|
import json |
|
import string |
|
import regex |
|
|
|
|
|
def normalize_answer(s): |
|
def remove_articles(text): |
|
return regex.sub(r'\b(a|an|the)\b', ' ', text) |
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def cal_acc_multi(ground_truth, preds, return_id = False): |
|
all_num = len(ground_truth) |
|
acc_num = 0 |
|
ids = [] |
|
temp = [] |
|
for i, answer_id in enumerate(ground_truth): |
|
pred = preds[i] |
|
cnt = 0 |
|
for aid in answer_id: |
|
if pred == aid: |
|
cnt += 1 |
|
if cnt ==1: |
|
acc_num += 1/3 |
|
|
|
elif cnt == 2: |
|
acc_num += 2/3 |
|
|
|
elif cnt > 2: |
|
acc_num += 1 |
|
|
|
|
|
if return_id: |
|
return acc_num / all_num, ids |
|
else: |
|
return acc_num, all_num |
|
|
|
|
|
def ensemble(a): |
|
return max(a[::-1], key = a.count) |
|
|
|
|
|
f=open("/root/okvqa/data/okvqa_val.json", "r") |
|
answer_dict=json.load(f) |
|
f.close() |
|
for k in answer_dict.keys(): |
|
for a_ind, a in enumerate(answer_dict[k]['multi_answers']): |
|
answer_dict[k]['multi_answers'][a_ind] = normalize_answer(answer_dict[k]['multi_answers'][a_ind]) |
|
|
|
|
|
|
|
f1=open("/mnt/bn/qingyi-hl/finetunedModelonOKVQA/1e-41e-5FTwiki25-From-1e-41e-5PretrainWiki25Epo0/FTwiki25FromPretrainWiki25Epo0-1e41e5/predictions.json", "r") |
|
predict0_dict=json.load(f1) |
|
for p in predict0_dict.keys(): |
|
predict0_dict[p]=normalize_answer(predict0_dict[p]) |
|
f1.close() |
|
f2=open("/mnt/bn/qingyi-hl/finetunedModelonOKVQA/1e-41e-5FTwiki25-From-1e-41e-5PretrainWiki25Epo1/predictions.json", "r") |
|
predict1_dict=json.load(f2) |
|
for p in predict1_dict.keys(): |
|
predict1_dict[p]=normalize_answer(predict1_dict[p]) |
|
f2.close() |
|
f3=open("/mnt/bn/qingyi-hl/finetunedModelonOKVQA/1e-41e-5FTwiki25-From-1e-41e-5PretrainWiki25Epo2/predictions.json", "r") |
|
predict2_dict=json.load(f3) |
|
for p in predict2_dict.keys(): |
|
predict2_dict[p]=normalize_answer(predict2_dict[p]) |
|
f3.close() |
|
|
|
|
|
|
|
answer_list=[] |
|
predict0_list=[] |
|
predict1_list=[] |
|
predict2_list=[] |
|
emsemble_predict=[] |
|
for k in answer_dict.keys(): |
|
answer_list.append( answer_dict[k]['multi_answers']) |
|
predict0_list.append( predict0_dict[k]) |
|
predict1_list.append( predict1_dict[k]) |
|
predict2_list.append( predict2_dict[k]) |
|
|
|
emsemble_predict.append(ensemble([predict0_dict[k], predict1_dict[k], predict2_dict[k]) |
|
|
|
|
|
|
|
acc_n0,all_n0=cal_acc_multi(answer_list,predict0_list) |
|
acc_n1,all_n1=cal_acc_multi(answer_list,predict1_list) |
|
acc_n2,all_n2=cal_acc_multi(answer_list,predict2_list) |
|
|
|
acc_ens,all_ens=cal_acc_multi(answer_list,emsemble_predict) |
|
|
|
print("0-accuracy",acc_n0/all_n0) |
|
print("1-accuracy",acc_n1/all_n1) |
|
print("2-accuracy",acc_n2/all_n2) |
|
|
|
|
|
print("ensemble-accuracy",acc_ens/all_ens) |