|
|
|
|
|
import collections |
|
import pickle |
|
from model_LXM2T5 import T5tokenizer, LXMT52T5, LXMtokenizer |
|
|
|
from torch.utils.data import Dataset |
|
import json |
|
import pickle |
|
import numpy as np |
|
import torch |
|
import string |
|
|
|
|
|
from config4LXMT5_DDP import args |
|
print('dataset_val4T5',args) |
|
from random import sample |
|
|
|
|
|
def normalize_wiki(s): |
|
stopwords=['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"] |
|
|
|
|
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
def remove_stop_w(text): |
|
to_be_removed = set(stopwords) |
|
text_list = text.split(' ') |
|
text_list = [item for item in text_list if item not in to_be_removed] |
|
return ' '.join(text_list) |
|
|
|
return white_space_fix(remove_stop_w(remove_punc(lower(s)))) |
|
|
|
if args.dataset == 'okvqa': |
|
with open('../data/validate/okvqa_val.json','r') as f: |
|
val_row = json.load(f) |
|
with open('../data/image_features/vqa_img_feature_val.pickle', 'rb') as f: |
|
pretrain_feature = pickle.load(f) |
|
with open('../data/validate/caption_predict_val.json', 'r') as f: |
|
captions_val = json.load(f) |
|
with open('../data/validate/labeling_predict_val.json', 'r') as f: |
|
labelings_val = json.load(f) |
|
with open('../data/validate/ocr_predict_val.json', 'r') as f: |
|
ocrs_val = json.load(f) |
|
|
|
if args.ofa=="normal": |
|
with open('../data/validate/ofa_predictions/OFA_zerorate_predict_val.json', 'r') as f: |
|
ofas_val = json.load(f) |
|
with open('../data/validate/ofa_predictions/OFA_zerorate_evidence_val.json', 'r') as f: |
|
evid_val = json.load(f) |
|
elif args.ofa=="finetune": |
|
with open('../data/validate/ofa_predictions/OFAvqa_zerorate_answer_val.json', 'r') as f: |
|
ofas_val = json.load(f) |
|
with open('../data/validate/ofa_predictions/OFAvqa_zerorate_evidence_val.json', 'r') as f: |
|
evid_val = json.load(f) |
|
else: |
|
assert 0==1 |
|
with open("../data/validate/gpt3_okvqa_val2014_answers.pkl", 'rb') as f: |
|
gpt3_val = pickle.load(f) |
|
with open('../data/validate/wiki_100sim_val.json', 'r') as f: |
|
wikis_val = json.load(f) |
|
|
|
|
|
def plural(word): |
|
if word.endswith('y'): |
|
return word[:-1] + 'ies' |
|
elif word[-1] in 'sxo' or word[-2:] in ['sh', 'ch']: |
|
return word + 'es' |
|
elif word.endswith('an'): |
|
return word[:-2] + 'en' |
|
else: |
|
return word + 's' |
|
|
|
image_ids = [] |
|
qids = [] |
|
questions = [] |
|
answers = [] |
|
labels = [] |
|
objects = [] |
|
answer_ids = [] |
|
answers_lists = [] |
|
question_lengths = [] |
|
most_answer = [] |
|
neg_answer = [] |
|
|
|
val_captions = {} |
|
for item in captions_val: |
|
if item['image_id'] in val_captions.keys(): |
|
print("IMG caption REPEATED!") |
|
assert 0==1 |
|
val_captions[item['image_id']] = item['caption'] |
|
|
|
val_labelings = {} |
|
for item in labelings_val: |
|
if item['image_id'] in val_labelings.keys(): |
|
print("IMG labelings REPEATED!") |
|
assert 0==1 |
|
val_labelings[str(item['image_id'])] = item['labeling'] |
|
|
|
val_ocrs = {} |
|
for item in ocrs_val: |
|
if item['image_id'] in val_ocrs.keys(): |
|
print("IMG ocrs REPEATED!") |
|
assert 0==1 |
|
val_ocrs[str(item['image_id'])] = item['ocr'] |
|
|
|
|
|
val_ofas = {} |
|
|
|
if args.ofa=="normal": |
|
for item in ofas_val: |
|
if item['question_id'] in val_ofas.keys(): |
|
print("IMG ofas REPEATED!") |
|
assert 0==1 |
|
val_ofas[str(item['question_id'])] = item['OFA_answer']+", "+evid_val[str(item['question_id'])] |
|
elif args.ofa=="finetune": |
|
for k in evid_val.keys(): |
|
val_ofas[k] = ofas_val[k]+", "+evid_val[k] |
|
else: |
|
assert 0==1 |
|
|
|
|
|
|
|
val_gpt3 = {} |
|
for k in gpt3_val.keys(): |
|
qid = k.split("#")[1] |
|
|
|
val_gpt3[str(qid)] = ", ".join(gpt3_val[k][0]) |
|
|
|
|
|
val_wikis = wikis_val |
|
|
|
|
|
for qid, item in val_row.items(): |
|
img_id = str(item['image_id']) |
|
image_ids.append(img_id) |
|
qids.append(qid) |
|
|
|
question_clean = item['question'] |
|
questions.append(question_clean) |
|
if args.dataset == 'okvqa' or args.dataset == 'vqav2': |
|
answers.append(item['multi_answers']) |
|
if args.dataset == 'okvqa': |
|
objects.append(item['label']) |
|
else: |
|
answers.append(item['answer']) |
|
|
|
|
|
|
|
def _create_gpt3_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas,gpt3, wikis, final_txt): |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer, |
|
'caption': captions, |
|
'labeling':labelings, |
|
'ocr': ocrs, |
|
'ofa':ofas, |
|
'gpt3':gpt3, |
|
'wiki': wikis, |
|
'final_txt':final_txt} |
|
return entry |
|
|
|
|
|
def _create_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, wikis, final_txt): |
|
entry = { |
|
'img_id': imgage_ids, |
|
'qid': q_ids, |
|
'question': questions, |
|
'answer': answer, |
|
'caption': captions, |
|
'labeling':labelings, |
|
'ocr': ocrs, |
|
'ofa':ofas, |
|
'wiki': wikis, |
|
'final_txt':final_txt} |
|
return entry |
|
|
|
def _load_dataset(val_row): |
|
entries=[] |
|
for qid, item in val_row.items(): |
|
qid = str(qid) |
|
img_id = str(item['image_id']) |
|
question = item['question'] |
|
|
|
if args.dataset == 'okvqa': |
|
answers=item['multi_answers'] |
|
|
|
|
|
else: |
|
answers=item['answer'] |
|
caption=val_captions[img_id] |
|
labeling=val_labelings[img_id] |
|
ocr_list=val_ocrs[img_id] |
|
ocr = ", ".join(str(i) for i in ocr_list) |
|
ofa=val_ofas[qid] |
|
gpt3=val_gpt3[qid] |
|
wiki=val_wikis[qid] |
|
|
|
if args.seed > 1000: |
|
print("seed > 1000 denotes that ablation study on 2 encoders") |
|
assert args.input_type==0 |
|
|
|
if args.gpt3: |
|
if args.input_type==0: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==1: |
|
final_txt = question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
elif args.input_type==2: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==3: |
|
final_txt = question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
else: |
|
print('choose input-type in [0,1,2,3]') |
|
assert 0==1 |
|
|
|
entries.append(_create_gpt3_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa,gpt3, wiki, final_txt)) |
|
|
|
else: |
|
if args.input_type==0: |
|
|
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==1: |
|
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
elif args.input_type==2: |
|
if args.num_wiki > 51: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]] |
|
else: |
|
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]] |
|
elif args.input_type==3: |
|
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr |
|
else: |
|
print('choose input-type in [1,2,3,4,5]') |
|
assert 0==1 |
|
|
|
entries.append(_create_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa, wiki, final_txt)) |
|
return entries |
|
|
|
|
|
|
|
|
|
|
|
|
|
class KgDatasetVal(Dataset): |
|
def __init__(self, val=False, val_test=False): |
|
self.entries = _load_dataset(val_row) |
|
self.tokenize() |
|
|
|
|
|
def __len__(self): |
|
return len(self.entries) |
|
def tokenize(self): |
|
if args.input_type%2==0 : |
|
if args.num_wiki > 51: |
|
max_source_length=200 |
|
else: |
|
max_source_length=250 |
|
else: |
|
max_source_length=128 |
|
max_target_length=5 |
|
max_que_length=16 |
|
for entry in self.entries: |
|
T5_input_seq, T5_input_ids, T5_input_masks = self.tokenizer_func( T5tokenizer, entry['final_txt'], max_length=max_source_length) |
|
LXM_input_seq, LXM_input_ids, LXM_input_masks = self.tokenizer_func( LXMtokenizer, entry['question'], max_length=max_que_length) |
|
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][0], max_length=max_target_length) |
|
entry['T5_input_seq']=T5_input_seq |
|
entry['T5_input_ids']=torch.from_numpy(np.array(T5_input_ids)) |
|
entry['T5_input_masks']=torch.from_numpy(np.array(T5_input_masks)) |
|
entry['LXM_input_seq']=LXM_input_seq |
|
entry['LXM_input_ids']=torch.from_numpy(np.array(LXM_input_ids)) |
|
entry['LXM_input_masks']=torch.from_numpy(np.array(LXM_input_masks)) |
|
entry['T5_target_seq']=T5_target_seq |
|
entry['T5_target_ids']=torch.from_numpy(np.array(T5_target_ids)) |
|
entry['T5_target_masks']=torch.from_numpy(np.array(T5_target_masks)) |
|
|
|
def tokenizer_func(self, tokenizer, text, max_length=0): |
|
if max_length==0: |
|
print('plz set the max length of input sequence!') |
|
assert 1==2 |
|
|
|
out_seq = tokenizer( |
|
text, |
|
padding='max_length', |
|
max_length=max_length, |
|
truncation=True, |
|
|
|
) |
|
|
|
tokens=out_seq.input_ids |
|
masks=out_seq.attention_mask |
|
length = len(tokens) |
|
return out_seq, tokens, masks |
|
|
|
def __getitem__(self, index): |
|
entry = self.entries[index] |
|
qid=entry['qid'] |
|
question=entry['question'] |
|
answer=entry['answer'] |
|
img_id=entry['img_id'] |
|
|
|
image_feature = pretrain_feature[img_id]['feats'] |
|
|
|
image_caption = entry['caption'] |
|
image_labeling = entry['labeling'] |
|
image_ocr_list = entry['ocr'] |
|
image_ocr = ", ".join(str(i) for i in image_ocr_list) |
|
ofa = entry['ofa'] |
|
if args.gpt3: |
|
gpt3 = entry['gpt3'] |
|
wiki = entry['wiki'] |
|
final_txt = entry['final_txt'] |
|
|
|
|
|
spatial_feature = pretrain_feature[img_id]['sp_feats'] |
|
T5_input_seq, T5_input_ids, T5_input_masks = entry['T5_input_seq'], entry['T5_input_ids'], entry['T5_input_masks'] |
|
LXM_input_seq, LXM_input_ids, LXM_input_masks = entry['LXM_input_seq'], entry['LXM_input_ids'], entry['LXM_input_masks'] |
|
LXM_token_type_ids = torch.from_numpy(np.array(LXM_input_seq['token_type_ids'])) |
|
T5_target_seq, T5_target_ids, T5_target_masks=entry['T5_target_seq'],entry['T5_target_ids'],entry['T5_target_masks'] |
|
|
|
|
|
|
|
if args.gpt3: |
|
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, gpt3, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks |
|
elif not args.gpt3: |
|
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks |
|
|
|
|
|
|