|
|
|
|
|
import collections |
|
import json |
|
|
|
|
|
import string |
|
|
|
import numpy as np |
|
from model_LXM2T5 import T5tokenizer, LXMT52T5, LXMtokenizer |
|
import pickle |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
from config4LXMT5_DDP import args |
|
print('dataset4T5',args) |
|
from random import sample |
|
|
|
|
|
def normalize_wiki(s): |
|
stopwords=['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"] |
|
|
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
def remove_stop_w(text): |
|
to_be_removed = set(stopwords) |
|
text_list = text.split(' ') |
|
text_list = [item for item in text_list if item not in to_be_removed] |
|
return ' '.join(text_list) |
|
|
|
return white_space_fix(remove_stop_w(remove_punc(lower(s)))) |
|
|
|
|
|
|
|
if args.dataset == 'okvqa': |
|
with open('../data/image_features/vqa_img_feature_train.pickle', 'rb') as f: |
|
pretrain_feature = pickle.load(f) |
|
if args.pretrain: |
|
with open('../data/pretrain/vqa_train_filter.json','r') as f: |
|
vqa2 = json.load(f) |
|
train_row = vqa2 |
|
else: |
|
with open('../data/finetune/okvqa_train.json','r') as f: |
|
train_row = json.load(f) |
|
|
|
if args.pretrain: |
|
with open('../data/pretrain/caption_predict_vqav2train.json', 'r') as f: |
|
captions_train = json.load(f) |
|
with open('../data/pretrain/labeling_predict_vqav2train.json', 'r') as f: |
|
labelings_train = json.load(f) |
|
with open('../data/pretrain/ocr_predict_vqav2train.json', 'r') as f: |
|
ocrs_train = json.load(f) |
|
|
|
with open('../data/pretrain/wiki_100sim_train.json', 'r') as f: |
|
wikis_train = json.load(f) |
|
|
|
else: |
|
with open('../data/finetune/caption_predict_train.json', 'r') as f: |
|
captions_train = json.load(f) |
|
with open('../data/finetune/labeling_predict_train.json', 'r') as f: |
|
labelings_train = json.load(f) |
|
with open('../data/finetune/ocr_predict_train.json', 'r') as f: |
|
ocrs_train = json.load(f) |
|
if args.ofa=="normal": |
|
with open('../data/finetune/ofa_predictions/OFA_zerorate_predict_train.json', 'r') as f: |
|
ofas_train = json.load(f) |
|
with open('../data/finetune/ofa_predictions/OFA_zerorate_evidence_train.json', 'r') as f: |
|
evid_train = json.load(f) |
|
elif args.ofa=="finetune": |
|
with open('../data/finetune/ofa_predictions/OFAvqa_zerorate_answer_train.json', 'r') as f: |
|
ofas_train = json.load(f) |
|
with open('../data/finetune/ofa_predictions/OFAvqa_zerorate_evidence_train.json', 'r') as f: |
|
evid_train = json.load(f) |
|
else: |
|
assert 0==1 |
|
with open("../data/finetune/gpt3_okvqa_train2014_answers.pkl", 'rb') as f: |
|
gpt3_train = pickle.load(f) |
|
with open('../data/finetune/wiki_100sim_train.json', 'r') as f: |
|
wikis_train = json.load(f) |
|
|
|
else: |
|
assert 0==1 |
|
|
|
|
|
|
|
def plural(word): |
|
if word.endswith('y'): |
|
return word[:-1] + 'ies' |
|
elif word[-1] in 'sxo' or word[-2:] in ['sh', 'ch']: |
|
return word + 'es' |
|
elif word.endswith('an'): |
|
return word[:-2] + 'en' |
|
else: |
|
return word + 's' |
|
|
|
image_ids = [] |
|
qids = [] |
|
questions = [] |
|
answers = [] |
|
labels = [] |
|
objects = [] |
|
answer_ids = [] |
|
answers_lists = [] |
|
question_lengths = [] |
|
answers_most = [] |
|
neg_answer = [] |
|
|
|
|
|
train_captions = {} |
|
for item in captions_train: |
|
if item['image_id'] in train_captions.keys(): |
|
print("IMG caption REPEATED!") |
|
assert 0==1 |
|
train_captions[item['image_id']] = item['caption'] |
|
|
|
train_labelings = {} |
|
for item in labelings_train: |
|
if item['image_id'] in train_labelings.keys(): |
|
print("IMG labelings REPEATED!") |
|
assert 0==1 |
|
train_labelings[str(item['image_id'])] = item['labeling'] |
|
print("labeling number:", len(train_labelings.keys())) |
|
|
|
train_ocrs = {} |
|
for item in ocrs_train: |
|
if item['image_id'] in train_ocrs.keys(): |
|
print("IMG ocrs REPEATED!") |
|
assert 0==1 |
|
train_ocrs[str(item['image_id'])] = item['ocr'] |
|
|
|
|
|
if not args.pretrain: |
|
train_ofas = {} |
|
if args.ofa=="normal": |
|
for item in ofas_train: |
|
if item['question_id'] in train_ofas.keys(): |
|
print("IMG ofas REPEATED!") |
|
assert 0==1 |
|
train_ofas[str(item['question_id'])] = item['OFA_answer']+", "+evid_train[str(item['question_id'])] |
|
elif args.ofa=="finetune": |
|
for k in evid_train.keys(): |
|
train_ofas[k] = ofas_train[k]+", "+evid_train[k] |
|
else: |
|
assert 0==1 |
|
|
|
train_gpt3 = {} |
|
for k in gpt3_train.keys(): |
|
qid = k.split("#")[1] |
|
|
|
train_gpt3[str(qid)] = ", ".join(gpt3_train[k][0]) |
|
|
|
|
|
train_wikis = wikis_train |
|
|
|
|
|
if args.pretrain: |
|
if args.num_wiki > 51: |
|
for key in train_wikis.keys(): |
|
for i in range(args.num_wiki): |
|
train_wikis[key][i]=normalize_wiki(train_wikis[key][i]) |
|
|
|
|
|
|
|
|
|
n = 0 |
|
|
|
|
|
for qid, item in train_row.items(): |
|
img_id = str(item['image_id']) |
|
image_ids.append(img_id) |
|
qids.append(qid) |
|
question_clean = item['question'] |
|
questions.append(question_clean) |
|
|
|
|
|
|
|
|
|
if args.dataset == 'okvqa': |
|
answers.append(item['multi_answers']) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
answers.append(item['answer']) |
|
|
|
|
|
|
|
|
|
def _create_gpt3_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, gpt3, wikis,final_txt): |
|
|
|
if not args.pretrain: |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer, |
|
'caption': captions, |
|
'labeling':labelings, |
|
'ocr': ocrs, |
|
'ofa':ofas, |
|
'gpt3':gpt3, |
|
'wiki':wikis, |
|
'final_txt':final_txt} |
|
|
|
return entry |
|
|
|
|
|
|
|
def _create_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, wikis,final_txt): |
|
if not args.pretrain: |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer, |
|
'caption': captions, |
|
'labeling':labelings, |
|
'ocr': ocrs, |
|
'ofa':ofas, |
|
'wiki':wikis, |
|
'final_txt':final_txt} |
|
return entry |
|
|
|
|
|
def _create_vqav2_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,wikis,final_txt): |
|
if args.pretrain: |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer, |
|
'caption': captions, |
|
'labeling':labelings, |
|
'ocr': ocrs, |
|
'wiki':wikis, |
|
'final_txt':final_txt} |
|
|
|
return entry |
|
|
|
|
|
def _load_dataset(train_row): |
|
entries=[] |
|
for qid, item in train_row.items(): |
|
qid = str(qid) |
|
img_id = str(item['image_id']) |
|
question = item['question'] |
|
|
|
|
|
|
|
|
|
if args.dataset == 'okvqa': |
|
answers=item['multi_answers'] |
|
|
|
|
|
|
|
else: |
|
answers=item['answer'] |
|
|
|
caption=train_captions[img_id] |
|
labeling=train_labelings[img_id] |
|
ocr_list=train_ocrs[img_id] |
|
ocr = ", ".join(str(i) for i in ocr_list) |
|
if not args.pretrain: |
|
ofa=train_ofas[qid] |
|
gpt3=train_gpt3[qid] |
|
wiki=train_wikis[qid] |
|
|
|
if args.pretrain: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
else: |
|
if args.seed > 1000: |
|
print("seed > 1000 denotes that ablation study on 2 encoders") |
|
assert args.input_type==0 |
|
if args.gpt3: |
|
if args.input_type==0: |
|
|
|
if args.num_wiki > 51: |
|
|
|
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==1: |
|
final_txt = question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
elif args.input_type==2: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==3: |
|
final_txt = question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
else: |
|
print('choose input-type in [0,1,2,3]') |
|
assert 0==1 |
|
|
|
|
|
else: |
|
if args.input_type==0: |
|
|
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==1: |
|
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
elif args.input_type==2: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==3: |
|
final_txt = question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
else: |
|
print('choose input-type in [0,1,2,3,4,5]') |
|
assert 0==1 |
|
|
|
|
|
|
|
|
|
if args.pretrain: |
|
entries.append(_create_vqav2_entry(img_id, qid, question, answers, caption,labeling, ocr, wiki, final_txt)) |
|
else: |
|
if args.gpt3: |
|
entries.append(_create_gpt3_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa,gpt3, wiki, final_txt)) |
|
else: |
|
entries.append(_create_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa, wiki, final_txt)) |
|
|
|
return entries |
|
|
|
|
|
|
|
|
|
|
|
def _create_pretrain_entry(imgage_ids, q_ids, questions, answer): |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer} |
|
return entry |
|
|
|
def _load_pretrain_dataset(train_row): |
|
entries=[] |
|
for qid, item in train_row.items(): |
|
qid = str(qid) |
|
|
|
img_id = str(item['image_id']) |
|
question = item['question'] |
|
|
|
|
|
|
|
if args.dataset == 'okvqa': |
|
answers=item['multi_answers'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
answers=item['answer'] |
|
|
|
entries.append(_create_pretrain_entry(img_id, qid, question, answers)) |
|
return entries |
|
|
|
|
|
|
|
class KgDataset(Dataset): |
|
def __init__(self, val=False, val_test=False): |
|
self.entries = _load_dataset(train_row) |
|
self.tokenize() |
|
|
|
def __len__(self): |
|
return len(self.entries) |
|
def tokenize(self): |
|
if args.input_type==0: |
|
if args.num_wiki > 51: |
|
max_source_length=200 |
|
else: |
|
max_source_length=250 |
|
else: |
|
max_source_length=128 |
|
max_target_length=5 |
|
max_que_length=16 |
|
for entry in self.entries: |
|
T5_input_seq, T5_input_ids, T5_input_masks = self.tokenizer_func( T5tokenizer, entry['final_txt'], max_length=max_source_length) |
|
LXM_input_seq, LXM_input_ids, LXM_input_masks = self.tokenizer_func( LXMtokenizer, entry['question'], max_length=max_que_length) |
|
|
|
|
|
all_Ans_T5_target_seq = [] |
|
all_Ans_T5_target_ids = [] |
|
all_Ans_T5_target_masks = [] |
|
if args.allAns: |
|
for i in range(10): |
|
if i%2==0: |
|
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][i], max_length=max_target_length) |
|
all_Ans_T5_target_seq.append(T5_target_seq) |
|
all_Ans_T5_target_ids.append(torch.from_numpy(np.array(T5_target_ids))) |
|
all_Ans_T5_target_masks.append(torch.from_numpy(np.array(T5_target_masks))) |
|
|
|
all_Ans_T5_target_ids=torch.stack(all_Ans_T5_target_ids) |
|
all_Ans_T5_target_masks=torch.stack(all_Ans_T5_target_masks) |
|
|
|
entry['T5_target_seq']=all_Ans_T5_target_seq |
|
entry['T5_target_ids']=all_Ans_T5_target_ids |
|
entry['T5_target_masks']=all_Ans_T5_target_masks |
|
|
|
else: |
|
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][0], max_length=max_target_length) |
|
entry['T5_target_seq']=T5_target_seq |
|
entry['T5_target_ids']=torch.from_numpy(np.array(T5_target_ids)) |
|
entry['T5_target_masks']=torch.from_numpy(np.array(T5_target_masks)) |
|
entry['T5_input_seq']=T5_input_seq |
|
entry['T5_input_ids']=torch.from_numpy(np.array(T5_input_ids)) |
|
entry['T5_input_masks']=torch.from_numpy(np.array(T5_input_masks)) |
|
entry['LXM_input_seq']=LXM_input_seq |
|
entry['LXM_input_ids']=torch.from_numpy(np.array(LXM_input_ids)) |
|
entry['LXM_input_masks']=torch.from_numpy(np.array(LXM_input_masks)) |
|
|
|
|
|
|
|
def tokenizer_func(self, tokenizer, text, max_length=0): |
|
if max_length==0: |
|
print('plz set the max length of input sequence!') |
|
assert 1==2 |
|
|
|
out_seq = tokenizer( |
|
text, |
|
|
|
padding='max_length', |
|
max_length=max_length, |
|
truncation=True, |
|
|
|
) |
|
|
|
tokens=out_seq.input_ids |
|
masks=out_seq.attention_mask |
|
length = len(tokens) |
|
|
|
return out_seq, tokens, masks |
|
|
|
def __getitem__(self, index): |
|
|
|
entry = self.entries[index] |
|
qid=entry['qid'] |
|
question=entry['question'] |
|
answer=entry['answer'] |
|
img_id=entry['img_id'] |
|
image_feature = pretrain_feature[img_id]['feats'] |
|
|
|
image_caption = entry['caption'] |
|
image_labeling = entry['labeling'] |
|
image_ocr_list = entry['ocr'] |
|
image_ocr = ", ".join(str(i) for i in image_ocr_list) |
|
if not args.pretrain: |
|
ofa = entry['ofa'] |
|
if args.gpt3: |
|
gpt3 = entry['gpt3'] |
|
wiki = entry['wiki'] |
|
final_txt = entry['final_txt'] |
|
|
|
|
|
spatial_feature = pretrain_feature[img_id]['sp_feats'] |
|
|
|
T5_input_seq, T5_input_ids, T5_input_masks = entry['T5_input_seq'], entry['T5_input_ids'], entry['T5_input_masks'] |
|
|
|
LXM_input_seq, LXM_input_ids, LXM_input_masks = entry['LXM_input_seq'], entry['LXM_input_ids'], entry['LXM_input_masks'] |
|
|
|
LXM_token_type_ids = torch.from_numpy(np.array(LXM_input_seq['token_type_ids'])) |
|
|
|
T5_target_seq, T5_target_ids, T5_target_masks=entry['T5_target_seq'],entry['T5_target_ids'],entry['T5_target_masks'] |
|
|
|
if not args.pretrain: |
|
if not args.gpt3: |
|
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks |
|
elif args.gpt3: |
|
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, gpt3, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks |
|
else: |
|
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks |
|
|
|
def my_collate(batch): |
|
batch = list(zip(*batch)) |
|
if not args.pretrain: |
|
if not args.gpt3: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'wiki': batch[9], 'final_txt': batch[10], |
|
'T5_input_seq': batch[11], 'T5_input_ids': batch[12],'T5_input_masks': batch[13],'LXM_input_ids':batch[14], 'LXM_input_masks':batch[15], 'LXM_token_type_ids':batch[16], 'T5_target_seq':batch[17],'T5_target_ids':batch[18],'T5_target_masks':batch[19]} |
|
elif args.gpt3: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11], |
|
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]} |
|
|
|
|
|
else: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'wiki': batch[8], 'final_txt': batch[9], |
|
'T5_input_seq': batch[10], 'T5_input_ids': batch[11],'T5_input_masks': batch[12],'LXM_input_ids':batch[13], 'LXM_input_masks':batch[14], 'LXM_token_type_ids':batch[15], 'T5_target_seq':batch[16],'T5_target_ids':batch[17],'T5_target_masks':batch[18]} |
|
|
|
|
|
del batch |
|
return res |
|
|
|
def my_val_collate(batch): |
|
batch = list(zip(*batch)) |
|
if 1: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'wiki': batch[9], 'final_txt': batch[10], |
|
'T5_input_seq': batch[11], 'T5_input_ids': batch[12],'T5_input_masks': batch[13],'LXM_input_ids':batch[14], 'LXM_input_masks':batch[15], 'LXM_token_type_ids':batch[16], 'T5_target_seq':batch[17],'T5_target_ids':batch[18],'T5_target_masks':batch[19]} |
|
del batch |
|
return res |
|
|
|
|
|
|
|
|
|
|
|
def my_gpt3_collate(batch): |
|
batch = list(zip(*batch)) |
|
if 1: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8],'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11], |
|
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]} |
|
del batch |
|
return res |
|
|
|
def my_val_gpt3_collate(batch): |
|
batch = list(zip(*batch)) |
|
if 1: |
|
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2], |
|
'img': batch[3], 'spatial': batch[4], |
|
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8],'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11], |
|
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]} |
|
del batch |
|
return res |
|
|