Initialize the transfer buffer with the command data. for tfr_entry in nand_cmd: self.assertLess(len(tfr_entry), 16, "Each command is padded to 16 bytes") tfrBuf.SetBytes(buf_offset, tfr_entry) buf_offset += 0x10 # Send Phase 1 command to the drive cmd = dm3.sata.AtaCommand28BitWritePio(tfrBuf, 512, 0x10, 0x01, 0x00, 0x00, 0x00, 0xA0, 0xFA) # Adjust the context so that no exception is generated on call with dm3.DeviceContext(ssd.device, throwsExceptions = self.ThrowException): rsp = ssd.AtaCall(cmd) if not rsp.Success: return rsp # Send Phase 2 command to the drive if (mode == 1): # Read command self.assertGreater(byte_size, 0) sector_count = (int(byte_size) + 511) / 512 # Roundup sector count based on requested bytes if buf is None: buf = dm3.Buffer(sector_count) buf.FillZeros() cmd = dm3.sata.AtaCommand28BitReadPio(buf, sector_count * 512, 0x10, sector_count, byte_size & 0xFF, (byte_size >> 8) & 0xFF, (byte_size >> 16) & 0xFF, 0xA1, 0xFA) with dm3.DeviceContext(ssd.device, throwsExceptions = self.ThrowException): rsp = ssd.AtaCall(cmd) return buf elif (mode == 2): # Write command self.assertGreater(byte_size, 0) sector_count = (int(byte_size) + 511) / 512 # Roundup sector count based on requested bytes cmd = dm3.sata.AtaCommand28BitWritePio(buf, sector_count * 512, 0x10, sector_count, byte_size & 0xFF, (byte_size >> 8) & 0xFF, (byte_size >> 16) & 0xFF, 0xA2, 0xFA) # Adjust the context so that no exception is generated on call with dm3.DeviceContext(ssd.device, throwsExceptions = self.ThrowException): rsp = ssd.AtaCall(cmd) return rsp else: # None data command return rsp # No need to send phase 2 command for no-data command @method_tracer() def nandResetNandInterface(self): ''' Issues a RESET(0xFF) command to all NAND devices and sets the interface to default state (SDR) ''' ssd = self.ssd # When enumerating through NAND, disable exceptions in case unpopulated channel touched exc_setting = self.ThrowException self.ThrowException = False # Go through all the NAND issue a RESET that will put the NAND into SDR mode for ch in xrange(0, ssd['max_ch']): for ce in xrange(0, ssd['max_ce']): cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(0xFF) # Issue the Reset Command cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) self.InterfaceMode = 0 # After reset, interface is in SDR(0) mode # Send a command to set the controller interface into SDR mode and poll for reset completion cmd = ssd.nand.genericNandCmdModeSetup(0, 0) # Ch0/CE0 should exist on all drives cmd += ssd.nand.genericNandCmdInterfaceMode(self.InterfaceMode) # Select the reset interface mode cmd += ssd.nand.genericNandCmdClkRate(35) # Select the default timing mode cmd += ssd.nand.genericPollDirectStatus() # Wait for reset to complete cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) # Resetore the exception flag self.ThrowException = exc_setting return @method_tracer() def nandSetInterfaceMode(self, mode, freq = None): ''' Sets the NAND interface's mode (sdr/ddr/ddr2) and adjusts the interface frequency If the current interface is not known, a reset is issued to return the NAND to a known state Note: this changes the state across all NAND devices. ''' ssd = self.ssd modes = {'sdr' : 0, 'ddr' : 1, 'ddr2' : 2, 'ddr3' : 3} self.assertTrue(modes[mode] == modes['sdr'] or modes[mode] == modes['ddr']) # Only supporting these mode in code # Determine the default frequency and the correpsonding timing mode if modes[mode] == modes['sdr']: f = 35 if freq == None else freq op_mode = ssd.nand.nandGetSDRTimingMode(f) else: f = 200 if freq == None else freq op_mode = ssd.nand.nandGetDDRTimingMode(f) # Formats op mode and target mode into the timing mode registers described in ONFI spec. timing_mode = (modes[mode] << 4) | op_mode # Only switch mode if not already in the selected mode if modes[mode] != self.InterfaceMode: # When going from nvddr back to sdr, use reset according to onfi spec if modes[mode] == modes['sdr'] or self.InterfaceMode == -1: self.nandResetNandInterface() # When enumerating through NAND, disable exceptions in case unpopulated channel touched exc_setting = self.ThrowException self.ThrowException = False # Go through all the NAND and update the timing mode register to reflect the target mode for ch in xrange(0, ssd['max_ch']): for ce in xrange(0, ssd['max_ce']): cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) # Write the Timing Mode register cmd += ssd.nand.genericNandCmdSetFeature(0x01, timing_mode) cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) # Restore the throw excepting setting self.ThrowException = exc_setting # Last operation is to switch controller to new operating mode cmd = ssd.nand.genericNandCmdModeSetup(0, 0) # Arbitrarly chose ch/ce0 which should always exist cmd += ssd.nand.genericNandCmdInterfaceMode(mode) # Switch controller Mode to target mode cmd += ssd.nand.genericNandCmdClkRate(f) # Switch the latching frequency cmd += ssd.nand.genericPollDirectStatus() # Poll status for device to become ready cmd += ssd.nand.genericNandCmdModeEnd(True) cmd += ssd.nand.genericNandTestModeRelease() self.genericNandCommand(cmd) # Update the interface mode to now reflect the new state self.InterfaceMode = modes[mode] return def disable_all_ch_ce(self): ssd = self.ssd # Disable exceptions when enumerating (expect to get errors) exc_setting = self.ThrowException self.ThrowException = False # Loop through all channels for ch in xrange(ssd['max_ch']): cmd = ssd.nand.genericNandCmdDisableOneCh(ch) self.genericNandCommand(cmd) # Restore exceptions after getting through the NAND self.ThrowException = exc_setting return @method_tracer() def hmlcx7_histogram_read(self, ch, ce, lun = 0, blk = 0, page = 0, length = 74368, offset = None): ssd = self.ssd self.assertTrue((ch != 255) or (ce != 255) or (lun != 255) or (blk != 65535) or (page != 65535)) self.disable_all_ch_ce() # JIRA: BX200-156 tlc_start_blk = self.get_tlc_start_block() if blk < tlc_start_blk: print "Current block is SLC block" else: print "Current block is TLC block" mode = 0x47 # ONFi 0x47 HMLCx7 Histogram Read Command # Convert the address parameters into the corresponding row address row_addr = (lun << ssd['LunStartBit']) | (blk << ssd['BlockStartBit']) | (page << ssd['PageStartBit']) if offset == None: offset = 0 req_tfr = length # Keep Track of original read request length if length > (64 * 1024): # Windows USB driver can only transfer 64KB, length = 64 * 1024 # Issue the direct UID Command cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(mode) # Issue the cmd to set the read mode # The tMODE time duration is ~25ns. cmd += ssd.nand.genericNandCmdDirectCmd(0x00) # Issue the read page cmd cmd += ssd.nand.genericNandCmdDirectAddr(offset, 2) # Issue col addr cmd += ssd.nand.genericNandCmdDirectAddr(row_addr, 3) # Issue row addr cmd += ssd.nand.genericNandCmdDirectCmd(0x30) # Complete the read page cmd cmd += ssd.nand.genericPollDirectStatus() # Wait for read to complete cmd += ssd.nand.genericNandCmdDirectCmd(0x00) # Put NAND back in read mode cmd += ssd.nand.genericNandCmdModeEnd() # Send command and read the data from the buffer buf = self.genericNandCommand(cmd, 1, length) # If more data in page, then issue a col change and read data if length < req_tfr: # Low level API has a limit of 64KB transfers, so read partial page data # There are only 9296 column addresses on the B95A, no matter what mode you're in. # In HMLCx7 mode, eight bytes are output from every column address (7 for data, one dummy 0xff). col_addr = length / 8 cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(0x05) # Change Read Col cmd += ssd.nand.genericNandCmdDirectAddr(col_addr, 2) # Issue col addr cmd += ssd.nand.genericNandCmdDirectCmd(0xE0) # Complete the col change cmd += ssd.nand.genericNandCmdModeEnd() # Send command and read the data from the buffer tmp = self.genericNandCommand(cmd, 1, (req_tfr - length)) buf.Resize((buf.TotalBytes + tmp.TotalBytes) / 512) tmp.CopyTo(buf, 0, ((buf.TotalBytes - tmp.TotalBytes) / 512)) # Release CE after reading the data cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdModeEnd(True) cmd += ssd.nand.genericNandTestModeRelease() self.genericNandCommand(cmd) # Go through each chunk of histogram data # Copy the chunk of histogram data into a buffer data_chunk = dm3.Buffer((buf.TotalBytes + 511) / 512) data_chunk.FillZeros() for offset in xrange(0, req_tfr, 8): # Go through the 7 bytes (byte 7 is dummy) of histogram data and separate the bits into 8 dac voltages for ii in xrange(0, 7): val = buf.GetByte(offset + ii); for jj in xrange(0, 8): tmp = data_chunk.GetByte(offset + jj) tmp = (tmp << 1) | (val & 1) val >>= 1 data_chunk.SetByte(offset + jj, tmp) return data_chunk # @method_tracer() def tlc_program(self, ch, ce, lun, blk, page, dbuffer, byte_size = 27888, mode = 0x43): ssd = self.ssd self.assertTrue((ch != 255) or (ce != 255) or (lun != 255) or (blk != 65535) or (page != 65535)) if mode == 0x41: msg = "TLC Coarse program" elif mode == 0x42: msg = "TLC Fine program" elif mode == 0x43: msg = "TLC Super Fine program" elif mode == 0x40: msg = "SLC program" else: print "Invalid program mode" return print "Program data on ch: %d, ce: %d, lun: %d, blk: %d, page: %d using %s mode" % (ch, ce, lun, blk, page, msg) self.disable_all_ch_ce() # JIRA: BX200-156 # Convert the address parameters into the corresponding row address row_addr = (lun << ssd['LunStartBit']) | (blk << ssd['BlockStartBit']) | (page << ssd['PageStartBit']) cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(mode) # Issue the cmd to set the program mode cmd += ssd.nand.genericNandCmdDirectCmd(0x80) # Issue the program page cmd cmd += ssd.nand.genericNandCmdDirectAddr(0, 2) # Issue col addr (offset within page) cmd += ssd.nand.genericNandCmdDirectAddr(row_addr, 3) # Issue row addr cmd += ssd.nand.genericNandCmdModeEnd() self.genericNandCommand(cmd, 2, byte_size, dbuffer) # Send a command to poll status for completion cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(0x10) # Issue the second part of the program page cmd cmd += ssd.nand.genericPollDirectStatus() cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) return def tlc_one_block_program(self, ch, ce, lun, blk, dBuffer): ssd = self.ssd for page_group, prog_type in ssd['page_table']: for page in page_group: if prog_type == "tlc_coarse": mode = 0x41 byte_size = ssd['PageByteTLC'] self.tlc_program(ch, ce, lun, blk, page, dBuffer, byte_size, mode) elif prog_type == "tlc_fine": mode = 0x42 byte_size = ssd['PageByteTLC'] self.tlc_program(ch, ce, lun, blk, page, dBuffer, byte_size, mode) elif prog_type == "tlc_superfine": mode = 0x43 byte_size = ssd['PageByteTLC'] self.tlc_program(ch, ce, lun, blk, page, dBuffer, byte_size, mode) else: # SLC program mode = 0x40 byte_size = ssd['PageByteSLC'] slc_dBuffer = dm3.Buffer((ssd['PageByteSLC'] + 511) / 512) slc_dBuffer.FillRandom() self.tlc_program(ch, ce, lun, blk, page, slc_dBuffer, byte_size, mode) @method_tracer() def static_trim_read(self, ch, ce, lun, addr): ssd = self.ssd cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericPollDirectStatusEnhanced(lun << ssd['LunStartBit']) cmd += ssd.nand.genericNandCmdEnterLvcm() cmd += ssd.nand.genericPollDirectStatus() cmd += ssd.nand.genericNandCmdStaticTrimSpaceAccess() cmd += ssd.nand.genericNandCmdDirectAddr(addr) cmd += ssd.nand.genericNandCmdModeEnd() buf = self.genericNandCommand(cmd, mode = 1, byte_size = 1) val = buf.GetByte(0) cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdStaticTrimSpaceExit() cmd += ssd.nand.genericNandCmdExitLvcm() cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) return val @method_tracer() def static_trim_write(self, ch, ce, lun, addr, data): ssd = self.ssd cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericPollDirectStatusEnhanced(lun << ssd['LunStartBit']) cmd += ssd.nand.genericNandCmdEnterLvcm() cmd += ssd.nand.genericPollDirectStatus() cmd += ssd.nand.genericNandCmdStaticTrimSpaceAccess() cmd += ssd.nand.genericNandCmdDirectAddr(addr) cmd += ssd.nand.genericNandCmdDirectData(data) # Value for input cmd += ssd.nand.genericNandCmdModeEnd() self.genericNandCommand(cmd) cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdStaticTrimSpaceExit() cmd += ssd.nand.genericNandCmdExitLvcm() cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) return @method_tracer() def read_trim_register(self, ch, ce, lun, reg_param, reg_addr, test_mode = False): ssd = self.ssd if not test_mode: # Uses the MLBi GetTrim command to access the trim registers # Mask out the Write ALL_LUNs flag from the trim param table reg_param &= 0x7F # Select test mode, ce and ch. cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) # Poll LUN status to make sure its ready cmd += ssd.nand.genericPollDirectStatusEnhanced(lun << ssd['LunStartBit']) cmd += ssd.nand.genericNandCmdDirectCmd(0xEA) cmd += ssd.nand.genericNandCmdDirectAddr([reg_addr, reg_param, lun << 4]) cmd += ssd.nand.genericNandCmdModeEnd() buf = self.genericNandCommand(cmd, mode = 1, byte_size = 1) val = buf.GetByte(0) # Send command to release CE otherwise it will stay asserted when data read cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) else: # Select test mode, ce and ch. cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericPollDirectStatusEnhanced(lun << ssd['LunStartBit']) cmd += ssd.nand.genericNandCmdEnterLvcm() cmd += ssd.nand.genericNandCmdTrimValues(reg_param, reg_addr) cmd += ssd.nand.genericNandCmdModeEnd() # Now actually send the built command to the drive, trim value is returned buf = self.genericNandCommand(cmd, mode = 1, byte_size = 1) val = buf.GetByte(0) # Create the command that disables the trim page and disables the LVCM mode, and releases CE cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandEndTrimValues() cmd += ssd.nand.genericNandCmdExitLvcm() cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) return val @method_tracer() def write_trim_register(self, ch, ce, lun, reg_param, reg_addr, data, test_mode = False): ssd = self.ssd if not test_mode: # Uses the MLBi GetTrim command to access the trim registers # Mask out the Write ALL_LUNs flag from the trim param table reg_param &= 0x7F # Select test mode, ce and ch. cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) # Poll LUN status to make sure its ready cmd += ssd.nand.genericPollDirectStatusEnhanced(lun << ssd['LunStartBit']) cmd += ssd.nand.genericNandCmdDirectCmd(0xEB) cmd += ssd.nand.genericNandCmdDirectAddr([reg_addr, reg_param, lun << 4]) cmd += ssd.nand.genericNandCmdDirectData(data) cmd += ssd.nand.genericNandCmdModeEnd(True) self.genericNandCommand(cmd) else: # Select test mode, ce and ch. cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) self.genericNandCommand(cmd) return @method_tracer() def unlock(self): ssd = self.ssd ssd.AtaCall28BitNoData(0x55, 0x41, 0x75, 0x67, 0x30, 0xA0, 0xFA) return def bist_execution(self): ssd = self.ssd ssd.AtaCall28BitNoData(0x90, 0, 0, 0, 0, 0xA0, 0xFA) return @method_tracer() def get_tlc_start_block(self): ssd = self.ssd fwBuf = dm3.Buffer(2) fwBuf.FillZeros() ssd.AtaCall28BitReadPio(fwBuf, 1024, 0x21, 0x02, 0x00, 0x00, 0x00, 0xA0, 0xFA) return ((fwBuf.GetByte(16) << 8) + fwBuf.GetByte(17)) @method_tracer() def translate_lba(self, lba): ssd = self.ssd print "Translate LBA %d to physical address" % lba lba0 = lba & 0xff lba1 = (lba >> 8) & 0xff lba2 = (lba >> 16) & 0xff lba3 = (lba >> 24) & 0xff ssd.AtaCall28BitNoData(0x34, 0x00, lba3, 0xEC, 0x48, 0xA0, 0xFA) rBuffer = dm3.Buffer(1) rBuffer.FillZeros() ssd.AtaCall28BitReadPio(rBuffer, 512, 0x34, 0x01, lba0, lba1, lba2, 0xA0, 0xFA) ch = rBuffer.GetByte(0) ce = rBuffer.GetByte(1) blk = rBuffer.GetByte(2) + (rBuffer.GetByte(3) << 8) page = rBuffer.GetByte(4) + (rBuffer.GetByte(5) << 8) lun = rBuffer.GetByte(6) print "Physical address for LBA %d is ch: %d, ce: %d, lun: %d, blk: %d, page: %d" % (lba, ch, ce, lun, blk, page) return (ch, ce, blk, page, lun) @method_tracer() def read_direct(self, ch, ce, lun, blk, page, byte_size, mode = 3): ssd = self.ssd ceChan = ((ce << 4) | ch) row_addr = (lun << ssd['LunStartBit']) | (blk << ssd['BlockStartBit']) | (page << ssd['PageStartBit']) acyc3 = row_addr & 0xFF acyc4 = (row_addr >> 8) & 0xFF acyc5 = (row_addr >> 16) & 0xFF sector = (byte_size + 511) / 512 print "Read Direct Phase 1" ssd.AtaCall28BitNoData(0x70, (byte_size & 0xFF), ((byte_size >> 8) & 0xFF), ceChan, 0xEC, 0xA0, 0xFA) print "Read Direct Phase 2" mode |= 0xA0 rBuffer = dm3.Buffer(sector) rBuffer.FillZeros() ssd.AtaCall28BitReadPio(rBuffer, sector * 512, 0x70, sector, acyc3, acyc4, acyc5, mode, 0xFA) return rBuffer @method_tracer() def erase_direct(self, ch, ce, lun, blk, page = 0, mode = 3): ssd = self.ssd ceChan = ((ce << 4) | ch) row_addr = (lun << ssd['LunStartBit']) | (blk << ssd['BlockStartBit']) | (page << ssd['PageStartBit']) acyc3 = row_addr & 0xFF acyc4 = (row_addr >> 8) & 0xFF acyc5 = (row_addr >> 16) & 0xFF mode |= 0xA0 print "Erase Direct on ch: %d, ce: %d, lun: %d, blk: %d" % (ch, ce, lun, blk) ssd.AtaCall28BitNoData(0x67, ceChan, acyc3, acyc4, acyc5, mode, 0xFA) return @method_tracer() def get_error_recovery_statistics(self, die_count): ssd = self.ssd # BX200 max_ch * max_ce * max_lun * info_per_die sector_count = (8 * 4 * 2 * 160 + 511) / 512 rBuffer = dm3.Buffer(sector_count) rBuffer.FillZeros() ssd.AtaCall28BitReadPio(rBuffer, sector_count * 512, 0x94, sector_count, 0, 0, 0, 0xA0, 0xFA) dic = self.error_recovery_statistics_parser(die_count, rBuffer) """ RR16 means Soft Decode RR17 means Super Calibration-RR0 RR18 means Target Calibration-RR0-Soft Decode RR19 means RAID """ for rr in xrange(20): name = "RR%d" % rr if name == "RR16": name = "soft" elif name == "RR17": name = "sCal" elif name == "RR18": name = "t-pCal" elif name == "RR19": name = "RAID" else: name = name print "%4s" % name, print "\n", for die in xrange(die_count): for rr in xrange(20): name = "Die %d Success Hard Decode-RR%x" % (die, rr) print "%4d" % dic[name], print "\n", @method_tracer() def trigger_recalibration(self): ssd = self.ssd rBuffer = dm3.Buffer(1) with dm3.DeviceContext(ssd.device, commandTimeOut = 300, throwsExceptions = self.ThrowException): ssd.AtaCall28BitReadPio(rBuffer, 512, 0x97, 1, 0, 0, 0, 0xA0, 0xFA) return (rBuffer.GetWord(0), rBuffer.GetWord(1)) @method_tracer() def get_target_page_calibration_info(self): ssd = self.ssd rBuffer = dm3.Buffer(16) rBuffer.FillZeros() ssd.AtaCall28BitReadPio(rBuffer, 16 * 512, 0x99, 16, 0, 0, 0, 0, 0xFA) print rBuffer print "%3s %2s %2s %3s %5s %5s %4s %7s %7s %10s" % ('id', 'ch', 'ce', 'lun', 'plane', 'block', 'page', 't_after', 't_before', 'offset') for offset in xrange(0, 16 * 512, 32): blk = rBuffer.GetWord(offset) page = rBuffer.GetWord(offset + 2) ch = rBuffer.GetByte(offset + 4) ce = rBuffer.GetByte(offset + 5) plane = rBuffer.GetByte(offset + 6) lun = rBuffer.GetByte(offset + 7) cal_offset = rBuffer.GetBytes(offset + 8, 7) for i in xrange(len(cal_offset)): if cal_offset[i] > 128: cal_offset[i] -= 256 t_after = rBuffer.GetByte(offset + 15) t_before = rBuffer.GetByte(offset + 16) execute_count = rBuffer.GetWord(offset + 30) if any((execute_count, ch, ce, lun, plane, blk, page)) != 0: print "%3d %2d %2d %3d %5d %5d %4d %7d %7d %10s" % (execute_count, ch, ce, lun, plane, blk, page, t_after, t_before, cal_offset) def error_recovery_statistics_parser(self, die_count, buf): statistics_success_dic = {} for die in xrange(die_count): for rr in xrange(20): name = "Die %d Success Hard Decode-RR%x" % (die, rr) statistics_success_dic[name] = 0 die = 0 for die_offset in xrange(0, 64 * 160, 160): # No error recovery statistics for 240/480 on LUN 1 if (((die_count == 16) or (die_count == 32)) and ((die_offset / 160) % 2 != 0)): continue # No ce 4~7 for 240 if ((die_count == 16) and (((die_offset / 160) / 8) % 2) == 1): continue for offset in xrange(0, 0x50, 0x04): name = "Die %d Success Hard Decode-RR%x" % (die, offset / 0x04) statistics_success_dic[name] = buf.GetByte(die_offset + offset) + (buf.GetByte(die_offset + offset + 1) << 8) \ + (buf.GetByte(die_offset + offset + 2) << 16) + (buf.GetByte(die_offset + offset + 3) << 24) die += 1 return statistics_success_dic @method_tracer() def get_one_page_histogram_valley(self, ch, ce, lun, blk, page): ssd = self.ssd self.disable_all_ch_ce() mode = 0x47 # ONFi 0x47 HMLCx7 Histogram Read Command # Convert the address parameters into the corresponding row address row_addr = (lun << ssd['LunStartBit']) | (blk << ssd['BlockStartBit']) | (page << ssd['PageStartBit']) req_tfr = 74368 # Keep Track of original read request length length = 64 * 1024 # Issue the direct UID Command cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(mode) # Issue the cmd to set the read mode # The tMODE time duration is ~25ns. cmd += ssd.nand.genericNandCmdDirectCmd(0x00) # Issue the read page cmd cmd += ssd.nand.genericNandCmdDirectAddr(0, 2) # Issue col addr cmd += ssd.nand.genericNandCmdDirectAddr(row_addr, 3) # Issue row addr cmd += ssd.nand.genericNandCmdDirectCmd(0x30) # Complete the read page cmd cmd += ssd.nand.genericPollDirectStatus() # Wait for read to complete cmd += ssd.nand.genericNandCmdDirectCmd(0x00) # Put NAND back in read mode cmd += ssd.nand.genericNandCmdModeEnd() # Send command and read the data from the buffer buf = self.genericNandCommand(cmd, 1, length) col_addr = length / 8 cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdDirectCmd(0x05) # Change Read Col cmd += ssd.nand.genericNandCmdDirectAddr(col_addr, 2) # Issue col addr cmd += ssd.nand.genericNandCmdDirectCmd(0xE0) # Complete the col change cmd += ssd.nand.genericNandCmdModeEnd() # Send command and read the data from the buffer tmp = self.genericNandCommand(cmd, 1, (req_tfr - length)) buf.Resize((buf.TotalBytes + tmp.TotalBytes) / 512) tmp.CopyTo(buf, 0, ((buf.TotalBytes - tmp.TotalBytes) / 512)) # Release CE after reading the data cmd = ssd.nand.genericNandCmdModeSetup(ce, ch) cmd += ssd.nand.genericNandCmdModeEnd(True) cmd += ssd.nand.genericNandTestModeRelease() self.genericNandCommand(cmd) # Go through each chunk of histogram data dac = {} for i in xrange(128): dac[i] = 0 for offset in xrange(0, 74368, 8): # Go through the 7 bytes (byte 7 is dummy) of histogram data and separate the bits into 8 dac voltages dac_list = [0, 0, 0, 0, 0, 0, 0, 0] for ii in xrange(7): val = buf.GetByte(offset + ii); for jj in xrange(0, 8): dac_list[jj] = (dac_list[jj] << 1) | (val & 1) val >>= 1 for ii in xrange(8): dac[127 - dac_list[ii]] += 1 peak = [1, 31, 49, 63, 79, 94, 109, 128] valley = [0, 0, 0, 0, 0, 0, 0] for i in xrange(7): valley[i] = peak[i] value = dac[peak[i]] for dac_value in xrange(peak[i], peak[i + 1]): if dac[dac_value] < value: valley[i] = dac_value value = dac[dac_value] return valley, [dac[valley[0]], dac[valley[1]], dac[valley[2]], dac[valley[3]], dac[valley[4]], dac[valley[5]], dac[valley[6]]] def get_one_block_histogram_valley(self, ch, ce, lun, blk): ssd = self.ssd blk_valley = [] for page in xrange(ssd['BlockPageTLC']): blk_valley.append(self.get_one_page_histogram_valley(ch, ce, lun, blk, page)) for page in xrange(ssd['BlockPageTLC']): print "Block %d, Page %d" % (blk, page), print blk_valley[page] return def get_one_die_histogram_valley(self, ch, ce, lun): ssd = self.ssd tlc_start_blk = self.get_tlc_start_block() log_name = "CH_%d_CE_%d_LUN_%d.log" % (ch, ce, lun) saveout = sys.stdout fsock = open(log_name, 'w') sys.stdout = fsock for blk in xrange(tlc_start_blk, ssd['BlockPerDie'], 1): self.get_one_block_histogram_valley(ch, ce, lun, blk) sys.stdout = saveout fsock.close() def count_vt(self, buf, length = None): if length is None: length = buf.TotalBytes dic = {} for i in xrange(length): vt = 127 - buf.GetByte(i) if vt in dic.keys(): dic[vt] += 1 else: dic[vt] = 1 return dic def draw_plot(self, *arg, **kwargs): import re try: import matplotlib.pyplot as plt except ImportError: print "matplotlib not installed on this machine" else: xlim = kwargs['xlim'] if 'xlim' in kwargs.keys() else 128 ylim = kwargs['ylim'] if 'ylim' in kwargs.keys() else 3000 plt.xlim(1, xlim) plt.ylim(1, ylim) plt.xlabel('DAC') plt.ylabel('Distribution') plt.title('VT Distribution') x = {} y = {} c = {} # color timer = 0 keys = kwargs.keys() keys.sort() for key in keys: if re.search('plot', key): dic = kwargs[key] dic = sorted(dic.iteritems(), key = lambda d:d[0], reverse = False) x[key] = [] y[key] = [] if (timer % 3) == 0: c[key] = 'r' elif (timer % 3) == 1: c[key] = 'b' else: c[key] = 'g' timer += 1 for i in xrange(len(dic)): x[key].append(dic[i][0]) y[key].append(dic[i][1]) cmd = "plt.plot(" for key in keys: if re.search('plot', key): cmd += "x['%s'], y['%s'], c['%s'], " % (key, key, key) cmd += "linewidth = 2)" exec(cmd) plt.savefig('BX200_VT_Distribution.png', dpi = 500) plt.show() return def whole_block_histo(self, ch, ce, lun, blk): ssd = self.ssd blk_dic = {} for page in xrange(ssd['BlockPageTLC']): print "Get histo data in page %d" % page buf = self.hmlcx7_histogram_read(ch, ce, lun, blk, page) dic = self.count_vt(buf, ssd['histo_length']) return blk_dic
25757d0cc1d5d978228bba4c6f71607f502c84df
4ca64aa3ace012a2baec182d868b4e5e91545e7b
/NYU/Artifacts/ImagePairCheck.py
4965ad740083d619461e6cc468f285325f64cb7c
[]
no_license
yijun2011/tzo
79b9e23a483587b1bc0b2d9d6c94945fd01c05b5
e8c65af067c05a7c06690f2bd129b88886213b03
refs/heads/master
2020-04-10T01:05:42.135741
2019-05-12T16:07:07
2019-05-12T16:07:07
160,705,286
0
0
null
null
null
null
UTF-8
Python
false
false
2,182
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 11 13:02:24 2018 @author: oscar seurat """ import numpy as np; import matplotlib.pyplot as plt; from matplotlib.widgets import TextBox; import sys; class verifier: def __init__(self, original, distorted): if (original.shape != distorted.shape): print('verifier.verifier: the original and distorted image arrays ' + 'must have the same dimensions.', sys.stderr); sys.exit(-1); self.orig_arr = original; self.dist_arr = distorted; self.total_images = original.shape[2]; # Let's set up image display gear self.fig, self.ax = plt.subplots(1, 2, figsize = (10, 7)); plt.subplots_adjust(bottom=0.3); self.current_slice = 1000; self.ax[0].imshow(self.orig_arr[:,:, self.current_slice]); self.ax[1].imshow(self.dist_arr[:,:, self.current_slice]); img_no_pos = plt.axes([0.48, 0.1, 0.06, 0.1]); # x, y, w, h self.img_tbox = TextBox(img_no_pos, 'Image No.: ', initial=str(self.current_slice)); def _update(self, val): self.current_slice = int(val); self.ax[0].imshow(self.orig_arr[:,:, self.current_slice]); self.ax[1].imshow(self.dist_arr[:,:, self.current_slice]); self.fig.canvas.draw_idle(); def initialize(self): self.img_tbox.on_submit(self._update); ################################################################### ################################################################### MRI_PATH='/Users/yzhao11/Documents/Research/MachineLearning/MRI/zhao_dataset_20181011/sub-NC188/ses-20180825/anat/'; orig_file = MRI_PATH + 'OriginalImages_188_X.npz'; mngl_file = MRI_PATH + 'DistortedImages_188_X.npz'; # orig_file = MRI_PATH + 'orig_test.npz'; # mngl_file = MRI_PATH + 'mngl_test.npz'; ORIG = np.load(orig_file); orig_arr = ORIG['grand_orig_x']; MNGL = np.load(mngl_file); mngl_arr = MNGL['grand_arr_x']; VRF = verifier(orig_arr, mngl_arr); VRF.initialize(); plt.show();
4587be94b0486ffa14c1ede8050b01a92b49ec20
b730976f89ef80986292a8834b0c43a824146670
/Lab 4/environments/gridworld.py
1c20fc2cf34be70cc826e2326c999d0b5a897073
[]
no_license
Matkicail/Reinforcement-Learning-Labs
d48f9013c675bc33aec13cb6b23f78fb983abfbf
616a585139c257dd1fd9c53e1ca1e3c08f60894a
refs/heads/main
2023-09-03T01:55:27.707404
2021-11-08T21:37:55
2021-11-08T21:37:55
394,694,375
0
0
null
null
null
null
UTF-8
Python
false
false
4,650
py
import io import numpy as np import sys import gym from gym import spaces from gym.utils import seeding UP = 0 RIGHT = 1 DOWN = 2 LEFT = 3 NUMBER_OF_ACTIONS = 4 class GridworldEnv(gym.Env): """ Grid World environment from Sutton's Reinforcement Learning book chapter 4. You are an agent on an MxN grid and your goal is to reach the terminal state. You can take actions in each direction (UP=0, RIGHT=1, DOWN=2, LEFT=3). Actions going off the edge leave you in your current state. """ metadata = {'render.modes': ['human', 'ansi']} def __init__(self, shape=[4,4], terminal_states=[15], terminal_reward = 0, step_reward=-1): if not isinstance(shape, (list, tuple)) or not len(shape) == 2: raise ValueError('shape argument must be a list/tuple of length 2') self.shape = shape self.observation_space = spaces.Discrete(np.prod(shape)) for t in terminal_states: assert 0 <= t < self.observation_space.n self.action_space = spaces.Discrete(NUMBER_OF_ACTIONS) self.__terminal_states = terminal_states self.__terminal_reward = terminal_reward self.__step_reward = step_reward MAX_Y = shape[0] MAX_X = shape[1] P = {} grid = np.arange(self.observation_space.n).reshape(shape) it = np.nditer(grid, flags=['multi_index']) while not it.finished: s = it.iterindex y, x = it.multi_index # P[s][a] = (prob, next_state, reward, is_done) P[s] = {a : [] for a in range(self.action_space.n)} is_done = lambda s: s in self.__terminal_states # stuck in a terminal state if is_done(s): P[s][UP] = [(1.0, s, self.__terminal_reward, True)] P[s][RIGHT] = [(1.0, s, self.__terminal_reward, True)] P[s][DOWN] = [(1.0, s, self.__terminal_reward, True)] P[s][LEFT] = [(1.0, s, self.__terminal_reward, True)] # Not a terminal state else: reward = self.__step_reward ns_up = s if y == 0 else s - MAX_X ns_right = s if x == (MAX_X - 1) else s + 1 ns_down = s if y == (MAX_Y - 1) else s + MAX_X ns_left = s if x == 0 else s - 1 P[s][UP] = [(1.0, ns_up, reward, False)] P[s][RIGHT] = [(1.0, ns_right, reward, False)] P[s][DOWN] = [(1.0, ns_down, reward, False)] P[s][LEFT] = [(1.0, ns_left, reward, False)] it.iternext() # Initial state distribution is uniform self.__initial_state_distribution = np.ones(self.observation_space.n) / self.observation_space.n # We expose the model of the environment for educational purposes # This should not be used in any model-free learning algorithm self.P = P super(GridworldEnv, self).__init__() def step(self, action): assert self.action_space.contains(action) prob, next_state, reward, done = self.P[self.__current_state][action][0] self.__current_state = next_state return next_state, reward, done, None def reset(self): self.__current_state = np.random.choice(self.observation_space.n, p=self.__initial_state_distribution) return self.__current_state def render(self, mode='human', close=False): """ Renders the current gridworld layout For example, a 4x4 grid with the mode="human" looks like: T o o o o x o o o o o o o o o T where x is your position and T are the two terminal states. """ if close: return outfile = io.StringIO() if mode == 'ansi' else sys.stdout grid = np.arange(self.observation_space.n).reshape(self.shape) it = np.nditer(grid, flags=['multi_index']) while not it.finished: s = it.iterindex y, x = it.multi_index if self.__current_state == s: output = " x " elif s in self.__terminal_states: output = " T " else: output = " o " if x == 0: output = output.lstrip() if x == self.shape[1] - 1: output = output.rstrip() outfile.write(output) if x == self.shape[1] - 1: outfile.write("\n") it.iternext() def seed(self, seed=None): if(seed != None): np.random.seed(seed) def close(self): pass
a364c739486c3e7db3c09a309d576eba67ffbc49
043914df3cdc7349a9aa4091df4aacddda04bd30
/plugins/repo/sqlmap/plugin.py
75deb0be957a74923de1720403d9318bbff94983
[ "DOC" ]
permissive
fbjackson1989/faraday
53686c942b1622083ac83c9453078cea3c4ed854
a38e50822cd43b58c1fc2e9aaee2e6b206f1f82a
refs/heads/master
2023-01-03T02:22:09.385895
2020-10-22T20:15:42
2020-10-22T20:15:42
306,442,976
0
0
null
null
null
null
UTF-8
Python
false
false
20,692
py
#!/usr/bin/env python ''' Faraday Penetration Test IDE Copyright (C) 2013 Infobyte LLC (http://www.infobytesec.com/) See the file 'doc/LICENSE' for the license information ''' from __future__ import with_statement import argparse import hashlib import os import pickle import re import shlex import socket import sqlite3 import sys from BaseHTTPServer import BaseHTTPRequestHandler from StringIO import StringIO from urlparse import urlparse from collections import defaultdict from plugins.plugin import PluginTerminalOutput from plugins.plugin_utils import get_vulnweb_url_fields try: import xml.etree.cElementTree as ET import xml.etree.ElementTree as ET_ORIG ETREE_VERSION = ET_ORIG.VERSION except ImportError: import xml.etree.ElementTree as ET ETREE_VERSION = ET.VERSION ETREE_VERSION = [int(i) for i in ETREE_VERSION.split(".")] current_path = os.path.abspath(os.getcwd()) __author__ = "Francisco Amato" __copyright__ = "Copyright (c) 2013, Infobyte LLC" __credits__ = ["Francisco Amato"] __license__ = "" __version__ = "1.0.0" __maintainer__ = "Francisco Amato" __email__ = "[email protected]" __status__ = "Development" class Database(object): def __init__(self, database): self.database = database def connect(self, who="server"): self.connection = sqlite3.connect( self.database, timeout=3, isolation_level=None) self.cursor = self.connection.cursor() def disconnect(self): self.cursor.close() self.connection.close() def commit(self): self.cursor.commit() def execute(self, statement, arguments=None): if arguments: self.cursor.execute(statement, arguments) else: self.cursor.execute(statement) if statement.lstrip().upper().startswith("SELECT"): return self.cursor.fetchall() class SqlmapPlugin(PluginTerminalOutput): # Plugin for Sqlmap Tool def __init__(self): PluginTerminalOutput.__init__(self) self.id = "Sqlmap" self.name = "Sqlmap" self.plugin_version = "0.0.3" self.version = "1.0.8.15#dev" self.framework_version = "1.0.0" self._current_output = None self.url = "" self.protocol = "" self.hostname = "" self.port = "80" self.params = "" self.fullpath = "" self.path = "" self.ignore_parsing = False self.addSetting("Sqlmap path", str, "/root/tools/sqlmap") self.db_port = { "MySQL": 3306, "PostgreSQL": "", "Microsoft SQL Server": 1433, "Oracle": 1521, "Firebird": 3050, "SAP MaxDB": 7210, "Sybase": 5000, "IBM DB2": 50000, "HSQLDB": 9001} self.ptype = { 1: "Unescaped numeric", 2: "Single quoted string", 3: "LIKE single quoted string", 4: "Double quoted string", 5: "LIKE double quoted string", } self._command_regex = re.compile( r'^(python2 ./sqlmap.py|python2.7 ./sqlmap.py|sudo sqlmap|sqlmap|sudo python sqlmap|python sqlmap|\.\/sqlmap).*?') global current_path self._output_path = '' class HTTPRequest(BaseHTTPRequestHandler): def __init__(self, request_text): self.rfile = StringIO(request_text) self.raw_requestline = self.rfile.readline() self.error_code = self.error_message = None self.parse_request() def send_error(self, code, message): self.error_code = code self.error_message = message def hashKey(self, key): # from sqlmap/lib/utils/hashdb.py # we don't sanitize key, because we only work # with plain string retVal = int(hashlib.md5(key).hexdigest(), 16) & 0x7fffffffffffffff return retVal def hashDBRetrieve(self, key, unserialize=False, db=False): """ Helper function for restoring session data from HashDB """ key = "%s%s%s" % (self.url or "%s%s" % ( self.hostname, self.port), key, self.HASHDB_MILESTONE_VALUE) retVal = '' hash_ = self.hashKey(key) if not retVal: while True: try: for row in db.execute("SELECT value FROM storage WHERE id=?", (hash_,)): retVal = row[0] except sqlite3.OperationalError, ex: if not 'locked' in ex.message: raise else: break return retVal if not unserialize else self.base64unpickle(retVal) def base64decode(self, value): """ Decodes string value from Base64 to plain format >>> base64decode('Zm9vYmFy') 'foobar' """ return value.decode("base64") def base64encode(self, value): """ Encodes string value from plain to Base64 format >>> base64encode('foobar') 'Zm9vYmFy' """ return value.encode("base64")[:-1].replace("\n", "") def base64unpickle(self, value): """ Decodes value from Base64 to plain format and deserializes (with pickle) its content >>> base64unpickle('gAJVBmZvb2JhcnEALg==') 'foobar' """ if value: return pickle.loads(self.base64decode(value)) def xmlvalue(self, db, name, value="query"): filepath = "%s" % os.path.join( current_path, "plugins/repo/sqlmap/queries.xml") with open(filepath, "r") as f: try: tree = ET.fromstring(f.read()) except SyntaxError, err: self.log("SyntaxError: %s. %s" % (err, filepath), "ERROR") return None for node in tree.findall("dbms[@value='" + db + "']/" + name + ''): return node.attrib[value] def getuser(self, data): users = re.search( r'database management system users \[[\d]+\]:\n((\[\*\] (.*)\n)*)', data) if users: return map((lambda x: x.replace("[*] ", "")), users.group(1).split("\n")) def getdbs(self, data): dbs = re.search( r'available databases \[[\d]+\]:\n(((\[\*\] (.*)\n)*))', data) if dbs: return map((lambda x: x.replace("[*] ", "")), dbs.group(1).split("\n")) def getpassword(self, data): users = {} password = re.findall( r"\n\[\*\] (.*) \[\d\]:\n\s*password hash: (.*)", data) if password: for credential in password: user = credential[0] mpass = credential[1] users[user] = mpass return users def _get_log_message(self, line): """Return the message of a log line. If the line isn't from the log it will raise a ValueError >>> line = '[16:59:03] [INFO] fetching tables' >>> self._get_log_message('line') 'fetching tables' """ match = re.match(r'\[[0-9:]+\] \[\w+\] (.+)$', line) if match is None: raise ValueError('Incorrect format of line') return match.group(1) def _is_log_and_startswith(self, text, line): try: msg = self._get_log_message(line) except ValueError: return False else: return msg.startswith(text) def _is_tables_log_line(self, line): # [16:59:03] [INFO] fetching tables for databases: 'bWAPP, ... return self._is_log_and_startswith('fetching tables for databases', line) def _is_columns_log_line(self, line): # [16:59:03] [INFO] fetching columns for table ... return self._is_log_and_startswith('fetching columns for table ', line) def _match_start_get_remaining(self, start, text): """ If text starts with start, return text with start stripped. Return None if it doesn't match. """ if not text.startswith(start): return return text[len(start):] def gettables(self, data): """ Return enumerated tables of the remote database. """ tables = defaultdict(list) # Map database names with its tables current_database = None status = 'find_log_line' list_found = False for line in data.splitlines(): if status == 'find_log_line': # Look for the correct log line to start searching databases if self._is_tables_log_line(line): # Correct line, change status status = 'find_dbname' elif self._is_log_and_startswith('', line) and list_found: # If another log line is reached, stop looking break elif status == 'find_dbname': database = self._match_start_get_remaining('Database: ', line) if database is not None: current_database = database list_found = True status = 'find_list_start' elif status == 'find_list_start': # Find +--------------+ line if re.match(r'^\+\-+\+$', line): # Line found status = 'find_tables' elif status == 'find_tables': if line.startswith('|') and line.endswith('|'): table = line[1:-1].strip() tables[current_database].append(table) elif re.match(r'^\+\-+\+$', line): # Table list for this db ended status = 'find_dbname' else: raise RuntimeError('unknown status') return tables def getcolumns(self, data): """ Return enumerated columns of the remote database. """ columns = defaultdict(lambda: defaultdict(list)) current_table = current_database = None status = 'find_log_line' list_start_count = 0 list_found = False for line in data.splitlines(): if status == 'find_log_line': if self._is_columns_log_line(line): status = 'find_dbname' elif self._is_log_and_startswith('', line) and list_found: # Don't accept log lines if the DB dump started break elif status == 'find_dbname': database = self._match_start_get_remaining('Database: ', line) if database is not None: list_found = True current_database = database status = 'find_table_name' elif status == 'find_table_name': table = self._match_start_get_remaining('Table: ', line) if database is not None: current_table = table status = 'find_two_list_starts' elif status == 'find_two_list_starts': if re.match(r'^\+[\-\+]+\+$', line): list_start_count += 1 if list_start_count == 2: # Start fetching columns list_start_count = 0 status = 'find_columns' elif status == 'find_columns': if line.startswith('|') and line.endswith('|'): (name, type_) = [val.strip() for val in line[1:-1].split('|')] columns[current_database][current_table].append( (name, type_)) elif re.match(r'^\+[\-\+]+\+$', line): status = 'find_dbname' else: raise RuntimeError('unknown status') return columns def getAddress(self, hostname): """ Returns remote IP address from hostname. """ try: return socket.gethostbyname(hostname) except socket.error: return self.hostname def parseOutputString(self, output, debug=False): """ This method will discard the output the shell sends, it will read it from the xml where it expects it to be present. NOTE: if 'debug' is true then it is being run from a test case and the output being sent is valid. """ if self.ignore_parsing: return sys.path.append(self.getSetting("Sqlmap path")) try: from lib.core.settings import HASHDB_MILESTONE_VALUE from lib.core.enums import HASHDB_KEYS from lib.core.settings import UNICODE_ENCODING except: self.log('Remember set your Sqlmap Path Setting!... Abort plugin.', 'ERROR') return self.HASHDB_MILESTONE_VALUE = HASHDB_MILESTONE_VALUE self.HASHDB_KEYS = HASHDB_KEYS self.UNICODE_ENCODING = UNICODE_ENCODING password = self.getpassword(output) webserver = re.search("web application technology: (.*?)\n", output) if webserver: webserver = webserver.group(1) users = self.getuser(output) dbs = self.getdbs(output) tables = self.gettables(output) columns = self.getcolumns(output) db = Database(self._output_path) db.connect() absFilePaths = self.hashDBRetrieve( self.HASHDB_KEYS.KB_ABS_FILE_PATHS, True, db) brute_tables = self.hashDBRetrieve( self.HASHDB_KEYS.KB_BRUTE_TABLES, True, db) brute_columns = self.hashDBRetrieve( self.HASHDB_KEYS.KB_BRUTE_COLUMNS, True, db) xpCmdshellAvailable = self.hashDBRetrieve( self.HASHDB_KEYS.KB_XP_CMDSHELL_AVAILABLE, True, db) dbms_version = self.hashDBRetrieve(self.HASHDB_KEYS.DBMS, False, db) self.ip = self.getAddress(self.hostname) h_id = self.createAndAddHost(self.ip) i_id = self.createAndAddInterface( h_id, name=self.ip, ipv4_address=self.ip, hostname_resolution=self.hostname) s_id = self.createAndAddServiceToInterface( h_id, i_id, self.protocol, 'tcp', [self.port], status="open", version=webserver) n_id = self.createAndAddNoteToService( h_id, s_id, "website", '') self.createAndAddNoteToNote( h_id, s_id, n_id, self.hostname, '') for item in self.db_port.keys(): if dbms_version.find(item) >= 0: db_port = self.db_port[item] s_id2 = self.createAndAddServiceToInterface( h_id, i_id, name=dbms_version, protocol="tcp", status="closed", version=str(dbms_version), ports=[str(db_port)], description="DB detect by SQLi") # sqlmap.py --users if users: for v in users: if v: self.createAndAddCredToService(h_id, s_id2, v, '') # sqlmap.py --passwords if password: for k, v in password.iteritems(): self.createAndAddCredToService(h_id, s_id2, k, v) # sqlmap.py --file-dest if absFilePaths: self.createAndAddNoteToService( h_id, s_id2, "sqlmap.absFilePaths", '\n'.join(absFilePaths)) # sqlmap.py --common-tables if brute_tables: for item in brute_tables: self.createAndAddNoteToService( h_id, s_id2, "sqlmap.brutetables", item[1]) # sqlmap.py --tables if tables: table_names = ['{}.{}'.format(db_name, table) for (db_name, db_tables) in tables.items() for table in db_tables] self.createAndAddNoteToService( h_id, s_id2, "sqlmap.tables", '\n'.join(table_names) ) # sqlmap.py --columns if columns: # Create one note per database for (database, tables) in columns.items(): text = '' for (table_name, columns) in tables.items(): columns_text = ', '.join( '{} {}'.format(col_name, type_) for (col_name, type_) in columns) text += '{}: {}\n'.format(table_name, columns_text) self.createAndAddNoteToService( h_id, s_id2, "sqlmap.columns." + database, text) # sqlmap.py --common-columns if brute_columns: text = ( 'Db: ' + brute_columns[0][0] + '\nTable: ' + brute_columns[0][1] + '\nColumns:') for element in brute_columns: text += str(element[2]) + '\n' self.createAndAddNoteToService( h_id, s_id2, "sqlmap.brutecolumns", text) # sqlmap.py --os-shell if xpCmdshellAvailable: self.createAndAddNoteToService( h_id, s_id2, "sqlmap.xpCmdshellAvailable", str(xpCmdshellAvailable)) # sqlmap.py --dbs if dbs: self.createAndAddNoteToService( h_id, s_id2, "db.databases", '\n'.join(dbs)) for inj in self.hashDBRetrieve(self.HASHDB_KEYS.KB_INJECTIONS, True, db) or []: for k, v in inj.data.items(): self.createAndAddVulnWebToService( h_id, s_id, name=inj.data[k]['title'], desc="Payload:" + str(inj.data[k]['payload']) + "\nVector:" + str(inj.data[k]['vector']) + "\nParam type:" + str(self.ptype[inj.ptype]), ref=[], pname=inj.parameter, severity="high", method=inj.place, params=self.params, **get_vulnweb_url_fields(self.fullpath)) def processCommandString(self, username, current_path, command_string): parser = argparse.ArgumentParser(conflict_handler='resolve') parser.add_argument('-h') parser.add_argument('-u') parser.add_argument('-s') parser.add_argument('-r') try: args, unknown = parser.parse_known_args( shlex.split(re.sub(r'\-h|\-\-help', r'', command_string))) except SystemExit: pass if args.r: filename = os.path.expanduser(args.r) if not os.path.isabs(filename): self.log('Please use an absolute path in -r option of sqlmap', 'ERROR') self.ignore_parsing = True return with open(filename, 'r') as f: request = self.HTTPRequest(f.read()) args.u = "http://" + request.headers['host'] + request.path f.close() if args.u: if args.u.find('http://') < 0 and args.u.find('https://') < 0: urlComponents = urlparse('http://' + args.u) else: urlComponents = urlparse(args.u) self.protocol = urlComponents.scheme self.hostname = urlComponents.netloc if urlComponents.port: self.port = urlComponents.port else: self.port = '80' if urlComponents.query: self.path = urlComponents.path self.params = urlComponents.query self.url = self.protocol + "://" + self.hostname + ":" + int(self.port) + self.path self.fullpath = self.url + "?" + self.params self._output_path = "%s%s" % ( os.path.join(self.data_path, "sqlmap_output-"), re.sub(r'[\n\/]', r'', args.u.encode("base64")[:-1])) if not args.s: return "%s -s %s" % (command_string, self._output_path) def setHost(self): pass def createPlugin(): return SqlmapPlugin()
183267d2c207c3fbe629fe61c7f03d91f136e22d
47eb66be297d912ec1dc6761574f9a2912490003
/client/tests/init_test.py
9fa477bdd13d7b414c9cea2d3092dfc4bab36f5f
[ "MIT" ]
permissive
stjordanis/pyre-check
53be121717d805e628b47d0e29d68f8141ad6192
a634fc4c0a60f0ad8b4e0ea5ce9ba3c2f4232450
refs/heads/master
2020-04-22T13:49:14.930541
2019-02-13T01:11:43
2019-02-13T01:21:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,133
py
# Copyright (c) 2016-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from unittest.mock import MagicMock, patch from .. import ( EnvironmentException, __name__ as client_name, _resolve_filter_paths, buck, commands, find_configuration_root, resolve_analysis_directory, switch_root, translate_paths, ) from ..filesystem import AnalysisDirectory, SharedAnalysisDirectory class InitTest(unittest.TestCase): @patch("os.path.isfile") def test_find_configuration(self, os_mock_isfile) -> None: os_mock_isfile.side_effect = [False, False, False, True] self.assertEqual(find_configuration_root("/a/b/c/d", "configuration"), "/a") os_mock_isfile.side_effect = [True] self.assertEqual(find_configuration_root("/a", "configuration"), "/a") os_mock_isfile.side_effect = [False, False] self.assertEqual(find_configuration_root("/a/b", "configuration"), None) @patch("os.chdir") def test_switch_root(self, chdir) -> None: arguments = MagicMock() with patch("os.path.realpath", return_value="realpath"), patch( "os.path.isfile", return_value=False ) as isfile, patch("os.chdir"): arguments.local_configuration = None switch_root(arguments) self.assertEqual(arguments.local_configuration, None) arguments.local_configuration = None with patch("os.getcwd", return_value="/a/b/c"): isfile.side_effect = ( lambda directory: directory == "/a/b/.pyre_configuration.local" ) switch_root(arguments) self.assertEqual(arguments.original_directory, "/a/b/c") self.assertEqual(arguments.local_configuration, "/a/b") with patch( "{}.find_configuration_root".format(client_name) ) as mock_find_configuation_root: with patch("os.getcwd", return_value="/a/b"): arguments.original_directory = "/a/b" arguments.current_directory = "/a/b" arguments.local_configuration = None mock_find_configuation_root.side_effect = ["/a", "/a/b"] switch_root(arguments) self.assertEqual(arguments.original_directory, "/a/b") self.assertEqual(arguments.current_directory, "/a/b") self.assertEqual(arguments.local_configuration, None) def test_resolve_filter_paths(self) -> None: arguments = MagicMock() configuration = MagicMock() arguments.source_directories = [] arguments.targets = [] arguments.original_directory = "/project" configuration.local_configuration_root = None filter_paths = _resolve_filter_paths(arguments, configuration) self.assertEqual(filter_paths, []) arguments.source_directories = ["/project/a"] filter_paths = _resolve_filter_paths(arguments, configuration) self.assertEqual(filter_paths, ["/project/a"]) arguments.source_directories = ["/project/a"] arguments.targets = ["//x/y/..."] filter_paths = _resolve_filter_paths(arguments, configuration) self.assertEqual(filter_paths, ["/project/a", "x/y"]) arguments.source_directories = ["/project/local/a"] arguments.targets = ["//x/y:z"] configuration.local_configuration_root = "project/local" filter_paths = _resolve_filter_paths(arguments, configuration) self.assertEqual(filter_paths, ["/project/local/a", "x/y"]) arguments.source_directories = [] arguments.targets = [] configuration.local_configuration_root = "/project/local" filter_paths = _resolve_filter_paths(arguments, configuration) self.assertEqual(filter_paths, ["/project/local"]) @patch.object( buck, "generate_source_directories", side_effect=lambda targets, build, prompt: targets, ) def test_resolve_analysis_directory(self, buck) -> None: arguments = MagicMock() arguments.build = None arguments.original_directory = "/project" arguments.current_directory = "/project" def assert_analysis_directory(expected, actual) -> None: self.assertEqual(expected.get_root(), actual.get_root()) self.assertEqual(expected.get_filter_root(), actual.get_filter_root()) configuration = MagicMock() configuration.source_directories = [] configuration.targets = [] configuration.local_configuration_root = None arguments.source_directories = ["a/b"] arguments.targets = [] arguments.filter_directory = None expected_analysis_directory = AnalysisDirectory("a/b") analysis_directory = resolve_analysis_directory( arguments, commands, configuration ) assert_analysis_directory(expected_analysis_directory, analysis_directory) arguments.source_directories = ["/symlinked/directory"] arguments.targets = [] arguments.filter_directory = "/real/directory" expected_analysis_directory = AnalysisDirectory( "/symlinked/directory", ["/real/directory"] ) analysis_directory = resolve_analysis_directory( arguments, commands, configuration ) assert_analysis_directory(expected_analysis_directory, analysis_directory) arguments.source_directories = [] arguments.targets = ["//x:y"] arguments.filter_directory = "/real/directory" expected_analysis_directory = SharedAnalysisDirectory( [], ["//x:y"], "/project", ["/real/directory"] ) analysis_directory = resolve_analysis_directory( arguments, commands, configuration ) assert_analysis_directory(expected_analysis_directory, analysis_directory) arguments.source_directories = ["a/b"] arguments.targets = ["//x:y", "//y/..."] arguments.filter_directory = "/filter" configuration.targets = ["//overridden/..."] expected_analysis_directory = SharedAnalysisDirectory( ["a/b"], ["//x:y", "//y:/..."], "/project", ["/filter"] ) analysis_directory = resolve_analysis_directory( arguments, commands, configuration ) assert_analysis_directory(expected_analysis_directory, analysis_directory) arguments.source_directories = [] arguments.targets = [] arguments.filter_directory = "/filter" configuration.source_directories = [] configuration.targets = ["//not:overridden/..."] expected_analysis_directory = SharedAnalysisDirectory( [], ["//not:overridden/..."], "/project", ["/filter"] ) analysis_directory = resolve_analysis_directory( arguments, commands, configuration ) assert_analysis_directory(expected_analysis_directory, analysis_directory)
c3d02e6e0b4ebecdb29346804444dd14259c22b5
947e71b34d21f3c9f5c0a197d91a880f346afa6c
/ambari-server/src/test/python/stacks/2.0.6/HBASE/test_hbase_master.py
5162193cbdcb7cd78cd228869aed0ea9bc788593
[ "MIT", "Apache-2.0", "GPL-1.0-or-later", "GPL-2.0-or-later", "OFL-1.1", "MS-PL", "AFL-2.1", "GPL-2.0-only", "Python-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
liuwenru/Apache-Ambari-ZH
4bc432d4ea7087bb353a6dd97ffda0a85cb0fef0
7879810067f1981209b658ceb675ac76e951b07b
refs/heads/master
2023-01-14T14:43:06.639598
2020-07-28T12:06:25
2020-07-28T12:06:25
223,551,095
38
44
Apache-2.0
2023-01-02T21:55:10
2019-11-23T07:43:49
Java
UTF-8
Python
false
false
36,350
py
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import json from mock.mock import MagicMock, patch from stacks.utils.RMFTestCase import * @patch("platform.linux_distribution", new = MagicMock(return_value="Linux")) @patch("os.path.exists", new = MagicMock(return_value=True)) class TestHBaseMaster(RMFTestCase): COMMON_SERVICES_PACKAGE_DIR = "HBASE/0.96.0.2.0/package" STACK_VERSION = "2.0.6" TMP_PATH = "/hadoop" DEFAULT_IMMUTABLE_PATHS = ['/apps/hive/warehouse', '/apps/falcon', '/mr-history/done', '/app-logs', '/tmp'] CONFIG_OVERRIDES = {"serviceName":"HBASE", "role":"HBASE_MASTER"} def test_install_hbase_master_default_no_phx(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "install", config_file="hbase_no_phx.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES, try_install=True, checked_call_mocks = [(0, "OK.", ""),(0, "OK.", "")], ) self.assertResourceCalled('Package', 'hbase_2_3_*', retry_count=5, retry_on_repo_unavailability=False) self.assertNoMoreResources() def test_install_hbase_master_default_with_phx(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "install", config_file="hbase_with_phx.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES, try_install=True, checked_call_mocks = [(0, "OK.", ""),(0, "OK.", "")], ) self.assertResourceCalled('Package', 'hbase_2_3_*', retry_count=5, retry_on_repo_unavailability=False) self.assertResourceCalled('Package', 'phoenix_2_3_*', retry_count=5, retry_on_repo_unavailability=False) self.assertNoMoreResources() @patch("ambari_commons.repo_manager.ManagerFactory.get") def test_install_hbase_master_with_version(self, get_provider): from ambari_commons.os_check import OSConst from ambari_commons.repo_manager import ManagerFactory pkg_manager = ManagerFactory.get_new_instance(OSConst.REDHAT_FAMILY) with patch.object(pkg_manager, "all_packages") as all_packages,\ patch.object(pkg_manager, "available_packages") as available_packages, \ patch.object(pkg_manager, "installed_packages") as installed_packages: all_packages.return_value = [["hbase_2_3_0_1_1234", "1.0", "testrepo"]] available_packages.return_value = [["hbase_2_3_0_1_1234", "1.0", "testrepo"]] installed_packages.return_value = [["hbase_2_3_0_1_1234", "1.0", "testrepo"]] get_provider.return_value = pkg_manager config_file = self.get_src_folder()+"/test/python/stacks/2.0.6/configs/hbase_with_phx.json" with open(config_file, "r") as f: json_content = json.load(f) version = '2.3.0.1-1234' # the json file is not a "well formed" install command json_content['roleCommand'] = 'INSTALL' json_content['commandParams']['version'] = version json_content['commandParams']['package_list'] = "[{\"name\":\"hbase_${stack_version}\",\"condition\":\"\",\"skipUpgrade\":false}]" self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "install", config_dict = json_content, stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES, try_install=True, os_type=('Redhat', '6.4', 'Final'), checked_call_mocks = [(0, "OK.", "")], available_packages_in_repos = ['hbase_2_3_0_1_1234'], ) # only assert that the correct package is trying to be installed self.assertResourceCalled('Package', 'hbase_2_3_0_1_1234', retry_count=5, retry_on_repo_unavailability=False) def test_configure_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "configure", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_default() self.assertNoMoreResources() def test_start_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "start", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_default() self.assertResourceCalled('Execute', '/usr/lib/hbase/bin/hbase-daemon.sh --config /etc/hbase/conf start master', not_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', user = 'hbase' ) self.assertNoMoreResources() pass def test_start_default_bucketcache(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "start", config_file="default_with_bucket.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_default(bucketcache_ioengine_as_file=True) self.assertResourceCalled('Execute', '/usr/lib/hbase/bin/hbase-daemon.sh --config /etc/hbase/conf start master', not_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', user = 'hbase' ) self.assertNoMoreResources() pass def test_stop_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "stop", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('Execute', '/usr/lib/hbase/bin/hbase-daemon.sh --config /etc/hbase/conf stop master', only_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', on_timeout = '! ( ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1 ) || ambari-sudo.sh -H -E kill -9 `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid`', timeout = 30, user = 'hbase', ) self.assertResourceCalled('File', '/var/run/hbase/hbase-hbase-master.pid', action = ['delete'], ) self.assertNoMoreResources() def test_decom_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "decommission", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('File', '/usr/lib/hbase/bin/draining_servers.rb', content = StaticFile('draining_servers.rb'), mode = 0755, ) self.assertResourceCalled('Execute', ' HBASE_OPTS="$HBASE_OPTS " /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/draining_servers.rb add host1', logoutput = True, user = 'hbase', ) self.assertResourceCalled('Execute', ' HBASE_OPTS="$HBASE_OPTS " /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/region_mover.rb unload host1', logoutput = True, user = 'hbase', ) self.assertResourceCalled('Execute', ' HBASE_OPTS="$HBASE_OPTS " /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/draining_servers.rb add host2', logoutput = True, user = 'hbase', ) self.assertResourceCalled('Execute', ' HBASE_OPTS="$HBASE_OPTS " /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/region_mover.rb unload host2', logoutput = True, user = 'hbase', ) self.assertNoMoreResources() def test_decom_default_draining_only(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "decommission", config_file="default.hbasedecom.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('File', '/usr/lib/hbase/bin/draining_servers.rb', content = StaticFile('draining_servers.rb'), mode = 0755, ) self.assertResourceCalled('Execute', ' HBASE_OPTS="$HBASE_OPTS " /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/draining_servers.rb remove host1', logoutput = True, user = 'hbase', ) self.assertNoMoreResources() def test_configure_secured(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "configure", config_file="secured.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_secured() self.assertNoMoreResources() def test_start_secured(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "start", config_file="secured.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_secured() self.assertResourceCalled('Execute', '/usr/lib/hbase/bin/hbase-daemon.sh --config /etc/hbase/conf start master', not_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', user = 'hbase', ) self.assertNoMoreResources() def test_stop_secured(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "stop", config_file="secured.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('Execute', '/usr/lib/hbase/bin/hbase-daemon.sh --config /etc/hbase/conf stop master', only_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', on_timeout = '! ( ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1 ) || ambari-sudo.sh -H -E kill -9 `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid`', timeout = 30, user = 'hbase', ) self.assertResourceCalled('File', '/var/run/hbase/hbase-hbase-master.pid', action = ['delete'], ) self.assertNoMoreResources() def test_decom_secure(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "decommission", config_file="secured.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES ) self.assertResourceCalled('File', '/usr/lib/hbase/bin/draining_servers.rb', content = StaticFile('draining_servers.rb'), mode = 0755, ) self.assertResourceCalled('Execute', '/usr/bin/kinit -kt /etc/security/keytabs/hbase.service.keytab hbase/[email protected]; HBASE_OPTS="$HBASE_OPTS -Djava.security.auth.login.config=/etc/hbase/conf/hbase_master_jaas.conf" /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/draining_servers.rb add host1', logoutput = True, user = 'hbase', ) self.assertResourceCalled('Execute', '/usr/bin/kinit -kt /etc/security/keytabs/hbase.service.keytab hbase/[email protected]; HBASE_OPTS="$HBASE_OPTS -Djava.security.auth.login.config=/etc/hbase/conf/hbase_master_jaas.conf" /usr/lib/hbase/bin/hbase --config /etc/hbase/conf org.jruby.Main /usr/lib/hbase/bin/region_mover.rb unload host1', logoutput = True, user = 'hbase', ) self.assertNoMoreResources() def assert_configure_default(self, bucketcache_ioengine_as_file=False): self.assertResourceCalled('Directory', '/etc/hbase', mode = 0755 ) self.assertResourceCalled('Directory', '/etc/hbase/conf', owner = 'hbase', group = 'hadoop', create_parents = True, ) self.assertResourceCalled('Directory', '/tmp', create_parents = True, mode = 0777 ) if bucketcache_ioengine_as_file: self.assertResourceCalled('Directory', '/mnt/bucket', create_parents = True, owner = 'hbase', group = 'hadoop', mode = 0755 ) pass self.assertResourceCalled('Directory', '/hadoop', create_parents = True, cd_access = 'a', ) self.assertResourceCalled('Execute', ('chmod', '1777', u'/hadoop'), sudo = True, ) self.assertResourceCalled('XmlConfig', 'hbase-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['hbase-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hbase-site'] ) self.assertResourceCalled('XmlConfig', 'core-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['core-site'], configuration_attributes = self.getConfig()['configurationAttributes']['core-site'] ) self.assertResourceCalled('XmlConfig', 'hdfs-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['hdfs-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hdfs-site'] ) self.assertResourceCalled('File', '/etc/hbase/conf/hbase-policy.xml', owner = 'hbase', group = 'hadoop' ) self.assertResourceCalled('File', '/etc/hbase/conf/hbase-env.sh', owner = 'hbase', content = InlineTemplate(self.getConfig()['configurations']['hbase-env']['content']), group = 'hadoop', ) self.assertResourceCalled('Directory', '/etc/security/limits.d', owner = 'root', group = 'root', create_parents = True, ) self.assertResourceCalled('File', '/etc/security/limits.d/hbase.conf', content = Template('hbase.conf.j2'), owner = 'root', group = 'root', mode = 0644, ) self.assertResourceCalled('TemplateConfig', '/etc/hbase/conf/hadoop-metrics2-hbase.properties', owner = 'hbase', template_tag = 'GANGLIA-MASTER', ) self.assertResourceCalled('TemplateConfig', '/etc/hbase/conf/regionservers', owner = 'hbase', template_tag = None, ) self.assertResourceCalled('Directory', '/var/run/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('Directory', '/var/log/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('File', '/etc/hbase/conf/log4j.properties', mode=0644, group='hadoop', owner='hbase', content=InlineTemplate('log4jproperties\nline2') ) self.assertResourceCalled('HdfsResource', 'hdfs://c6401.ambari.apache.org:8020/apps/hbase/data', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/bin', keytab = UnknownConfigurationMock(), kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_conf_dir = '/etc/hadoop/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name=UnknownConfigurationMock(), default_fs='hdfs://c6401.ambari.apache.org:8020', ) self.assertResourceCalled('HdfsResource', '/apps/hbase/staging', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_conf_dir = '/etc/hadoop/conf', keytab = UnknownConfigurationMock(), kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_bin_dir = '/usr/bin', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name=UnknownConfigurationMock(), default_fs='hdfs://c6401.ambari.apache.org:8020', mode = 0711, ) self.assertResourceCalled('HdfsResource', None, immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/bin', keytab = UnknownConfigurationMock(), kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', action = ['execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name=UnknownConfigurationMock(), default_fs='hdfs://c6401.ambari.apache.org:8020', hadoop_conf_dir = '/etc/hadoop/conf', ) def assert_configure_secured(self): self.assertResourceCalled('Directory', '/etc/hbase', mode = 0755 ) self.assertResourceCalled('Directory', '/etc/hbase/conf', owner = 'hbase', group = 'hadoop', create_parents = True, ) self.assertResourceCalled('Directory', '/tmp', create_parents = True, mode = 0777 ) self.assertResourceCalled('Directory', '/hadoop', create_parents = True, cd_access = 'a', ) self.assertResourceCalled('Execute', ('chmod', '1777', u'/hadoop'), sudo = True, ) self.assertResourceCalled('XmlConfig', 'hbase-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['hbase-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hbase-site'] ) self.assertResourceCalled('XmlConfig', 'core-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['core-site'], configuration_attributes = self.getConfig()['configurationAttributes']['core-site'] ) self.assertResourceCalled('XmlConfig', 'hdfs-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/etc/hbase/conf', configurations = self.getConfig()['configurations']['hdfs-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hdfs-site'] ) self.assertResourceCalled('File', '/etc/hbase/conf/hbase-policy.xml', owner = 'hbase', group = 'hadoop', ) self.assertResourceCalled('File', '/etc/hbase/conf/hbase-env.sh', owner = 'hbase', content = InlineTemplate(self.getConfig()['configurations']['hbase-env']['content']), group = 'hadoop', ) self.assertResourceCalled('Directory', '/etc/security/limits.d', owner = 'root', group = 'root', create_parents = True, ) self.assertResourceCalled('File', '/etc/security/limits.d/hbase.conf', content = Template('hbase.conf.j2'), owner = 'root', group = 'root', mode = 0644, ) self.assertResourceCalled('TemplateConfig', '/etc/hbase/conf/hadoop-metrics2-hbase.properties', owner = 'hbase', template_tag = 'GANGLIA-MASTER', ) self.assertResourceCalled('TemplateConfig', '/etc/hbase/conf/regionservers', owner = 'hbase', template_tag = None, ) self.assertResourceCalled('TemplateConfig', '/etc/hbase/conf/hbase_master_jaas.conf', owner = 'hbase', template_tag = None, ) self.assertResourceCalled('Directory', '/var/run/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('Directory', '/var/log/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('File', '/etc/hbase/conf/log4j.properties', mode=0644, group='hadoop', owner='hbase', content=InlineTemplate('log4jproperties\nline2') ) self.assertResourceCalled('HdfsResource', 'hdfs://c6401.ambari.apache.org:8020/apps/hbase/data', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = True, hadoop_bin_dir = '/usr/bin', keytab = '/etc/security/keytabs/hdfs.headless.keytab', kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_conf_dir = '/etc/hadoop/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name='hdfs', default_fs='hdfs://c6401.ambari.apache.org:8020', ) self.assertResourceCalled('HdfsResource', '/apps/hbase/staging', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = True, hadoop_conf_dir = '/etc/hadoop/conf', keytab = '/etc/security/keytabs/hdfs.headless.keytab', kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_bin_dir = '/usr/bin', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name='hdfs', default_fs='hdfs://c6401.ambari.apache.org:8020', mode = 0711, ) self.assertResourceCalled('HdfsResource', None, immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = True, hadoop_bin_dir = '/usr/bin', keytab = '/etc/security/keytabs/hdfs.headless.keytab', kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', action = ['execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name='hdfs', default_fs='hdfs://c6401.ambari.apache.org:8020', hadoop_conf_dir = '/etc/hadoop/conf', ) def test_start_default_22(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "start", config_file="hbase-2.2.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled('Directory', '/etc/hbase', mode = 0755) self.assertResourceCalled('Directory', '/usr/hdp/current/hbase-master/conf', owner = 'hbase', group = 'hadoop', create_parents = True) self.assertResourceCalled('Directory', '/tmp', create_parents = True, mode = 0777 ) self.assertResourceCalled('Directory', '/hadoop', create_parents = True, cd_access = 'a', ) self.assertResourceCalled('Execute', ('chmod', '1777', u'/hadoop'), sudo = True, ) self.assertResourceCalled('XmlConfig', 'hbase-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/usr/hdp/current/hbase-master/conf', configurations = self.getConfig()['configurations']['hbase-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hbase-site']) self.assertResourceCalled('XmlConfig', 'core-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/usr/hdp/current/hbase-master/conf', configurations = self.getConfig()['configurations']['core-site'], configuration_attributes = self.getConfig()['configurationAttributes']['core-site']) self.assertResourceCalled('XmlConfig', 'hdfs-site.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/usr/hdp/current/hbase-master/conf', configurations = self.getConfig()['configurations']['hdfs-site'], configuration_attributes = self.getConfig()['configurationAttributes']['hdfs-site']) self.assertResourceCalled('XmlConfig', 'hbase-policy.xml', owner = 'hbase', group = 'hadoop', conf_dir = '/usr/hdp/current/hbase-master/conf', configurations = self.getConfig()['configurations']['hbase-policy'], configuration_attributes = self.getConfig()['configurationAttributes']['hbase-policy']) self.assertResourceCalled('File', '/usr/hdp/current/hbase-master/conf/hbase-env.sh', owner = 'hbase', content = InlineTemplate(self.getConfig()['configurations']['hbase-env']['content']), group = 'hadoop' ) self.assertResourceCalled('Directory', '/etc/security/limits.d', owner = 'root', group = 'root', create_parents = True, ) self.assertResourceCalled('File', '/etc/security/limits.d/hbase.conf', content = Template('hbase.conf.j2'), owner = 'root', group = 'root', mode = 0644, ) self.assertResourceCalled('TemplateConfig', '/usr/hdp/current/hbase-master/conf/hadoop-metrics2-hbase.properties', owner = 'hbase', template_tag = 'GANGLIA-MASTER') self.assertResourceCalled('TemplateConfig', '/usr/hdp/current/hbase-master/conf/regionservers', owner = 'hbase', template_tag = None) self.assertResourceCalled('Directory', '/var/run/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('Directory', '/var/log/hbase', owner = 'hbase', create_parents = True, mode = 0755, cd_access = 'a', ) self.assertResourceCalled('File', '/usr/hdp/current/hbase-master/conf/log4j.properties', mode=0644, group='hadoop', owner='hbase', content=InlineTemplate('log4jproperties\nline2')) self.assertResourceCalled('HdfsResource', 'hdfs://nn1/apps/hbase/data', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/hdp/current/hadoop-client/bin', keytab = UnknownConfigurationMock(), default_fs = 'hdfs://nn1', hdfs_site = self.getConfig()['configurations']['hdfs-site'], kinit_path_local = '/usr/bin/kinit', principal_name = UnknownConfigurationMock(), user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_conf_dir = '/etc/hadoop/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', ) self.assertResourceCalled('HdfsResource', '/apps/hbase/staging', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/hdp/current/hadoop-client/bin', keytab = UnknownConfigurationMock(), default_fs = 'hdfs://nn1', hdfs_site = self.getConfig()['configurations']['hdfs-site'], kinit_path_local = '/usr/bin/kinit', principal_name = UnknownConfigurationMock(), user = 'hdfs', dfs_type = '', owner = 'hbase', hadoop_conf_dir = '/etc/hadoop/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', mode = 0711, ) self.assertResourceCalled('HdfsResource', None, immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/hdp/current/hadoop-client/bin', keytab = UnknownConfigurationMock(), default_fs = 'hdfs://nn1', hdfs_site = self.getConfig()['configurations']['hdfs-site'], kinit_path_local = '/usr/bin/kinit', principal_name = UnknownConfigurationMock(), user = 'hdfs', dfs_type = '', action = ['execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hadoop_conf_dir = '/etc/hadoop/conf', ) self.assertResourceCalled('Execute', '/usr/hdp/current/hbase-master/bin/hbase-daemon.sh --config /usr/hdp/current/hbase-master/conf start master', not_if = 'ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E test -f /var/run/hbase/hbase-hbase-master.pid && ps -p `ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E cat /var/run/hbase/hbase-hbase-master.pid` >/dev/null 2>&1', user = 'hbase') self.assertNoMoreResources() def test_upgrade_backup(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_upgrade.py", classname = "HbaseMasterUpgrade", command = "take_snapshot", config_file="hbase-preupgrade.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled('Execute', " echo 'snapshot_all' | /usr/hdp/current/hbase-client/bin/hbase shell", user = 'hbase') self.assertNoMoreResources() @patch("resource_management.core.shell.call") def test_pre_upgrade_restart(self, call_mock): call_mock.side_effects = [(0, None), (0, None)] config_file = self.get_src_folder()+"/test/python/stacks/2.0.6/configs/default.json" with open(config_file, "r") as f: json_content = json.load(f) version = '2.2.1.0-3242' json_content['commandParams']['version'] = version mocks_dict = {} self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "pre_upgrade_restart", config_dict = json_content, config_overrides = self.CONFIG_OVERRIDES, stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES, mocks_dict = mocks_dict) self.assertResourceCalled('Execute', ('ambari-python-wrap', '/usr/bin/hdp-select', 'set', 'hbase-master', version), sudo=True,) self.assertFalse(call_mock.called) self.assertNoMoreResources() @patch("resource_management.core.shell.call") def test_upgrade_23(self, call_mock): call_mock.side_effects = [(0, None), (0, None)] config_file = self.get_src_folder()+"/test/python/stacks/2.0.6/configs/default.json" with open(config_file, "r") as f: json_content = json.load(f) version = '2.3.0.0-1234' json_content['commandParams']['version'] = version mocks_dict = {} self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hbase_master.py", classname = "HbaseMaster", command = "pre_upgrade_restart", config_dict = json_content, config_overrides = self.CONFIG_OVERRIDES, stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES, mocks_dict = mocks_dict) self.assertResourceCalledIgnoreEarlier('Execute', ('ambari-python-wrap', '/usr/bin/hdp-select', 'set', 'hbase-master', version), sudo=True)
fca514c7a4f0ee40a26053eec26098b988257080
cbb0bd995f5ecb64f93a30d5f1dcd106e3241214
/Scripts/torch_mnist_dense_import.py
9286cc72ef2a624b2f8f95f57cb61117afb3ff79
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
data61/MP-SPDZ
324010a4caaa403f64d769a276d58931e0ed274e
5c26feece05e13387fc9bd2ef3f09b2735d6ea4b
refs/heads/master
2023-08-10T01:25:33.653174
2023-08-09T02:13:34
2023-08-09T02:13:34
152,511,277
724
277
NOASSERTION
2023-07-21T04:43:18
2018-10-11T01:16:16
C++
UTF-8
Python
false
false
1,225
py
#!/usr/bin/env python3 # test model output by torch_mnist_dense.mpc import torchvision import torch import torch.nn as nn import numpy net = nn.Sequential( nn.Flatten(), nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, 10) ) f = open('Player-Data/Binary-Output-P0-0') state = net.state_dict() for name in state: shape = state[name].shape size = numpy.prod(shape) var = numpy.fromfile(f, 'double', count=size) var = var.reshape(shape) state[name] = torch.Tensor(var) net.load_state_dict(state) transform = torchvision.transforms.Compose( [torchvision.transforms.ToTensor()]) with torch.no_grad(): ds = torchvision.datasets.MNIST(root='/tmp', transform=transform, train=False) total = correct_classified = 0 for data in torch.utils.data.DataLoader(ds, batch_size=128): inputs, labels = data outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct_classified += (predicted == labels).sum().item() test_acc = (100 * correct_classified / total) print('Test accuracy of the network: %.2f %%' % test_acc)
8baef651c1c9e325c36893dbe9d0a0e5a375842e
9f69c4c61ca2a2082643f9316354826f6144e1f5
/TAP2014/E.py
7b156e5cad39797e8a1be50f512dfac1aa697d0f
[]
no_license
julianferres/Competitive-Programming
668c22cf5174c57a2f3023178b1517cb25bdd583
c3b0be4f796d1c0d755a61a6d2f3665c86cd8ca9
refs/heads/master
2022-03-23T05:56:53.790660
2022-03-18T14:29:33
2022-03-18T14:29:33
146,931,407
4
2
null
null
null
null
UTF-8
Python
false
false
672
py
from collections import deque A,N = map(int,input().split()) from math import inf a = [] for i in range(A): a.append(list(map(int,input().split()))[1:]) dist = {i:inf for i in range(1,N+1)} v = {i:[] for i in range(1,N+1)} lvisto = [False]*A dist[1]=0 for i in range(A): for j in a[i]: v[j].append(i) q = deque([]) q.append(1) dist[1]=0 while(len(q)>0): first = q.popleft() for lista in v[first]: if(lvisto[lista]==False): lvisto[lista] = True for i in a[lista]: if(dist[i]==inf): q.append(i) dist[i] = min(dist[i],dist[first]+1) D = 0 M = -inf S = 0 for i in dist: if(dist[i]<inf): D+=1 S+=dist[i] M = max(dist[i],M) print(D,M,S)
20be9797435272b97f65017a680b236f7429c7a7
49a85f8e50bf91c9c358f190226d17b0d035899e
/apps/messaging/migrations/0004_auto_20161127_1007.py
a758607211b3feffdf5d4e5dc536a97bf40174e6
[]
no_license
hpatel1/chat
f70679c2b5dd5ca49e77096572859dc1b219d1da
e9abadf3021bee36d7f2255a79f4cd890c8ecf00
refs/heads/master
2020-06-16T20:09:46.264555
2016-11-29T12:37:36
2016-11-29T12:37:36
75,069,459
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-11-27 10:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('messaging', '0003_auto_20161127_1006'), ] operations = [ migrations.AlterField( model_name='chatroom', name='name', field=models.CharField(blank=True, max_length=100, null=True), ), ]
f277ff241b24a7a2719c4f8c5fda3d66d1f2d97b
f0ee740667f840250c39412736d9fa8ec45261d8
/squares.py
2e766bd8978a70056c011a24938ca003d32a66cc
[]
no_license
MartynasTru/Cafe-Wall
59e4eeacda4a54678352175549b1608d1c762840
940913b533b8ed3f3b01b8db9c40c3a47265a89a
refs/heads/main
2023-04-21T08:03:20.691253
2021-04-29T23:25:44
2021-04-29T23:25:44
362,972,366
0
0
null
null
null
null
UTF-8
Python
false
false
5,029
py
#Student Number: 19019021 import sys from ezgraphics import GraphicsWindow WIDTH = 500 BOARD_DIMENSION = 10 SQUARE_DIMENSION = WIDTH / BOARD_DIMENSION MORTAR_WIDTH = 2 MORTAR_COLOR = "grey" def draw_cafe_wall(canvas, x, y, square_dimension, board_dimension): """ Draw cafe wall illusion. Parameters ---------- canvas : GraphicsCanvas A reference to the GraphicsCanvas contained in the window x : int x coordinate of the top-left corner of the row y : int y coordinate of the top-left corner of the row square_dimension : int side length in pixels of a square board_dimension : int number of squares in one side of the board """ for x in range (BOARD_DIMENSION+1): for y in range (BOARD_DIMENSION): if(y%2 == 0): if(x%2 ==0): canvas.setFill("white") else: if(x%2 ==1): canvas.setFill("white") if(y%2 == 1): canvas.setOutline(MORTAR_COLOR) canvas.setLineWidth(MORTAR_WIDTH) canvas.drawRectangle(x*50, y*50, SQUARE_DIMENSION, SQUARE_DIMENSION) else: canvas.setOutline(MORTAR_COLOR) canvas.setLineWidth(MORTAR_WIDTH) #drawing on top of the remaining squares after shifting it 25 pixels back canvas.drawRectangle(((x*50)-25), ((y*50)), SQUARE_DIMENSION, SQUARE_DIMENSION) canvas.setFill("black") pass def draw_chequerboard(canvas, x, y, square_dimension, board_dimension, chequers=False): """ Draw the board. Parameters ---------- canvas : GraphicsCanvas A reference to the GraphicsCanvas contained in the window x : int x coordinate of the top-left corner of the row y : int y coordinate of the top-left corner of the row square_dimension : int side length in pixels of a square board_dimension : int number of squares in a side of the board chequers : boolean Used to indicate whether the squares in every row should be alternately black and white """ if(chequers == False): for x in range (BOARD_DIMENSION): for y in range (BOARD_DIMENSION): if(x%2 == 0): canvas.setFill("white") canvas.drawRectangle(x*50, y*50, SQUARE_DIMENSION, SQUARE_DIMENSION) canvas.setFill("black") elif(chequers == True): for x in range (BOARD_DIMENSION): for y in range (BOARD_DIMENSION): if(y%2 == 0): if(x%2 ==0): canvas.setFill("white") else: if(x%2 ==1): canvas.setFill("white") canvas.drawRectangle(x*50, y*50, SQUARE_DIMENSION, SQUARE_DIMENSION) canvas.setFill("black") pass def usage_message(): """ Return usage message for this program. Returns ------- str Usage message """ return 'illusion.py: incorrect usage\n' \ + 'Use:\n' \ + '\tillusion.py -chequers or\n' \ + '\tillusion.py -columns or\n' \ + '\tillusion.py -cafe or\n' \ + '\tillusion.py' def check_args(args): """ Check the arguments passed to the program. Parameters ---------- args : list List of strings in argv containing the options passed to this program Returns ------- boolean False if option is invalid, True if option is valid """ # Process the command line input valid_option = False if len(args) == 1: valid_option = args[0] == "-chequers" or args[0] == "-cafe"\ or args[0] == "-columns" elif len(args) == 0: valid_option = True return valid_option def main(): args = sys.argv[1:] okay = check_args(args) option = "-columns" if okay: # Create a graphics window (WIDTH x WIDTH pixels): win = GraphicsWindow(WIDTH, WIDTH) # Access the canvas contained in the graphics window: canvas = win.canvas() if len(args) == 1: option = args[0] if option == "-columns": draw_chequerboard(canvas, 0, 0, SQUARE_DIMENSION, BOARD_DIMENSION) elif option == "-chequers": draw_chequerboard(canvas, 0, 0, SQUARE_DIMENSION, BOARD_DIMENSION, chequers=True) else: # args[0] == "-cafe": draw_cafe_wall(canvas, 0, 0, SQUARE_DIMENSION, BOARD_DIMENSION) # Wait for the user to close the window win.wait() else: print(usage_message()) exit(1) if __name__ == "__main__": main()
74decdc058c850ed5d987ffa614a9bccec3acc72
6060d22d07bbde9d317cbd5af063b9b5015e62c1
/EELS_KK/pyfiles/bash_train_pyfiles/KK_one_pixel.py
f41cc579f734629a1a9bb620cc12286f88939712
[]
no_license
krishna999/CBL-ML
a1d389ad70975d2a0fdd101e66a68ce42c2fc0fe
ff850d9820d5295c3bdff88feebbd635f502fb87
refs/heads/master
2023-06-28T09:30:55.639732
2021-07-15T15:44:53
2021-07-15T15:44:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,756
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 16 22:59:40 2021 @author: isabel """ import numpy as np import sys import os from mpi4py import MPI from scipy.optimize import curve_fit from k_means_clustering import k_means import matplotlib.pyplot as plt from image_class_bs import Spectral_image, smooth_1D def median(data): return np.nanpercentile(data, 50, axis = 0) def low(data): return np.nanpercentile(data, 16, axis = 0) def high(data): return np.nanpercentile(data, 84, axis = 0) def summary_distribution(data): return[median(data), low(data), high(data)] def bandgap(x, amp, BG,b): result = np.zeros(x.shape) result[x<BG] = 1 result[x>=BG] = amp * (x[x>=BG] - BG)**(b) return result def bandgap_b(x, amp, BG): b = 1.5 #standard value according to ..... #TODO result = np.zeros(x.shape) result[x<BG] = 1 result[x>=BG] = amp * (x[x>=BG] - BG)**(b) return result def find_pixel_cordinates(idx, n_y): y = int(idx%n_y) x = int((idx-y)/n_y) return [x,y] """ path_to_models = "/Users/isabel/Documents/Studie/MEP/CBL-ML/EELS_KK/pyfiles/bash_train_pyfiles/models/train_004" # im = im im = Spectral_image.load_data('../../dmfiles/h-ws2_eels-SI_004.dm4') im.cluster(5) #rank = 84 rank = 64 j = 80 im.load_ZLP_models_smefit(path_to_models=path_to_models, n_rep = 500) ZLPs = im.calc_gen_ZLPs(rank,j,path_to_models=path_to_models, n_rep = 500) n_model = len(im.ZLP_models) epss, ts, S_Es, IEELSs = im.KK_pixel(rank, j) E_cross = np.zeros(im.image_shape[1], dtype = 'object') E_bands = np.zeros(n_model) bs = np.zeros(n_model) E_cross_pix = np.empty(0) n_cross_pix = np.zeros(n_model) for i in range(n_model): IEELS = IEELSs[i] popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>0.5) & (im.deltaE<3.7)], IEELS[(im.deltaE>0.5) & (im.deltaE<3.7)], p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands[i] = popt[1] bs[i] = popt[2] crossing = np.concatenate((np.array([0]),(smooth_1D(np.real(epss[i]),50)[:-1]<0) * (smooth_1D(np.real(epss[i]),50)[1:] >=0))) deltaE_n = im.deltaE[im.deltaE>0] #deltaE_n = deltaE_n[50:-50] crossing_E = deltaE_n[crossing.astype('bool')] E_cross_pix = np.append(E_cross_pix, crossing_E) n_cross_pix[i] = len(crossing_E) n_cross_lim = round(np.nanpercentile(n_cross_pix, 90)) # if n_cross_lim > E_cross.shape[1]: # E_cross_new = np.zeros((im.image_shape[1],n_cross_lim,3)) # E_cross_new[:,E_cross.shape[1],:] = E_cross # E_cross = E_cross_new # del E_cross_new E_cross_pix_n, r = k_means(E_cross_pix, n_cross_lim) E_cross_pix_n = np.zeros((n_cross_lim, 3)) for i in range(n_cross_lim): E_cross_pix_n[i, :] = summary_distribution(E_cross_pix[r[i].astype(bool)]) # E_cross[j,i,:] = summary_distribution(E_cross_pix[r[i].astype(bool)]) # eps[j,:,:] = summary_distribution(epss) # t[j,:] = summary_distribution(ts) E_cross[j] = E_cross_pix_n # n_cross[j,:] = summary_distribution(n_cross_pix) # E_band[j] = summary_distribution(E_bands) """ path_to_models = "/Users/isabel/Documents/Studie/MEP/CBL-ML/EELS_KK/pyfiles/bash_train_pyfiles/models/train_004" path_to_models = "/Users/isabel/Documents/Studie/MEP/CBL-ML/EELS_KK/pyfiles/bash_train_pyfiles/dE1/E1_05/" path_to_models = "/Users/isabel/Documents/Studie/MEP/CBL-ML/EELS_KK/pyfiles/bash_train_pyfiles/models/dE2_8_times_dE1/train_004_not_pooled" path_to_models = 'models/dE2_3_times_dE1/train_004_pooled_5_CI_1_dE1_times_07_epochs_1e6_scale_on_pooled_clu_log_10/' path_to_models = 'models/dE2_3_times_dE1/train_lau_pooled_5_CI_1_dE1_times_07_epochs_1e6_scale_on_pooled_clu_log_5/' path_to_models = 'models/dE_n10-inse_SI-003/E1_05' path_to_models = 'models/report/004_clu10_p5_final_35dE1_06dE1/' # path_to_models = "/Users/isabel/Documents/Studie/MEP/CBL-ML/EELS_KK/pyfiles/bash_train_pyfiles/models/train_lau_log" # im = im im = Spectral_image.load_data('../../dmfiles/h-ws2_eels-SI_004.dm4') # im = Spectral_image.load_data('../../dmfiles/area03-eels-SI-aligned.dm4') # im = Spectral_image.load_data('../../dmfiles/10n-dop-inse-B1_stem-eels-SI-processed_003.dm4') name = "" # name = "Lau's sample, " [n_x, n_y] = im.image_shape row = 50 j_b = 50 if row >= n_x: sys.exit() im.load_ZLP_models_smefit(path_to_models, name_in_path = False) im.set_n(4.1462, n_background = 2.1759) im.set_n(3.0) im.e0 = 200 #keV im.beta = 30#67.2 #mrad #%% try_pixels = [30,60,90,120] ieels = np.zeros((len(try_pixels),3,im.l)) eps = (1+1j)*np.zeros((len(try_pixels),3, np.sum(im.deltaE>0))) ss = np.zeros((len(try_pixels),3, np.sum(im.deltaE>0))) ssratio = np.zeros((len(try_pixels),3)) t = np.zeros((len(try_pixels),3)) E_cross = np.zeros(len(try_pixels), dtype = 'object') n_cross = np.zeros((len(try_pixels),3)) max_ieels = np.zeros((len(try_pixels),3)) E_band_08 = np.zeros((len(try_pixels),3)) A_08 = np.zeros((len(try_pixels),3)) E_band_12 = np.zeros((len(try_pixels),3)) A_12 = np.zeros((len(try_pixels),3)) E_band_02 = np.zeros((len(try_pixels),3)) A_02 = np.zeros((len(try_pixels),3)) E_band_04 = np.zeros((len(try_pixels),3)) A_04 = np.zeros((len(try_pixels),3)) E_band_06 = np.zeros((len(try_pixels),3)) A_06 = np.zeros((len(try_pixels),3)) n_model = len(im.ZLP_models) n_fails = 0 #%% dia_pooled = 5 im.pool(dia_pooled) #%% for j in range(len(try_pixels)):# n_y): col = try_pixels[j] [ts, IEELSs, max_ieelss], [epss, ts_p, S_ss_p, IEELSs_p, max_ieels_p] = im.KK_pixel(col,row, signal = "pooled") n_model = len(IEELSs_p) E_bands_08 = np.zeros(n_model) E_bands_12 = np.zeros(n_model) E_bands_02 = np.zeros(n_model) E_bands_04 = np.zeros(n_model) E_bands_06 = np.zeros(n_model) As_08 = np.zeros(n_model) As_12 = np.zeros(n_model) As_02 = np.zeros(n_model) As_04 = np.zeros(n_model) As_06 = np.zeros(n_model) E_cross_pix = np.empty(0) n_cross_pix = np.zeros(n_model) for i in range(n_model): IEELS = IEELSs_p[i] boundery_onset = np.max(IEELS)/30 first_not_onset = np.min(np.argwhere(IEELS>boundery_onset)) range2 = im.deltaE[first_not_onset] if i%100 == 0: print("pixel:",j, ", model:", i, ", boundery onset:", boundery_onset,", range2:", range2) try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 # range2 = dE1+0.8 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,range2-0.3], bounds=([0, 0.5],np.inf)) E_bands_08[i] = popt[1] As_08[i] = popt[0] except: n_fails += 1 # try: # cluster = im.clustered[col,row] # dE1 = im.dE1[1,int(cluster)] # range1 = dE1-1 # range2 = dE1+1.2 # baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # E_bands_12[i] = popt[1] # As_12[i] = popt[0] # except: # n_fails += 1 # try: # cluster = im.clustered[col,row] # dE1 = im.dE1[1,int(cluster)] # range1 = dE1-1 # range2 = dE1+0.2 # baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # As_02[i] = popt[0] # E_bands_02[i] = popt[1] # except: # n_fails += 1 # try: # cluster = im.clustered[col,row] # dE1 = im.dE1[1,int(cluster)] # range1 = dE1-1 # range2 = dE1+0.4 # baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # As_04[i] = popt[0] # E_bands_04[i] = popt[1] # except: # n_fails += 1 # try: # cluster = im.clustered[col,row] # dE1 = im.dE1[1,int(cluster)] # range1 = dE1-1 # range2 = dE1+0.6 # baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # As_06[i] = popt[0] # E_bands_06[i] = popt[1] # except: # n_fails += 1 crossing = np.concatenate((np.array([0]),(smooth_1D(np.real(epss[i]),50)[:-1]<0) * (smooth_1D(np.real(epss[i]),50)[1:] >=0))) deltaE_n = im.deltaE[im.deltaE>0] crossing_E = deltaE_n[crossing.astype('bool')] E_cross_pix = np.append(E_cross_pix, crossing_E) n_cross_pix[i] = len(crossing_E) n_cross_lim = round(np.nanpercentile(n_cross_pix, 90)) if n_cross_lim > 0: E_cross_pix_n, r = k_means(E_cross_pix, n_cross_lim) E_cross_pix_n = np.zeros((n_cross_lim, 3)) for i in range(n_cross_lim): E_cross_pix_n[i, :] = summary_distribution(E_cross_pix[r[i].astype(bool)]) else: E_cross_pix_n = np.zeros((0)) ieelssums = np.sum(IEELSs_p[:,im.deltaE>0], axis = 1) sssums = np.sum(S_ss_p, axis = 1) s_ratios = sssums/ieelssums ieels[j,:,:] = summary_distribution(IEELSs_p) ss[j,:,:] = summary_distribution(S_ss_p) ssratio[j,:] = summary_distribution(s_ratios) eps[j,:,:] = summary_distribution(epss) t[j,:] = summary_distribution(ts) E_cross[j] = E_cross_pix_n n_cross[j,:] = summary_distribution(n_cross_pix) max_ieels[j,:] = summary_distribution(max_ieelss) E_band_08[j,:] = summary_distribution(E_bands_08) A_08[j,:] = summary_distribution(As_08) E_band_12[j,:] = summary_distribution(E_bands_12) A_12[j,:] = summary_distribution(As_12) E_band_02[j,:] = summary_distribution(E_bands_02) A_02[j,:] = summary_distribution(As_02) E_band_04[j,:] = summary_distribution(E_bands_04) A_04[j,:] = summary_distribution(As_04) E_band_06[j,:] = summary_distribution(E_bands_06) A_06[j,:] = summary_distribution(As_06) #%% CI_E_band08 = (E_band_08[:,2]-E_band_08[:,1])/E_band_08[:,0] CI_E_band12 = (E_band_12[:,2]-E_band_12[:,1])/E_band_12[:,0] CI_E_band02 = (E_band_02[:,2]-E_band_02[:,1])/E_band_02[:,0] CI_E_band04 = (E_band_04[:,2]-E_band_04[:,1])/E_band_04[:,0] CI_E_band06 = (E_band_06[:,2]-E_band_06[:,1])/E_band_06[:,0] E_bands = np.vstack((E_band_08[:,0],E_band_12[:,0],E_band_02[:,0],E_band_04[:,0],E_band_06[:,0])) As = np.vstack((A_08[:,0],A_12[:,0],A_02[:,0],A_04[:,0],A_06[:,0])) CI_E_band = np.vstack((CI_E_band08, CI_E_band12, CI_E_band02, CI_E_band04, CI_E_band06 )) plt.figure() plt.title(name + "relative CI E_band, dia_pool = " +str(dia_pooled)) plt.imshow(CI_E_band) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% plt.figure() plt.title(name + "relative CI E_band, capped at 1, dia_pool = " +str(dia_pooled)) plt.imshow(np.minimum(CI_E_band,1)) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% plt.figure() plt.title(name + "E_band, dia_pool = " +str(dia_pooled)) plt.imshow(E_bands) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "E_band, dia_pool = " +str(dia_pooled) + ", capped at 3") plt.imshow((np.minimum(E_bands, 3))) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% ranges = [0.8,1.2,0.2,0.4,0.6] for j in range(len(try_pixels)): cluster = im.clustered[try_pixels[j],row] xmin = im.dE1[1,cluster] - 1 xmax = im.dE1[1,cluster] + 3.5 baseline = np.average(ieels[j,0,(im.deltaE>xmin -0.1) & (im.deltaE<xmin)]) ymax = np.max(ieels[j,0,(im.deltaE>xmin)&(im.deltaE<xmax)]) + 100 x_values = im.deltaE[(im.deltaE>xmin)&(im.deltaE<xmax)] plt.figure() plt.title(name + "bandgap fits pixel [64," + str(try_pixels[j]) + "], pooled with diameter " + str(dia_pooled)) plt.plot(x_values, ieels[j,0,(im.deltaE>xmin)&(im.deltaE<xmax)]-baseline, lw = 1.5) plt.fill_between(x_values, ieels[j,1,(im.deltaE>xmin)&(im.deltaE<xmax)] - baseline, ieels[j,2,(im.deltaE>xmin)&(im.deltaE<xmax)]- baseline, alpha=0.3) plt.vlines(im.dE1[1,cluster],0,500, linestyle = '--', color= 'black', label = 'dE1') for i in range(len(E_bands)): plt.plot(x_values, bandgap_b(x_values, As[i,j], E_bands[i,j]), label = str(ranges[i])) plt.legend() plt.ylim(-50,ymax) #%% DEEL TWEE: met b fitten E_band_08 = np.zeros((len(try_pixels),3)) b_08 = np.zeros((len(try_pixels),3)) A_08 = np.zeros((len(try_pixels),3)) E_band_12 = np.zeros((len(try_pixels),3)) b_12 = np.zeros((len(try_pixels),3)) A_12 = np.zeros((len(try_pixels),3)) E_band_02 = np.zeros((len(try_pixels),3)) b_02 = np.zeros((len(try_pixels),3)) A_02 = np.zeros((len(try_pixels),3)) E_band_04 = np.zeros((len(try_pixels),3)) b_04 = np.zeros((len(try_pixels),3)) A_04 = np.zeros((len(try_pixels),3)) E_band_06 = np.zeros((len(try_pixels),3)) b_06 = np.zeros((len(try_pixels),3)) A_06 = np.zeros((len(try_pixels),3)) for j in range(len(try_pixels)):# n_y): # epss, ts, S_Es, IEELSs = im.KK_pixel(row, j, signal = "pooled") col = try_pixels[j] [ts, IEELSs, max_ieelss], [epss, ts_p, S_ss_p, IEELSs_p, max_ieels_p] = im.KK_pixel(col,row, signal = "pooled", iterations = 5) n_model = len(IEELSs_p) E_bands_08 = np.zeros(n_model) E_bands_12 = np.zeros(n_model) E_bands_02 = np.zeros(n_model) E_bands_04 = np.zeros(n_model) E_bands_06 = np.zeros(n_model) bs_08 = np.zeros(n_model) bs_12 = np.zeros(n_model) bs_02 = np.zeros(n_model) bs_04 = np.zeros(n_model) bs_06 = np.zeros(n_model) As_08 = np.zeros(n_model) As_12 = np.zeros(n_model) As_02 = np.zeros(n_model) As_04 = np.zeros(n_model) As_06 = np.zeros(n_model) E_cross_pix = np.empty(0) n_cross_pix = np.zeros(n_model) for i in range(n_model): IEELS = IEELSs_p[i] try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 range2 = dE1+0.8 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands_08[i] = popt[1] bs_08[i] = popt[2] # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # E_bands_08[i] = popt[1] As_08[i] = popt[0] except: n_fails += 1 try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 range2 = dE1+1.2 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands_12[i] = popt[1] bs_12[i] = popt[2] # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) # E_bands_12[i] = popt[1] As_12[i] = popt[0] except: n_fails += 1 try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 range2 = dE1+0.2 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands_02[i] = popt[1] bs_02[i] = popt[2] # popt, pcov = curve_fit(bandgap_b, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5], bounds=([0, 0.5],np.inf)) As_02[i] = popt[0] E_bands_02[i] = popt[1] except: n_fails += 1 try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 range2 = dE1+0.4 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands_04[i] = popt[1] bs_04[i] = popt[2] As_04[i] = popt[0] except: n_fails += 1 try: cluster = im.clustered[col,row] dE1 = im.dE1[1,int(cluster)] range1 = dE1-1 range2 = dE1+0.6 baseline = np.average(IEELS[(im.deltaE>range1 -0.1) & (im.deltaE<range1)]) popt, pcov = curve_fit(bandgap, im.deltaE[(im.deltaE>range1) & (im.deltaE<range2)], IEELS[(im.deltaE>range1) & (im.deltaE<range2)]-baseline, p0 = [400,1.5,0.5], bounds=([0, 0.5, 0],np.inf)) E_bands_06[i] = popt[1] bs_06[i] = popt[2] As_06[i] = popt[0] E_bands_06[i] = popt[1] except: n_fails += 1 crossing = np.concatenate((np.array([0]),(smooth_1D(np.real(epss[i]),50)[:-1]<0) * (smooth_1D(np.real(epss[i]),50)[1:] >=0))) deltaE_n = im.deltaE[im.deltaE>0] crossing_E = deltaE_n[crossing.astype('bool')] E_cross_pix = np.append(E_cross_pix, crossing_E) n_cross_pix[i] = len(crossing_E) n_cross_lim = round(np.nanpercentile(n_cross_pix, 90)) if n_cross_lim > 0: E_cross_pix_n, r = k_means(E_cross_pix, n_cross_lim) E_cross_pix_n = np.zeros((n_cross_lim, 3)) for i in range(n_cross_lim): E_cross_pix_n[i, :] = summary_distribution(E_cross_pix[r[i].astype(bool)]) else: E_cross_pix_n = np.zeros((0)) ieels[j,:,:] = summary_distribution(IEELSs_p) eps[j,:,:] = summary_distribution(epss) t[j,:] = summary_distribution(ts) E_cross[j] = E_cross_pix_n n_cross[j,:] = summary_distribution(n_cross_pix) max_ieels[j,:] = summary_distribution(max_ieelss) E_band_08[j,:] = summary_distribution(E_bands_08) b_08[j,:] = summary_distribution(bs_08) A_08[j,:] = summary_distribution(As_08) E_band_12[j,:] = summary_distribution(E_bands_12) b_12[j,:] = summary_distribution(bs_12) A_12[j,:] = summary_distribution(As_12) E_band_02[j,:] = summary_distribution(E_bands_02) b_02[j,:] = summary_distribution(bs_02) A_02[j,:] = summary_distribution(As_02) E_band_04[j,:] = summary_distribution(E_bands_04) b_04[j,:] = summary_distribution(bs_04) A_04[j,:] = summary_distribution(As_04) E_band_06[j,:] = summary_distribution(E_bands_06) b_06[j,:] = summary_distribution(bs_06) A_06[j,:] = summary_distribution(As_06) #%% CI_b08 = (b_08[:,2]-b_08[:,1])/b_08[:,0] CI_b12 = (b_12[:,2]-b_12[:,1])/b_12[:,0] CI_b02 = (b_02[:,2]-b_02[:,1])/b_02[:,0] CI_b04 = (b_04[:,2]-b_04[:,1])/b_04[:,0] CI_b06 = (b_06[:,2]-b_06[:,1])/b_06[:,0] CI_E_band08 = (E_band_08[:,2]-E_band_08[:,1])/E_band_08[:,0] CI_E_band12 = (E_band_12[:,2]-E_band_12[:,1])/E_band_12[:,0] CI_E_band02 = (E_band_02[:,2]-E_band_02[:,1])/E_band_02[:,0] CI_E_band04 = (E_band_04[:,2]-E_band_04[:,1])/E_band_04[:,0] CI_E_band06 = (E_band_06[:,2]-E_band_06[:,1])/E_band_06[:,0] bs = np.vstack((b_08[:,0],b_12[:,0],b_02[:,0],b_04[:,0],b_06[:,0])) E_bands = np.vstack((E_band_08[:,0],E_band_12[:,0],E_band_02[:,0],E_band_04[:,0],E_band_06[:,0])) As = np.vstack((A_08[:,0],A_12[:,0],A_02[:,0],A_04[:,0],A_06[:,0])) CI_b = np.vstack((CI_b08, CI_b12, CI_b02, CI_b04, CI_b06 )) CI_E_band = np.vstack((CI_E_band08, CI_E_band12, CI_E_band02, CI_E_band04, CI_E_band06 )) plt.figure() plt.title(name + "relative CI b, dia_pool = " +str(dia_pooled)) plt.imshow(CI_b) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "relative CI E_band, dia_pool = " +str(dia_pooled)) plt.imshow(CI_E_band) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% plt.figure() plt.title(name + "relative CI b, capped at 1, dia_pool = " +str(dia_pooled)) plt.imshow(np.minimum(CI_b,1)) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "relative CI E_band, capped at 1, dia_pool = " +str(dia_pooled)) plt.imshow(np.minimum(CI_E_band,1)) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% plt.figure() plt.title(name + "b, dia_pool = " +str(dia_pooled)) plt.imshow(bs) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "b, dia_pool = " +str(dia_pooled) + ", capped at 1") plt.imshow((np.minimum(bs,1))) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "E_band, dia_pool = " +str(dia_pooled) + ", capped at 3") plt.imshow(E_bands) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() plt.figure() plt.title(name + "E_band, dia_pool = " +str(dia_pooled) + ", capped at 3") plt.imshow((np.minimum(E_bands, 3))) plt.yticks([0,1,2,3,4],[0.8,1.2,0.2,0.4,0.6]) plt.xticks([0,1,2],["[64,30]","[64,60]","[64,90]"]) plt.xticks([0,1,2,3],["[64,0]","[64,30]","[64,60]","[64,90]"]) plt.ylabel("upperlimit fittingrange = dE1 + ... [eV]") plt.xlabel("pixel") plt.colorbar() #%% ranges = [0.8,1.2,0.2,0.4,0.6] for j in range(len(try_pixels)): cluster = im.clustered[try_pixels[j],row] xmin = im.dE1[1,cluster] - 1 xmax = im.dE1[1,cluster] + 3.5 baseline = np.average(ieels[j,0,(im.deltaE>xmin -0.1) & (im.deltaE<xmin)]) ymax = np.max(ieels[j,0,(im.deltaE>xmin)&(im.deltaE<xmax)]) + 100 x_values = im.deltaE[(im.deltaE>xmin)&(im.deltaE<xmax)] plt.figure() plt.title(name + "bandgap fits pixel [64," + str(try_pixels[j]) + "], pooled with diameter " + str(dia_pooled)) plt.plot(x_values, ieels[j,0,(im.deltaE>xmin)&(im.deltaE<xmax)]-baseline, lw = 1.5) plt.fill_between(x_values, ieels[j,1,(im.deltaE>xmin)&(im.deltaE<xmax)] - baseline, ieels[j,2,(im.deltaE>xmin)&(im.deltaE<xmax)]- baseline, alpha=0.3) plt.vlines(im.dE1[1,cluster],0,500, linestyle = '--', color= 'black', label = 'dE1') for i in range(len(E_bands)): plt.plot(x_values, bandgap(x_values, As[i,j], E_bands[i,j], bs[i,j]), label = str(ranges[i])) # plt.plot(x_values, bandgap_b(x_values, As[i,j], E_bands[i,j]), label = str(ranges[i])) plt.legend() plt.ylim(-50,ymax)
7cb3d636c58d86cdc2cefe708b06c997c54f9e12
a37e93d23ea659bafaac8034dc7aeed65bc5eb38
/stock_landed_costs_extend/models/stock_landed_cost.py
d1a3f0aeec36ad5dd0efc875329cccc986d2f7da
[]
no_license
kit9/sct-ecommerce
71831541264809715b31d802d260474975d04536
6c440a514eac8101474b6720e409a81c58bd3b7c
refs/heads/master
2022-10-03T23:35:31.563670
2020-06-09T12:35:06
2020-06-09T12:35:06
271,020,689
0
4
null
2020-06-09T14:10:49
2020-06-09T14:10:48
null
UTF-8
Python
false
false
821
py
#-*- coding: utf-8 -*- from odoo import models, fields, api, _ class LandedCost(models.Model): _inherit = 'stock.landed.cost' def _default_account_journal_id(self): """Take the journal configured in the company, else fallback on the stock journal.""" lc_journal = self.env['account.journal'] ir_property = self.env['ir.property'].search([ ('name', '=', 'property_stock_journal'), ('company_id', '=', self.env.user.company_id.id) ], limit=1) if ir_property: lc_journal = ir_property.get_by_record() return lc_journal account_journal_id = fields.Many2one( 'account.journal', 'Account Journal', required=True, states={'done': [('readonly', True)]}, default=lambda self: self._default_account_journal_id())
be128babb87f429822e3dd3ac730543b9f9ae91c
d190750d6cb34e9d86ae96724cf4b56a2f57a74a
/tests/r/test_ant111b.py
9d0bf1c1aea84feb40beba133832bb43a7e48cfa
[ "Apache-2.0" ]
permissive
ROAD2018/observations
a119f61a48213d791de0620804adb8d21c2ad9fb
2c8b1ac31025938cb17762e540f2f592e302d5de
refs/heads/master
2021-09-24T04:28:02.725245
2018-09-16T23:06:30
2018-09-16T23:06:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.ant111b import ant111b def test_ant111b(): """Test module ant111b.py by downloading ant111b.csv and testing shape of extracted data has 32 rows and 9 columns """ test_path = tempfile.mkdtemp() x_train, metadata = ant111b(test_path) try: assert x_train.shape == (32, 9) except: shutil.rmtree(test_path) raise()
3f0d512ffc2d5ae6e83bb3809a709242677010da
3aae4f5187d4600e3fbe72d15e27ac7ea64c3608
/hyranote/cmd_simple.py
a7ac073bed91cb7cba100d96ae548246942fb676
[ "MIT" ]
permissive
huuhoa/hyranote
96335081569271ee61bb8dba7c8f8aab646feaf7
bbd91256790a0fb19699761697d0121c93ffbe88
refs/heads/main
2023-07-27T13:08:07.074709
2021-09-07T23:35:14
2021-09-07T23:35:14
318,357,069
1
0
null
null
null
null
UTF-8
Python
false
false
837
py
import os import plistlib from hyranote.hyranote import SimpleGenerator from hyranote.hutil import copy_resources def simple_generate_contents(args): input_dir = os.path.expanduser(args.input) copy_resources(input_dir, os.path.join(args.output, 'images')) with open(os.path.join(input_dir, 'contents.xml'), 'rb') as fp: data = plistlib.load(fp) canvas = data['canvas'] mind_maps = canvas['mindMaps'] for main_node in mind_maps: generator = SimpleGenerator(main_node, { 'input': args.input, 'output_dir': args.output, 'author': args.author, 'logging': args.verbose, }) generator.generate()
3426a8908d8572f4ffd915d0b142d8a4369c5ece
a760e489c8b4d46e0af0c5e0711e0b6da38335f5
/Examples/qfem-0010/src/postprocess.py
310bbeaed870531639034205216610ad896ddb66
[ "BSD-2-Clause-Views" ]
permissive
NHERI-SimCenter/quoFEM
b042e30badad9551c89a5f355639891644e4487e
18866db16a9d9025c73e90c5523087a9e1f3eccf
refs/heads/master
2023-08-08T22:07:49.364185
2023-07-20T17:50:40
2023-07-20T17:50:40
102,532,135
10
26
NOASSERTION
2023-08-18T22:43:39
2017-09-05T21:37:34
C++
UTF-8
Python
false
false
2,045
py
#!/usr/bin/python # written: fmk 01/18 import sys import re #print 'Number of arguments:', len(sys.argv), 'arguments.' #print 'Argument List:', str(sys.argv) inputArgs = sys.argv #outFile = open('results.out','w') # # process output file "SimCenterOut.txt" for nodal displacements # ndm = 0 with open ('SimCenterOut.txt', 'rt') as inFile: line = inFile.readline() notFound = None while line and notFound == None: line = inFile.readline() notFound = re.search("Spatial Dimension of Mesh - - - - - :",line) words = line.split() ndm = int(words[len(words)-1]) notFound = None while line and notFound == None: line = inFile.readline() notFound = re.search("N o d a l D i s p l a c e m e n t s",line) line = inFile.readline() line = inFile.readline() line = inFile.readline() line = inFile.readline() displ = [] displ.append(line.split()) numNode = 1 while True: line2 = inFile.readline() words = line2.split() if (len(words) != 5): break; displ.append(words) numNode += 1 inFile.close # # now process the input args and write the results file # outFile = open('results.out','w') # # note for now assuming no ERROR in user data # for i in inputArgs[1:]: theList=i.split('_') if (theList[0] == 'Node'): nodeTag = int(theList[1]) if (nodeTag > 0 and nodeTag <= numNode): if (theList[2] == 'Disp'): dof = int(theList[3]) numNodalDOF = len(displ[nodeTag-1])-1-ndm; if (dof > 0 and dof <= numNodalDOF): nodeDisp = displ[nodeTag-1] nodeDisp = displ[nodeTag-1][ndm+dof] outFile.write(nodeDisp) outFile.write(' ') else: outFile.write('0. ') else: outFile.write('0. ') else: outFile.write('0. ') else: outFile.write('0. ') outFile.close
d01afb3ac01213c93a2d43e8c810482b1db65f15
57dbccc0df6a999a9c081396a1c84d802a18008e
/src/utils/DubinsPath.py
993762cc2a143e4b5039d6f9139e1e2541e2d237
[ "MIT" ]
permissive
the-jojo/SpiderBUG
309cc6bddc9fd8b724606eca0171c4c90e068c15
6ed77b0896966e90afcaf695e68a546a1921f8f6
refs/heads/master
2023-03-08T22:33:19.313283
2021-03-06T15:12:39
2021-03-06T15:12:39
291,644,894
2
1
null
2020-09-15T18:55:38
2020-08-31T07:24:55
Jupyter Notebook
UTF-8
Python
false
false
1,955
py
import math import dubins from src.geom.Node import Node from src.utils.config import default_config def find_path(pos_0: Node, heading_0: float, pos_1: Node, pos_2: Node or None, turn_radius: float, step_size=default_config['PATH_RES'], resolution=math.pi / 64): """Finds the shortest dubins path that passes through the first 2 path points""" config_0 = (*pos_0.as_list_2d(), heading_0) pos_2 = pos_2.as_list_2d() if pos_2 is not None else None path_0, path_1 = dubins.shortest_paths_2(config_0, pos_1.as_list_2d(), pos_2, turn_radius, resolution) points, t = path_0.sample_many(step_size) if path_1 is not None: points_, t_ = path_1.sample_many(step_size) points = points + points_ t = t + t_ return points, t def find_path_complete(pos_0: Node, heading_0: float, path_points: [Node], turn_radius: float, step_size=default_config['PATH_RES']): assert len(path_points) > 0 pos_1 = path_points[0] pos_2 = path_points[1] if len(path_points) > 1 else None points, _ = find_path(pos_0, heading_0, pos_1, pos_2, turn_radius, step_size) points = [Node.from_tuple(p) for p in points] for path_p in path_points[2:]: points.append(path_p) return points def find_path_weight(pos_0: Node, heading_0: float, path_points: [Node], turn_radius: float, resolution=math.pi / 64): config_0 = (*pos_0.as_list_2d(), heading_0) assert len(path_points) > 0 pos_1 = path_points[0].as_list_2d() pos_2 = path_points[1].as_list_2d() if len(path_points) > 1 else None path_0, path_1 = dubins.shortest_paths_2(config_0, pos_1, pos_2, turn_radius, resolution) length = path_0.path_length() if path_1 is not None: length += path_1.path_length() if len(path_points) > 2: p0 = path_points[2] for p1 in path_points[3:]: length += p0.dist_2d(p1) p0 = p1 return length
a9157605e769380a311a8c4c02e792653fc2caf4
787ee36fa303f968fdf846fe0f385c7018a33f31
/octavia/tests/unit/api/v2/types/test_pools.py
066e958d1718648718fbc07af28d0d65c15454f9
[ "Apache-2.0" ]
permissive
sajuptpm/octavia
b68bb502ff07cb8f7ee6721a6b0325be6c764d52
fde4ebe822072a79bb74497b504ca3f0a6a6518d
refs/heads/master
2020-03-10T06:58:57.557469
2018-04-12T02:46:35
2018-04-12T02:46:35
129,251,833
0
0
Apache-2.0
2018-04-12T12:59:35
2018-04-12T12:59:34
null
UTF-8
Python
false
false
5,850
py
# Copyright 2014 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_utils import uuidutils from wsme import exc from wsme.rest import json as wsme_json from wsme import types as wsme_types from octavia.api.v2.types import pool as pool_type from octavia.common import constants from octavia.tests.unit.api.common import base class TestSessionPersistence(object): _type = None def test_session_persistence(self): body = {"type": constants.SESSION_PERSISTENCE_HTTP_COOKIE} sp = wsme_json.fromjson(self._type, body) self.assertIsNotNone(sp.type) def test_invalid_type(self): body = {"type": "source_ip"} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_cookie_name(self): body = {"type": constants.SESSION_PERSISTENCE_HTTP_COOKIE, "cookie_name": 10} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) class TestPoolPOST(base.BaseTypesTest): _type = pool_type.PoolPOST def test_pool(self): body = { "loadbalancer_id": uuidutils.generate_uuid(), "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} pool = wsme_json.fromjson(self._type, body) self.assertTrue(pool.admin_state_up) def test_load_balancer_mandatory(self): body = {"loadbalancer_id": uuidutils.generate_uuid()} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_protocol_mandatory(self): body = {"lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_lb_algorithm_mandatory(self): body = {"protocol": constants.PROTOCOL_HTTP} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_name(self): body = {"name": 10, "loadbalancer_id": uuidutils.generate_uuid(), "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_description(self): body = {"description": 10, "loadbalancer_id": uuidutils.generate_uuid(), "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_load_balacer_id(self): body = {"loadbalancer_id": 10, "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_protocol(self): body = {"loadbalancer_id": uuidutils.generate_uuid(), "protocol": "http", "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_lb_algorithm(self): body = {"loadbalancer_id": uuidutils.generate_uuid(), "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": "source_ip"} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_non_uuid_project_id(self): body = {"loadbalancer_id": uuidutils.generate_uuid(), "protocol": constants.PROTOCOL_HTTP, "lb_algorithm": constants.LB_ALGORITHM_ROUND_ROBIN, "project_id": "non-uuid"} pool = wsme_json.fromjson(self._type, body) self.assertEqual(pool.project_id, body['project_id']) class TestPoolPUT(base.BaseTypesTest): _type = pool_type.PoolPUT def test_pool(self): body = {"name": "test_name"} pool = wsme_json.fromjson(self._type, body) self.assertEqual(wsme_types.Unset, pool.admin_state_up) def test_invalid_name(self): body = {"name": 10} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_description(self): body = {"description": 10} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) def test_invalid_lb_algorithm(self): body = {"lb_algorithm": "source_ip"} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) class TestSessionPersistencePOST(base.BaseTypesTest, TestSessionPersistence): _type = pool_type.SessionPersistencePOST def test_type_mandatory(self): body = {"cookie_name": "test_name"} self.assertRaises(exc.InvalidInput, wsme_json.fromjson, self._type, body) class TestSessionPersistencePUT(base.BaseTypesTest, TestSessionPersistence): _type = pool_type.SessionPersistencePUT
1bcf9cfae1a9ee36fa60cef6a7710ff6110e247d
f5b3f1cb6f4e360a096bda679cb05d39364d0930
/maskrcnn_benchmark/modeling/roi_heads/relation_head/loss.py
85ca0a2e5cf2e06c2c3425ba40d455c2d51b5831
[ "Python-2.0", "MIT" ]
permissive
PeterZhouSZ/recovering-unbiased-scene-graphs
fa44b2ba4b27c3023a30489bf981dd6326e72fcd
50807a1eadab588c99d7ce7b819748065398e6b6
refs/heads/main
2023-08-26T09:56:32.786965
2021-10-23T06:15:13
2021-10-23T06:15:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,806
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn as nn from torch.nn import functional as F import numpy as np import numpy.random as npr from maskrcnn_benchmark.layers import smooth_l1_loss, Label_Smoothing_Regression, CenterLoss from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.modeling.utils import cat, get_constr_out import itertools import pickle import scipy, math from scipy import optimize def soft_cross_entropy_loss(x, target, reduction='mean'): assert reduction in ['sum', 'mean'] logprobs = torch.nn.functional.log_softmax(x, dim = 1) loss = -(target * logprobs).sum() return loss if reduction == 'sum' else (loss / x.shape[0]) # for center loss # https://github.com/louis-she/center-loss.pytorch/blob/master/loss.py def compute_center_loss(features, centers, targets): features = features.view(features.size(0), -1) target_centers = centers[targets] criterion = torch.nn.MSELoss() center_loss = criterion(features, target_centers) return center_loss def weighted_mse_loss(input, target, weight=None, reduction='mean'): if weight is None: loss = torch.sum((input - target) ** 2) else: loss = torch.sum(weight * (input - target) ** 2) return loss if reduction == 'sum' else (loss / input.shape[0]) def softXEnt(input, target): logprobs = F.log_softmax(input, dim = 1) return -(target * logprobs).sum() / input.shape[0] class RelationLossComputation(object): """ Computes the loss for relation triplet. Also supports FPN """ def __init__( self, attri_on, num_attri_cat, max_num_attri, attribute_sampling, attribute_bgfg_ratio, use_label_smoothing, predicate_proportion, stl_train, loss_relation_stl_alpha, bg_soft_loss, use_balanced_norm, pcpl_center_loss, center_loss_lambda, num_classes, feat_dim, unbiased_training, predicate_weights_path, weight_factor, use_gt_box, balnorm_reweight_label_distrib, balnorm_reweight_label_prob, balnorm_reweight_inv_label_prob, norm_predicate_counts_path, bal_reweight_only, balanced_norm_train_gx, balanced_norm_learnable, balanced_norm_normalized_probs, balanced_norm_test_only, balanced_norm_fixed, balanced_norm_fixed_mseloss, balanced_norm_as_soft_label, balanced_norm_as_soft_label_sll, balanced_norm_as_soft_label_mll, train_avg_belief_to_one, train_avg_belief_to_one_only_this_loss, balanced_norm_use_bceloss, balanced_norm_use_mseloss, multi_label_training, multi_label_norm_loss, c_hmc_train, debug, ): """ Arguments: bbox_proposal_matcher (Matcher) rel_fg_bg_sampler (RelationPositiveNegativeSampler) """ self.attri_on = attri_on self.num_attri_cat = num_attri_cat self.max_num_attri = max_num_attri self.attribute_sampling = attribute_sampling self.attribute_bgfg_ratio = attribute_bgfg_ratio self.use_label_smoothing = use_label_smoothing self.pred_weight = (1.0 / torch.FloatTensor([0.5,] + predicate_proportion)).cuda() self.stl_train = stl_train self.bg_soft_loss = bg_soft_loss self.debug = debug # BalNorm self.use_balanced_norm = False if balanced_norm_test_only else use_balanced_norm # PCPL & Center Loss self.pcpl_center_loss = pcpl_center_loss self.num_classes = num_classes self.bal_reweight_only = bal_reweight_only # BalNorm + Reweighting by labeling probability self.balnorm_reweight_label_prob = balnorm_reweight_label_prob if self.balnorm_reweight_label_prob: assert unbiased_training == 'reweight' # make sure this is enabled! # BalNorm + Reweighting by inverse labeling probability self.balnorm_reweight_inv_label_prob = balnorm_reweight_inv_label_prob if self.balnorm_reweight_inv_label_prob: assert unbiased_training == 'reweight' # make sure this is enabled! # BalNorm + Reweighting by estimated label distrib. self.balnorm_reweight_label_distrib = balnorm_reweight_label_distrib if self.balnorm_reweight_label_distrib: assert unbiased_training == 'reweight' # make sure this is enabled! self.norm_predicate_counts_path = norm_predicate_counts_path # Whether to train against g(x) in addition to f(x), against the training set p(s|x) if balanced_norm_train_gx: assert use_balanced_norm self.balanced_norm_train_gx = balanced_norm_train_gx # whether to use learnable BalNorm if balanced_norm_learnable: assert use_balanced_norm self.balanced_norm_learnable = balanced_norm_learnable if balanced_norm_normalized_probs: assert use_balanced_norm self.balanced_norm_normalized_probs = balanced_norm_normalized_probs self.balanced_norm_fixed = balanced_norm_fixed if balanced_norm_fixed_mseloss: assert use_balanced_norm self.balanced_norm_fixed_mseloss = balanced_norm_fixed_mseloss self.balanced_norm_use_bceloss = balanced_norm_use_bceloss self.balanced_norm_use_mseloss = balanced_norm_use_mseloss # multi-label training self.multi_label_training = multi_label_training if self.multi_label_training: self.multi_label_norm_loss = multi_label_norm_loss self.c_hmc_train = c_hmc_train if balanced_norm_as_soft_label: if not self.balanced_norm_fixed: assert use_balanced_norm assert balanced_norm_as_soft_label_sll ^ balanced_norm_as_soft_label_mll self.balanced_norm_as_soft_label = balanced_norm_as_soft_label self.balanced_norm_as_soft_label_sll = balanced_norm_as_soft_label_sll self.balanced_norm_as_soft_label_mll = balanced_norm_as_soft_label_mll if train_avg_belief_to_one: assert use_balanced_norm self.train_avg_belief_to_one = train_avg_belief_to_one self.train_avg_belief_to_one_only_this_loss = train_avg_belief_to_one_only_this_loss self.weight = None self.unbiased_training = unbiased_training self.use_gt_box = use_gt_box if unbiased_training != '': assert not self.pcpl_center_loss if unbiased_training == 'reweight': if self.multi_label_training: with open(predicate_weights_path, 'rb') as f: self.weight = pickle.load(f) # import pdb; pdb.set_trace() assert len(self.weight) == 51 elif balnorm_reweight_label_prob or balnorm_reweight_inv_label_prob: # Type 0: reweighting by estimated labeling prob (only used with Balnorm) pass # do nothing here (labeling prob. is estimated & passed dynamically) elif self.balnorm_reweight_label_distrib: # Type I: reweighting by estimated label distrib. (only used with Balnorm) with open(self.norm_predicate_counts_path, 'rb') as f: self.norm_predicate_counts = pickle.load(f) # f assert len(self.norm_predicate_counts) == 50 elif self.bal_reweight_only: # Type II: reweight by estimated labeling probability (1/p) pass # do nothing here else: # Type III: normal reweighting assert predicate_weights_path.split('.')[-1] == 'pkl' with open(predicate_weights_path, 'rb') as f: self.weight = pickle.load(f) assert len(self.weight) == 51 elif unbiased_training == 'reweight_vrd': assert predicate_weights_path.split('.')[-1] == 'npy' with open(predicate_weights_path, 'rb') as f: self.weight = np.load(f) assert self.weight.shape[0] == 151 and self.weight.shape[1] == 151 and self.weight.shape[2] == 51 elif unbiased_training == 'resample': raise NotImplementedError elif unbiased_training == 'focal_loss': raise NotImplementedError else: raise NotImplementedError if not self.balnorm_reweight_label_distrib and not self.bal_reweight_only and not self.balnorm_reweight_label_prob and not self.balnorm_reweight_inv_label_prob: self.weight = torch.tensor(self.weight).cuda() * weight_factor elif self.pcpl_center_loss: assert not self.use_label_smoothing # not implemented for use with label smoothing self.center_loss_lambda = center_loss_lambda # Center Loss version 1: https://github.com/KaiyangZhou/pytorch-center-loss # self.center_loss = CenterLoss(num_classes - 1, feat_dim) # Center loss version 2: https://github.com/louis-she/center-loss.pytorch self.centers = nn.Parameter(torch.Tensor(num_classes, feat_dim).normal_(), requires_grad=False).cuda() self.corr_order = torch.tensor([(i, j) for i in range(num_classes) for j in range(num_classes)]) # For PCPL we put the weight in F.cross_entropy(weight=weight) as the weight # is dynamically changing if self.stl_train: if self.weight is not None: raise NotImplementedError # haven't implemented self.criterion_loss = nn.CrossEntropyLoss() self.loss_relation_stl_alpha = loss_relation_stl_alpha elif self.use_label_smoothing: assert self.weight is None # not to be used with other reweighting methods self.criterion_loss = Label_Smoothing_Regression(e=0.01) # elif self.use_balanced_norm: # if self.unbiased_training != '': # assert self.weight is not None # self.loss_relation_balanced_norm = nn.NLLLoss(weight=self.weight) # self.criterion_loss = nn.CrossEntropyLoss() else: self.criterion_loss = nn.CrossEntropyLoss() if self.multi_label_training: # import pdb; pdb.set_trace() if self.c_hmc_train: self.criterion_loss_relation = nn.BCELoss(weight=self.weight) else: self.criterion_loss_relation = nn.BCEWithLogitsLoss(weight=self.weight) else: self.criterion_loss_relation = nn.CrossEntropyLoss(weight=self.weight) if self.use_balanced_norm and not self.balnorm_reweight_label_distrib and not self.bal_reweight_only and not self.balnorm_reweight_label_prob and not self.balanced_norm_normalized_probs and not self.balnorm_reweight_inv_label_prob and not self.balanced_norm_as_soft_label: if self.unbiased_training != '': assert self.weight is not None if self.balanced_norm_use_bceloss: assert self.weight is None # NOT IMPLEMENTED TO RUN TOGETHER YET self.loss_relation_balanced_norm = nn.BCELoss() elif self.balanced_norm_use_mseloss: assert self.weight is None # NOT IMPLEMENTED TO RUN TOGETHER YET self.loss_relation_balanced_norm = nn.MSELoss() else: self.loss_relation_balanced_norm = nn.NLLLoss(weight=self.weight) def __call__(self, proposals, rel_labels, relation_logits, refine_logits, stl_labels=None, relation_probs_norm=None, relation_logits_raw=None, rel_pair_idxs=None, labeling_prob=None, matrix_of_ancestor=None): """ Computes the loss for relation triplet. This requires that the subsample method has been called beforehand. Arguments: relation_logits (list[Tensor]) refine_obj_logits (list[Tensor]) Returns: predicate_loss (Tensor) finetune_obj_loss (Tensor) """ if self.attri_on: if isinstance(refine_logits[0], (list, tuple)): refine_obj_logits, refine_att_logits = refine_logits else: # just use attribute feature, do not actually predict attribute self.attri_on = False refine_obj_logits = refine_logits else: refine_obj_logits = refine_logits weight = self.weight if self.unbiased_training == 'reweight_vrd': raise NotImplementedError # not completed yet assert not self.pcpl_center_loss # cannot be used together weights = [] for refine_obj_logit, rel_pair_idx in zip(refine_obj_logits, rel_pair_idxs): obj_class_prob = F.softmax(refine_obj_logit, -1) if self.use_gt_box: _, obj_pred = obj_class_prob[:, 1:].max(dim=1) obj_pred = obj_pred + 1 else: raise NotImplementedError # haven't implemented for SGDet # NOTE: by kaihua, apply late nms for object prediction obj_pred = obj_prediction_nms(box.get_field('boxes_per_cls'), obj_logit, self.later_nms_pred_thres) obj_score_ind = torch.arange(num_obj_bbox, device=obj_logit.device) * num_obj_class + obj_pred sub_cls = obj_pred[rel_pair_idx[:, 0]] obj_cls = obj_pred[rel_pair_idx[:, 1]] weight = self.weight[sub_cls, obj_cls] weights.append(weight) weights = torch.cat(weights) relation_logits = cat(relation_logits, dim=0) refine_obj_logits = cat(refine_obj_logits, dim=0) rel_labels = cat(rel_labels, dim=0) fg_idxs, bg_idxs = (rel_labels != 0), (rel_labels == 0) fg_labels = cat([proposal.get_field("labels") for proposal in proposals], dim=0) loss_refine_obj = self.criterion_loss(refine_obj_logits, fg_labels.long()) assert not (self.stl_train and self.bg_soft_loss), 'Simultaneous usage of stl_train and bg_soft_loss are not supported!' assert not (self.use_balanced_norm and self.bg_soft_loss), 'Simultaneous usage of use_balanced_norm and bg_soft_loss are not supported!' loss_center = loss_gx = rel_features = rel_targets = loss_avg_belief = None if self.pcpl_center_loss: assert relation_logits_raw is not None # compute center loss # Way 1 # loss_center = self.center_loss(relation_logits_raw[fg_idxs].detach().clone(), rel_labels.long()[fg_idxs]) # only compute loss for non-bg classes # loss_center = self.center_loss(relation_logits_raw.detach().clone(), rel_labels.long()) # also compute loss for bg class (class 0) # Way 2 rel_features = relation_logits_raw.clone().detach() loss_center = compute_center_loss(rel_features, self.centers, rel_labels.long()) * self.center_loss_lambda rel_targets = rel_labels.long() # (eq. 2) compute e_{kj} corr = torch.norm((self.centers[self.corr_order[:,0]] - self.centers[self.corr_order[:,1]]), dim=1) # (eq. 3 compute u_i) global_corr = torch.cat([(torch.sum(corr_class, dim=0) / self.num_classes).reshape(-1) for corr_class in torch.split(corr, self.num_classes)]) # (eq. 4 compute correlation factor tao_i as weight) eps = 0.09 max_corr, min_corr = max(global_corr), min(global_corr) corr_factor = (global_corr - min_corr + eps) / (max_corr - min_corr) weight = corr_factor.detach() if self.stl_train: assert stl_labels is not None stl_labels = cat(stl_labels, dim=0) if self.balanced_norm_train_gx: loss_gx = F.cross_entropy(relation_logits, rel_labels.long()) if self.pcpl_center_loss: loss_relation = F.cross_entropy(relation_logits[fg_idxs], rel_labels.long()[fg_idxs], weight=weight) elif self.bal_reweight_only: # use estimated labeling probabilitiy for reweighting assert labeling_prob is not None import pdb; pdb.set_trace() elif self.balnorm_reweight_label_prob: assert labeling_prob is not None with torch.no_grad(): weight = 1 / labeling_prob.detach() loss_relation = F.nll_loss(torch.log(relation_probs_norm), rel_labels.long(), weight=weight) elif self.balnorm_reweight_label_distrib: # estimate label distribution assert labeling_prob is not None with torch.no_grad(): f = self.norm_predicate_counts q = np.array(labeling_prob[1:].detach().cpu()) a = np.array([[qq * (ff - 1) if i == j else qq * ff for i, qq in enumerate(q)] for j, ff in enumerate(f)]) a[-1] = np.array([1] * len(a)) b = np.array([0] * 49 + [1]) p = scipy.optimize.lsq_linear(a, b, (0, float('inf'))) p = p.x # counts = np.array([0.0] * 51) # counts[0] = 3.0 # counts[1:] = p weight = torch.tensor([math.sqrt(1/p[idx - 1]) if idx != 0 else math.sqrt(1/(3*sum(p))) for idx in range(len(p) + 1)]).cuda() loss_relation = F.nll_loss(torch.log(relation_probs_norm[fg_idxs]), rel_labels.long()[fg_idxs], weight=weight) elif self.use_balanced_norm: loss_relation = self.loss_relation_balanced_norm(torch.log(relation_probs_norm[fg_idxs]), rel_labels.long()[fg_idxs]) # loss_relation = self.criterion_loss(relation_logits[fg_idxs], rel_labels.long()[fg_idxs]) else: loss_relation = self.criterion_loss(relation_logits[fg_idxs], rel_labels.long()[fg_idxs]) assert relation_logits[bg_idxs].shape == stl_labels.shape loss_relation_stl = soft_cross_entropy_loss(relation_logits[bg_idxs], stl_labels, reduction='mean') * self.loss_relation_stl_alpha # loss_relation = (loss_relation + loss_relation_stl * self.loss_relation_stl_alpha) / len(relation_logits) # loss_relation_stl = None # set to None (for now) as it should be combined into loss_relation. Delete this variable if it's correct to do so. else: if self.use_balanced_norm: assert relation_probs_norm is not None if self.balanced_norm_train_gx: loss_gx = F.cross_entropy(relation_logits, rel_labels.long()) if self.balanced_norm_as_soft_label: # import pdb; pdb.set_trace() if self.balanced_norm_as_soft_label_sll: logprobs = F.log_softmax(relation_logits, dim=1)[range(relation_logits.shape[0]), rel_labels] loss_relation = -(labeling_prob.detach()[rel_labels] * logprobs).sum() / logprobs.shape[0] elif self.balanced_norm_as_soft_label_mll: loss_relation = softXEnt(relation_logits, labeling_prob.detach()) else: raise NotImplementedError elif self.pcpl_center_loss: raise NotImplementedError loss_relation = F.nll_loss(torch.log(relation_probs_norm), rel_labels.long()) elif self.bal_reweight_only: # use estimated labeling probabilitiy for reweighting assert labeling_prob is not None loss_relation = F.cross_entropy(relation_logits, rel_labels.long(), weight=(1 / labeling_prob)) elif self.balnorm_reweight_inv_label_prob: assert labeling_prob is not None if self.balanced_norm_normalized_probs: weight = labeling_prob loss_relation = weighted_mse_loss(relation_probs_norm[range(relation_probs_norm.shape[0]), rel_labels], torch.ones(len(rel_labels)).cuda(), weight=weight[rel_labels]) else: loss_relation = F.nll_loss(torch.log(relation_probs_norm), rel_labels.long(), weight=labeling_prob.detach()) elif self.balnorm_reweight_label_prob: assert labeling_prob is not None if self.balanced_norm_normalized_probs: # import pdb; pdb.set_trace() weight = 1 / labeling_prob loss_relation = weighted_mse_loss(relation_probs_norm[range(relation_probs_norm.shape[0]), rel_labels], torch.ones(len(rel_labels)).cuda(), weight=weight[rel_labels]) else: # if self.balanced_norm_learnable: # use label prob as weight with gradient # weight = 1 / labeling_prob # else: with torch.no_grad(): weight = 1 / labeling_prob.detach() loss_relation = F.nll_loss(torch.log(relation_probs_norm), rel_labels.long(), weight=weight) elif self.balnorm_reweight_label_distrib: # estimate label distribution assert labeling_prob is not None with torch.no_grad(): f = self.norm_predicate_counts q = np.array(labeling_prob[1:].detach().cpu()) a = np.array([[qq * (ff - 1) if i == j else qq * ff for i, qq in enumerate(q)] for j, ff in enumerate(f)]) a[-1] = np.array([1] * len(a)) b = np.array([0] * 49 + [1]) p = scipy.optimize.lsq_linear(a, b, (0, float('inf'))) p = p.x # counts = np.array([0.0] * 51) # counts[0] = 3.0 # counts[1:] = p weight = torch.tensor([math.sqrt(1/p[idx - 1]) if idx != 0 else math.sqrt(1/(3*sum(p))) for idx in range(len(p) + 1)]).cuda() loss_relation = F.nll_loss(torch.log(relation_probs_norm), rel_labels.long(), weight=weight) else: # use balanced norm if self.balanced_norm_normalized_probs or self.balanced_norm_fixed_mseloss: # import pdb; pdb.set_trace() loss_relation = weighted_mse_loss(relation_probs_norm[range(relation_probs_norm.shape[0]), rel_labels], torch.ones(len(rel_labels)).cuda()) else: if self.train_avg_belief_to_one: nonzero_idxs = torch.nonzero(rel_labels) # n_unique_cls = len(torch.unique(rel_labels[nonzero_idxs])) unique_class_to_example_idxs = {obj_cls:[] for obj_cls in torch.unique(rel_labels[nonzero_idxs]).detach().cpu().numpy().tolist()} for i in range(relation_probs_norm.shape[0]): obj_cls = rel_labels[i].detach().cpu().item() if obj_cls != 0: unique_class_to_example_idxs[obj_cls].append(i) avg_beliefs = [] for obj_cls in sorted(unique_class_to_example_idxs.keys()): avg_belief = relation_probs_norm[unique_class_to_example_idxs[obj_cls]].sum(0) / len(relation_probs_norm[unique_class_to_example_idxs[obj_cls]]) avg_beliefs.append(avg_belief.view(1, -1)) avg_beliefs = torch.cat(avg_beliefs) # import pdb; pdb.set_trace() loss_avg_belief = F.nll_loss(torch.log(avg_beliefs), torch.unique(rel_labels[nonzero_idxs])) if self.train_avg_belief_to_one_only_this_loss: loss_relation = loss_avg_belief loss_avg_belief = None if not self.train_avg_belief_to_one_only_this_loss: if self.balanced_norm_use_bceloss: import pdb; pdb.set_trace() loss_relation = self.loss_relation_balanced_norm(relation_probs_norm[range(relation_probs_norm.shape[0]), rel_labels], torch.ones(len(rel_labels)).cuda()) elif self.balanced_norm_use_mseloss: # loss_relation = self.loss_relation_balanced_norm(relation_probs_norm[range(relation_probs_norm.shape[0]), rel_labels], torch.ones(len(rel_labels)).cuda()) import pdb; pdb.set_trace() loss_relation = self.loss_relation_balanced_norm(relation_probs_norm, rel_labels) else: loss_relation = self.loss_relation_balanced_norm(torch.log(relation_probs_norm), rel_labels.long()) elif self.balanced_norm_fixed and self.balanced_norm_as_soft_label: if self.balanced_norm_as_soft_label_sll: logprobs = F.log_softmax(relation_logits, dim=1)[range(relation_logits.shape[0]), rel_labels] loss_relation = -(labeling_prob.detach()[rel_labels] * logprobs).sum() / logprobs.shape[0] elif self.balanced_norm_as_soft_label_mll: loss_relation = softXEnt(relation_logits, labeling_prob.detach()) else: raise NotImplementedError elif self.bg_soft_loss: raise NotImplementedError hard_loss_fg_relation = self.criterion_loss(relation_logits[:len(fg_labels)], rel_labels.long()[:len(fg_labels)]) soft_loss_bg_relation = soft_cross_entropy_loss(relation_logits[len(fg_labels):], rel_labels.float()[len(fg_labels):, None], reduction='mean') # Note that this section is not implemented for self.pcpl_center_loss loss_relation = hard_loss_fg_relation + soft_loss_bg_relation elif self.pcpl_center_loss: loss_relation = F.cross_entropy(relation_logits, rel_labels.long(), weight=weight) elif self.unbiased_training == 'reweight_vrd': raise NotImplementedError else: if self.multi_label_training: if self.c_hmc_train: # import pdb; pdb.set_trace() assert isinstance(self.criterion_loss_relation, nn.BCELoss) # sanity check relation_logits = torch.sigmoid(relation_logits) constr_output = get_constr_out(relation_logits, matrix_of_ancestor) train_output = rel_labels * relation_logits.double() train_output = get_constr_out(train_output, matrix_of_ancestor) relation_logits = (1 - rel_labels) * constr_output.double() + rel_labels * train_output else: assert isinstance(self.criterion_loss_relation, nn.BCEWithLogitsLoss) # sanity check if self.multi_label_norm_loss: rel_labels = rel_labels / rel_labels.sum(dim=1).view(-1, 1) loss_relation = self.criterion_loss_relation(relation_logits, rel_labels.double()).float() # if self.multi_label_norm_loss: # if rel_labels.sum() < rel_labels.shape[0]: # import pdb; pdb.set_trace() # nonzero_idxs = rel_labels.sum(dim=1).nonzero() # rel_labels = rel_labels[nonzero_idxs].squeeze() # loss_relation = loss_relation[nonzero_idxs].squeeze() # # elif rel_labels.sum() > rel_labels.shape[0]: # import pdb; pdb.set_trace() # loss_relation = (loss_relation / rel_labels.sum(dim=1).view(-1, 1)).sum() / loss_relation.shape[0] else: loss_relation = self.criterion_loss_relation(relation_logits, rel_labels.long()) loss_relation_stl = None # The following code is used to calcaulate sampled attribute loss if self.attri_on: refine_att_logits = cat(refine_att_logits, dim=0) fg_attributes = cat([proposal.get_field("attributes") for proposal in proposals], dim=0) attribute_targets, fg_attri_idx = self.generate_attributes_target(fg_attributes) if float(fg_attri_idx.sum()) > 0: # have at least one bbox got fg attributes refine_att_logits = refine_att_logits[fg_attri_idx > 0] attribute_targets = attribute_targets[fg_attri_idx > 0] else: refine_att_logits = refine_att_logits[0].view(1, -1) attribute_targets = attribute_targets[0].view(1, -1) loss_refine_att = self.attribute_loss(refine_att_logits, attribute_targets, fg_bg_sample=self.attribute_sampling, bg_fg_ratio=self.attribute_bgfg_ratio) return loss_relation, (loss_refine_obj, loss_refine_att), loss_relation_stl, loss_center, loss_gx, loss_avg_belief, rel_features, rel_targets else: return loss_relation, loss_refine_obj, loss_relation_stl, loss_center, loss_gx, loss_avg_belief, rel_features, rel_targets def generate_attributes_target(self, attributes): """ from list of attribute indexs to [1,0,1,0,0,1] form """ assert self.max_num_attri == attributes.shape[1] device = attributes.device num_obj = attributes.shape[0] fg_attri_idx = (attributes.sum(-1) > 0).long() attribute_targets = torch.zeros((num_obj, self.num_attri_cat), device=device).float() for idx in torch.nonzero(fg_attri_idx).squeeze(1).tolist(): for k in range(self.max_num_attri): att_id = int(attributes[idx, k]) if att_id == 0: break else: attribute_targets[idx, att_id] = 1 return attribute_targets, fg_attri_idx def attribute_loss(self, logits, labels, fg_bg_sample=True, bg_fg_ratio=3): if fg_bg_sample: loss_matrix = F.binary_cross_entropy_with_logits(logits, labels, reduction='none').view(-1) fg_loss = loss_matrix[labels.view(-1) > 0] bg_loss = loss_matrix[labels.view(-1) <= 0] num_fg = fg_loss.shape[0] # if there is no fg, add at least one bg num_bg = max(int(num_fg * bg_fg_ratio), 1) perm = torch.randperm(bg_loss.shape[0], device=bg_loss.device)[:num_bg] bg_loss = bg_loss[perm] return torch.cat([fg_loss, bg_loss], dim=0).mean() else: attri_loss = F.binary_cross_entropy_with_logits(logits, labels) attri_loss = attri_loss * self.num_attri_cat / 20.0 return attri_loss class FocalLoss(nn.Module): def __init__(self, gamma=0, alpha=None, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average def forward(self, input, target): target = target.view(-1) logpt = F.log_softmax(input) logpt = logpt.index_select(-1, target).diag() logpt = logpt.view(-1) pt = logpt.exp() logpt = logpt * self.alpha * (target > 0).float() + logpt * (1 - self.alpha) * (target <= 0).float() loss = -1 * (1-pt)**self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum() def make_roi_relation_loss_evaluator(cfg): loss_evaluator = RelationLossComputation( cfg.MODEL.ATTRIBUTE_ON, cfg.MODEL.ROI_ATTRIBUTE_HEAD.NUM_ATTRIBUTES, cfg.MODEL.ROI_ATTRIBUTE_HEAD.MAX_ATTRIBUTES, cfg.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_SAMPLE, cfg.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_RATIO, cfg.MODEL.ROI_RELATION_HEAD.LABEL_SMOOTHING_LOSS, cfg.MODEL.ROI_RELATION_HEAD.REL_PROP, cfg.MODEL.STL_TRAIN, cfg.MODEL.STL_TRAIN_LOSS_ALPHA, cfg.MODEL.BG_SOFT_LOSS, cfg.MODEL.BALANCED_NORM, cfg.MODEL.PCPL_CENTER_LOSS, cfg.MODEL.CENTER_LOSS_LAMBDA, cfg.MODEL.ROI_RELATION_HEAD.NUM_CLASSES, cfg.MODEL.ROI_RELATION_HEAD.CONTEXT_POOLING_DIM, cfg.TRAIN.UNBIASED_TRAINING, cfg.TRAIN.PREDICATE_WEIGHTS_PATH, cfg.TRAIN.WEIGHT_FACTOR, cfg.MODEL.ROI_RELATION_HEAD.USE_GT_BOX, cfg.TRAIN.BALNORM_REWEIGHT_LABEL_DISTRIB, cfg.TRAIN.BALNORM_REWEIGHT_LABEL_PROB, cfg.TRAIN.BALNORM_REWEIGHT_INV_LABEL_PROB, cfg.TRAIN.NORM_PREDICATE_COUNTS_PATH, cfg.TRAIN.BAL_REWEIGHT_ONLY, cfg.MODEL.BALANCED_NORM_TRAIN_GX, cfg.MODEL.BALANCED_NORM_LEARNABLE, cfg.MODEL.BALANCED_NORM_NORMALIZED_PROBS, cfg.MODEL.BALANCED_NORM_TEST_ONLY, cfg.MODEL.BALANCED_NORM_FIXED, cfg.MODEL.BALANCED_NORM_FIXED_MSELOSS, cfg.MODEL.BALANCED_NORM_AS_SOFT_LABEL, cfg.MODEL.BALANCED_NORM_AS_SOFT_LABEL_SLL, cfg.MODEL.BALANCED_NORM_AS_SOFT_LABEL_MLL, cfg.MODEL.TRAIN_AVG_BELIEF_TO_ONE, cfg.MODEL.TRAIN_AVG_BELIEF_TO_ONE_ONLY_THIS_LOSS, cfg.MODEL.BALANCED_NORM_USE_BCELOSS, cfg.MODEL.BALANCED_NORM_USE_MSELOSS, cfg.TRAIN.MULTI_LABEL_TRAINING, cfg.TRAIN.MULTI_LABEL_NORM_LOSS, cfg.HMC.C_HMC_TRAIN, cfg.DEBUG, ) return loss_evaluator
3726bbe2896a068f5be60d5d92e14539400d68c1
0623ec7befa8bf52ba2eba97502190ae8e2b40a5
/sargeparse/_parser/data.py
aaaa7abb9cba7ede6c80367872af999e59033d35
[ "Apache-2.0" ]
permissive
DiegoPomares/sargeparse
f235bb58d8e6f537b954b5b34cd5e6c5310e3e1d
32424cd1a87c8efba4a2e2c08540478bec9f63a2
refs/heads/master
2020-03-18T15:54:22.456121
2018-07-11T12:52:17
2018-07-11T12:52:17
134,936,150
1
1
Apache-2.0
2018-07-11T12:52:18
2018-05-26T06:37:44
Python
UTF-8
Python
false
false
5,966
py
import sys from collections import ChainMap import sargeparse.consts from sargeparse._parser.parser import Parser class ArgumentData(ChainMap): _default_precedence = ['cli', 'environment', 'configuration', 'defaults'] def __init__(self, parser: Parser, precedence=None): super().__init__() self._parser = parser self._config_data = {} self._data_sources = {} self.callbacks = [] for source in self._format_precedence_list(self._default_precedence): self._data_sources[source] = {} self._override = self._data_sources['override'] self.cli = self._data_sources['cli'] self.environment = self._data_sources['environment'] self.configuration = self._data_sources['configuration'] self.defaults = self._data_sources['defaults'] self._arg_default = self._data_sources['arg_default'] self.parser_data = {} self.set_precedence(precedence) def set_precedence(self, precedence): precedence = precedence or self._default_precedence difference = set(self._default_precedence).symmetric_difference(set(precedence)) if difference: msg = "Precedence must contain all and only these elements: {}" raise TypeError(msg.format(self._default_precedence)) precedence = self._format_precedence_list(precedence) self.maps = [self._data_sources[k] for k in precedence] def clear_all(self): for d in self._data_sources.values(): d.clear() def dispatch(self, *, obj=None): last_callback = len(self.callbacks) - 1 return_value = None for i, fn in enumerate(self.callbacks): parser_data = self.parser_data[fn.parser.parser_key()] last = (i == last_callback) ctx = Context( data=self, obj=obj, parser_data=parser_data, last=last, return_value=return_value, ) return_value = fn(ctx) if return_value == sargeparse.die: sys.exit(return_value.value) elif return_value == sargeparse.stop: return_value = return_value.value break return return_value @staticmethod def _format_precedence_list(precedence): return ['override'] + precedence + ['arg_default'] def _remove_unset_from_data_sources_cli(self): for k, v in list(self.cli.items()): if v == sargeparse.unset: self.cli.pop(k) def _move_defaults_from_data_sources_cli(self, parser=None): parser = parser or self._parser key = parser.parser_key() if key not in self.cli: return defaults = self.cli[key].get('defaults', {}) self.defaults.update(defaults) for subparser in parser.subparsers: self._move_defaults_from_data_sources_cli(subparser) def _parse_callbacks(self): self.callbacks = self._get_callbacks() def _get_callbacks(self, parser=None): parser = parser or self._parser callback_list = [] key = parser.parser_key() if key not in self.cli: return [] callback = self.cli[key].get('callback') if callback: callback_list.append(callback) for subparser in parser.subparsers: callback_list.extend( self._get_callbacks(subparser) ) return callback_list def _parse_envvars_and_defaults(self, parser=None): parser = parser or self._parser # No point in adding data from subcommands that did not run key = parser.parser_key() if key not in self.cli: return for argument in parser.arguments: dest = argument.dest envvar = argument.get_value_from_envvar(default=sargeparse.unset) if envvar != sargeparse.unset: self.environment[dest] = envvar default = argument.get_default_value(default=sargeparse.unset, apply_type=True) if default != sargeparse.unset: self.defaults[dest] = default self._arg_default[dest] = parser.argument_parser_kwargs['argument_default'] for subparser in parser.subparsers: self._parse_envvars_and_defaults(subparser) def _parse_config(self, config, parser=None): parser = parser or self._parser self._config_data = config # No point in adding data from subcommands that did not run key = parser.parser_key() if key not in self.cli: return for argument in parser.arguments: dest = argument.dest config_value = argument.get_value_from_config(config, default=sargeparse.unset) if config_value != sargeparse.unset: self.configuration[dest] = config_value self._arg_default[dest] = parser.argument_parser_kwargs['argument_default'] for subparser in parser.subparsers: self._parse_config(config, subparser) def _remove_parser_key_from_data_sources_cli(self, parser=None): parser = parser or self._parser key = parser.parser_key() if key not in self.cli: return self.cli.pop(key) for subparser in parser.subparsers: self._remove_parser_key_from_data_sources_cli(subparser) class Context: def __init__(self, **kwargs): self.data = kwargs.get('data') self.obj = kwargs.get('obj') self.parser = ParserData(**kwargs.get('parser_data')) self.last = kwargs.get('last') self.return_value = kwargs.get('return_value') class ParserData: def __init__(self, **parser_data): self.prog = parser_data['prog'] self.help = parser_data['help'] self.usage = parser_data['usage']
1f628490e35afe54b6975ea324fe54ff9696d96a
a46c3cb15f8e92ca909274c2361f2dee62bb4f8f
/rx/linq/takeWhile.py
a20593c3a97baf323688b4f3bfe24f96a245fb84
[ "MIT" ]
permissive
akuendig/RxPython
d58cbf359b613f88bc9d83b4fef394161e140725
3dd7228519fa2121e39f43d142fe64e73ac77b80
refs/heads/master
2020-05-07T08:30:33.839781
2013-04-02T13:05:06
2013-04-02T13:05:06
8,301,392
14
1
null
null
null
null
UTF-8
Python
false
false
1,290
py
from rx.observable import Producer import rx.linq.sink class TakeWhile(Producer): def __init__(self, source, predicate, withIndex): self.source = source self.predicate = predicate self.withIndex = withIndex def run(self, observer, cancel, setSink): sink = self.Sink(self, observer, cancel) setSink(sink) return self.source.subscribeSafe(sink) class Sink(rx.linq.sink.Sink): def __init__(self, parent, observer, cancel): super(TakeWhile.Sink, self).__init__(observer, cancel) self.parent = parent self.running = True self.index = -1 def onNext(self, value): if self.running: try: if self.parent.withIndex: self.index += 1 self.running = self.parent.predicate(value, self.index) else: self.running = self.parent.predicate(value) except Exception as e: self.observer.onError(e) self.dispose() return if self.running: self.observer.onNext(value) else: self.observer.onCompleted() self.dispose() def onError(self, exception): self.observer.onError(exception) self.dispose() def onCompleted(self): self.observer.onCompleted() self.dispose()
fc29850a9c25a51075b30b9f10dd800fad76832b
179af4c581daaa03995f6bd30c95a6583acee7e8
/KNN.py
85890b299ddd9781439cd5317773fa0366377516
[]
no_license
Harold1994/scikitlearnDemos
20b29df07125b82100498300e292ba7de87763ea
075cd8447b5dff59802ecda955f453ac6f78995e
refs/heads/master
2022-11-10T02:46:21.410865
2018-01-19T10:41:35
2018-01-19T10:41:35
118,110,608
2
0
null
2022-10-23T19:59:10
2018-01-19T10:18:22
Python
UTF-8
Python
false
false
273
py
from sklearn import neighbors import numpy as np knn = neighbors.KNeighborsClassifier() data = np.array([[3, 104], [2, 100], [1, 81], [101, 10], [99, 5], [98, 2]]) lables = np.array([1, 1, 1, 2, 2, 2]) knn.fit(data, lables.ravel()) print(knn.predict(np.array([[58, 9]])))
6a0dd13e2b196b94a54d161eb74dd636a1bd9537
a72cb4d00528fb3d2d47f99a1ccca1b8b9b41ff7
/scripts/archive/io_import_minecraft/slimes.py
a45e92a5e623d492a7c4866e361bbd0e65c419ce
[]
no_license
talocan/blenderpython
b05204881183ff901ec189916a3bcc1d3e9d3e20
056ac37e76a1b410696c9efe4fe0ea09fdc68c0e
refs/heads/master
2021-01-18T05:16:47.221786
2014-07-11T17:01:53
2014-07-11T17:01:53
21,749,332
1
0
null
null
null
null
UTF-8
Python
false
false
1,681
py
# Javarandom slime Python-version test harness. from . import javarandom rnd = javarandom.Random def isSlimeSpawn(worldSeed, xPos, zPos): rnd = javarandom.Random(worldSeed + jlong(xPos * xPos * 0x4c1906) + jlong(xPos * 0x5ac0db) + jlong(zPos * zPos) * 0x4307a7 + jlong(zPos * 0x5f24f) ^ 0x3ad8025f) return rnd.nextInt(10) == 0 #Totally crucial! def jlong(i): # Python and Java don't agree on how ints work. # Python 3 in particular treats everything as long. #The seed A term in the RNG was wrong, before... #This converts the unsigned generated int into a signed int if necessary. i = (i & 0xffffffff) #vital! if i & (1 << 31): i -= (1 << 32) return i if __name__ == '__main__': worldseed = 4784223057510287643 #Afarundria's seed. # for z in range(64): # for x in range(64): # isSlime = isSlimeSpawn(worldseed,x,z) # print("[%d,%d: %d]" % (x,z,isSlime), end="\r\n") # #write out all the seeds the above line of code would generate!! # for z in range(64): # for x in range(64): # seeda = jlong(x * x * 0x4c1906) # BASTARD OF A 2's COMPLEMENT! # seedb = jlong(x * 0x5ac0db) # seedc = jlong(z * z) * 0x4307a7 # seedd = jlong(z * 0x5f24f) ^ 0x3ad8025f # # seeder = (worldseed + seeda + seedb + seedc + seedd) # #The seed line is INCORRECT!! # # Here's the exact line of Java I'm trying to replicate: # # Random rnd = new Random(seed + (long) (xPosition * xPosition * 0x4c1906) + (long) (xPosition * 0x5ac0db) + (long) (zPosition * zPosition) * 0x4307a7L + (long) (zPosition * 0x5f24f) ^ 0x3ad8025f); # print("[%d,%d: %d] {%d,%d,%d,%d}" % (x,z,seeder,seeda,seedb,seedc,seedd), end="\r\n")
bf0fc700681e156ba1a5fcc7f7484c85354f59f1
a175e3f1cbb638bedc467bd408144209b5bc1ff9
/EJERCICIO6.py
3feba996cb015efffb2727992716239b44bf0939
[]
no_license
Jelowis/Deber-De-Estructura-de-Datos
ace306332e8ea987dfefe0b0cdf458af478f91db
9704c644527725b5d9d399699d841d4599f4cee8
refs/heads/main
2023-06-05T11:15:01.372313
2021-06-28T05:07:52
2021-06-28T05:07:52
380,911,822
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
#EJEMPLOS 1: # Linealizar las siguientes expresiones: # (no se olvide que linealizar significa escribir una expresión algebraica en una sola línea). a=1 b=2 x=(a/(a+b))/(a/(a-b)) print(x)
aef119967ff1e2102f99d42ccb8e2aedf28da1da
003d0e0b2cfe7179d149d035ed50daa4c5bb5c22
/LDWS_videofile.py
101bf414f1b2dfcdfe4ef1413cad751cfb29a94c
[]
no_license
dandancat123/LDWS-1
17a11d77ab731de3f65a72e9486b41afbdc8160d
2c34a1671cf4bb3aee2494118253151962b032b4
refs/heads/master
2020-06-01T05:54:37.024249
2016-11-01T16:47:44
2016-11-01T16:47:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,072
py
from __future__ import division import numpy as np import cv2 import math font = cv2.FONT_HERSHEY_SIMPLEX mp=7 cap = cv2.VideoCapture("F:/ab.mp4") while(cap.isOpened()): ret, frame = cap.read() frm1 = frame[120:238,1:425] gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #cv2.imshow('frame',gray) src2 = gray[120:238,1:425] src= cv2.medianBlur(src2,3) dst = cv2.Canny(src, 70, 250) lines = cv2.HoughLines(dst, 1, math.pi/180.0, 85, np.array([]), 0, 0) try : a,b,c = lines.shape except AttributeError : continue p1=np.array([]) #p2=np.array([]) #p3=np.array([[1,1]]) #p4=np.array([[1,1]]) #p5=np.array([[1,1]]) for i in range(a): rho = lines[i][0][0] theta = lines[i][0][1] a = math.cos(theta) b = math.sin(theta) x0, y0 = a*rho, b*rho pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) ) pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) ) if pt2[0]==pt1[0]: xi=pt2[0] elif pt2[1]==pt1[1]: xi=0 else : m=((pt2[1]-pt1[1])/(pt2[0]-pt1[0])) b=pt2[1]-m*pt2[0] x=((118-b)/m) xi=math.floor(x) #y=m*x+b if 0 < xi < 400: p1=np.append(p1,xi) #p2=np.append(p2,pt2[0]) #p3=np.vstack((p3,[pt1[0],pt1[1]])) #p4=np.vstack((p4,[pt2[0],pt2[1]])) #p5=np.vstack((p5,[x,y])) cv2.line(frm1, pt1, pt2, (0, 0, 255), 1, cv2.LINE_AA) p1=sorted(p1) if len(p1)!=0: m=np.mean(p1) else : m=0 print 'p1',p1 print 'mean',m if m!=0: if m > mp+17 : cv2.putText(frm1,'LEFT',(10,50), font, 2,(0,255,0),2,cv2.LINE_AA) mp=m elif m < mp-17 : cv2.putText(frm1,'RIGHT',(250,50), font, 2,(0,255,0),2,cv2.LINE_AA) mp=m #print 'p3',p3 #print 'p4',p4 #print 'p5',p5 cv2.imshow('frame',frm1) if cv2.waitKey(10) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
37f4f37f0f18dfbc2abbb9d59aa6f84967ff2d1b
86a334c6b0207703a741aedc6a5e429d409cf1d9
/main.py
e0b9f12fd8e91f364704d8e2d0c136c8559c597a
[]
no_license
fu2re/jati
acf9df450b190e68e87d7564a947b3ab7f93816e
fb39aab856b6bde47a361a68bbdf0088951c6a75
refs/heads/master
2022-12-02T19:04:41.433316
2020-08-16T22:11:02
2020-08-16T22:11:02
287,366,057
0
0
null
null
null
null
UTF-8
Python
false
false
675
py
import uvicorn from fastapi import FastAPI from wallet.conf import settings from wallet.models import db from wallet.views import router async def init_app(db_dsn=settings.DB_DSN): await db.set_bind(db_dsn, echo=settings.DB_ECHO, min_size=settings.DB_POOL_MIN_SIZE, max_size=settings.DB_POOL_MAX_SIZE, ssl=settings.DB_SSL) app = FastAPI(title='jati', version='0.1.0', on_startup=[init_app]) app.include_router(router) if __name__ == "__main__": uvicorn.run( app, host="0.0.0.0", port=8000, log_level="info" )
01680197696a2a264518b8624edee037385aefd9
ca8c42c0a9b16876182bacfc3a3914ed64d1d74c
/database.py
68a51d55f32066bddd770b640371f81796500421
[]
no_license
Mamdad0u/audio_fingerprint
3e2b08cf8bcb007b3fbf245777b2f75b5cf02cf6
307e5d8f53afa99d9f2d4eba4e45d0d483e3ffcf
refs/heads/main
2023-05-15T04:16:49.194575
2021-05-29T18:18:07
2021-05-29T18:18:07
372,041,078
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
# -*- coding: utf-8 -*- """ Created on Sun Apr 25 22:12:29 2021 @author: duwat """ import os import warnings warnings.filterwarnings("ignore") from functions import get_filename os.chdir('C:/Users/duwat/Desktop/projet shazam/Album') # Song database song_database = get_filename('C:/Users/duwat/Desktop/projet shazam/Album') print('Les musiques contenues dans la database sont :') index = 1 for i in song_database: print(index, '- ' + i[:-4]) index = index+1
91e47148a1cf204a5219897181db5e063e3b713f
c539bef50942b7b52b8f4184c39d2f948788a851
/polls/tests.py
971c42925ebff7e44e6cf8412999051dc9f206d9
[ "MIT" ]
permissive
TulioAbreu/django-tutorial
16cbbaf95f35017fe59ecca8ff1b98a77bebe664
3097ec5f57dccbb84737e6b847c2ebb07cb4a076
refs/heads/master
2020-05-25T23:03:10.830763
2019-08-09T15:12:36
2019-08-09T15:12:36
188,027,332
0
0
null
null
null
null
UTF-8
Python
false
false
4,967
py
import datetime from django.test import TestCase from django.utils import timezone from django.urls import reverse from .models import Question class QuestionModelTests(TestCase): def test_was_published_recently_with_future_question(self): """ was_]published_recently() returns Fasle for questions pub_date is in the future """ time = timezone.now() + datetime.timedelta(days=30) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): """ was_published_recently() returns False for questions whose pub_date is older than 1 day. """ time = timezone.now() - datetime.timedelta(days=1, seconds=1) old_question = Question(pub_date=time) self.assertIs(old_question.was_published_recently(), False) def test_was_published_recently_with_recent_question(self): """ was_published_recently() returns True for questions whose pub_date is within the last day. """ time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59) recent_question = Question(pub_date=time) self.assertIs(recent_question.was_published_recently(), True) def create_question(question_text, days): """ Create a question with the given `question_text` and published the given number of `days` offset to now (negative for questions published in the past, positive for questions that have yet to be published). """ time = timezone.now() + datetime.timedelta(days=days) return Question.objects.create(question_text=question_text, pub_date=time) class QuestionIndexViewTests(TestCase): def test_no_questions(self): """ If no questions exist, an appropriate message is displayed. """ response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_past_question(self): """ Questions with a pub_date in the past are displayed on the index page. """ create_question(question_text="Past question.", days=-30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_future_question(self): """ Questions with a pub_date in the future aren't displayed on the index page. """ create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_future_question_and_past_question(self): """ Even if both past and future questions exist, only past questions are displayed. """ create_question(question_text="Past question.", days=-30) create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_two_past_questions(self): """ The questions index page may display multiple questions. """ create_question(question_text="Past question 1.", days=-30) create_question(question_text="Past question 2.", days=-5) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question 2.>', '<Question: Past question 1.>'] ) class QuestionDetailViewTests(TestCase): def test_future_question(self): """ The detail view of a question with a pub_Date in the future returns a 404 not found. """ future_question = create_question(question_text='Future question.', days=5) url = reverse('polls:detail', args=(future_question.id,)) response = self.client.get(url) self.assertEqual(response.status_code, 404) def test_past_question(self): """ The detail view of a question with a pub_date in the past displays the question's text. """ past_question = create_question(question_text='Past Question.', days=-5) url = reverse('polls:detail', args=(past_question.id,)) response = self.client.get(url) self.assertContains(response, past_question.question_text)
4695057503386c922f4e47a3787760213de5fdfd
0571addf2ed1adc415755dfcccd480674d57e6d3
/miye/scheduler/views.py
be351663b816fc51a18b9506fa5945be14b05f27
[]
no_license
aya0321/CGU-IST303-F21-Prj-Team-2
632f092f6810c945f8a4945c02f1f6ebe1d3b55d
e14cddb2defc3f6b3968fa0a1b3f10a461e3e144
refs/heads/main
2023-08-23T17:57:10.831347
2021-10-12T21:53:15
2021-10-12T21:53:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,166
py
from django.shortcuts import render from django.http import HttpResponseRedirect from db.models import DBService, DBGuest, DBAppointment from .forms import ScheduleForm, is_time_between from datetime import datetime, timedelta def timeslot_is_free(service, date, time): print(service) print(type(date)) d = datetime.strptime(date, '%Y-%m-%d') print(type(d)) print(time) t = datetime.strptime(time, '%H:%M:%S').time() print(type(time)) print('\n\n') try: appointments = DBAppointment.objects.filter(date=d) except Exception as e: print(e) print('found no appointments on that date') appointments = None if appointments is None: return True try: for appointment in appointments: """ [(0, "Mineral Bath: 90 mins – $2.50 per minute"), (1, "Mineral Bath: 60 mins – $2.50 per minute"), (2, "Swedish Massage: 30 mins – $3.00 per minute"), (3, "Swedish Massage: 60 mins – $3.00 per minute"), (4, "Deep Tissue: 30 mins – $3.00 per minute"), (5, "Deep Tissue: 60 mins – $3.00 per minute"), (6, "Shiatsu: 30 mins – $3.00 per minute"), (7, "Shiatsu: 60 mins – $3.00 per minute")] """ # is it the same service? if service == appointment.service: duration = [ 90, 60, 30, 60, 30, 60, 30, 60 ] end_time = appointment.start_time + timedelta(minutes = duration[service]) if is_time_between(appointment.start_time, end_time, t): continue else: return False except TypeError as te: print(te) print('only one appointment in the system, try again') return True # Create your views here. def index(request): # services = DBService.objects.all() if request.method == 'POST': # create a form instance and populate it with data from the request: form = ScheduleForm(request.POST) # check whether it's valid: if form.is_valid(): if timeslot_is_free(form['service'].value(), form['date'].value(), form['time'].value()): DBAppointment.objects.create(service=form['service'].value(), guest=form['spa_number'].value(), date=form['date'].value(), start_time=form['time'].value()) return HttpResponseRedirect('/calendar') else: return HttpResponseRedirect('/') # if a GET (or any other method) we'll create a blank form else: form = ScheduleForm() services = DBService.objects.all() return render(request, 'scheduler/schedule.html', {'form': form, 'services': services}) def calendar(request): appointments = DBAppointment.objects.order_by('date', 'start_time') return render(request, 'scheduler/calendar.html', {'appointments': appointments})
ca2e0e976863587691cfa5559255799fc9795b57
becf4b22082a64d7bf24a89e87d90e64d677031c
/python/single_number.py
ff6b4ce9cac327fc74eb022e9569f907ce8565ee
[]
no_license
imalihaider/Hacktoberfest-2K21
ad2213ae30b87ab8a3159957e8c3541ca4a07cc4
ae43b06d8bce6154a7044b983bc8e7e87b58da2f
refs/heads/main
2023-09-05T07:22:53.956085
2021-10-21T07:07:28
2021-10-21T07:07:28
420,880,613
1
0
null
null
null
null
UTF-8
Python
false
false
494
py
''' Given an array of integers. All numbers occur twice except one number which occurs once, find the number array = [1,2,3,1,2] Required no = 2*(sum_of_array_without_duplicates) - (sum_of_array) = 2*(1 + 2 + 3) - (1 + 2 + 3 + 1 + 2) = 2*6 - 9 = 12 - 9 = 3 (required answer) ''' numbers=list(map(int,input().split())) sum_without_duplicates=sum(set(numbers)) total_sum=sum(numbers) print(2*sum_without_duplicates-total_sum)
71a4a495fab5597619eb47e0a72699d37a5edef9
2caf42defe0906f05850a145623f8bb82cab367d
/sendEmailAuto.py
2b5d9cd15a62ce8d5bf8f5c943f465185909328f
[]
no_license
reshinto/useless_apps
8cfc77bf4f1794400300161a27a3d051394c25c2
6d99062529abac3801d8a9a55c4e68d30ccec163
refs/heads/master
2023-05-28T12:27:45.816230
2023-05-14T07:42:27
2023-05-14T07:42:27
150,591,844
0
1
null
null
null
null
UTF-8
Python
false
false
1,360
py
import os import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart # Use to upload attachment file from email.mime.base import MIMEBase from email import encoders import getpass # Login email username = os.environ.get("my_email") password = os.environ.get("my_email_password") # Use the following if you want to type your password before sending # password = getpass.getpass("Password: ") # Multiple emails: ["[email protected]", "[email protected]"] to_email = ["[email protected]"] cc_email = [] bcc_email = ["[email protected]"] subject = "MY SUBJECT" msg = MIMEMultipart() msg["From"] = username msg["To"] = ', '.join(to_email) msg["cc"] = ', '.join(cc_email) #msg["bcc"] = ', '.join(bcc_email) msg["Subject"] = subject emails = to_email + cc_email + bcc_email body = """\ Hi there """ msg.attach(MIMEText(body, "plain")) # Upload file: remove """ """ to attach file """ filename = "test.py" attachment = open(filename, "rb") part = MIMEBase("application", "octet-stream") part.set_payload((attachment).read()) encoders.encode_base64(part) part.add_header("Content-Disposition", "attachment; filename= " + filename) msg.attach(part) """ text = msg.as_string() server = smtplib.SMTP("smtp.gmail.com",587) server.starttls() server.login(username, password) server.sendmail(username,emails,text) server.quit()
a34857b1aa94ef4f72a28754feaa3cc06474bdb9
c7b0b67d3cd539fbf2cb8c9adc1a317d9d86d556
/Whatsinit.py
612119dbadb035da08b82fb66f36c962c80613ec
[]
no_license
priyank-py/GettingStarted
9636bebb66b14c109fa2e8015ddd62033e0d1627
df07a53f84e854a5762aef816de8eaa5aed1cb0b
refs/heads/master
2020-05-23T22:37:11.949297
2019-12-18T10:52:44
2019-12-18T10:52:44
186,977,603
0
2
null
null
null
null
UTF-8
Python
false
false
236
py
class Enemy: def __init__(self,x): self.energy = x def current_Energy(self): print(self.energy) enemy766 = Enemy(5) Boss_Enemy = Enemy(30) enemy766.current_Energy() Boss_Enemy.current_Energy()
4f2c1e2d7006bde5e44311d534e7d4b03ec4d140
dc8a337ea1d8a285577d33e5cfd4dbbe846ee1a0
/src/main/scala/algorithms/SquareRootDecomposition.py
1498f98cbdd0e034b612eafc6b08897437581df8
[]
no_license
joestalker1/leetcode
8a5cdda17abd33c3eef859732f75d7bec77a9d0e
ae392ddbc7eb56cb814b9e9715043c98a89a6314
refs/heads/master
2023-04-13T22:09:54.407864
2023-04-09T19:22:54
2023-04-09T19:22:54
131,803,943
0
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
import math class Solution: def __init__(self, input): self.vals = [0] * len(input) n = len(input) self.block_size = math.ceil(math.sqrt(n)) self.blocks = [0] * self.block_size block_index = -1 for i in range(n): self.vals[i] = input[i] if i % self.block_size == 0: block_index += 1 self.blocks[block_index] += input[i] def update(self, i, value): blk = i // self.block_size self.blocks[blk] += value - self.vals[i] self.vals[i] = value def query(self, left, right): cur_sum = 0 while left < right and left % self.block_size != 0 and left != 0: cur_sum += self.vals[left] left += 1 while left + self.block_size - 1 <= right: cur_sum += self.blocks[left // self.block_size] left += self.block_size while left <= right: cur_sum += self.vals[left] left += 1 return cur_sum sol = Solution([3, 2, 4, 5, 1, 1, 5, 3, 7]) print(sol.query(0, 2)) sol.update(1, 6) print(sol.query(0, 2))
7cb9bef4e826d7138ea79550d55b8f18d82095a0
0220dbfb5cac8dea227e72c9d2f652d21bd6bc7b
/TopoShortcutBind.py
9323c91dd86275b567f4a90ed9353106969f5c0f
[]
no_license
fornof/BlenderAddons
ca9ca6b691ae5a0c0558f93c54423cc7703e0402
e1fe966501b8613b306a55f23ce141c38059ece1
refs/heads/master
2022-03-06T03:35:02.151917
2022-02-20T20:48:33
2022-02-20T20:48:33
19,930,422
20
8
null
null
null
null
UTF-8
Python
false
false
3,307
py
bl_info = { "name": "ShortcutTool", "author": "Robert Fornof", "version": (0, 5), "blender": (2, 70, 0), "location": "Check the shortcuts for dynamic topology ", "description": "CTRL +SPACE toggles subdiv edges and collapse edges, hold down Q in sculpt to do the same", "warning": "", "wiki_url": "", "category": "Object"} import bpy from bpy.app.handlers import persistent def Press(self,context): c = 'COLLAPSE' context.tool_settings.sculpt.detail_refine_method = c print("Pressed") def Release(self,context): s = 'SUBDIVIDE' c = 'COLLAPSE' context.tool_settings.sculpt.detail_refine_method = s print("Released") def Toggle(self,context): s = 'SUBDIVIDE' c = 'COLLAPSE' context = bpy.context.scene currentSetting = context.tool_settings.sculpt.detail_refine_method if currentSetting == s: context.tool_settings.sculpt.detail_refine_method = c elif currentSetting == c: context.tool_settings.sculpt.detail_refine_method = s else: context.tool_settings.sculpt.detail_refine_method = s #default class TopoShortcutOn(bpy.types.Operator): """This Operator Add a Object to Another with Boolean Operations""" bl_idname = "object.collapseon" bl_label = "Topo Subdiv Toggle" @classmethod def poll(cls, context): return context.active_object is not None def execute(self, context): print("Toggled") Release(self,context) return {'FINISHED'} class TopoShortcutToggle(bpy.types.Operator): """This Operator Add a Object to Another with Boolean Operations""" bl_idname = "object.collapseon" bl_label = "Topo Subdiv Toggle" @classmethod def poll(cls, context): return context.active_object is not None def execute(self, context): print("Toggled") Toggle(self,context) return {'FINISHED'} class TopoShortcutOff(bpy.types.Operator): """This Operator Add a Object to Another with Boolean Operations""" bl_idname = "object.collapseon" bl_label = "Topo Subdiv Toggle" @classmethod def poll(cls, context): return context.active_object is not None def execute(self, context): print("Toggled") Release(self,context) return {'FINISHED'} def setTool(input): context.tool_settings.sculpt.detail_refine_method = input #------------------- REGISTER ------------------------------ addon_keymaps = [] def register(): bpy.utils.register_class(TopoShortcutOff) bpy.utils.register_class(TopoShortcutOn) bpy.utils.register_class(TopoShortcutToggle) km = bpy.context.window_manager.keyconfigs.active.keymaps['Sculpt'] kmi = km.keymap_items.new(TopoShortcutOff.bl_idname, 'Q', 'PRESS', ctrl = False) kmi = km.keymap_items.new(TopoShortcutOn.bl_idname, 'Q', 'RELEASE', ctrl = False) kmi = km.keymap_items.new(TopoShortcutToggle.bl_idname, 'SPACE', 'RELEASE', ctrl = True) def unregister(): bpy.utils.unregister_class(TopoShortcutOff) bpy.utils.unregister_class(TopoShortcutOn) for km, kmi in addon_keymaps: km.keymap_items.remove(kmi) addon_keymaps.clear() if __name__ == "__main__": register()
c4b4e250e50b767a813c6fec52c7e8ccbe76717d
be5caab0d5497959b1317b1acd07d91bddb93df8
/Fig6
9cfc6db442bc96e1d35ee1a385d01d11cbaf3278
[]
no_license
wp436507/pm25_o3_paper
b60975885cd738d0d10d0d5407d2b7c56198031c
abd3354134678930b49d3ecabe660197cc3170c3
refs/heads/main
2023-07-12T23:44:59.523433
2021-08-15T07:47:59
2021-08-15T07:47:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,804
#!/usr/bin/env python3 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from itertools import compress from scipy import stats import matplotlib as mpl mpl.rc('font',family='Arial') # load MODIS burned area data bas = np.load('baf_sums.npy') # these arrays of PM2.5 and O3 gridded data for the western U.S. can be # downloaded from Zenodo.org (see README for details) # dimension 1: 19 latitudes from 31-49N # dimension 2: 24 longitudes from 126-103W # dimension 3: 7300 days from 1 OCT 2000 - 30 SEP 2020 pm_west = np.load('pm_west.npy') # average daily concentrations oz_west = np.load('oz_west.npy') # MDA8 concentrations pm_west = np.reshape(pm_west,(456,7300)) # vectorize lats & lons oz_west = np.reshape(oz_west,(456,7300)) # vectorize lats & lons year_start = np.arange(0,7300,365) all_matches = np.empty([456,3660]) all_matches1 = np.empty([456,7300]) for j in range(456): cell = pm_west[j,:] if np.nanmax(cell) > 0: seas_days = np.empty(365) fulldays = [] fulldays1 = [] for k in range(20): step = year_start[k] sea = np.arange(step,step+365,1) pm2 = pm_west[j,sea] oz2 = oz_west[j,sea] y3 = np.nanpercentile(pm2,90) x3 = np.where(pm2 > y3)[0] y4 = np.nanpercentile(oz2,90) x4 = np.where(oz2 > y4)[0] match2 = [x4[i] in x3 for i in range(len(x4))] day_idx2 = list(compress(x4,match2)) for m in range(365): if m not in day_idx2: seas_days[m] = 0 else: seas_days[m] = 1 seas_days1 = seas_days[182:] fulldays.extend(list(seas_days1)) fulldays1.extend(list(seas_days)) all_matches[j,:] = fulldays all_matches1[j,:] = fulldays1 else: all_matches[j,:] = ['nan'] all_matches1[j,:] = ['nan'] match_trunc = all_matches1[:,822:] all_mats = np.nansum(match_trunc,axis=0) all_mats = (all_mats/375)*100 maxs = np.flipud(np.argsort(all_mats)) # this code extracts co-occurrence extent peaks from non-overlapping # 15-day windows between 2003-2020 day_accum = [] for k in range(6478): day = maxs[k] window = list(np.arange(day-7,day+8,1)) i, j = window[0], window[-1] res = any(ele >= i and ele <= j for ele in day_accum) if res == 0: day_accum.append(day) day_accum = np.array(day_accum) dates = pd.date_range(start='1/1/2003', end='9/30/2020') dates = dates[~((dates.month == 2) & (dates.day == 29))] df = pd.DataFrame({'idx':np.arange(0,6478,1),'val':all_mats,'date':dates}) df = df[df['idx'].isin(day_accum)].reset_index() df['day'] = df.date.dt.date df1 = df.sort_values(by=['val'], ascending=False).reset_index() df1['month'] = df1.date.dt.month df1 = df1[~(df1.month == 10)] df1 = df1[~(df1.month == 11)] df1 = df1[~(df1.month == 12)] df1 = df1[~(df1.month == 1)] df1 = df1[~(df1.month == 2)] df1 = df1[~(df1.month == 3)] df1 = df1[~(df1.month == 4)] df1 = df1[~(df1.month == 5)] df1 = df1[~(df1.month == 6)] df1.drop(columns='level_0',inplace=True) df1 = df1.reset_index() # load standardized anomalies of Tmax tmax_z = np.load('tmax_z_20032020.npy') tvec = np.reshape(tmax_z,(6336,6570)) tvec = tvec[:,:6478] # this code extracts the daily percentage of the study area experiencing # positive Tmax anomalies exceeding 1 standard deviation counts = [] for k in range(6478): day = tvec[:,k] count = np.size(np.where(day >= 1)) # '1' is for one standard deviation counts.append((count/6336)*100) counts = np.array(counts) lag_length = 7 windows = np.empty([21,lag_length+1]) # 21 independent widespread co-occurrence extent peaks windows_tmax = np.empty([21,lag_length+1]) vals = [] for k in range(21): row = list(df1.values[k,:]) idx = row[2] vals.append(np.round(row[3],1)) windows[k,:] = bas[idx-lag_length:idx+1] windows_tmax[k,:] = counts[idx-lag_length:idx+1] avgs = np.nanmax(windows,axis=1) max_t = np.nanmax(windows_tmax,axis=1) stats.pearsonr(avgs,vals) # calculate Pearson correlation between burned area and co-occurrence extent stats.pearsonr(max_t,vals) # calculate Pearson correlation between +Tmax extent and co-occurrence extent # plot A fig = plt.figure(figsize=(8,6)) ax = sns.regplot(avgs, vals, ci=None, scatter_kws={'s':75}, color='tab:brown') plt.scatter(avgs[:5],vals[:5],color='y') # color the 5 most widespread days differently ax.set_xlabel('Max daily burned area (Sq. Km.)',size=16) ax.set_ylabel('Co-occurrence extent - % of western US',size=16) ax.set_yticks(np.arange(25,75,5)) ax.set_xticks(np.arange(0,1201,100)) ax.tick_params(labelsize=13) plt.title('(A) Burned area vs. co-occurrence spatial extent', size=17) plt.grid(linewidth=0.5) #ax.axhline(y=25, linestyle='--', color='k') l = plt.legend(['$\it{r}$ = 0.66, $\it{p}$ = 0.001)'], loc='upper left', fontsize=15) for text in l.get_texts(): text.set_color('tab:brown') plt.savefig('fig6a.png',dpi=600) # plot B fig = plt.figure(figsize=(8,6)) ax = sns.regplot(max_t, vals, ci=None, scatter_kws={'s':75}, color='orangered') plt.scatter(max_t[:5],vals[:5],color='y') # color the 5 most widespread days differently ax.set_xlabel('% of western US with +Tmax anomalies >1$\sigma$',size=16) ax.set_ylabel('Co-occurrence extent - % of western US',size=16) ax.set_yticks(np.arange(25,75,5)) ax.set_xticks(np.arange(0,101,5)) ax.tick_params(labelsize=13) plt.title('(B) Tmax anomalies vs. co-occurrence spatial extent', size=17) plt.grid(linewidth=0.5) l = plt.legend(['$\it{r}$ = 0.49, $\it{p}$ = 0.02)'], loc='upper left', fontsize=15) for text in l.get_texts(): text.set_color('orangered') plt.savefig('fig6b.png',dpi=600)
add5de3393cb2a28c1c2499cc0c0db892962f913
00643559c0f925f0740e47ae488456b2102141fe
/Algorithm/Parameters/ES.py
c9c88613b976b557353898b5ff428806ed6aad34
[]
no_license
yutarou-1204/LabTask
9741aedf8d6772bbe341ec99c5e8cd572f7db72c
4f1611f1134871c48e8e85f7a650231147cab0f4
refs/heads/main
2023-03-07T03:09:02.448594
2021-02-18T10:37:04
2021-02-18T10:37:04
339,763,909
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
u_lim = 1 l_lim = -1 u_mulim = u_lim/10 l_mulim = l_lim/10 children = 10 parent = 5 evalmax = 1000 G = int(evalmax/children)
617dbdcc4efae43da961d888f341f5f78d04f314
94900642790ec9dd62be461ae45cab0a71fb8c91
/tfrrs/tfrrs/middlewares.py
0cfd583c90e6f355a130e83e56fc218c7f3e2dc2
[]
no_license
Megts/progression-visualizer
0d1f9867ecc2d043a65f468f14660180a5eb00a3
9793515285c42a4903141993333c934f91595c3f
refs/heads/main
2023-04-14T02:27:45.963735
2021-04-27T00:43:17
2021-04-27T00:43:17
332,961,511
0
1
null
null
null
null
UTF-8
Python
false
false
3,646
py
# Define here the models for your spider middleware # # See documentation in: # https://docs.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals # useful for handling different item types with a single interface from itemadapter import is_item, ItemAdapter class TfrrsSpiderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, or item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Request or item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class TfrrsDownloaderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
c2e00a821d6e92bdfbb98ecf090636164be3ef88
cbde10e19b4ed995f1649d3c05cf58245c75ac2c
/map.py
e91ab41a0e5faa0a03f8c5f9bc07320989d36074
[]
no_license
jkereako/algorithms
06b07d6f477f427ea9b9e89d95c4f00080233d71
a2e57510517e903d79887a7077cdfd1f6ff418a1
refs/heads/master
2021-01-14T10:30:44.738235
2017-07-19T14:38:29
2017-07-19T14:38:29
45,010,915
2
0
null
2015-10-27T02:13:11
2015-10-27T02:13:11
null
UTF-8
Python
false
false
1,563
py
class HashTable(object): def __init__(self, size): self.size = size self.slots = [[] for x in range(self.size)] self.data = [None for x in range(self.size)] def put(self, key, data): hash_val = self.hash_function(key, self.size) if self.slots[hash_val] is None: self.slots[hash_val] = key self.data[hash_val] = data else: next_slot = self.rehash(hash_val) while not self.slots[next_slot] and self.slots[next_slot] != key: next_slot = self.rehash(next_slot) if self.slots[next_slot] is None: self.slots[next_slot] = key self.data[next_slot] = data else: self.data[next_slot] = data # replace the current value def get(self, key): start = self.hash_function(key, self.size) data = None stop = False found = False position = start while self.slots[position] != None and not found and not stop: if self.slots[position] == key: found = True data = self.data[position] else: position = self.rehash(position) if position is start: stop = True return data def hash_function(self, key): return key % self.size def rehash(self, old_hash): return (old_hash+1) % self.size def __getitem__(self, key): return self.get(key) def __setitem__(self, key, data): self.put(key, data)
b86825732337e5053f01756b9ae092a2c3d1b124
b1e85e5d848fffa13a6055c78ada579317e7ad6a
/tests/test_results.py
66e7c1f140df23b495c20f50b2919274fae59e29
[]
no_license
yjs1210/cardcounting
4560fe440a77388e5856c5382eefd10eca21eb92
b2a4d91db02c04c127fd7ed7373e7cff6a0c7b21
refs/heads/master
2023-02-19T20:48:23.775204
2021-01-21T07:23:24
2021-01-21T07:23:24
328,041,225
0
0
null
null
null
null
UTF-8
Python
false
false
20,801
py
import pytest import os import sys ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") sys.path.append(os.path.join(ROOT, "src")) from simulator import hard_policy, soft_policy, split_policy, betting_policy from blackjack import ( Actions, Cards, Deck, Player, resolve_player_action, Hand, PlayerResultTypes, resolve_dealer_action, DealerResultTypes, play, ) import numpy as np def test_player_final_hands(): # lots of splits, doesn't split more than 4 deck = Deck() player = Player( bankroll=np.inf, hard_policy=hard_policy, soft_policy=soft_policy, split_policy=split_policy, betting_policy=betting_policy, ) player.increment_num_hands() deck.set_cards( [ Cards.TEN, Cards.QUEEN, Cards.KING, Cards.NINE, Cards.EIGHT, Cards.ACE, Cards.TEN, Cards.FOUR, Cards.EIGHT, Cards.NINE, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TWO, ] ) output = resolve_player_action( Hand([Cards.TWO, Cards.TWO]), Cards.SEVEN, player, deck ) assert output == [ (PlayerResultTypes.LIVE, 21), (PlayerResultTypes.DOUBLE, 14), (PlayerResultTypes.LIVE, 21), (PlayerResultTypes.DOUBLE, 21), ] player.next_round() player.increment_num_hands() deck.set_cards( [ Cards.FIVE, Cards.FIVE, Cards.TWO, Cards.KING, Cards.ACE, Cards.ACE, Cards.ACE, Cards.ACE, ] ) output = resolve_player_action( Hand([Cards.ACE, Cards.ACE]), Cards.SEVEN, player, deck ) assert output == [ (PlayerResultTypes.LIVE, 12), (PlayerResultTypes.LIVE, 12), (PlayerResultTypes.LIVE, 21), (PlayerResultTypes.LIVE, 13), ] player.next_round() player.increment_num_hands() output = resolve_player_action( Hand([Cards.ACE, Cards.JACK]), Cards.SEVEN, player, deck ) assert output == [(PlayerResultTypes.BLACKJACK, 21)] player.next_round() player.increment_num_hands() deck.set_cards( [ Cards.FIVE, Cards.FIVE, Cards.TWO, Cards.KING, Cards.ACE, Cards.ACE, Cards.ACE, Cards.ACE, ] ) output = resolve_player_action( Hand([Cards.ACE, Cards.SIX]), Cards.SIX, player, deck ) assert output == [(PlayerResultTypes.DOUBLE, 18)] player.next_round() player.increment_num_hands() output = resolve_player_action( Hand([Cards.JACK, Cards.SIX]), Cards.ACE, player, deck ) assert output == [(PlayerResultTypes.SURRENDER, 16)] player.next_round() player.increment_num_hands() output = resolve_player_action( Hand([Cards.JACK, Cards.SEVEN]), Cards.ACE, player, deck ) assert output == [(PlayerResultTypes.SURRENDER, 17)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.TEN, Cards.THREE]) output = resolve_player_action( Hand([Cards.ACE, Cards.TWO]), Cards.TWO, player, deck ) assert output == [(PlayerResultTypes.LIVE, 16)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.SIX, Cards.TEN, Cards.THREE]) output = resolve_player_action( Hand([Cards.ACE, Cards.TWO]), Cards.SEVEN, player, deck ) assert output == [(PlayerResultTypes.BUST, 22)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.THREE]) output = resolve_player_action( Hand([Cards.ACE, Cards.SEVEN]), Cards.TWO, player, deck ) assert output == [(PlayerResultTypes.DOUBLE, 21)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.FIVE]) output = resolve_player_action( Hand([Cards.ACE, Cards.SEVEN]), Cards.TWO, player, deck ) assert output == [(PlayerResultTypes.DOUBLE, 13)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.FIVE]) output = resolve_player_action( Hand([Cards.ACE, Cards.EIGHT]), Cards.TWO, player, deck ) assert output == [(PlayerResultTypes.LIVE, 19)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.FIVE]) output = resolve_player_action( Hand([Cards.NINE, Cards.NINE]), Cards.SEVEN, player, deck ) assert output == [(PlayerResultTypes.LIVE, 18)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.FIVE]) output = resolve_player_action( Hand([Cards.EIGHT, Cards.EIGHT]), Cards.ACE, player, deck ) assert output == [(PlayerResultTypes.SURRENDER, 16)] player.next_round() player.increment_num_hands() deck.set_cards([Cards.FIVE]) output = resolve_player_action( Hand([Cards.TEN, Cards.TEN]), Cards.ACE, player, deck ) assert output == [(PlayerResultTypes.LIVE, 20)] def test_dealer_final_hands(): deck = Deck() deck.set_cards( [ Cards.SIX, Cards.FOUR, Cards.ACE, Cards.THREE, Cards.TEN, Cards.TWO, Cards.TWO, Cards.FOUR, Cards.TWO, Cards.TWO, Cards.THREE, Cards.TEN, Cards.FIVE, Cards.TEN, ] ) assert resolve_dealer_action(Hand([Cards.ACE, Cards.JACK]), deck) == ( DealerResultTypes.BLACKJACK, 21, ) assert resolve_dealer_action(Hand([Cards.ACE, Cards.SIX]), deck) == ( DealerResultTypes.LIVE, 17, ) assert resolve_dealer_action(Hand([Cards.TEN, Cards.SIX]), deck) == ( DealerResultTypes.LIVE, 21, ) assert resolve_dealer_action(Hand([Cards.TEN, Cards.TWO]), deck) == ( DealerResultTypes.BUST, 22, ) assert resolve_dealer_action(Hand([Cards.FIVE, Cards.THREE]), deck) == ( DealerResultTypes.LIVE, 19, ) assert resolve_dealer_action(Hand([Cards.ACE, Cards.ACE]), deck) == ( DealerResultTypes.LIVE, 19, ) assert resolve_dealer_action(Hand([Cards.TWO, Cards.FOUR]), deck) == ( DealerResultTypes.LIVE, 21, ) assert resolve_dealer_action(Hand([Cards.TEN, Cards.SIX]), deck) == ( DealerResultTypes.BUST, 22, ) def test_play(): player = Player( bankroll=100, hard_policy=hard_policy, soft_policy=soft_policy, split_policy=split_policy, betting_policy=betting_policy, ) deck = Deck(99) # blackjacks hands_1 = [ Cards.ACE, Cards.JACK, Cards.TWO, Cards.FOUR, ] # player black jack dealer no blackjack hands_2 = [ Cards.ACE, Cards.JACK, Cards.ACE, Cards.JACK, ] # player black jack dealer blackjack hands_3 = [ Cards.FOUR, Cards.TWO, Cards.ACE, Cards.JACK, ] # player no black jack dealer blackjack # hits hands_4 = [ Cards.TEN, Cards.EIGHT, Cards.TWO, Cards.TEN, Cards.TEN, ] # Dealer shows T, has another T, Player hits with 10 to get to 20, push hands_5 = [ Cards.TEN, Cards.TEN, Cards.EIGHT, Cards.TWO, Cards.TWO, Cards.TEN, ] # Dealer shows T, has a Two, Player hits with 10 to get to 20, dealer busts to 22 hands_6 = [ Cards.SEVEN, Cards.EIGHT, Cards.TWO, Cards.TEN, Cards.TEN, ] # Dealer shows T, has a another T, Player hits with 10 to get to 17, stands and lose hands_7 = [Cards.SEVEN, Cards.EIGHT, Cards.TEN, Cards.TEN] # Surrender 15 hands_8 = [ Cards.TEN, Cards.THREE, Cards.TEN, Cards.TWO, Cards.JACK, Cards.TWO, ] # Dealer Shows two, player has 12, player hits and stands at 15, dealer hits and busts at 22 hands_9 = [ Cards.FIVE, Cards.THREE, Cards.TEN, Cards.TWO, Cards.JACK, Cards.TWO, ] # Dealer Shows two, player has 12, player hits and stands at 15, dealer hits and wins busts at 17 # player stands hands_10 = [ Cards.FIVE, Cards.THREE, Cards.TEN, Cards.THREE, Cards.JACK, Cards.TWO, ] # Dealer Shows two, player has 13 and stands, dealer wins with 20 hands_11 = [ Cards.TEN, Cards.SEVEN, Cards.JACK, Cards.JACK, ] # Player has 17 stands and loses hands_12 = [ Cards.TEN, Cards.TEN, Cards.JACK, Cards.NINE, ] # Player has 20 stands and wins # regular surredners hands_13 = [ Cards.FIVE, Cards.TEN, Cards.JACK, Cards.TEN, ] # Player has 15 surrenders to 10 and loses hands_14 = [ Cards.FIVE, Cards.TEN, Cards.NINE, Cards.ACE, ] # Player has 15 surrenders to 11 and loses hands_15 = [ Cards.SIX, Cards.TEN, Cards.JACK, Cards.NINE, ] # Player has 16 surrenders to 9 and loses hands_16 = [ Cards.SIX, Cards.TEN, Cards.JACK, Cards.KING, ] # Player has 16 surrenders to 10 and loses hands_17 = [ Cards.SIX, Cards.TEN, Cards.SEVEN, Cards.ACE, ] # Player has 16 surrenders to A and loses hands_18 = [ Cards.SEVEN, Cards.TEN, Cards.SEVEN, Cards.ACE, ] # Player has 17 surrenders to A and loses hands_19 = [ Cards.FIVE, Cards.TEN, Cards.JACK, Cards.ACE, ] # Player has opportunity to surrender but blackjack overrules and dealer wins # regular splits, max 4 hands_20 = [ Cards.SEVEN, Cards.TEN, Cards.JACK, Cards.TEN, Cards.EIGHT, Cards.SEVEN, Cards.ACE, Cards.EIGHT, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TWO, Cards.TEN, Cards.SEVEN, ] # split twos 4 times. DOuble the first, Win with 21, Second to 9 does not double. Hits to 17 to push, Third bust at 22, Fourth stays at 19 to win. hands_21 = [ Cards.TEN, Cards.TEN, Cards.FIVE, Cards.ACE, Cards.ACE, Cards.SEVEN, Cards.FOUR, Cards.FOUR, Cards.FOUR, Cards.TWO, Cards.SIX, ] # Split 4 three times, doubles to 12 to lose, Doubles to 20 to win, Stays at 14 to lose hands_22 = [ Cards.EIGHT, Cards.THREE, Cards.TWO, Cards.TEN, Cards.ACE, Cards.ACE, Cards.ACE, Cards.ACE, Cards.NINE, Cards.ACE, ] # Split Aces 4 times, Win first, lose all three others # soft hands hands_23 = [ Cards.SIX, Cards.THREE, Cards.TWO, Cards.ACE, Cards.TEN, Cards.SIX, ] # Doubles Ace and wins to a dealer bust hands_24 = [ Cards.FIVE, Cards.TEN, Cards.TWO, Cards.ACE, Cards.TEN, Cards.SIX, ] # Doubles Ace to 13 and and loses to dealer 21 hands_25 = [ Cards.ACE, Cards.SEVEN, Cards.ACE, Cards.SEVEN, Cards.TEN, ] # Hits soft 18 vs ten and wins with 18 to 17 hands_26 = [ Cards.ACE, Cards.SEVEN, Cards.ACE, Cards.TEN, Cards.TEN, ] # Hits soft 18 vs ten and loses with 18 to 20 hands_27 = [ Cards.FOUR, Cards.SIX, Cards.ACE, Cards.TEN, Cards.TEN, ] # Hits soft 17 and stays at 21 and wins hands_28 = [ Cards.NINE, Cards.NINE, Cards.SIX, Cards.ACE, Cards.TEN, Cards.TEN, ] # Hits soft 17 and busts hands_29 = [ Cards.SEVEN, Cards.THREE, Cards.FOUR, Cards.TWO, Cards.ACE, Cards.TEN, Cards.THREE, ] # Hits soft 13, gets to soft 17 vs 3, can't double and push at 20 hands_30 = [ Cards.TEN, Cards.FIVE, Cards.SEVEN, Cards.ACE, Cards.TEN, Cards.TWO, ] # Doubles 18 vs 2 wins to bust # hits many cards into doubles, doesn't double and wins deck.set_cards( deck.get_cards() + hands_30 + hands_29 + hands_28 + hands_27 + hands_26 + hands_25 + hands_24 + hands_23 + hands_22 + hands_21 + hands_20 + hands_19 + hands_18 + hands_17 + hands_16 + hands_15 + hands_14 + hands_13 + hands_12 + hands_11 + hands_10 + hands_9 + hands_8 + hands_7 + hands_6 + hands_5 + hands_4 + hands_3 + hands_2 + hands_1 ) # test blackjacks plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1 * 1.5) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1 * 1.5) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (0.5) # test regular hits plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (0.5) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1 * 1.5) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1 * 0.5) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 # test regular stands plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 99 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 98 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 99 # test regular surrenders plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 98.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 98 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 97.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 97 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 96.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 96 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 95 # test regular splits plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (95 + 2 + 0 - 1 + 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (97 - 2 + 2 - 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (96 + 1 - 3) # test soft hands plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (94 + 2) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (96 - 2) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (94 + 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (95 - 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (94 + 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (95 - 1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (94) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == (94 + 2) def test_play_set2(): player = Player( bankroll=100, hard_policy=hard_policy, soft_policy=soft_policy, split_policy=split_policy, betting_policy=betting_policy, ) deck = Deck(99) hands_1 = [Cards.TEN, Cards.FIVE, Cards.SEVEN, Cards.ACE, Cards.TEN, Cards.TWO] # test stand with dupl;icate hands hands_1 = [Cards.NINE, Cards.NINE, Cards.TEN, Cards.SEVEN] hands_2 = [Cards.NINE, Cards.NINE, Cards.NINE, Cards.ACE] hands_3 = [Cards.NINE, Cards.NINE, Cards.TEN, Cards.QUEEN] # test hits with duplicate hands hands_4 = [Cards.TEN, Cards.SEVEN, Cards.TWO, Cards.TWO, Cards.TEN, Cards.QUEEN] hands_5 = [Cards.TEN, Cards.FOUR, Cards.FOUR, Cards.TEN, Cards.QUEEN] # test surredern with 8,8 hands_6 = [Cards.EIGHT, Cards.EIGHT, Cards.NINE, Cards.ACE] # test softs hits into soft 16-18 but does not double hands_7 = [ Cards.SEVEN, Cards.FIVE, Cards.TWO, Cards.ACE, Cards.NINE, Cards.TWO, ] # becomes, soft 18, stands since you can't double with 3 cards, push hands_8 = [ Cards.EIGHT, Cards.SIX, Cards.FOUR, Cards.TWO, Cards.ACE, Cards.NINE, Cards.THREE, ] # becomes, hard 13, stands and loses hands_9 = [ Cards.NINE, Cards.NINE, Cards.FIVE, Cards.FOUR, Cards.TWO, Cards.ACE, Cards.NINE, Cards.THREE, ] # becomes, hard 12 hits, makes 21 push # test bunch of weird surredner hit surredner stand,... etc rules hands_10 = [ Cards.TEN, Cards.EIGHT, Cards.FOUR, Cards.FOUR, Cards.NINE, Cards.ACE, ] # does not split 44, hits into 16, but doesn't surrender, busts. hands_11 = [Cards.TEN, Cards.SEVEN, Cards.NINE, Cards.ACE] # surrender 17 hands_12 = [ Cards.TEN, Cards.SEVEN, Cards.TEN, Cards.ACE, ] # dealer BJ can't surrender hands_13 = [ Cards.FIVE, Cards.TEN, Cards.TWO, Cards.NINE, Cards.ACE, ] # hits into surrender can't surrender, stands deck.set_cards( deck.get_cards() + hands_13 + hands_12 + hands_11 + hands_10 + hands_9 + hands_8 + hands_7 + hands_6 + hands_5 + hands_4 + hands_3 + hands_2 + hands_1 ) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 + (1) plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 101 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 99 + 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 100 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 99 - 0.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 98.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 98.5 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 97.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 97.5 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 96.5 - 0.5 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 96 - 1 plays = play(player, deck=deck, wager=1) player.next_round() assert player.get_bankroll() == 95 - 1 print("yo?")
3e056accc07c2b9d8e4f074fc52a8ccc0a071755
fd01e75f6e5cb4544484bfba48cb307f0e712ab0
/LC/146_반복제어문3_형성평가7.py
e8d259ca02d84750622cc7ee9c13665704da2b1a
[]
no_license
hybae430/Jungol
2b30aae434f6cc54f2b03e5aa9e8a5d98dc7f170
a11dae5e6043f37fc9802ba317159f528f92b9f7
refs/heads/master
2023-03-24T09:57:53.905035
2021-03-20T09:16:48
2021-03-20T09:16:48
328,375,869
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
n = int(input()) num, alpha = 0, 0 for i in range(n): for x in range(alpha, alpha + n): print(chr(65 + x), end=" ") for x in range(num, num + alpha): print(x, end=" ") alpha += n num += 1 print()
31fd48687601609d446b72e929f41c3b200399a2
8ffc7ed2767142b67a2c16a6d664ebbe4c8fa901
/ersdtggserttye.py
1f11bb3d79623fbb574647ccc9142e2add460ac7
[]
no_license
RexDigitail/codeEge
cad9dbce67b96cf4642a4eadd90cf1a01c45be9a
77cb0891ea6dadf3c76194e0d6789699932e1d56
refs/heads/main
2023-08-21T07:23:50.588496
2021-10-16T09:12:32
2021-10-16T09:12:32
412,766,603
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
k=0 l=0 s=0 m=0 for i in range(120115000,120200000+1): for j in range(1,int(i**0.5)+1): if int(i**0.5)**2==i: m=1 if (i%j)==0: l+=2 if l-m>=k: k=l s=i l=0 m=0 print(k,s)
6448a838678049b588dad784fe27300469ce5752
bccfce9c293481a85569da8559eadeb0ed3ae062
/GO/src/alphaBetaThreaded.py
0edd50ae5a225e543476d73374b6be694ff23d42
[ "MIT" ]
permissive
aliissaoui/Developping-Go-Agents-in-Python
55d1ea20f7df9729fc6c796b9494cd22bc1d52ad
7c06374b96f94103eddf9ad3cdfc3ca0086badbe
refs/heads/main
2023-05-26T00:39:25.289877
2021-05-08T04:55:01
2021-05-08T04:55:01
315,443,906
0
0
null
2021-05-08T04:55:01
2020-11-23T21:22:02
HTML
UTF-8
Python
false
false
3,855
py
import time, os import eval import alphaBeta import operator import concurrent.futures from copy import deepcopy as cp import multiprocessing, threading class AlphaBetaThreaded(): def __init__(self, color): self._mycolor = color self._maxscore = 100000 self._processes = [] self._eval = eval.Eval(color) def keywithmaxval(self, d): v=list(d.values()) k=list(d.keys()) return k[v.index(max(v))] ########################### THREADED ############################@@ def AlphaBetaCoupThreaded(self, b, depth): """ First level of MinMax search with Alpha Beta Pruning""" if b.is_game_over() or depth == 0: return None moves = b.generate_legal_moves() n = len(moves) manager = multiprocessing.Manager() results = manager.dict() start_time = time.time() processes = [None] * n boards = [None] * n self._nodes = 0 v, coup = None, None for i in range(n): b.push(moves[i]) d = cp(b) processes[i] = multiprocessing.Process(target=self.AlphaBetaThreaded, args=(d, depth - 1, -self._maxscore, self._maxscore, results, i, depth-1)) b.pop() self._processes = processes [process.start() for process in processes] [process.join() for process in processes] results = dict(results) i = self.keywithmaxval(results) coup, v = moves[int(i)], results[i] end_time = time.time() print("processes time=", end_time - start_time) print("processes hit: ", coup, ", of value: ", v) return (coup, v) def BetaAlphaThreaded(self, b, depth, alpha, beta, results, i, depth_init): self._nodes += 1 """ MaxMin with Alpha beta pruning""" if b.is_game_over(): res = b.result() if res == "1-0": r = - ((-1)**self._mycolor) * self._maxscore elif res == "0-1": r = ((-1)**self._mycolor) * self._maxscore else: r = 0 return r if depth == 0: e = self._eval.evaluate(b) return e v = None for m in b.generate_legal_moves(): b.push(m) ret = self.AlphaBetaThreaded(b, depth - 1, alpha, beta, results, i, depth_init) b.pop() if v is None or ret > v: v = ret if alpha < v: alpha = v if alpha >= beta: return beta return alpha def AlphaBetaThreaded(self, b, depth, alpha, beta, results, i, depth_init): self._nodes += 1 """ MinMax with Alpha beta pruning""" if b.is_game_over(): res = b.result() if res == "1-0": r = - ((-1)**self._mycolor) * self._maxscore elif res == "0-1": r = ((-1)**self._mycolor) * self._maxscore else: r = 0 if (depth == depth_init): results[i] = r return r if depth == 0: e = self._eval.evaluate(b) if (depth == depth_init): results[i] = e return e v = None for move in b.generate_legal_moves(): b.push(move) ret = self.BetaAlphaThreaded(b, depth-1, alpha, beta, results, i, depth_init) b.pop() if v is None or ret < v: v = ret if beta > v: beta = v if alpha >= beta: if (depth == depth_init): results[str(i)] = alpha return alpha if (depth == depth_init): results[str(i)] = beta return beta
170f6cc0fae64722db202a4f1c45c41de525235a
bda0259b6400e2c394f9d1a85e1b648a54fc88dd
/shifthappens/tasks/imagenet_drawing/imagenet_drawing.py
b9a69b24312492ac021bc8c14a67cfa1309e5cc9
[ "CC-BY-4.0", "LicenseRef-scancode-proprietary-license", "Apache-2.0" ]
permissive
shift-happens-benchmark/icml-2022
f3bb118e73c06e1fa45cbba8590a7463c3cf7862
74b3cda69a2b90bcefed3848faca41a92ad0c9bf
refs/heads/main
2023-05-23T16:42:44.145930
2023-04-13T14:48:37
2023-04-13T14:48:37
422,538,065
39
24
Apache-2.0
2023-04-15T18:56:06
2021-10-29T10:46:18
Python
UTF-8
Python
false
false
3,196
py
"""Shift Happens task: ImageNet-Drawing""" import dataclasses import os import numpy as np import torchvision.datasets as tv_datasets import torchvision.transforms as tv_transforms import shifthappens.data.base as sh_data import shifthappens.data.torch as sh_data_torch import shifthappens.utils as sh_utils from shifthappens import benchmark as sh_benchmark from shifthappens.data.base import DataLoader from shifthappens.models import base as sh_models from shifthappens.models.base import PredictionTargets from shifthappens.tasks.base import Task from shifthappens.tasks.metrics import Metric from shifthappens.tasks.task_result import TaskResult @sh_benchmark.register_task( name="ImageNet-Drawing", relative_data_folder="imagenet_drawing", standalone=True ) @dataclasses.dataclass class ImageNetDrawing(Task): """ImageNet-Drawing Dataset. This task evaluates a model on ImageNet-Drawing. This dataset was formed by converting the images in the ImageNet validation set into colored pencil drawings using simple image processing. See the readme file for more information about how the dataset was constructed. The goal of this evaluation task is to measure the model's robustness to distribution shifts. """ resources = [ ( "imagenet-drawing.tar.gz", "https://zenodo.org/record/6801109/files/imagenet-drawing.tar.gz?download=1", "3fb1206b6e3190d0159e5dc01c0f97ab", ) ] def setup(self): """Setup ImageNet-Drawing""" dataset_folder = os.path.join(self.data_root, "imagenet-drawing") if not os.path.exists(dataset_folder): # download data for file_name, url, md5 in self.resources: sh_utils.download_and_extract_archive( url, dataset_folder, md5, file_name ) test_transform = tv_transforms.Compose( [ tv_transforms.ToTensor(), tv_transforms.Lambda(lambda x: x.permute(1, 2, 0)), ] ) self.ch_dataset = tv_datasets.ImageFolder( root=dataset_folder, transform=test_transform ) self.images_only_dataset = sh_data_torch.IndexedTorchDataset( sh_data_torch.ImagesOnlyTorchDataset(self.ch_dataset) ) def _prepare_dataloader(self) -> DataLoader: """Builds the DatasetLoader object.""" return sh_data.DataLoader(self.images_only_dataset, max_batch_size=None) def _evaluate(self, model: sh_models.Model) -> TaskResult: """Evaluates the model on the ImageNet-Drawing dataset.""" dataloader = self._prepare_dataloader() all_predicted_labels_list = [] for predictions in model.predict( dataloader, PredictionTargets(class_labels=True) ): all_predicted_labels_list.append(predictions.class_labels) all_predicted_labels = np.concatenate(all_predicted_labels_list, 0) accuracy = (all_predicted_labels == np.array(self.ch_dataset.targets)).mean() return TaskResult( accuracy=accuracy, summary_metrics={Metric.Robustness: "accuracy"} )
6cd826a9cb3114468f52d75933e8022deea099e1
6a659f809005d928147b1d45ae0e9d33cfdb9d91
/chapter9/example9.13.py
a8bc6597ef8b4883dcb2e5dc9d950e48718e84be
[]
no_license
uosphys/comphy2019
c347cc2cef67ad82360dffa18b6414cb8aa57a64
9a9df9185ee5b4178b7dbc465386aab54a4417fa
refs/heads/master
2022-02-17T05:51:53.853591
2019-09-11T02:46:38
2019-09-11T02:46:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
#!/usr/bin/python ## example9_13 import numpy as np from lamRange import * from inversePower3 import * N = 10 n = 100 d = np.ones(n)*2.0 c = np.ones(n-1)*(-1.0) r = lamRange(d,c,N) s = (r[N-1] + r[N])/2.0 lam,x = inversePower3(d,c,s) # Inverse power method print("Eigenvalue No.",N," =",lam) input("\nPress return to exit")
e492218b36b482d4a93daf0d1e6a28356f38bfff
439386f9097632d44d31d1f599df76ec2820d072
/常规项目/统一大厅常规checklist/1000/DFQP/src/cases/dfqp_broadcast_interface.py
db7b7a8e912baeac9d80fbdb92ce6c814f56b8d5
[]
no_license
YiFeng0755/testcase
33693f0940a6497aa40e2e51a0535c9eb6c12b29
edc19480c3e94cbcbf004aa9d20099ec6d1b9304
refs/heads/master
2020-04-28T04:34:28.232022
2019-03-11T11:13:25
2019-03-11T11:13:25
146,287,761
0
0
null
null
null
null
UTF-8
Python
false
false
15,250
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' 地方棋牌广播测试 ''' import time from runcenter.enums import EnumPriority,EnumStatus from runcenter.testcase import debug_run_all,TestCase from appiumcenter.luadriver import LuaDriver from uilib.personinfo_page import Personinfo_Page from uilib.hall_page import Hall_Page from uilib.sign_page import Sign_Page from uilib.game_page import Game_Page from uilib.setting_page import Setting_Page from uilib.broadcast_page import Broadcast_Page from common.common import Common from common import Interface as PHPInterface import test_datas from datacenter import dataprovider testdata=test_datas.logindata4 @dataprovider.DataDrive(testdata) class C222_DFQP_Broadcast(TestCase): ''' 游客账号点击广播输入文字发送,查看 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.start_step('删除登录文件') self.common.deletefile(self.luadriver) self.common.closedriver() self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入广播界面') self.broadcast_page.wait_element('广播').click() self.personinfo_page.screenshot('.png') self.start_step('点击立即绑定') self.broadcast_page.wait_element('发送').click() try: self.broadcast_page.wait_element('确定') print '点击立即绑定可以成功绑定手机' except: print '点击立即绑定没有出现绑定手机操作' def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C223_DFQP_Broadcast(TestCase): ''' 注册玩家等级不足15级,点击广播输入文字点击发送,查看 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 10 def pre_test(self): UserID = self.casedata.get('mid') print 'UserID:%s' % UserID PHPInterface.set_level(UserID, 1) #将玩家等级设为1级 dict = PHPInterface.get_user_info(UserID) # 获取玩家信息 coin = eval(dict).get('result', {'coin': None}).get('coin') # 获取当前银币值 AddMoney = 30000 - coin PHPInterface.add_money(UserID, AddMoney) # 将银币值设为30000 self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while(i<3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 self.start_step('进入广播界面') self.broadcast_page.wait_element('广播').click() self.broadcast_page.wait_element('输入文字').send_keys('11') self.start_step('点击发送') self.broadcast_page.wait_element('发送').click() self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C224_DFQP_Broadcast(TestCase): ''' 注册15级玩家银币不足23000,点击广播输入文字点击发送,查看 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 10 def pre_test(self): UserID = self.casedata.get('mid') print 'UserID:%s' % UserID PHPInterface.set_level(UserID,15) dict = PHPInterface.get_user_info(UserID) #获取玩家信息 coin = eval(dict).get('result',{'coin':None}).get('coin') #获取当前银币值 AddMoney = 10000 - coin PHPInterface.add_money(UserID,AddMoney) #将银币值设为10000 self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框')#登录过后也会出现弹框 time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 self.start_step('进入广播界面') self.broadcast_page.wait_element('广播').click() self.broadcast_page.wait_element('输入文字').send_keys('11') self.start_step('点击发送') self.broadcast_page.wait_element('发送').click() self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C225_DFQP_Broadcast(TestCase): ''' 注册15级玩家银币足够,点击广播输入文字点击发送,查看 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): UserID = self.casedata.get('mid') print 'UserID:%s' % UserID PHPInterface.set_level(UserID,16) dict = PHPInterface.get_user_info(UserID) #获取玩家信息 coin = eval(dict).get('result',{'coin':None}).get('coin') #获取当前银币值 AddMoney = 40000 - coin PHPInterface.add_money(UserID,AddMoney) #将银币值设为40000 self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 self.start_step('进入广播界面') self.broadcast_page.wait_element('广播').click() self.broadcast_page.wait_element('输入文字').send_keys('11') self.start_step('点击发送') self.broadcast_page.wait_element('发送').click() time.sleep(1) self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C226_DFQP_Broadcast(TestCase): ''' 无广播消息时,广播界面消息列表显示空白 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 10 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C227_DFQP_Broadcast(TestCase): ''' 发送两条广播,查看广播消息界面显示 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): global UserID UserID = self.casedata.get('mid') print 'UserID:%s' % UserID dict = PHPInterface.get_user_info(UserID) #获取玩家信息 coin = eval(dict).get('result',{'coin':None}).get('coin') #获取当前银币值 AddMoney = 300000 - coin PHPInterface.add_money(UserID,AddMoney) #将银币值设为300000 self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 PHPInterface.broadcast(UserID, content='地方棋牌测试专用1') time.sleep(1) PHPInterface.broadcast(2188068, content='地方棋牌测试专用2') time.sleep(1) self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C228_DFQP_Broadcast(TestCase): ''' 接收系统消息,查看广播消息界面显示 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 self.start_step('进入广播界面') self.broadcast_page.wait_element('广播').click() self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() @dataprovider.DataDrive(testdata) class C229_DFQP_Broadcast(TestCase): ''' 在大厅界面接收玩家广播消息 ''' owner = "YoungLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() self.hall_page = Hall_Page() self.sign_page = Sign_Page() self.game_page = Game_Page() self.setting_page = Setting_Page() self.personinfo_page = Personinfo_Page() self.broadcast_page = Broadcast_Page() self.common.closeactivitytest(self.luadriver) def run_test(self): self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step('进入头像界面') self.hall_page.wait_element('头像').click() self.common.loginuser(self.casedata['user'], self.casedata['password']) self.start_step('关闭弹框') time.sleep(4) i = 0 while (i < 3): try: self.sign_page.wait_element('关闭1').click() i += 1 except: i = 3 UserID = self.casedata.get('mid') print 'UserID:%s' % UserID PHPInterface.broadcast(UserID,content='地方棋牌测试专用') self.personinfo_page.screenshot('.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() if __name__ == '__main__': C222_DFQP_Exchange = C227_DFQP_Broadcast() C222_DFQP_Exchange.debug_run()
a8b593cd2c4e3a67ef96a8b426ea1bfd92635deb
7b8ea847579f409227cacf4cd073c4073b04d355
/opengl/oglc-env/Scripts/painter.py
d756d4b2b2682ea8749fa9f3f4a04af16ed3c350
[]
no_license
itaditya/Python
dcea29225826aceb3645194adede1ef5b947ecc4
5365dddf67d7456800fa58f8ae74dbff22b8fed2
refs/heads/master
2021-09-23T01:58:11.171768
2017-10-13T13:25:03
2017-10-13T13:25:03
50,483,903
5
2
null
2018-09-19T19:32:59
2016-01-27T05:27:42
Python
UTF-8
Python
false
false
2,140
py
#!f:\git\python\opengl\oglc-env\scripts\python.exe # # The Python Imaging Library # $Id$ # # this demo script illustrates pasting into an already displayed # photoimage. note that the current version of Tk updates the whole # image every time we paste, so to get decent performance, we split # the image into a set of tiles. # try: from tkinter import Tk, Canvas, NW except ImportError: from Tkinter import Tk, Canvas, NW from PIL import Image, ImageTk import sys # # painter widget class PaintCanvas(Canvas): def __init__(self, master, image): Canvas.__init__(self, master, width=image.size[0], height=image.size[1]) # fill the canvas self.tile = {} self.tilesize = tilesize = 32 xsize, ysize = image.size for x in range(0, xsize, tilesize): for y in range(0, ysize, tilesize): box = x, y, min(xsize, x+tilesize), min(ysize, y+tilesize) tile = ImageTk.PhotoImage(image.crop(box)) self.create_image(x, y, image=tile, anchor=NW) self.tile[(x, y)] = box, tile self.image = image self.bind("<B1-Motion>", self.paint) def paint(self, event): xy = event.x - 10, event.y - 10, event.x + 10, event.y + 10 im = self.image.crop(xy) # process the image in some fashion im = im.convert("L") self.image.paste(im, xy) self.repair(xy) def repair(self, box): # update canvas dx = box[0] % self.tilesize dy = box[1] % self.tilesize for x in range(box[0]-dx, box[2]+1, self.tilesize): for y in range(box[1]-dy, box[3]+1, self.tilesize): try: xy, tile = self.tile[(x, y)] tile.paste(self.image.crop(xy)) except KeyError: pass # outside the image self.update_idletasks() # # main if len(sys.argv) != 2: print("Usage: painter file") sys.exit(1) root = Tk() im = Image.open(sys.argv[1]) if im.mode != "RGB": im = im.convert("RGB") PaintCanvas(root, im).pack() root.mainloop()
0b3dba9d9ee6f60e6df93d5f6116dd2d5dc156ca
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_154/ch37_2019_04_04_19_28_17_473765.py
1a7f008bfb57c2c72d4a363abdbcf74e91a11b25
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
def eh_primo(n): if n < 2: return False if n == 2: return True for test in range(3, n, 2): if n % test == 0: return False return True def imprime_primos(n): contador = 0 x = 2 while contador != n: if eh_primo(x): print(x) contador = contador + 1 x = x + 1 return
c20e5205d3fe2387f6f9ce003eea43dc26e4d3d7
dd1e2ed53fec3dca0fa60042c04ad8cf6019ed89
/python/scope/scope_testing/scope_testing.py
b33903d20d27126dfc72f0ab05cdb4d003793fcb
[]
no_license
cloudavail/snippets
9be4ee285789ff3cff1a3a71e1f505a1b1697500
340f5c2735d6ec88b793f1eea91f2b026c24586e
refs/heads/main
2023-08-03T10:30:13.976947
2023-05-15T04:46:32
2023-05-15T04:46:32
12,838,293
22
24
null
2023-09-07T03:33:17
2013-09-15T00:40:49
JavaScript
UTF-8
Python
false
false
527
py
#!/usr/bin/env python # http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/ def test_function(): print 'test_function called' variable_in_local_scope = 'red' print variable_in_local_scope # the test_function() has access to variables in the global scope print variable_in_global_scope print locals() variable_in_global_scope = 'orange' # print globals returns only variable in global scope print 'printing globals' print globals() print 'calling test_function' test_function()
e0c121eaff7b28193f08ab0f7b1e5f48439594a0
13e7ed5e57d8706e234c8f6e8d880af977c61f77
/MarksPredict/settings.py
a8ee0bcdf99c6c81d2e57b62f2d67aad589c8020
[]
no_license
sitanshu-cse10/ML
57545cc1bb3dad71f7b061b759fc164686c728fd
21b58fee7700ec3fd9a4c52cac481be2ff1d9a27
refs/heads/master
2020-03-26T06:39:03.097462
2018-12-03T17:47:40
2018-12-03T17:47:40
144,614,770
0
1
null
null
null
null
UTF-8
Python
false
false
3,175
py
""" Django settings for MarksPredict project. Generated by 'django-admin startproject' using Django 2.0.6. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'boym1(u7=^&lx^^n=v-j#$m*6=1u+0$5zv5y2*f40ax@!z3xwy' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'predict', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'MarksPredict.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'MarksPredict.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS=(os.path.join(BASE_DIR,'static'),)
d6389ebffd00aba72cd3fe58ca5a95e6459ecebd
6d339503ad7a6602f5a0ca0a231f1f7d37b163b7
/1010.py
d766217490184989bb6ba8a66796edd1abecf473
[]
no_license
pcorrea2018/URI-Python-Answers
e1c64f5be747ce7acee01835ba6576b138592f9c
f7554891ffaefa3fc997e18bb1015dbd39aa74d5
refs/heads/master
2021-05-08T16:13:12.367528
2018-02-08T00:24:13
2018-02-08T00:24:13
120,146,787
0
1
null
null
null
null
UTF-8
Python
false
false
206
py
c1, n1, v1 = input().split() c1 = int(c1) n1 = int(n1) v1 = float(v1) c2, n2, v2 = input().split() c2 = int(c2) n2 = int(n2) v2 = float(v2) valor = n1*v1 + n2*v2 print ("VALOR A PAGAR: R$ %0.2F" %valor)
b49a2ac7599f06a223c5f41eb449d65e472d212e
7c43576414444e83afd7c98e6d7030c3a70f42de
/utils.py
1f71c85602edc0da441f459177e6437aa5769636
[]
no_license
M-Ashmitha/object_detection_ros
bea55fd5bb0559173cf77c8b9781189a114df7d1
7342e60b85f94ac64098450b24a9e736c40914e8
refs/heads/master
2022-12-04T01:49:25.016281
2020-08-25T01:47:27
2020-08-25T01:47:27
289,602,106
0
0
null
null
null
null
UTF-8
Python
false
false
2,835
py
#!/usr/bin/env python """ Helper functions and classes will be placed here. """ import os import tarfile import six.moves.urllib as urllib import numpy as np from cob_perception_msgs.msg import Detection, DetectionArray, Rect def download_model(\ download_base='http://download.tensorflow.org/models/object_detection/', \ model_name='ssd_mobilenet_v1_coco_11_06_2017'\ ): """ Downloads the detection model from tensorflow servers Args: download_base: base url where the object detection model is downloaded from model_name: name of the object detection model Returns: """ # add tar gz to the end of file name model_file = model_name + '.tar.gz' try: opener = urllib.request.URLopener() opener.retrieve(download_base + model_file, \ model_file) tar_file = tarfile.open(model_file) for f in tar_file.getmembers(): file_name = os.path.basename(f.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(f, os.getcwd()) except Exception as e: raise def create_detection_msg(im, output_dict, category_index, bridge): """ Creates the detection array message Args: im: (std_msgs_Image) incomming message output_dict (dictionary) output of object detection model category_index: dictionary of labels (like a lookup table) bridge (cv_bridge) : cv bridge object for converting Returns: msg (cob_perception_msgs/DetectionArray) The message to be sent """ boxes = output_dict["detection_boxes"] scores = output_dict["detection_scores"] classes = output_dict["detection_classes"] masks = None if 'detection_masks' in output_dict: masks = output_dict["detection_masks"] msg = DetectionArray() msg.header = im.header scores_above_threshold = np.where(scores > 0.5)[0] for s in scores_above_threshold: # Get the properties bb = boxes[s,:] sc = scores[s] cl = classes[s] # Create the detection message detection = Detection() detection.header = im.header detection.label = category_index[int(cl)]['name'] detection.id = cl detection.score = sc detection.detector = 'Tensorflow object detector' detection.mask.roi.x = int((im.width-1) * bb[1]) detection.mask.roi.y = int((im.height-1) * bb[0]) detection.mask.roi.width = int((im.width-1) * (bb[3]-bb[1])) detection.mask.roi.height = int((im.height-1) * (bb[2]-bb[0])) if 'detection_masks' in output_dict: detection.mask.mask = \ bridge.cv2_to_imgmsg(masks[s], "mono8") print (detection.mask.mask.width) msg.detections.append(detection) return msg
914c0aef556843e38fecd5dd326b2ed54cfbe735
8fa162cddb2046cb47f3a06c72743ed67685d03a
/dvc/command/add.py
ba6c81801556bf43258b3bc210869f6db662c0ef
[ "Apache-2.0" ]
permissive
franekp/dvc
be9c123f03b77daa39781bd7e62fa25b9fae449f
e380a4a8586da643bf4e0d2281b13aee0d5e5207
refs/heads/master
2020-03-19T18:35:47.416381
2018-06-10T14:35:49
2018-06-10T14:35:49
136,816,230
0
0
Apache-2.0
2018-06-10T14:32:53
2018-06-10T14:32:52
null
UTF-8
Python
false
false
374
py
from dvc.exceptions import DvcException from dvc.command.common.base import CmdBase class CmdAdd(CmdBase): def run(self): for target in self.args.targets: try: self.project.add(target) except DvcException as ex: self.project.logger.error('Failed to add {}', ex) return 1 return 0
cb98d77006dd907b02aff546f824e4bbad97363d
98bedb94c7e17653046a42379821709aec4c80f4
/MCQApp/migrations/0001_initial.py
25a4b866994edf066539202cdd37b44c02cc890a
[]
no_license
AndreiKud/StudentPlatform
e5d9f1998f9d32cf92b4300c52fcb095ce99ff6f
e24ce7231a37c12cffcf0d134c0a60f8e66a0b12
refs/heads/master
2023-07-29T06:39:59.882444
2021-09-08T10:24:44
2021-09-08T10:24:44
264,679,310
0
0
null
null
null
null
UTF-8
Python
false
false
1,939
py
# Generated by Django 2.2.12 on 2020-05-26 00:33 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('QuizApp', '0001_initial'), ] operations = [ migrations.CreateModel( name='MCQQuestion', fields=[ ('question_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='QuizApp.Question')), ('answer_order', models.CharField(blank=True, choices=[('content', 'Content'), ('none', 'None')], help_text='The order in which multichoice answer options are displayed to the user', max_length=30, null=True, verbose_name='Answer Order')), ], options={ 'verbose_name': 'Multiple Choice Question', 'verbose_name_plural': 'Multiple Choice Questions', }, bases=('QuizApp.question',), ), migrations.CreateModel( name='Answer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.CharField(help_text='Enter the answer text that you want displayed', max_length=1000, verbose_name='Content')), ('correct', models.BooleanField(default=False, help_text='Is this a correct answer?', verbose_name='Correct')), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='MCQApp.MCQQuestion', verbose_name='Question')), ], options={ 'verbose_name': 'Answer', 'verbose_name_plural': 'Answers', }, ), ]
30d4234bc4160c7c323924a2a58fef4490aba037
f3b233e5053e28fa95c549017bd75a30456eb50c
/mcl1_input/L67/67-27_MD_NVT_rerun/set_1ns_equi_1_m.py
903799fb96fc0319e908362b60c2504832808f05
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
import os dir = '/mnt/scratch/songlin3/run/mcl1/L67/MD_NVT_rerun/ti_one-step/67_27/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi_1_m.in' temp_pbs = filesdir + 'temp_1ns_equi_1_m.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi_1_m.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi_1_m.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../67-27_merged.prmtop .") os.system("cp ../0.5_equi_0_3.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
294c691170eaea3e20fc1c9b2b0ae1a41578fbf1
72ce57d187fb6a4730f1390e280b939ef8087f5d
/nuitka/codegen/OperationCodes.py
2541fe799fc5a097d966b790405863df757cf43b
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
tommyli3318/Nuitka
c5b7681b73d96cb8859210ed1a78f09149a23825
ae52b56024d53159a72a5acbfaac792ca207c418
refs/heads/develop
2020-05-02T17:02:10.578065
2019-10-27T15:53:32
2019-10-27T15:53:32
178,086,582
1
0
Apache-2.0
2019-06-06T00:32:48
2019-03-27T22:53:31
Python
UTF-8
Python
false
false
26,815
py
# Copyright 2019, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Codes for operations. There are unary and binary operations. Many of them have specializations and of course types could play into it. Then there is also the added difficulty of in-place assignments, which have other operation variants. """ from nuitka.containers.oset import OrderedSet from . import OperatorCodes from .CodeHelpers import ( generateChildExpressionsCode, pickCodeHelper, withObjectCodeTemporaryAssignment, ) from .ErrorCodes import getErrorExitBoolCode, getErrorExitCode def generateOperationBinaryCode(to_name, expression, emit, context): left_arg_name, right_arg_name = generateChildExpressionsCode( expression=expression, emit=emit, context=context ) # TODO: Decide and use one single spelling, inplace or in_place inplace = expression.isInplaceSuspect() assert not inplace or not expression.getLeft().isCompileTimeConstant(), expression _getBinaryOperationCode( to_name=to_name, expression=expression, operator=expression.getOperator(), arg_names=(left_arg_name, right_arg_name), in_place=inplace, emit=emit, context=context, ) def generateOperationNotCode(to_name, expression, emit, context): arg_name, = generateChildExpressionsCode( expression=expression, emit=emit, context=context ) res_name = context.getIntResName() emit("%s = CHECK_IF_TRUE( %s );" % (res_name, arg_name)) getErrorExitBoolCode( condition="%s == -1" % res_name, release_name=arg_name, needs_check=expression.getOperand().mayRaiseExceptionBool(BaseException), emit=emit, context=context, ) to_name.getCType().emitAssignmentCodeFromBoolCondition( to_name=to_name, condition="%s == 0" % res_name, emit=emit ) def generateOperationUnaryCode(to_name, expression, emit, context): arg_name, = generateChildExpressionsCode( expression=expression, emit=emit, context=context ) _getUnaryOperationCode( to_name=to_name, expression=expression, operator=expression.getOperator(), arg_name=arg_name, needs_check=expression.mayRaiseException(BaseException), emit=emit, context=context, ) # Note: These are ordered, so we can define the order they are created in # the code generation of specialized helpers, as this set is used for input # there too. specialized_add_helpers_set = OrderedSet( ( "BINARY_OPERATION_ADD_OBJECT_INT", "BINARY_OPERATION_ADD_INT_OBJECT", "BINARY_OPERATION_ADD_INT_INT", "BINARY_OPERATION_ADD_OBJECT_STR", "BINARY_OPERATION_ADD_STR_OBJECT", "BINARY_OPERATION_ADD_STR_STR", "BINARY_OPERATION_ADD_OBJECT_UNICODE", "BINARY_OPERATION_ADD_UNICODE_OBJECT", "BINARY_OPERATION_ADD_UNICODE_UNICODE", "BINARY_OPERATION_ADD_OBJECT_FLOAT", "BINARY_OPERATION_ADD_FLOAT_OBJECT", "BINARY_OPERATION_ADD_FLOAT_FLOAT", "BINARY_OPERATION_ADD_OBJECT_TUPLE", "BINARY_OPERATION_ADD_TUPLE_OBJECT", "BINARY_OPERATION_ADD_TUPLE_TUPLE", "BINARY_OPERATION_ADD_OBJECT_LIST", "BINARY_OPERATION_ADD_LIST_OBJECT", "BINARY_OPERATION_ADD_LIST_LIST", "BINARY_OPERATION_ADD_OBJECT_BYTES", "BINARY_OPERATION_ADD_BYTES_OBJECT", "BINARY_OPERATION_ADD_BYTES_BYTES", "BINARY_OPERATION_ADD_OBJECT_LONG", "BINARY_OPERATION_ADD_LONG_OBJECT", "BINARY_OPERATION_ADD_LONG_LONG", # These are friends naturally, they all add with another "BINARY_OPERATION_ADD_FLOAT_LONG", "BINARY_OPERATION_ADD_LONG_FLOAT", "BINARY_OPERATION_ADD_FLOAT_INT", "BINARY_OPERATION_ADD_INT_FLOAT", "BINARY_OPERATION_ADD_LONG_INT", "BINARY_OPERATION_ADD_INT_LONG", # These are friends too. "BINARY_OPERATION_ADD_UNICODE_STR", "BINARY_OPERATION_ADD_STR_UNICODE", # Default implementation. "BINARY_OPERATION_ADD_OBJECT_OBJECT", ) ) nonspecialized_add_helpers_set = set() specialized_sub_helpers_set = OrderedSet( ( "BINARY_OPERATION_SUB_OBJECT_INT", "BINARY_OPERATION_SUB_INT_OBJECT", "BINARY_OPERATION_SUB_INT_INT", "BINARY_OPERATION_SUB_OBJECT_FLOAT", "BINARY_OPERATION_SUB_FLOAT_OBJECT", "BINARY_OPERATION_SUB_FLOAT_FLOAT", "BINARY_OPERATION_SUB_OBJECT_LONG", "BINARY_OPERATION_SUB_LONG_OBJECT", "BINARY_OPERATION_SUB_LONG_LONG", # These are friends naturally, they all sub with another "BINARY_OPERATION_SUB_FLOAT_LONG", "BINARY_OPERATION_SUB_LONG_FLOAT", "BINARY_OPERATION_SUB_FLOAT_INT", "BINARY_OPERATION_SUB_INT_FLOAT", "BINARY_OPERATION_SUB_LONG_INT", "BINARY_OPERATION_SUB_INT_LONG", # Default implementation. "BINARY_OPERATION_SUB_OBJECT_OBJECT", ) ) # These made no sense to specialize for, nothing to gain. nonspecialized_sub_helpers_set = set( ("BINARY_OPERATION_SUB_OBJECT_LIST", "BINARY_OPERATION_SUB_OBJECT_TUPLE") ) specialized_mul_helpers_set = OrderedSet( ( "BINARY_OPERATION_MUL_OBJECT_INT", "BINARY_OPERATION_MUL_INT_OBJECT", "BINARY_OPERATION_MUL_INT_INT", "BINARY_OPERATION_MUL_OBJECT_LONG", "BINARY_OPERATION_MUL_CLONG_CLONG", "BINARY_OPERATION_MUL_INT_CLONG", "BINARY_OPERATION_MUL_CLONG_INT", "BINARY_OPERATION_MUL_LONG_OBJECT", "BINARY_OPERATION_MUL_LONG_LONG", "BINARY_OPERATION_MUL_OBJECT_STR", "BINARY_OPERATION_MUL_STR_OBJECT", "BINARY_OPERATION_MUL_INT_STR", "BINARY_OPERATION_MUL_STR_INT", "BINARY_OPERATION_MUL_LONG_STR", "BINARY_OPERATION_MUL_STR_LONG", # Should not occur. # "BINARY_OPERATION_MUL_STR_STR", "BINARY_OPERATION_MUL_OBJECT_UNICODE", "BINARY_OPERATION_MUL_UNICODE_OBJECT", "BINARY_OPERATION_MUL_INT_UNICODE", "BINARY_OPERATION_MUL_UNICODE_INT", "BINARY_OPERATION_MUL_LONG_UNICODE", "BINARY_OPERATION_MUL_UNICODE_LONG", # Should not occur. # "BINARY_OPERATION_MUL_UNICODE_UNICODE", "BINARY_OPERATION_MUL_OBJECT_FLOAT", "BINARY_OPERATION_MUL_FLOAT_OBJECT", "BINARY_OPERATION_MUL_FLOAT_FLOAT", "BINARY_OPERATION_MUL_OBJECT_TUPLE", "BINARY_OPERATION_MUL_TUPLE_OBJECT", "BINARY_OPERATION_MUL_INT_TUPLE", "BINARY_OPERATION_MUL_TUPLE_INT", "BINARY_OPERATION_MUL_LONG_TUPLE", "BINARY_OPERATION_MUL_TUPLE_LONG", # Should not occur. # "BINARY_OPERATION_MUL_TUPLE_TUPLE", "BINARY_OPERATION_MUL_OBJECT_LIST", "BINARY_OPERATION_MUL_LIST_OBJECT", "BINARY_OPERATION_MUL_INT_LIST", "BINARY_OPERATION_MUL_LIST_INT", "BINARY_OPERATION_MUL_LONG_LIST", "BINARY_OPERATION_MUL_LIST_LONG", # Should not occur. # "BINARY_OPERATION_MUL_LIST_LIST", "BINARY_OPERATION_MUL_OBJECT_BYTES", "BINARY_OPERATION_MUL_BYTES_OBJECT", "BINARY_OPERATION_MUL_LONG_BYTES", "BINARY_OPERATION_MUL_BYTES_LONG", # Should not occur. # "BINARY_OPERATION_MUL_BYTES_BYTES", # These are friends naturally, they all mul with another "BINARY_OPERATION_MUL_FLOAT_LONG", "BINARY_OPERATION_MUL_LONG_FLOAT", "BINARY_OPERATION_MUL_FLOAT_INT", "BINARY_OPERATION_MUL_INT_FLOAT", "BINARY_OPERATION_MUL_LONG_INT", "BINARY_OPERATION_MUL_INT_LONG", # Default implementation. "BINARY_OPERATION_MUL_OBJECT_OBJECT", ) ) nonspecialized_mul_helpers_set = set() specialized_truediv_helpers_set = OrderedSet( ( "BINARY_OPERATION_TRUEDIV_OBJECT_INT", "BINARY_OPERATION_TRUEDIV_INT_OBJECT", "BINARY_OPERATION_TRUEDIV_INT_INT", "BINARY_OPERATION_TRUEDIV_OBJECT_LONG", "BINARY_OPERATION_TRUEDIV_LONG_OBJECT", "BINARY_OPERATION_TRUEDIV_LONG_LONG", "BINARY_OPERATION_TRUEDIV_OBJECT_FLOAT", "BINARY_OPERATION_TRUEDIV_FLOAT_OBJECT", "BINARY_OPERATION_TRUEDIV_FLOAT_FLOAT", # These are friends naturally, they div mul with another "BINARY_OPERATION_TRUEDIV_FLOAT_LONG", "BINARY_OPERATION_TRUEDIV_LONG_FLOAT", "BINARY_OPERATION_TRUEDIV_FLOAT_INT", "BINARY_OPERATION_TRUEDIV_INT_FLOAT", "BINARY_OPERATION_TRUEDIV_LONG_INT", "BINARY_OPERATION_TRUEDIV_INT_LONG", # Default implementation. "BINARY_OPERATION_TRUEDIV_OBJECT_OBJECT", ) ) nonspecialized_truediv_helpers_set = set( ( # e.g. pathlib defines objects that do this. "BINARY_OPERATION_TRUEDIV_OBJECT_UNICODE", "BINARY_OPERATION_TRUEDIV_UNICODE_OBJECT", ) ) specialized_olddiv_helpers_set = OrderedSet( helper.replace("TRUEDIV", "OLDDIV") for helper in specialized_truediv_helpers_set ) nonspecialized_olddiv_helpers_set = set() specialized_floordiv_helpers_set = OrderedSet( helper.replace("TRUEDIV", "FLOORDIV") for helper in specialized_truediv_helpers_set ) nonspecialized_floordiv_helpers_set = set() _iadd_helpers_set = OrderedSet( ( "BINARY_OPERATION_ADD_OBJECT_OBJECT_INPLACE", "BINARY_OPERATION_ADD_OBJECT_LIST_INPLACE", "BINARY_OPERATION_ADD_OBJECT_TUPLE_INPLACE", "BINARY_OPERATION_ADD_OBJECT_UNICODE_INPLACE", "BINARY_OPERATION_ADD_OBJECT_STR_INPLACE", "BINARY_OPERATION_ADD_OBJECT_BYTES_INPLACE", "BINARY_OPERATION_ADD_OBJECT_INT_INPLACE", "BINARY_OPERATION_ADD_OBJECT_LONG_INPLACE", "BINARY_OPERATION_ADD_OBJECT_FLOAT_INPLACE", "BINARY_OPERATION_ADD_LIST_OBJECT_INPLACE", "BINARY_OPERATION_ADD_TUPLE_OBJECT_INPLACE", "BINARY_OPERATION_ADD_UNICODE_OBJECT_INPLACE", "BINARY_OPERATION_ADD_STR_OBJECT_INPLACE", "BINARY_OPERATION_ADD_BYTES_OBJECT_INPLACE", "BINARY_OPERATION_ADD_INT_OBJECT_INPLACE", "BINARY_OPERATION_ADD_LONG_OBJECT_INPLACE", "BINARY_OPERATION_ADD_FLOAT_OBJECT_INPLACE", "BINARY_OPERATION_ADD_LIST_LIST_INPLACE", "BINARY_OPERATION_ADD_TUPLE_TUPLE_INPLACE", "BINARY_OPERATION_ADD_STR_STR_INPLACE", "BINARY_OPERATION_ADD_UNICODE_UNICODE_INPLACE", "BINARY_OPERATION_ADD_BYTES_BYTES_INPLACE", "BINARY_OPERATION_ADD_INT_INT_INPLACE", "BINARY_OPERATION_ADD_LONG_LONG_INPLACE", "BINARY_OPERATION_ADD_FLOAT_FLOAT_INPLACE", ) ) specialized_mod_helpers_set = OrderedSet( ( "BINARY_OPERATION_MOD_OBJECT_INT", "BINARY_OPERATION_MOD_INT_OBJECT", "BINARY_OPERATION_MOD_INT_INT", "BINARY_OPERATION_MOD_OBJECT_LONG", "BINARY_OPERATION_MOD_LONG_OBJECT", "BINARY_OPERATION_MOD_LONG_LONG", "BINARY_OPERATION_MOD_OBJECT_FLOAT", "BINARY_OPERATION_MOD_FLOAT_OBJECT", "BINARY_OPERATION_MOD_FLOAT_FLOAT", # These are friends naturally, they mod with another "BINARY_OPERATION_MOD_FLOAT_LONG", "BINARY_OPERATION_MOD_LONG_FLOAT", "BINARY_OPERATION_MOD_FLOAT_INT", "BINARY_OPERATION_MOD_INT_FLOAT", "BINARY_OPERATION_MOD_LONG_INT", "BINARY_OPERATION_MOD_INT_LONG", # String interpolation with STR: "BINARY_OPERATION_MOD_STR_INT", "BINARY_OPERATION_MOD_STR_LONG", "BINARY_OPERATION_MOD_STR_FLOAT", "BINARY_OPERATION_MOD_STR_STR", "BINARY_OPERATION_MOD_STR_BYTES", "BINARY_OPERATION_MOD_STR_UNICODE", "BINARY_OPERATION_MOD_STR_TUPLE", "BINARY_OPERATION_MOD_STR_LIST", "BINARY_OPERATION_MOD_STR_DICT", "BINARY_OPERATION_MOD_STR_OBJECT", # String formatting with UNICODE: "BINARY_OPERATION_MOD_UNICODE_INT", "BINARY_OPERATION_MOD_UNICODE_LONG", "BINARY_OPERATION_MOD_UNICODE_FLOAT", "BINARY_OPERATION_MOD_UNICODE_STR", "BINARY_OPERATION_MOD_UNICODE_BYTES", "BINARY_OPERATION_MOD_UNICODE_UNICODE", "BINARY_OPERATION_MOD_UNICODE_TUPLE", "BINARY_OPERATION_MOD_UNICODE_LIST", "BINARY_OPERATION_MOD_UNICODE_DICT", "BINARY_OPERATION_MOD_UNICODE_OBJECT", # String formatting with BYTES: "BINARY_OPERATION_MOD_BYTES_LONG", "BINARY_OPERATION_MOD_BYTES_FLOAT", "BINARY_OPERATION_MOD_BYTES_BYTES", "BINARY_OPERATION_MOD_BYTES_UNICODE", "BINARY_OPERATION_MOD_BYTES_TUPLE", "BINARY_OPERATION_MOD_BYTES_LIST", "BINARY_OPERATION_MOD_BYTES_DICT", "BINARY_OPERATION_MOD_BYTES_OBJECT", # String formatting with OBJECT: "BINARY_OPERATION_MOD_OBJECT_STR", "BINARY_OPERATION_MOD_OBJECT_BYTES", "BINARY_OPERATION_MOD_OBJECT_UNICODE", "BINARY_OPERATION_MOD_OBJECT_TUPLE", "BINARY_OPERATION_MOD_OBJECT_LIST", "BINARY_OPERATION_MOD_OBJECT_DICT", # Default implementation. "BINARY_OPERATION_MOD_OBJECT_OBJECT", ) ) nonspecialized_mod_helpers_set = set( ("BINARY_OPERATION_MOD_TUPLE_OBJECT", "BINARY_OPERATION_MOD_LIST_OBJECT") ) specialized_bitor_helpers_set = OrderedSet( ( "BINARY_OPERATION_BITOR_OBJECT_INT", "BINARY_OPERATION_BITOR_INT_OBJECT", "BINARY_OPERATION_BITOR_INT_INT", "BINARY_OPERATION_BITOR_OBJECT_LONG", "BINARY_OPERATION_BITOR_LONG_OBJECT", "BINARY_OPERATION_BITOR_LONG_LONG", "BINARY_OPERATION_BITOR_LONG_INT", "BINARY_OPERATION_BITOR_INT_LONG", # Set containers can do this "BINARY_OPERATION_BITOR_OBJECT_SET", "BINARY_OPERATION_BITOR_SET_OBJECT", "BINARY_OPERATION_BITOR_SET_SET", "BINARY_OPERATION_BITOR_OBJECT_LIST", "BINARY_OPERATION_BITOR_LIST_OBJECT", "BINARY_OPERATION_BITOR_OBJECT_LIST", "BINARY_OPERATION_BITOR_LIST_OBJECT", "BINARY_OPERATION_BITOR_OBJECT_TUPLE", "BINARY_OPERATION_BITOR_TUPLE_OBJECT", # Default implementation. "BINARY_OPERATION_BITOR_OBJECT_OBJECT", ) ) nonspecialized_bitor_helpers_set = set() specialized_bitand_helpers_set = OrderedSet( helper.replace("_BITOR_", "_BITAND_") for helper in specialized_bitor_helpers_set ) nonspecialized_bitand_helpers_set = OrderedSet( helper.replace("_BITOR_", "_BITAND_") for helper in nonspecialized_bitor_helpers_set ) specialized_bitxor_helpers_set = OrderedSet( helper.replace("_BITOR_", "_BITXOR_") for helper in specialized_bitor_helpers_set ) nonspecialized_bitxor_helpers_set = OrderedSet( helper.replace("_BITOR_", "_BITXOR_") for helper in nonspecialized_bitor_helpers_set ) specialized_lshift_helpers_set = OrderedSet( helper.replace("_BITOR_", "_LSHIFT_") for helper in specialized_bitor_helpers_set if "_SET" not in helper if "_TUPLE" not in helper ) nonspecialized_lshift_helpers_set = OrderedSet( helper.replace("_BITOR_", "_LSHIFT_") for helper in nonspecialized_bitor_helpers_set ) specialized_rshift_helpers_set = OrderedSet( helper.replace("_LSHIFT_", "_RSHIFT_") for helper in specialized_lshift_helpers_set ) nonspecialized_rshift_helpers_set = OrderedSet( helper.replace("_LSHIFT_", "_RSHIFT_") for helper in nonspecialized_lshift_helpers_set ) specialized_pow_helpers_set = OrderedSet( ( "BINARY_OPERATION_POW_INT_INT", "BINARY_OPERATION_POW_OBJECT_INT", "BINARY_OPERATION_POW_INT_OBJECT", "BINARY_OPERATION_POW_OBJECT_LONG", "BINARY_OPERATION_POW_LONG_OBJECT", "BINARY_OPERATION_POW_LONG_LONG", "BINARY_OPERATION_POW_LONG_INT", "BINARY_OPERATION_POW_INT_LONG", "BINARY_OPERATION_POW_OBJECT_FLOAT", "BINARY_OPERATION_POW_FLOAT_OBJECT", "BINARY_OPERATION_POW_FLOAT_FLOAT", # Default implementation. "BINARY_OPERATION_POW_OBJECT_OBJECT", ) ) nonspecialized_pow_helpers_set = set() specialized_matmult_helpers_set = OrderedSet( ( # Default implementation. "BINARY_OPERATION_MATMULT_LONG_OBJECT", "BINARY_OPERATION_MATMULT_OBJECT_LONG", "BINARY_OPERATION_MATMULT_OBJECT_OBJECT", ) ) nonspecialized_matmult_helpers_set = set() def _getBinaryOperationCode( to_name, expression, operator, arg_names, in_place, emit, context ): # This needs to have one case per operation of Python, and there are many # of these, pylint: disable=too-many-branches,too-many-statements left = expression.getLeft() prefix_args = () ref_count = 1 needs_check = expression.mayRaiseExceptionOperation() if operator == "IPow" and in_place: helper = "POWER_OPERATION_INPLACE" elif operator == "IPow": helper = "POWER_OPERATION2" elif operator == "Add": helper = pickCodeHelper( prefix="BINARY_OPERATION_ADD", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_add_helpers_set, nonhelpers=nonspecialized_add_helpers_set, source_ref=expression.source_ref, ) elif operator == "Sub": helper = pickCodeHelper( prefix="BINARY_OPERATION_SUB", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_sub_helpers_set, nonhelpers=nonspecialized_sub_helpers_set, source_ref=expression.source_ref, ) elif operator == "IAdd" and in_place: helper = pickCodeHelper( prefix="BINARY_OPERATION_ADD", suffix="_INPLACE", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=_iadd_helpers_set, # TODO: Add this once generated. nonhelpers=(), source_ref=False, ) elif operator == "IMult" and in_place: helper = "BINARY_OPERATION_MUL_INPLACE" elif operator == "Div": helper = pickCodeHelper( prefix="BINARY_OPERATION_OLDDIV", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_olddiv_helpers_set, nonhelpers=nonspecialized_olddiv_helpers_set, source_ref=expression.source_ref, ) elif operator == "FloorDiv": helper = pickCodeHelper( prefix="BINARY_OPERATION_FLOORDIV", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_floordiv_helpers_set, nonhelpers=nonspecialized_floordiv_helpers_set, source_ref=expression.source_ref, ) elif operator == "TrueDiv": helper = pickCodeHelper( prefix="BINARY_OPERATION_TRUEDIV", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_truediv_helpers_set, nonhelpers=nonspecialized_truediv_helpers_set, source_ref=expression.source_ref, ) elif operator == "Mult": helper = pickCodeHelper( prefix="BINARY_OPERATION_MUL", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_mul_helpers_set, nonhelpers=nonspecialized_mul_helpers_set, source_ref=expression.source_ref, ) elif operator == "Mod": helper = pickCodeHelper( prefix="BINARY_OPERATION_MOD", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_mod_helpers_set, nonhelpers=nonspecialized_mod_helpers_set, source_ref=expression.source_ref, ) elif operator == "LShift": helper = pickCodeHelper( prefix="BINARY_OPERATION_LSHIFT", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_lshift_helpers_set, nonhelpers=nonspecialized_lshift_helpers_set, source_ref=expression.source_ref, ) elif operator == "RShift": helper = pickCodeHelper( prefix="BINARY_OPERATION_RSHIFT", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_rshift_helpers_set, nonhelpers=nonspecialized_rshift_helpers_set, source_ref=expression.source_ref, ) elif operator == "BitOr": helper = pickCodeHelper( prefix="BINARY_OPERATION_BITOR", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_bitor_helpers_set, nonhelpers=nonspecialized_bitor_helpers_set, source_ref=expression.source_ref, ) elif operator == "BitAnd": helper = pickCodeHelper( prefix="BINARY_OPERATION_BITAND", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_bitand_helpers_set, nonhelpers=nonspecialized_bitand_helpers_set, source_ref=expression.source_ref, ) elif operator == "BitXor": helper = pickCodeHelper( prefix="BINARY_OPERATION_BITXOR", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_bitxor_helpers_set, nonhelpers=nonspecialized_bitxor_helpers_set, source_ref=expression.source_ref, ) elif operator == "Pow": helper = pickCodeHelper( prefix="BINARY_OPERATION_POW", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_pow_helpers_set, nonhelpers=nonspecialized_pow_helpers_set, source_ref=expression.source_ref, ) elif operator == "MatMult": helper = pickCodeHelper( prefix="BINARY_OPERATION_MATMULT", suffix="", left_shape=left.getTypeShape(), right_shape=expression.getRight().getTypeShape(), helpers=specialized_matmult_helpers_set, nonhelpers=nonspecialized_matmult_helpers_set, source_ref=expression.source_ref, ) elif operator == "Divmod": helper = "BUILTIN_DIVMOD" elif len(arg_names) == 2: helper = "BINARY_OPERATION" prefix_args = (OperatorCodes.binary_operator_codes[operator],) else: assert False, operator # We must assume to write to a variable is "in_place" is active, not e.g. # a constant reference. That was asserted before calling us. if in_place: res_name = context.getBoolResName() # For module variable C type to reference later. if left.getVariable().isModuleVariable(): emit("%s = %s;" % (context.getInplaceLeftName(), arg_names[0])) # We may have not specialized this one yet, so lets use generic in-place # code, or the helper specified. if helper == "BINARY_OPERATION": emit( "%s = BINARY_OPERATION_INPLACE( %s, &%s, %s );" % ( res_name, OperatorCodes.binary_operator_codes[operator], arg_names[0], arg_names[1], ) ) else: emit("%s = %s( &%s, %s );" % (res_name, helper, arg_names[0], arg_names[1])) ref_count = 0 getErrorExitBoolCode( condition="%s == false" % res_name, release_names=arg_names, needs_check=needs_check, emit=emit, context=context, ) emit("%s = %s;" % (to_name, arg_names[0])) if ref_count: context.addCleanupTempName(to_name) else: with withObjectCodeTemporaryAssignment( to_name, "op_%s_res" % operator.lower(), expression, emit, context ) as value_name: emit( "%s = %s( %s );" % ( value_name, helper, ", ".join(str(arg_name) for arg_name in prefix_args + arg_names), ) ) getErrorExitCode( check_name=value_name, release_names=arg_names, needs_check=needs_check, emit=emit, context=context, ) if ref_count: context.addCleanupTempName(value_name) def _getUnaryOperationCode( to_name, expression, operator, arg_name, needs_check, emit, context ): impl_helper, ref_count = OperatorCodes.unary_operator_codes[operator] helper = "UNARY_OPERATION" prefix_args = (impl_helper,) with withObjectCodeTemporaryAssignment( to_name, "op_%s_res" % operator.lower(), expression, emit, context ) as value_name: emit( "%s = %s( %s );" % ( value_name, helper, ", ".join(str(arg_name) for arg_name in prefix_args + (arg_name,)), ) ) getErrorExitCode( check_name=value_name, release_name=arg_name, needs_check=needs_check, emit=emit, context=context, ) if ref_count: context.addCleanupTempName(value_name)
2c9578bb8c1413bfbb0ba22784dc571ba71e0c22
52b6f2b19fb501e48fbf6e078252c305c6477d73
/_science/prod.py
4e4d221bc38ba0a1950f6d732af1e64372aae2ba
[]
no_license
IanHung/_science
60dfeb959161e392dfc5d153f13e16a69bbd0b39
cff1b8ee3fa255e0761f9d0b98564af05feede66
refs/heads/master
2020-06-02T03:06:04.722352
2013-09-03T22:24:45
2013-09-03T22:24:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
''' Created on 2013-08-27 @author: Ian ''' import os DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': os.environ['RDS_DB_NAME'], 'USER': os.environ['RDS_USERNAME'], 'PASSWORD': os.environ['RDS_PASSWORD'], 'HOST': os.environ['RDS_HOSTNAME'], 'PORT': os.environ['RDS_PORT'], } } ALLOWED_HOSTS = [".underscorescience.com"] MEDIA_ROOT = '/media/' STATIC_ROOT = '/static/' AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID'] AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY'] AWS_STORAGE_BUCKET_NAME =os.environ['AWS_STORAGE_BUCKET_NAME'] DEFAULT_FILE_STORAGE = '_science.s3utils.MediaRootS3BotoStorage' STATICFILES_STORAGE = '_science.s3utils.StaticRootS3BotoStorage' s3_URL = 'http://%s.s3.amazonaws.com/' %AWS_STORAGE_BUCKET_NAME STATIC_URL = s3_URL + STATIC_ROOT MEDIA_URL = s3_URL + MEDIA_ROOT AWS_QUERYSTRING_AUTH =False #allows session cookie to apply to all sub domains. SESSION_COOKIE_DOMAIN=".underscorescience.com" #prepend ww for seo PREPEND_WWW = True SECRET_KEY = os.environ['SECRET_KEY']
f71aaa51a64a2e67ff1b9823093a2019c5a2b983
d002ef03c46773b2c53c4ff724103281ad1d3652
/0-setup/1-basics/3-decision/4-modulo-operator/bot.py
d2ac3903fb5f4f92c4d2781744f1e62b0a9e4aac
[]
no_license
4courr72/com404
6b023dfeacea9bc50b418fb3b177a2dec451ff95
9018bfe1ee928a9ea65cadb9f1ba72b36dd24e91
refs/heads/master
2020-07-31T13:39:44.815221
2019-12-10T13:26:18
2019-12-10T13:26:18
210,621,119
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
#Asking for user input (an integer!) print("Please enter a whole number.") number = int( input() ) #To force saved input as an integer - think of it as gets input first (so inside brackets) then turns it into an integer #Modulo 2 to see if odd or even if (number % 2 != 0): print("The number " + str(number) + " is an odd number") else: print("The number " + str(number) + " is an even number") #[Comments 15-10-19: Solutions there now - I note Prins has used '== 0' and I used '!= 0' and have switched the print statements - this gives the same result
16ef81874494815258632712aecd282b3d3fe109
00fed3d8f6c4b73e62048ff910c1cbcecff422e3
/sample_mini_set.py
4aeed8c8a0217f1f84119df4f05ac36174dd93eb
[]
no_license
SeanZChen/SAR_PROJECT
9ee0eca9693a8d2b624bb90b7abc1be74a9371d2
c34d734ea6d1ba19d0d7a9a29297da2c1b5cf237
refs/heads/master
2021-05-25T23:51:01.882935
2020-06-05T11:56:40
2020-06-05T11:56:40
253,970,117
0
0
null
null
null
null
UTF-8
Python
false
false
1,600
py
################################################## # # author: Zixuan Chen # Date: 2020/04/07 # Description: # Sample small training set # ################################################## import os import random import cv2 import argparse cats = ['2S1', 'BRDM_2', 'BTR_60', 'D7', 'BMP2', 'BTR70', 'T72', 'T62', 'ZIL131', 'ZSU_23_4'] def sample(cfg): if not os.path.exists(cfg.save_root): os.makedirs(cfg.save_root) else: os.system("rm -rf %s"%(cfg.save_root)) for cat in cats: original_dir = os.path.join(cfg.original_root, 'TRAIN', cat) save_dir = os.path.join(cfg.save_root, 'TRAIN', cat) if not os.path.exists(save_dir): os.makedirs(save_dir) imgs = os.listdir(original_dir) sample_size = min(len(imgs), cfg.sample_size) print('Sampleing %s, sampled: %d'%(cat, sample_size)) selected = random.sample(imgs, sample_size) for item in selected: selected_dir = os.path.join(original_dir, item) # new_dir = os.path.join(save_dir, item) os.system("cp %s %s"%(selected_dir, save_dir)) os.system("cp -r %s %s"%(os.path.join(cfg.original_root, 'TEST'), cfg.save_root)) def main(): parser = argparse.ArgumentParser(description='Training efficient networks') parser.add_argument('--sample-size', default=50, type=int) parser.add_argument('--original_root', default='./data', type=str) parser.add_argument('--save_root', default='./data_small_set', type=str) cfg = parser.parse_args() sample(cfg) if __name__ == '__main__': main()
f8942fcf58e92e580ebc988cc3035632d869faba
a561673adf29beb7939052b898dad5bf9167cefc
/pkg/codegen/internal/test/testdata/output-funcs/python/pulumi_mypkg/func_with_dict_param.py
194d0e90d558b3e0a7ef6ea22b51830d4b8c97fb
[ "Apache-2.0" ]
permissive
orionstudt/pulumi
50fd75d4ec7bb48646cd3c83198afcf4a556a5fa
7ef0b83c0cc7c4f9093e2a8fc0303e875d35c15c
refs/heads/master
2023-08-12T13:57:32.605402
2021-10-18T12:24:46
2021-10-18T12:24:46
312,097,288
0
1
Apache-2.0
2021-01-11T17:12:44
2020-11-11T21:43:03
null
UTF-8
Python
false
false
2,134
py
# coding=utf-8 # *** WARNING: this file was generated by test. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'FuncWithDictParamResult', 'AwaitableFuncWithDictParamResult', 'func_with_dict_param', 'func_with_dict_param_output', ] @pulumi.output_type class FuncWithDictParamResult: def __init__(__self__, r=None): if r and not isinstance(r, str): raise TypeError("Expected argument 'r' to be a str") pulumi.set(__self__, "r", r) @property @pulumi.getter def r(self) -> str: return pulumi.get(self, "r") class AwaitableFuncWithDictParamResult(FuncWithDictParamResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return FuncWithDictParamResult( r=self.r) def func_with_dict_param(a: Optional[Mapping[str, str]] = None, b: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableFuncWithDictParamResult: """ Check codegen of functions with a Dict<str,str> parameter. """ __args__ = dict() __args__['a'] = a __args__['b'] = b if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('mypkg::funcWithDictParam', __args__, opts=opts, typ=FuncWithDictParamResult).value return AwaitableFuncWithDictParamResult( r=__ret__.r) @_utilities.lift_output_func(func_with_dict_param) def func_with_dict_param_output(a: Optional[pulumi.Input[Optional[Mapping[str, str]]]] = None, b: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[FuncWithDictParamResult]: """ Check codegen of functions with a Dict<str,str> parameter. """ ...
ee7f8abd5fe37016ea1dc506931e4aacbe80ac29
10316355e41f868d2ad6dcd29962a349bca082c9
/venv/bin/django-admin
5eff6d709d2c349377db07cfc4fb3d55809e03db
[]
no_license
lucas-rafa-94/bexigaprojeto
d35e098072d5a6a5f4e7a66221f6325c31b67aa8
aa3e18856c0961678e5a6d5755b5878c67daea6f
refs/heads/master
2022-03-15T05:23:38.612991
2019-07-11T05:35:44
2019-07-11T05:35:44
194,945,376
0
0
null
null
null
null
UTF-8
Python
false
false
317
#!/Users/lucasdossantos/PycharmProjects/bexigaprojeto/venv/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
54837d0322474f4a5bb87c841c454ed412440574
9b018e9eac8d97fbcc1e76a69b95c994f79a6ea3
/randomtest/migrations/0054_auto_20170814_1657.py
6212765bfa979c499d1d27436ef03f9a60646c2d
[]
no_license
hbgolze/contest-database
e39f269d7337652e7cdad03cc29827d4f729ec8f
263385b438f7b7e1ab99062aad561ed0cec9c079
refs/heads/master
2023-06-26T21:30:08.246647
2023-06-11T02:34:41
2023-06-11T02:34:41
71,851,839
1
0
null
null
null
null
UTF-8
Python
false
false
701
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-08-14 21:57 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('randomtest', '0053_problemgroup_is_shared'), ] operations = [ migrations.AddField( model_name='solution', name='created_date', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='solution', name='modified_date', field=models.DateTimeField(default=django.utils.timezone.now), ), ]
e9175226a256f288a61fe9f8504a7a8c5b0780ac
6ce6dccdc47f4b6a9cd5251fcd3f6ca2225931a5
/sample/chapt02/chapt02-20.py
7151b64aae909c6fcff57f56c0aa7ce7e3c89289
[]
no_license
VsPun/learning
f411bd936b069b6b3a1b3f62dc8adc946f4ca978
c517bc48e241eb1cbf1411894b9d4ab4b3ead22c
refs/heads/master
2020-08-04T04:56:57.445164
2019-04-19T11:26:21
2019-04-19T11:26:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
def plusVal( val1, val2 ): r = val1 + val2 return r a = 10 + 20 # a=30となる b = plusVal( 10, 20 ) # b=30となる c = 10 + 20 + 30 # c=60となる d = plusVal( 10, 20 ) + 30 # d=60となる e = 10 + plusVal( 20, 30 ) # e=60となる
8f8ee752f8f128767c6d850042d54e473e726596
d5d12507f8e62abd6ad4ae143ed0c30d2ec70a34
/chapter_18/chapter18.py
146d239b75801d502cb20d34a582aeef597f4d22
[]
no_license
JohnHowardRoark/thinkcspy3
5ad3add17c4b534f0a1d007c7def1ace72583223
def8e6615f2bcef367cb747d13a9f3cf23ece83a
refs/heads/master
2020-09-19T21:35:57.213913
2019-12-22T18:25:58
2019-12-22T18:25:58
224,303,785
2
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
""" How to Think Like a Computer Scientist: Learning with Python 3 Wentworth et al 2012 Chapter 18: Exercise 02 """ import turtle def make_window(colr, ttle): """ setup the window with given background color and title """ w = turtle.Screen() w.bgcolor(colr) w.title(ttle) return w def make_turtle(color, size): """ setup the turtle with given color and pensize """ t = turtle.Turtle() t.color(color) t.pensize(size) t.hideturtle() # do not show turtle t.speed(0) # 0 - 10 scale, 0 is fastest return t """ setup the canvas and turtle """ wn = make_window("lightgreen", "Turtle") tess = make_turtle("blue" , 2) tess.penup() tess.forward(-250) tess.pendown() def koch(t, order, size): """ Make turtle t draw a Koch fractal of 'order' and 'size'. Leave the turtle facing the same direction. """ if order == 0: # The base case is just a straight line t.forward(size) else: for angle in [85, -170, 85, 0]: koch(t, order-1, size/3) t.right(angle) koch(tess, 3, 600) """ useful to ensure return to prompt after window is closed """ wn.mainloop()
b3ae8ca2d64aa838dee23fbf5110cc142cdd0a73
6e9476a1715c2b2ae2fbfea557699f63bc781e1f
/src/whispy_lispy/compiler.py
a467ea5a6125b0a538e356169777b1073d2fc3ef
[ "MIT" ]
permissive
vladiibine/whispy_lispy
f92b872d91fa82abd19f31616760a68f68b5cc57
9e5d6196f24e5c3ed5fb8753620ace5994c24add
refs/heads/master
2021-01-10T01:30:39.478372
2016-10-07T20:45:12
2016-10-07T20:45:12
36,161,333
1
0
null
null
null
null
UTF-8
Python
false
false
247
py
# -*- coding utf-8 -*- """This module marks the intention to someday convert the AST emitted by the parser into some intermediate representation (or assembler core?) to maybe run on some virtual machines, like the python interpreter, JVM, etc. """
ff36301ab905c9ebfa065c44cf6fb1f52644949a
a837c7d25f9d55c4e756652f0c597c835021820f
/test/testCancion.py
0c9f89987547bcf85f8779bfbf20e0ed51f87bcf
[]
no_license
GisselleIb/BasedeDatos
1b4457c4bd5d2cf074484b69bab286ef101b7977
c8b264ac6641431912f1c21692487251d35fc0a8
refs/heads/master
2020-03-30T15:09:18.614282
2018-10-26T01:51:54
2018-10-26T01:51:54
151,350,509
0
0
null
null
null
null
UTF-8
Python
false
false
1,038
py
import unittest import sys sys.path.append('../..') from src.cancion import Cancion class TestCancion(unittest.TestCase): def setUp(self): self.cancion=Cancion() def test_setArtista(self): self.assertEqual(self.cancion.artista,"") self.cancion.setArtista("artist") self.assertEqual(self.cancion.artista,"artist") def test_setTitulo(self): self.assertEqual(self.cancion.titulo,"") self.cancion.setTitulo("title") self.assertEqual(self.cancion.titulo,"title") def test_setFecha(self): self.assertEqual(self.cancion.fecha,"") self.cancion.setFecha("11/11/11") self.assertEqual(self.cancion.fecha,"11/11/11") def test_setGenero(self): self.assertEqual(self.cancion.genero,"") self.cancion.setGenero("genre") self.assertEqual(self.cancion.genero,"genre") def test_setTrack(self): self.assertEqual(self.cancion.track,"") self.cancion.setTrack("1") self.assertEqual(self.cancion.track,1)
05c2d99222f7470e4c829593f2fcbf0f3a3aa404
ed6d11f0a506fd781fe0a307ea16ecf6880770bd
/ENV/bin/easy_install
99e1f536dfa11ccd02fa5b6a8edb39b272d6cfea
[]
no_license
Xa1n/gilded_rose_python
6dfe0a4536975f0c053d2fcf590972aecd187d3a
bea23b2d49708db9d44b75446d61451cf1504981
refs/heads/master
2020-06-01T09:03:44.961899
2019-06-07T10:18:07
2019-06-07T10:18:07
190,724,589
0
0
null
null
null
null
UTF-8
Python
false
false
290
#!/Users/xainstorey/Desktop/Makers/challenges/gilded_rose/ENV/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
6bea42a14ebfcac2b02dee5c682277b4ca32f59f
3017e7f0e8cd99469c7c98ec8a4b9b75d39c0c2f
/pythonkitabi/ingilizce/ch19/kalam/main.py
674f344a308f3216fde766ace3ab1fc1334017cd
[]
no_license
Rmys/projects
de6cb9d5d3f027d98c812647369d1e487d902c4b
60ce197bc1fb7ad3fa31f12559b74ee450b69df1
refs/heads/master
2020-03-19T15:36:11.603931
2011-09-16T00:15:34
2011-09-16T00:15:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
895
py
#!/usr/bin/env python """ main.py - application starter copyright: (C) 2001, Boudewijn Rempt email: [email protected] """ import sys, locale sys.setappdefaultencoding("utf8") from qt import * from kalamapp import KalamApp from kalamdoc import KalamDoc from kalamview import KalamView import kalamconfig from resources import TRUE, FALSE def main(args): app=QApplication(args) translator = QTranslator(app) translator.load("kalam_" + locale.getlocale()[0] + ".qm", kalamconfig.get("libdir",".")) app.installTranslator(translator) kalam = KalamApp() app.setMainWidget(kalam) kalam.show() if len(args) > 1: for arg in args[1:]: document=KalamDoc() document.open(arg) kalam.docManager.addDocument(document, KalamView) app.exec_loop() if __name__=="__main__": main(sys.argv)
b9adc7331dee337e2a3ca0f2f3e0ea8179079032
c54722779374bf15b0e1bfef9cbc5b98001bbea8
/Reinforcement/R-1.5_squareSumComprehension.py
da748599de383ee5d89782ae7e35b8e0ddde5b7b
[]
no_license
fahrulardiannugroho/struktur-data-tugas-1
f210e035045d3a685fb2e1972f2ec7bf9e017d1a
500345debcd6ea4cd67d0010be83424edc06bd29
refs/heads/master
2023-05-03T12:22:02.062493
2021-05-31T12:44:27
2021-05-31T12:44:27
372,419,952
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
def squares_sum(n): return sum(number**2 for number in range(0,n)) print(squares_sum(3))
d9486a49cfb4da916da38d7215ba0be37fbd98f5
9ea53850ba6135ac6f5686c1a38a1029ebccb294
/src/infer.py
d7e92fe3313444e734712fafe6c45921eb629952
[ "MIT" ]
permissive
yangbo/pytorch-vgg-cifar10
25f0a0c5b2e482587fbed1fd05342260456a8ab0
11870ecbe1620b2a8bd7a9163da8cb9c226c2fac
refs/heads/master
2021-09-01T06:03:13.876308
2017-12-25T08:12:53
2017-12-25T08:12:53
113,654,176
0
0
null
2017-12-09T08:23:43
2017-12-09T08:23:42
null
UTF-8
Python
false
false
570
py
import torch import sys def infer(): best_epoch = 273 # from 0 start checkpoint_file = '../save_da_vgg19_bn/checkpoint_{}.tar'.format(best_epoch) checkpoint = torch.load(checkpoint_file) print('best epoch is', checkpoint['epoch']) # import vgg sys.path.insert(0, '../src') import vgg model = vgg.vgg19_bn() model.features = torch.nn.DataParallel(model.features) state = checkpoint['state_dict'] model.load_state_dict(state) print(model.parameters) if __name__ == '__main__': infer()
bf1ec2799e38215a98eae3c52afaf3ee5ca4190d
06d22b05c4069f24949c98a099694a806c0e237c
/Работа с данными в Pandas/Titanic.py
66cd0cdddbdcb2985111cc6611e3fa604e3d812e
[]
no_license
DuwazSandbox/ds_introduce
b02c36a6c388e3870c645d2d58474b9065ae45ca
ada734804e53b063f3b7ecebbfe73298eb23ee43
refs/heads/master
2023-04-28T09:34:05.696199
2021-05-06T07:08:35
2021-05-06T07:08:35
352,138,327
0
0
null
null
null
null
UTF-8
Python
false
false
9,408
py
import bs4 import pandas as pd import numpy as np from beauty_print import beauty_print titanic_full_df = pd.read_csv("https://github.com/agconti/kaggle-titanic/raw/master/data/train.csv", sep=",") # Общее представление работы с данными #beauty_print("Размер:", titanic_full_df.shape) #print("Инфо:") #titanic_full_df.info() #beauty_print("Описание:", titanic_full_df.describe()) #beauty_print("Наименования колонок:", titanic_full_df.columns) #beauty_print("Типы данных по колонкам:", titanic_full_df.dtypes) #beauty_print("Начальные данные:", titanic_full_df.head()) #beauty_print("Конечные данные:", titanic_full_df.tail(7)) #beauty_print("Количество ячеек с NULL'ом:", titanic_full_df.isnull().sum()) #beauty_print("Рандомные 5 строк таблицы:", titanic_full_df.sample(5)) # Индексация и выделение данных #beauty_print("Определённая колонка + только начальные данные:", titanic_full_df["Age"].head()) #beauty_print("Тип у колонки в DataFrame:", type(titanic_full_df["Age"])) #beauty_print("2 колонки + только начальные данные:", titanic_full_df[["Age", "Sex"]].head()) #Работа с новой колонкой в DataFrame titanic_full_df["Relatives"] = titanic_full_df["SibSp"] + titanic_full_df["Parch"] #beauty_print("Вывод новой колонки с двумя старыми:", titanic_full_df[["SibSp", "Parch", "Relatives"]].head()) #beauty_print("Удаление 3й строчки (с индексом 2):", titanic_full_df.drop(2, axis=0).head()) #beauty_print("Удаление столбца с названием 'Relatives':", titanic_full_df.drop("Relatives", axis=1).head()) #beauty_print("Получение первых 10 индексов из DataFrame в виде листа:", titanic_full_df.index.tolist()[:10]) #beauty_print("Получение данных из определённых индексов и колонок:", titanic_full_df.loc[442 : 450 : 2, ["Age", "Sex"]]) #beauty_print("Установка колонки в качестве индекса и выборка по значению индекса:", titanic_full_df.set_index(["Embarked"]).loc["S"].head()) #beauty_print("Получение значений у первой строки:", titanic_full_df.iloc[0]) #beauty_print("Получение данных из определённых индексов:", titanic_full_df.iloc[[564, 442]]) #beauty_print("Получение данных из определённых индексов и колонок (2):", titanic_full_df.loc[[564, 442], ["Name", "Sex"]]) #beauty_print("Проверка значений каждой ячейки на равенство единицы:", titanic_full_df == 1) #beauty_print("Проверка значений каждой ячейки в колонке 'Survived':", (titanic_full_df.Survived == 1).head()) #beauty_print("Получение таблицы, в которой поле 'Survived' равно 0:", titanic_full_df[titanic_full_df["Survived"] == 0].head()) #beauty_print("Получение количества элементов с одинаковыми значениями в таблице 'Sex', с учётом, что 'Survived' равно 1:", titanic_full_df[titanic_full_df["Survived"] == 1]["Sex"].value_counts()) #beauty_print("Получение таблицы с 'Fare > 100' или 'Name' содержащим 'Master':", titanic_full_df[(titanic_full_df["Fare"] > 100) | (titanic_full_df["Name"].str.find("Master") != -1)].head()) # Методы #beauty_print("Получение списка всех значений колонки 'Embarked':", titanic_full_df["Embarked"].unique()) #beauty_print("Получение количества всех различных значений колонки 'Embarked':", titanic_full_df["Embarked"].nunique()) #beauty_print("Получение количества элементов с одинаковыми значениями в таблице 'Survived':", titanic_full_df["Survived"].value_counts()) #beauty_print("Получение количества элементов с одинаковыми значениями в таблице 'PClass':", titanic_full_df["Pclass"].value_counts()) # Замена значений [1,2,3] колонки 'Pclass' на текст titanic_full_df["Pclass"].replace({1: "Элита", 2: "Средний класс", 3: "Работяги"}, inplace=True) #beauty_print("Получение количества элементов с одинаковыми значениями в таблице 'PClass' (2):", titanic_full_df["Pclass"].value_counts()) #beauty_print("Замена значений колонки 'Fare' на 'Дёшево' или 'Дорого' в зависимости от значения:", titanic_full_df["Fare"].apply(lambda x: "Дёшево" if x < 20 else "Дорого")) # Заполнение новой колонки 'Fare_Bin' в зависимости от значения ячейки 'Fare' titanic_full_df["Fare_Bin"] = titanic_full_df["Fare"].apply(lambda x: "Дёшево" if x < 20 else "Дорого") #beauty_print("Произвести сортировку таблицы по полю 'Name':", titanic_full_df.sort_values(by='Name')) # Работа с пропущенными значениями #beauty_print("Имеются ли NULL в колонках? :", titanic_full_df.isnull().any()) #beauty_print("Получение таблицы без строк, в которых имеются пропущенные значения:", titanic_full_df.dropna()) #beauty_print("Получение таблицы без строк, в которых имеются пропущенные значения в колонках 'Age' и 'Sex':", titanic_full_df.dropna(subset=["Age", "Sex"])) #beauty_print("Получение таблицы со строками, где не менее 14 заполненных колонок:", titanic_full_df.dropna(thresh=14)) #beauty_print("Вставка слова 'ПРОПУСК' в ячейки с пропущенными значениями:", titanic_full_df.fillna("ПРОПУСК")) #beauty_print("Заполнение пустых ячеек в колонке 'Age' средним значением по таблице:", titanic_full_df["Age"].fillna(value=titanic_full_df["Age"].mean())) # Работа с объединениями #beauty_print("Получение таблицы количества выживших и погибших мужчин и женщин:", titanic_full_df[["Sex", "Survived"]].pivot_table(index=["Sex"], columns=["Survived"], aggfunc=len)) #beauty_print("Получение таблицы среднего возраста выживших и погибших мужчин и женщин:", titanic_full_df[["Sex", "Survived", "Age"]].pivot_table(values=["Age"], index=["Sex"], columns=["Survived"], aggfunc="mean")) #beauty_print("Произвести группировку по колонке Pclass и выбрать максимальное значение из каждой группы:", titanic_full_df[titanic_full_df.groupby("Pclass")["PassengerId"].transform(max) == titanic_full_df["PassengerId"]]) #beauty_print("Получение среднего возраста каждого из объединения колонки Pclass:", titanic_full_df.groupby("Pclass").mean()["Age"]) #beauty_print("Получение статистических данных (count, mean, std, min/max, 25%, 50%, 75%) по возрасту в каждом объединении колонки Pclass:", titanic_full_df.groupby("Pclass").describe()["Age"]) #beauty_print("Поменять колонки и строки местами (транспонирование) (пример с прошлым запросом):", titanic_full_df.groupby("Pclass").describe()["Age"].transpose()) #beauty_print("Получение mix/max/std по возрасту по каждому из объединений колонки Pclass:", titanic_full_df.groupby("Pclass")["Age"].agg(["min", "max", "std"])) #beauty_print("Получение среднего возраста пассажиров и их количество по каждому из объединений колонки Pclass:", titanic_full_df.groupby("Pclass").agg({"Age": np.mean, "PassengerId": "count"})) #beauty_print("Получение среднего показателя 'Fare' по каждому из объединений колонкок Pclass и Sex одновременно:", titanic_full_df.groupby(["Pclass", "Sex"]).mean()["Fare"]) # Цикл по значениям #print("Отображение индекса и значение колонки 'Name':") #for index, row in titanic_full_df.iterrows(): # print("Index: {}, Name: {}".format(index, row["Name"])) #print("Отображение наименования объединения групп 'Pclass' и средний возраст:") #for group_name, group in titanic_full_df.groupby("Pclass"): # print(group_name, group["Age"].mean())
e9efdb9fc7477f2fd0f82b93c4d61b80333782c6
41040a12d8dd8f7fa6ca4591139c68f446190870
/manage.py
f80a8bd3661075c7dcb46185f3b4a146b56aaacc
[]
no_license
laeeqkhan01/geoloctest_1
c1db7fab420e650741dd9a68e44dfea29d28f4df
99a6fc1dd2692310a342f2f2b3257ee58b7c025c
refs/heads/master
2023-01-04T03:48:52.441389
2020-10-26T00:53:39
2020-10-26T00:53:39
307,166,733
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'geoloctest_1.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
77ff76fa06821167c172846bf37979d9ac39e693
dc5ad69c775f7072248d9936d9773ba93ced4b27
/fabtools/require/apache.py
c109401d3abf58f4f443f3885cb74022891e2186
[ "BSD-2-Clause" ]
permissive
MorphiX00/fabtools
b8469b686dddfc86682ef0e78d2e91cea55fa133
0cde09d10ce3b8b8df763605e53c7a06a24d588f
refs/heads/master
2021-01-18T07:49:08.019949
2013-02-26T15:13:12
2013-02-26T15:13:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
import tempita from fabtools import apache from fabtools.require.deb import package from fabtools.require.service import started from fabtools.require.files import file as _file def server(): package('apache2') started('apache2') def site(site_name, template_contents=None, template_source=None, enabled=True, check_config=True, **kwargs): server() config_filename = '/etc/apache2/sites-available/%s.conf' % site_name if template_contents: tmpl = tempita.Template(template_contents) elif template_source: f = open(template_source, 'r') tmpl = tempita.Template(f.read()) f.close() _file( path=config_filename, contents=tmpl.substitute(kwargs) ) if enabled: apache.enable_site(site_name)
a6d3e8adda1b8ff6dc2c78add86277e2aba7fabf
0f155d5615d9e6aa73dd238ad8c144ac89066f91
/tests/gold_tests/tls/tls_sni_host_policy.test.py
bd2ac5b2a37d6a820fa4f2038b7c8571e5338a22
[ "BSD-3-Clause", "OpenSSL", "MIT", "ISC", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-openssl", "Apache-2.0", "LicenseRef-scancode-ssleay-windows", "BSD-2-Clause", "HPND", "TCL", "LicenseRef-scancode-public-domain", "LicenseRef-scancode-unknown" ]
permissive
nozomi1773/trafficserver
0491fb9a3e9bd6bfacc22e463186213e2e97b1ad
2ee141137545a84584d8047eee70b171b5254c40
refs/heads/master
2021-07-10T04:51:58.601768
2020-08-04T03:21:25
2020-08-04T03:21:25
181,676,681
0
0
Apache-2.0
2019-04-16T11:32:40
2019-04-16T11:32:40
null
UTF-8
Python
false
false
7,572
py
''' Test exercising host and SNI mismatch controls ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Test.Summary = ''' Test exercising host and SNI mismatch controls ''' ts = Test.MakeATSProcess("ts", select_ports=True, enable_tls=True) cafile = "{0}/signer.pem".format(Test.RunDirectory) cafile2 = "{0}/signer2.pem".format(Test.RunDirectory) server = Test.MakeOriginServer("server") request_header = {"headers": "GET /case1 HTTP/1.1\r\nHost: example.com\r\n\r\n", "timestamp": "1469733493.993", "body": ""} response_header = {"headers": "HTTP/1.1 200 OK\r\nConnection: close\r\n\r\n", "timestamp": "1469733493.993", "body": ""} server.addResponse("sessionlog.json", request_header, response_header) request_header = {"headers": "GET / HTTP/1.1\r\nHost: bar.com\r\n\r\n", "timestamp": "1469733493.993", "body": ""} response_header = {"headers": "HTTP/1.1 200 OK\r\nConnection: close\r\n\r\n", "timestamp": "1469733493.993", "body": ""} server.addResponse("sessionlog.json", request_header, response_header) ts.addSSLfile("ssl/server.pem") ts.addSSLfile("ssl/server.key") ts.addSSLfile("ssl/signer.pem") ts.Disk.records_config.update({ 'proxy.config.ssl.server.cert.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.server.private_key.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.client.verify.server': 0, 'proxy.config.url_remap.pristine_host_hdr' : 1, 'proxy.config.ssl.CA.cert.filename': '{0}/signer.pem'.format(ts.Variables.SSLDir), 'proxy.config.exec_thread.autoconfig.scale': 1.0, 'proxy.config.http.host_sni_policy': 2, 'proxy.config.ssl.TLSv1_3': 0 }) ts.Disk.ssl_multicert_config.AddLine( 'dest_ip=* ssl_cert_name=server.pem ssl_key_name=server.key' ) # Just map everything through to origin. This test is concentratign on the user-agent side ts.Disk.remap_config.AddLine( 'map / http://127.0.0.1:{0}/'.format(server.Variables.Port) ) # Scenario 1: Default no client cert required. cert required for bar.com ts.Disk.sni_yaml.AddLines([ 'sni:', '- fqdn: boblite', ' verify_client: STRICT', ' host_sni_policy: PERMISSIVE', '- fqdn: bob', ' verify_client: STRICT', ]) # case 1 # sni=bob and host=dave. Do not provide client cert. Should fail tr = Test.AddTestRun("Connect to bob without cert") tr.Processes.Default.StartBefore(Test.Processes.ts) tr.Processes.Default.StartBefore(server) tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k -H 'host:dave' --resolve 'bob:{0}:127.0.0.1' https://bob:{0}/case1".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 35 # case 2 # sni=bob and host=dave. Do provide client cert. Should succeed tr = Test.AddTestRun("Connect to bob with good cert") tr.Setup.Copy("ssl/signed-foo.pem") tr.Setup.Copy("ssl/signed-foo.key") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k --cert ./signed-foo.pem --key ./signed-foo.key -H 'host:dave' --resolve 'bob:{0}:127.0.0.1' https://bob:{0}/case1".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 # case 3 # sni=dave and host=bob. Do not provide client cert. Should fail due to sni-host mismatch tr = Test.AddTestRun("Connect to dave without cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k -H 'host:bob' --resolve 'dave:{0}:127.0.0.1' https://dave:{0}/case1".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ContainsExpression("Access Denied", "Check response") # case 4 # sni=dave and host=bob. Do provide client cert. Should fail due to sni-host mismatch tr = Test.AddTestRun("Connect to dave with cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k --cert ./signed-foo.pem --key ./signed-foo.key -H 'host:bob' --resolve 'dave:{0}:127.0.0.1' https://dave:{0}/case1".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ContainsExpression("Access Denied", "Check response") # case 5 # sni=ellen and host=boblite. Do not provide client cert. Should warn due to sni-host mismatch tr = Test.AddTestRun("Connect to ellen without cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k -H 'host:boblite' --resolve 'ellen:{0}:127.0.0.1' https://ellen:{0}/warnonly".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ExcludesExpression("Access Denied", "Check response") # case 6 # sni=ellen and host=boblite. Do provide client cert. Should warn due to sni-host mismatch tr = Test.AddTestRun("Connect to ellen with cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k --cert ./signed-foo.pem --key ./signed-foo.key -H 'host:boblite' --resolve 'ellen:{0}:127.0.0.1' https://ellen:{0}/warnonly".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ExcludesExpression("Access Denied", "Check response") # case 7 # sni=ellen and host=fran. Do not provide client cert. No warning since neither name is mentioned in sni.yaml tr = Test.AddTestRun("Connect to ellen without cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k -H 'host:fran' --resolve 'ellen:{0}:127.0.0.1' https://ellen:{0}/warnonly".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ExcludesExpression("Access Denied", "Check response") # case 8 # sni=ellen and host=fran. Do provide client cert. No warning since neither name is mentioned in sni.yaml tr = Test.AddTestRun("Connect to ellen with cert") tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --tls-max 1.2 -k --cert ./signed-foo.pem --key ./signed-foo.key -H 'host:fran' --resolve 'ellen:{0}:127.0.0.1' https://ellen:{0}/warnonly".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.All = Testers.ExcludesExpression("Access Denied", "Check response") ts.Disk.diags_log.Content += Testers.ContainsExpression("WARNING: SNI/hostname mismatch sni=dave host=bob action=terminate", "Should have warning on mismatch") ts.Disk.diags_log.Content += Testers.ContainsExpression("WARNING: SNI/hostname mismatch sni=ellen host=boblite action=continue", "Should have warning on mismatch") ts.Disk.diags_log.Content += Testers.ExcludesExpression("WARNING: SNI/hostname mismatch sni=ellen host=fran", "Should not have warning on mismatch with non-policy host")
af115fd69d7e52b2290a00ca9b39401000f50d5c
e48723e45c247e15d26144fa003c3ddf1c480929
/templateFacadePractices.py
8fed9024f35bd9ed95253c0a70cabd28851780f7
[]
no_license
simonjj/ZenossScripts
962654387ba3fc8f373ae0f9ffabf5c1fecaca46
eea7c6756af965ff72b839c56c41a72c5f8eb1d5
refs/heads/master
2020-12-24T15:05:00.204961
2012-03-28T23:58:27
2012-03-28T23:58:27
2,534,367
3
0
null
null
null
null
UTF-8
Python
false
false
4,047
py
#get a hold of API from Products.Zuul import getFacade a = getFacade("template") #listing all of the templates for template in a.getTemplates("/zport/dmd/Devices"): #printing the "raw" info object print template #printing the ID of the the object print template.id print template.getName() #filtering out one particular template for template in a.getTemplates("/zport/dmd/Devices"): if template.id == "ZenJMX": break #accessing/retrieving one particular template for template in a.getTemplates("/zport/dmd/Devices/rrdTemplates/copy_of_ZenJMX"): print template #copying a template a.copyTemplate(TEMPLATE_UID_TO_COPY, TARGET_UID_FOR_THE_TARGET) c.copyTemplate(template.uid, "/zport/dmd/Devices/Server/Tomcat") #listing all the datasource for one template for ds in a.getDataSources("/zport/dmd/Devices/rrdTemplates/ZenJMX_EAN_Hotels_7606"): print ds #changing the jmxPort on a template for ds in a.getDataSources("/zport/dmd/Devices/rrdTemplates/ZenJMX_EAN_Hotels_7606"): ds.jmxPort = 7606 #list out and append 7606 to the graph definitions for g in a.getGraphs(myt.uid): print g g.name += " 7606" #add a new template to a certain device class a.addTemplate("My New Template Name", "/zport/dmd/Devices/Server/SSH/Linux/ClickServers") # SUPPORTED DATA SOURCE TYPES SNMP COMMAND Built-In PING GangliaMonitor ApacheMonitor Cisco UCS XML API DigMonitor DnsMonitor FtpMonitor HttpMonitor IRCDMonitor JabberMonitor LDAPMonitor MySqlMonitor NNTPMonitor NtpMonitor RPCMonitor Splunk CWMonitor JMX MAILTX SQL VMware WebTx WinPerf vCloudStatus vCloud #create a new datasource specifiying: # 1. the uid of the template to which attach the datasource to # 2. the name/id of the template # 3. the type of the datasource (see above) a.addDataSource(t.uid, "myfirstautomaticjmxdatasource", "JMX") #creating a datapoint on the previous template a.addDataPoint(ds.uid, "howdyyall") #looping and adding 10 datasources of type jmx to one template for i in range(10): a.addDataSource(t.uid, "myfirstautomaticjmxdatasource%s" % i, "JMX") #adding the same datapoint to the different datasource from above for ds in a.getDataSources(t.uid): a.addDataPoint(ds.uid, "thisisthesamedatapointforall") # adding a graph definition to the template a.addGraphDefinition(t.uid, "mygraph") #retrieve a datapoint info object to further work with (e.g. add to graphs) from Products.Zuul.interfaces import IDataPointInfo # access all the datapoints from the datasource (using the detour via the real object) ds._object.getRRDDataPoints() #this returns all the datapoints for the template as an array [<RRDDataPoint at /zport/dmd/Devices/rrdTemplates/SimonTest/datasources/ # accessing the first object in the array and turn it into a infor object to use dp = ds._object.getRRDDataPoints()[0] dpi = IDataPointInfo(dp) dpi.uid # adding a datapoint to a graph using: # 1. the uid of the datapoint # 2. the uid of the graph a.addDataPointToGraph(dpi.uid, g.uid) def getGraphById(t, graphid): for g in a.getGraphs(t.uid): if graphid == g.id: return g #this method combines all the previous things into one def mystuff(t, dsname, dpname, gname, type="JMX"): from Products.Zuul.interfaces import IDataPointInfo, IRRDDataSourceInfo, IGraphInfo print "woring on %s" % dsname nds = IRRDDataSourceInfo(a.addDataSource(t.uid, dsname, type)) print "created datasource" ndp = IDataPointInfo(a.addDataPoint(nds.uid, dpname)) print "created data point" a.addGraphDefinition(t.uid, gname) ng = getGraphById(t, gname) print "created graph def." a.addDataPointToGraph(ndp.uid, ng.uid) print "done" # reading in a file # open the file myfile = open("/tmp/path/tofile/blah". "r") # read in the lines and strip the newline chart off the end lines = [l.strip() for l in myfile.readlines()] # create an array to hold the data dsdata = [] #split all the lines and add them to data array for l in lines: dsdata.append(l.split())
773cae2cb5845ed68ef3e3c463bef91ccc809a89
b2ad72ec39c7c174be23311f28822a4136cf634c
/thr_interaction_controller/scripts/interaction_controller_gestures.py
4638619df3beece338d1add70f2b372546471f54
[]
no_license
3rdHand-project/thr_infrastructure
0a2e866561f6022176e5329859de0650b6a54322
d06fb3cb55ce303703a50bc8cf12017b7c95f926
refs/heads/master
2021-01-11T08:24:08.122093
2017-12-22T19:36:22
2017-12-22T19:36:22
51,926,129
0
1
null
null
null
null
UTF-8
Python
false
false
14,027
py
#!/usr/bin/env python import os import rospy import rospkg import actionlib import json from random import choice from threading import Lock from thr_infrastructure_msgs.msg import * from thr_infrastructure_msgs.srv import * from actionlib_msgs.msg import * from collections import deque from kinect2.client import Kinect2Client class InteractionController(object): def __init__(self): self.lock = Lock() self.running = True self.waiting = False self.last_predicition_confidence = None self.last_predicted_decision_str = None self.last_human_decision = None self.current_scene = None self.last_scene = None self.logs = [] # Kinect controls self.kinect = Kinect2Client('BAXTERFLOWERS.local') self.last_skeleton = None self.skeleton_id = '' self.hand_state = {'filtered_state': ''} self.speech = deque() self.speech_lock = Lock() self.last_sentence = '' self.last_speak = rospy.Time(0) # Parameters to be tweaked self.interaction_loop_rate = rospy.Rate(1) self.reward_service = '/thr/learner' self.predictor_service = 'thr/predictor' self.scene_state_service = '/thr/scene_state' self.run_decision_name = '/thr/run_decision' # Initiating topics ands links to services/actions self.run_decision_client = actionlib.SimpleActionClient(self.run_decision_name, RunDecisionAction) rospy.loginfo("Waiting action client {}...".format(self.run_decision_name)) self.run_decision_client.wait_for_server() for service in [self.reward_service, self.predictor_service, self.scene_state_service]: rospy.loginfo("Waiting service {}...".format(service)) rospy.wait_for_service(service) self.rospack = rospkg.RosPack() with open(self.rospack.get_path("thr_action_server")+"/config/decision_action_mapping.json") as config_file: self.decision_action_mapping = json.load(config_file) rospy.loginfo("Starting Kinect 2 services...") self.start_kinect_services() rospy.loginfo("IC for interaction via gestures ready!") ################################################# # KINECT SERVICES ############################### ################################################# def say(self, sentence, interval=15): if self.last_sentence != sentence or rospy.get_time() - self.last_speak > interval: self.kinect.tts.say(sentence) self.last_sentence = sentence self.last_speak = rospy.get_time() def cb_skeleton(self, msg): num_skeletons = len(msg.keys()) if self.skeleton_id == '': if num_skeletons > 1: rospy.logwarn("{} skeletons are visible, ignoring frame".format(num_skeletons)) elif num_skeletons == 0: rospy.logwarn("No skeleton visible, ignoring frame") else: self.skeleton_id = msg.keys()[0] rospy.loginfo("Selected skeleton {}".format(self.skeleton_id)) if num_skeletons > 0 and self.skeleton_id != '': try: self.last_skeleton = msg[self.skeleton_id] except KeyError: # Skeleton ID has changed rospy.logwarn("Skeleton ID has changed") self.say("I'm tracking someone else") self.skeleton_id = '' self.last_skeleton = None ####### Hand state filtering # If you're looking for the end filtered state this is self.hand_state['filtered_state'] activating_duration = 3 stopping_duration = 2 timeout_duration = 3.5 # The gesture expires within 3.5 sec if it hasn't been activated, must be > other durations if self.last_skeleton is not None: hand_state = self.last_skeleton['HandRight']['HandState'] if hand_state not in self.hand_state: self.hand_state[hand_state] = {} if 'filtered_state' not in self.hand_state: self.hand_state['filtered_state'] = '' if hand_state in ['NotTracked', 'Unknown'] or self.hand_state['filtered_state'] != '' and hand_state != self.hand_state['filtered_state']: if self.hand_state['filtered_state'] != "": if 'disappeared' not in self.hand_state[self.hand_state['filtered_state']]: self.hand_state[self.hand_state['filtered_state']]['disappeared'] = rospy.get_time() elif rospy.get_time() - self.hand_state[self.hand_state['filtered_state']]['disappeared'] > stopping_duration: del self.hand_state[self.hand_state['filtered_state']]['disappeared'] self.hand_state['filtered_state'] = "" rospy.loginfo("Switch to {}".format(self.hand_state['filtered_state'])) else: if self.hand_state['filtered_state'] == "": if 'appeared' not in self.hand_state[hand_state]: self.hand_state[hand_state]['appeared'] = rospy.get_time() elif rospy.get_time() - self.hand_state[hand_state]['appeared'] > activating_duration: self.hand_state['filtered_state'] = hand_state rospy.loginfo("Switch to {}".format(self.hand_state['filtered_state'])) del self.hand_state[hand_state]['appeared'] for gesture in self.hand_state: if 'appeared' in self.hand_state[gesture] and rospy.get_time() - self.hand_state[gesture]['appeared'] > timeout_duration: del self.hand_state[gesture]['appeared'] if 'disappeared' in self.hand_state[gesture] and rospy.get_time() - self.hand_state[gesture]['disappeared'] > timeout_duration: del self.hand_state[gesture]['disappeared'] def cb_speech(self, msg): with self.speech_lock: try: self.speech.append(msg['semantics']) except KeyError as e: rospy.logerr("Malformed speech message: no key {}".format(e.message)) def start_kinect_services(self): self.kinect.skeleton.set_callback(self.cb_skeleton) self.kinect.speech.set_callback(self.cb_speech) with open('{}/config/{}/grammar_en.xml'.format(self.rospack.get_path('thr_scenes'), rospy.get_param('/thr/scene'))) as f: self.kinect.speech.params.set_grammar(f, "Grammar {}".format(rospy.get_param('/thr/scene'))) self.kinect.tts.params.set_language('english') self.kinect.speech.params.semantic_on() self.kinect.tts.params.queue_on() msg = self.kinect.skeleton.start() msg += self.kinect.tts.start() msg += self.kinect.speech.start() if len(msg) > 0: rospy.logerr(msg) ################################################# # SERVICE CALLERS ############################### ################################################# def set_new_training_example(self, scene, decision, prediction_confidence, predicted_action, corrected): request = SetNewTrainingExampleRequest() request.decision = decision request.predicted_decision = predicted_action request.scene_state = scene request.prediction_confidence = prediction_confidence request.corrected = corrected try: reward = rospy.ServiceProxy(self.reward_service, SetNewTrainingExample) reward(request) except rospy.ServiceException as e: rospy.logerr("Cannot set training example: {}".format(e.message)) def update_scene(self): request = GetSceneStateRequest() try: getscene = rospy.ServiceProxy(self.scene_state_service, GetSceneState) self.last_scene = self.current_scene self.current_scene = getscene(request).state except rospy.ServiceException as e: rospy.logerr("Cannot update scene {}:".format(e.message)) def predict(self): request = GetNextDecisionRequest() request.scene_state = self.current_scene try: predict = rospy.ServiceProxy(self.predictor_service, GetNextDecision) return predict(request) except rospy.ServiceException as e: rospy.logerr("Cannot call predictor:".format(e.message)) decision = Decision(type='wait') return GetNextDecisionResponse(decisions=[decision], probas=[1.]) def start_or_stop_episode(self, start=True): for node in ['scene_state_manager', 'scene_state_updater', 'action_server', 'learner_predictor']: url = '/thr/{}/start_stop'.format(node) rospy.wait_for_service(url) rospy.ServiceProxy(url, StartStopEpisode).call(StartStopEpisodeRequest( command=StartStopEpisodeRequest.START if start else StartStopEpisodeRequest.STOP)) ################################################################################################################### def process_speech(self): with self.speech_lock: decisions = [Decision(type=speech[0], parameters=speech[1:]) for speech in self.speech] self.speech.clear() return decisions def run_decision(self, decision): if decision.type == 'wait': self.waiting = True return os.system('beep') goal = RunDecisionGoal() goal.decision = decision self.run_decision_client.send_goal(goal) while self.run_decision_client.get_state() in [GoalStatus.PENDING, GoalStatus.ACTIVE] and not rospy.is_shutdown(): self.interaction_loop_rate.sleep() self.current_decision = decision return False def run(self): def decision_to_tts(decision): obj = decision.parameters[0].split('/')[-1].replace('_', ' ') action = decision.type.split('_')[-1] return action, obj rospy.loginfo('Manual interaction starting from gestures!') self.start_or_stop_episode(True) def filter(actions, action): return [decision for index, decision in enumerate(actions.decisions) if action in decision.type and all_decisions.probas[index] > 0.] if not rospy.is_shutdown(): try: while self.running and not rospy.is_shutdown(): self.update_scene() all_decisions = self.predict() go_homes = filter(all_decisions, 'go_home') if len(go_homes) > 0: decision = choice(go_homes) else: gives = filter(all_decisions, 'give') picks = filter(all_decisions, 'pick') holds = filter(all_decisions, 'hold') if len(gives) > 0: decision = choice(gives) decision.parameters = decision.parameters #+ map(str, flattened_gesture_pose) + [ else: self.say("Please tell or show me what to do") gesture = self.hand_state['filtered_state'] wait = False speech_decisions = self.process_speech() if len(speech_decisions) > 0: if speech_decisions[0] in holds or speech_decisions[0] in picks: decision = speech_decisions[0] else: action, obj = decision_to_tts(speech_decisions[0]) self.say("I cannot {} {} now".format(action, obj)) wait = True else: if gesture == 'Lasso': if len(holds) > 0: decision = choice(holds) else: self.say("I cannot hold now") wait = True elif gesture == 'Open': if len(picks) > 0: decision = choice(picks) else: rospy.logwarn("I cannot pick now") wait = True else: wait = True if wait: self.interaction_loop_rate.sleep() continue rospy.logwarn("You showed a {} gesture corresponding to a {} action".format(gesture, decision.type)) action, obj = decision_to_tts(decision) self.say("I'm {}ing {}".format(action, obj)) type, params = decision.type, decision.parameters rospy.logwarn("Choosing decision {}{}".format(type, params)) self.logs.append({'timestamp': rospy.get_time(), 'type': type, 'parameters': params}) self.run_decision(decision) self.interaction_loop_rate.sleep() finally: logs_name = rospy.get_param('/thr/logs_name') if logs_name != "none": with open('action_decisions_' + logs_name + '.json', 'w') as f: json.dump(self.logs, f) if __name__ == '__main__': rospy.init_node("interaction_controller") InteractionController().run()
571105821c9382af323e4a0cb4a3a7a127838e1f
93c036c2c9a4175162391adfb33ff9211c0ca292
/onenet/alignPrint.py
1fde1cf55bf5cc0226fdafb1ef24ec85d5455c59
[]
no_license
fiso0/MxPython
ff8f021e57279190068c0dbe484384b28c6409f7
2c1545cf0f8a8062b948346006f6dbd05a1c74e9
refs/heads/master
2023-03-12T00:40:18.960523
2023-02-27T06:51:32
2023-02-27T06:51:32
59,210,103
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # 经测试无效 # 重写一个格式对齐函数。函数中推断字符串是否是中文字符串,有的话则加入全角空格补齐,否则加入半角空格补齐。 def myAlign(string, length=0): if length == 0: return string slen = len(string) re = string if isinstance(string, str): placeholder = ' ' else: placeholder = u' ' while slen < length: re += placeholder slen += 1 return re # 经测试,在命令行中可以对齐,在PyCharm中有轻微不对齐(可能是字体原因) # 在string后面补充.,使总长度达到length def myAlign2(string, length=0): if length == 0: return string # len(string.encode('GBK')) 中文按长度为2,英文长度为1计算 re = "{label:.<{width}}".format(label=string, width=length-len(string.encode('GBK'))+len(string)) return re if __name__ == '__main__': s1 = u'我是一个长句子,是的very long的句子。' s2 =u'我是短句子' print(myAlign(s1, 20) + myAlign(s2, 10)) print(myAlign(s2, 20) + myAlign(s1, 10)) print(myAlign2(s1, 40) + (s2)) print(myAlign2(s2, 40) + (s1)) input()
89c9af3c363d991a525ae91f0b0774b14f7f2552
11e6e2dfc53073bc0dd3c74751eaa0c2e900dd94
/REL_SERVIDORES_sqlconsulta.py
5b6532f94554364987feccf44347782aae0e9c68
[ "MIT" ]
permissive
tiagotouso/TALENTOS_HUMANOS
66c3cc013da8a12e797a277f541f3c74d913943e
c391f7d7a331d5f8b186b27af6a9b61448620cc6
refs/heads/master
2021-05-25T22:08:38.450403
2020-10-15T14:02:55
2020-10-15T14:02:55
253,940,735
0
0
null
null
null
null
UTF-8
Python
false
false
3,044
py
''' GERADOR DE RELATÓRIO MODELO PARA CONSULTAR A TABELA TB_SER_REL ''' from SQL import sqlpandas from AUXILIAR import salvarPandas def sqlConsultaNova(narquivo, colunas, tipo, carreira, grupo, renomear=True): ''' FUNÇÃO MODELO PARA CONSULTAR A TABELA TB_SER_REL CRIAR CONSULTA SQL E SALVAR ARQUIVO NA PASTA DE RELATÓRIOS - PADRÃO PARA GERAR SQL DE CONSULTA DO SISTEMA DE RELATÓRIO ENTRA NOME DA CONSULTA PARA SALVAR O ARQUIVO GERADO CAMPOS, PARAMETROS ([ATIVOS, APOSENTADOS, DESLIGADOS, TODOS], [TÉCN, TÉCN-ESP, PROF 3º, PROF 2º, OUTROS])PARA CONSULTA SQL SAI TABELA EM CSV DA CONSULTA REALIZADA ''' # PEGAR OS NOMES DOS CAMPOS NA TABELA TS_SIS__CONFIG_TABELAS sql = '''SELECT CAMPO, AS_NOME FROM talentoshumanos.ts_sis__config_tabelas;''' dados = sqlpandas(sql) oldcampo = list(dados['CAMPO']) newcampo = list(dados['AS_NOME']) #MONTAR DICIONÁRIO COM OS CAMPOS DA TABELA (MAIS OS NOMES PARA EXIBIÇÃO) diccampos = {} for n, v in enumerate(newcampo): if str(v).strip() != '-': diccampos[str(v).strip()] = str(oldcampo[n]).strip() titulo = colunas #MONTAR SQL PARA CONSULTA sql = '''select {0} from tb_ser_rel''' if renomear == False: #SQL SEM RENOMEAR OS CAMPOS ax = [] for coluna in colunas: ax.append(diccampos[coluna]) titulo = ax else: #SQL RENOMEANDO OS CAMPOS ax = [] for coluna in colunas: ax.append(diccampos[coluna] + ' AS \'' + coluna + '\'') axtx = ', '.join(ax) sql = sql.format(axtx) #FILTRO NA ATIVIDADE where = '''''' if tipo == 'ATI': where = '''\nwhere IT_DA_OCOR_INGR_ORGAO_SERV is not null and IT_DA_OCOR_INATIVIDADE_SERV is null and IT_DA_OCOR_EXCLUSAO_SERV is null''' elif tipo == 'APO': where = '''\nwhere IT_DA_OCOR_INGR_ORGAO_SERV is not null and IT_DA_OCOR_INATIVIDADE_SERV is not null and IT_DA_OCOR_EXCLUSAO_SERV is null''' elif tipo == 'DES': where = '''\nwhere IT_DA_OCOR_INGR_ORGAO_SERV is not null and IT_DA_OCOR_EXCLUSAO_SERV is not null''' elif tipo == 'TODOS': where = '''\nwhere IT_DA_OCOR_INGR_ORGAO_SERV is not null''' sql = sql + where #FILTRO NA CARREIRA if len(carreira) != 0: wherecarreira = '' axcarreira = '' if len(carreira) > 1: axcarreira = '\', \''.join(carreira) axcarreira = '\'' + axcarreira + '\'' else: axcarreira = '\'' + carreira[0] + '\'' wherecarreira = '''\nand DES_CARREIRA in ({0})'''.format(axcarreira) sql = sql + wherecarreira #FILTRO NO GRUPO if len(grupo) > 0: axgrupo = '\', \''.join(grupo) axgrupo = '\'' + axgrupo + '\'' sqlgrupo = '''\nand DES_GRUPO in ({0})'''.format(axgrupo) sql = sql + sqlgrupo #SALVAR TABELA GERADA dados = sqlpandas(sql) if len(dados) > 0: salvarPandas(dados, narquivo)
62bf5a35b3734cfe82f533f2b605f1b22012c38d
8c52d18ecf23734d5457f7fde9f2e3a66e7d73e7
/backend/wallet/migrations/0001_initial.py
45781799168796d908f498ba7d93fa311743d71e
[]
no_license
crowdbotics-apps/klapr-19351
9dd3b8a0d2fa48fdec9d70086057677b0c13f90b
e0f3a98c18bb43e2b314206e1c480d6d54edff8c
refs/heads/master
2022-11-24T14:44:00.997468
2020-08-04T00:36:18
2020-08-04T00:36:18
284,837,987
0
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
# Generated by Django 2.2.15 on 2020-08-04 00:35 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('taxi_profile', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserWallet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('balance', models.FloatField()), ('expiration_date', models.DateTimeField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='userwallet_user', to='taxi_profile.UserProfile')), ], ), migrations.CreateModel( name='PaymentMethod', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('account_token', models.CharField(max_length=255)), ('payment_account', models.CharField(max_length=10)), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('wallet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='paymentmethod_wallet', to='wallet.UserWallet')), ], ), migrations.CreateModel( name='DriverWallet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('balance', models.FloatField()), ('expiration_date', models.DateTimeField()), ('driver', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='driverwallet_driver', to='taxi_profile.DriverProfile')), ], ), ]