File size: 14,751 Bytes
44ddffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#!user/bin/env python
# -*- coding:utf-8 -*-
import collections
import pickle
from model_LXM2T5 import T5tokenizer, LXMT52T5, LXMtokenizer
from torch.utils.data import Dataset
import json
import pickle
import numpy as np
import torch
import string
from config4LXMT5_DDP import args
print('dataset_val4T5',args)
from random import sample
def normalize_wiki(s):
stopwords=['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
# def remove_articles(text):
# return regex.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
def remove_stop_w(text):
to_be_removed = set(stopwords)
text_list = text.split(' ')
text_list = [item for item in text_list if item not in to_be_removed]
return ' '.join(text_list)
return white_space_fix(remove_stop_w(remove_punc(lower(s))))
if args.dataset == 'okvqa':
with open('../data/validate/okvqa_val.json','r') as f:
val_row = json.load(f)
with open('../data/image_features/vqa_img_feature_val.pickle', 'rb') as f:
pretrain_feature = pickle.load(f)
with open('../data/validate/caption_predict_val.json', 'r') as f:
captions_val = json.load(f)
with open('../data/validate/labeling_predict_val.json', 'r') as f:
labelings_val = json.load(f)
with open('../data/validate/ocr_predict_val.json', 'r') as f:
ocrs_val = json.load(f)
if args.ofa=="normal":
with open('../data/validate/ofa_predictions/OFA_zerorate_predict_val.json', 'r') as f:
ofas_val = json.load(f)
with open('../data/validate/ofa_predictions/OFA_zerorate_evidence_val.json', 'r') as f:
evid_val = json.load(f)
elif args.ofa=="finetune":
with open('../data/validate/ofa_predictions/OFAvqa_zerorate_answer_val.json', 'r') as f:
ofas_val = json.load(f)
with open('../data/validate/ofa_predictions/OFAvqa_zerorate_evidence_val.json', 'r') as f:
evid_val = json.load(f)
else:
assert 0==1
with open("../data/validate/gpt3_okvqa_val2014_answers.pkl", 'rb') as f:
gpt3_val = pickle.load(f)
with open('../data/validate/wiki_100sim_val.json', 'r') as f:
wikis_val = json.load(f)
def plural(word):
if word.endswith('y'):
return word[:-1] + 'ies'
elif word[-1] in 'sxo' or word[-2:] in ['sh', 'ch']:
return word + 'es'
elif word.endswith('an'):
return word[:-2] + 'en'
else:
return word + 's'
image_ids = []
qids = []
questions = []
answers = []
labels = []
objects = []
answer_ids = []
answers_lists = []
question_lengths = []
most_answer = []
neg_answer = []
val_captions = {}
for item in captions_val:
if item['image_id'] in val_captions.keys():
print("IMG caption REPEATED!")
assert 0==1
val_captions[item['image_id']] = item['caption']
val_labelings = {}
for item in labelings_val:
if item['image_id'] in val_labelings.keys():
print("IMG labelings REPEATED!")
assert 0==1
val_labelings[str(item['image_id'])] = item['labeling']
val_ocrs = {}
for item in ocrs_val:
if item['image_id'] in val_ocrs.keys():
print("IMG ocrs REPEATED!")
assert 0==1
val_ocrs[str(item['image_id'])] = item['ocr']
val_ofas = {}
if args.ofa=="normal":
for item in ofas_val:
if item['question_id'] in val_ofas.keys():
print("IMG ofas REPEATED!")
assert 0==1
val_ofas[str(item['question_id'])] = item['OFA_answer']+", "+evid_val[str(item['question_id'])]
elif args.ofa=="finetune":
for k in evid_val.keys():
val_ofas[k] = ofas_val[k]+", "+evid_val[k]
else:
assert 0==1
val_gpt3 = {}
for k in gpt3_val.keys():
qid = k.split("#")[1]
val_gpt3[str(qid)] = ", ".join(gpt3_val[k][0]) #[(ans, evid)]
val_wikis = wikis_val
for qid, item in val_row.items():
img_id = str(item['image_id'])
image_ids.append(img_id)
qids.append(qid)
question_clean = item['question'] # + answer_sentence
questions.append(question_clean)
if args.dataset == 'okvqa' or args.dataset == 'vqav2':
answers.append(item['multi_answers'])
if args.dataset == 'okvqa':
objects.append(item['label'])
else:
answers.append(item['answer'])
def _create_gpt3_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas,gpt3, wikis, final_txt):
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer,
'caption': captions,
'labeling':labelings,
'ocr': ocrs,
'ofa':ofas,
'gpt3':gpt3,
'wiki': wikis,
'final_txt':final_txt}
return entry
def _create_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, wikis, final_txt):
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer,
'caption': captions,
'labeling':labelings,
'ocr': ocrs,
'ofa':ofas,
'wiki': wikis,
'final_txt':final_txt}
return entry
def _load_dataset(val_row):
entries=[]
for qid, item in val_row.items():
qid = str(qid)
img_id = str(item['image_id'])
question = item['question']# + answer_sentence
if args.dataset == 'okvqa':
answers=item['multi_answers']
else:
answers=item['answer']
caption=val_captions[img_id]
labeling=val_labelings[img_id]
ocr_list=val_ocrs[img_id]
ocr = ", ".join(str(i) for i in ocr_list)
ofa=val_ofas[qid]
gpt3=val_gpt3[qid]
wiki=val_wikis[qid]
if args.seed > 1000:
print("seed > 1000 denotes that ablation study on 2 encoders")
assert args.input_type==0
if args.gpt3:
if args.input_type==0:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==1:
final_txt = question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
elif args.input_type==2:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==3:
final_txt = question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
else:
print('choose input-type in [0,1,2,3]')
assert 0==1
entries.append(_create_gpt3_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa,gpt3, wiki, final_txt))
else:
if args.input_type==0:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==1:
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
elif args.input_type==2:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==3: #什么知识都不加。知识单独的性能4(不要预训练):什么知识都不加,只有视觉属性。
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
else:
print('choose input-type in [1,2,3,4,5]')
assert 0==1
entries.append(_create_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa, wiki, final_txt))
return entries
class KgDatasetVal(Dataset):
def __init__(self, val=False, val_test=False):
self.entries = _load_dataset(val_row)
self.tokenize()
def __len__(self):
return len(self.entries)
def tokenize(self):
if args.input_type%2==0 : #当input_type=0或者2的时候,有wiki在,所以句子长度要长
if args.num_wiki > 51:
max_source_length=200
else:
max_source_length=250 #300
else:
max_source_length=128
max_target_length=5
max_que_length=16
for entry in self.entries:
T5_input_seq, T5_input_ids, T5_input_masks = self.tokenizer_func( T5tokenizer, entry['final_txt'], max_length=max_source_length)
LXM_input_seq, LXM_input_ids, LXM_input_masks = self.tokenizer_func( LXMtokenizer, entry['question'], max_length=max_que_length)
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][0], max_length=max_target_length)
entry['T5_input_seq']=T5_input_seq#torch.from_numpy(np.array(T5_input_seq))
entry['T5_input_ids']=torch.from_numpy(np.array(T5_input_ids))
entry['T5_input_masks']=torch.from_numpy(np.array(T5_input_masks))
entry['LXM_input_seq']=LXM_input_seq#torch.from_numpy(np.array(LXM_input_seq))
entry['LXM_input_ids']=torch.from_numpy(np.array(LXM_input_ids))
entry['LXM_input_masks']=torch.from_numpy(np.array(LXM_input_masks))
entry['T5_target_seq']=T5_target_seq#torch.from_numpy(np.array(T5_target_seq))
entry['T5_target_ids']=torch.from_numpy(np.array(T5_target_ids))
entry['T5_target_masks']=torch.from_numpy(np.array(T5_target_masks))
def tokenizer_func(self, tokenizer, text, max_length=0):
if max_length==0:
print('plz set the max length of input sequence!')
assert 1==2
out_seq = tokenizer(
text,
padding='max_length',
max_length=max_length,
truncation=True,
# return_tensors="pt",
)
tokens=out_seq.input_ids #['input_ids']
masks=out_seq.attention_mask
length = len(tokens)
return out_seq, tokens, masks
def __getitem__(self, index):
entry = self.entries[index]
qid=entry['qid']
question=entry['question']
answer=entry['answer']
img_id=entry['img_id']
image_feature = pretrain_feature[img_id]['feats']
image_caption = entry['caption']
image_labeling = entry['labeling']
image_ocr_list = entry['ocr']
image_ocr = ", ".join(str(i) for i in image_ocr_list)
ofa = entry['ofa']
if args.gpt3:
gpt3 = entry['gpt3']
wiki = entry['wiki']
final_txt = entry['final_txt']
spatial_feature = pretrain_feature[img_id]['sp_feats']
T5_input_seq, T5_input_ids, T5_input_masks = entry['T5_input_seq'], entry['T5_input_ids'], entry['T5_input_masks']#self.tokenizer_func( T5tokenizer, final_txt, max_length=max_source_length)
LXM_input_seq, LXM_input_ids, LXM_input_masks = entry['LXM_input_seq'], entry['LXM_input_ids'], entry['LXM_input_masks']
LXM_token_type_ids = torch.from_numpy(np.array(LXM_input_seq['token_type_ids']))#.to(device)
T5_target_seq, T5_target_ids, T5_target_masks=entry['T5_target_seq'],entry['T5_target_ids'],entry['T5_target_masks']
if args.gpt3:
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, gpt3, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks
elif not args.gpt3:
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks
|