File size: 23,593 Bytes
44ddffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
#!user/bin/env python
# -*- coding:utf-8 -*-
import collections
import json
import string
import numpy as np
from model_LXM2T5 import T5tokenizer, LXMT52T5, LXMtokenizer
import pickle
import torch
from torch.utils.data import Dataset
from config4LXMT5_DDP import args
print('dataset4T5',args)
from random import sample
def normalize_wiki(s):
stopwords=['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
def remove_stop_w(text):
to_be_removed = set(stopwords)
text_list = text.split(' ')
text_list = [item for item in text_list if item not in to_be_removed]
return ' '.join(text_list)
return white_space_fix(remove_stop_w(remove_punc(lower(s))))
if args.dataset == 'okvqa':
with open('../data/image_features/vqa_img_feature_train.pickle', 'rb') as f:
pretrain_feature = pickle.load(f)
if args.pretrain:
with open('../data/pretrain/vqa_train_filter.json','r') as f:
vqa2 = json.load(f)
train_row = vqa2
else:
with open('../data/finetune/okvqa_train.json','r') as f:
train_row = json.load(f)
if args.pretrain:
with open('../data/pretrain/caption_predict_vqav2train.json', 'r') as f:
captions_train = json.load(f)
with open('../data/pretrain/labeling_predict_vqav2train.json', 'r') as f:
labelings_train = json.load(f)
with open('../data/pretrain/ocr_predict_vqav2train.json', 'r') as f:
ocrs_train = json.load(f)
with open('../data/pretrain/wiki_100sim_train.json', 'r') as f:
wikis_train = json.load(f)
else:
with open('../data/finetune/caption_predict_train.json', 'r') as f:
captions_train = json.load(f)
with open('../data/finetune/labeling_predict_train.json', 'r') as f:
labelings_train = json.load(f)
with open('../data/finetune/ocr_predict_train.json', 'r') as f:
ocrs_train = json.load(f)
if args.ofa=="normal":
with open('../data/finetune/ofa_predictions/OFA_zerorate_predict_train.json', 'r') as f:
ofas_train = json.load(f)#key为数字
with open('../data/finetune/ofa_predictions/OFA_zerorate_evidence_train.json', 'r') as f:
evid_train = json.load(f)#key为字符串
elif args.ofa=="finetune":
with open('../data/finetune/ofa_predictions/OFAvqa_zerorate_answer_train.json', 'r') as f:
ofas_train = json.load(f)#key为字符串
with open('../data/finetune/ofa_predictions/OFAvqa_zerorate_evidence_train.json', 'r') as f:
evid_train = json.load(f)#key为字符串
else:
assert 0==1
with open("../data/finetune/gpt3_okvqa_train2014_answers.pkl", 'rb') as f:
gpt3_train = pickle.load(f)
with open('../data/finetune/wiki_100sim_train.json', 'r') as f:
wikis_train = json.load(f)
else:
assert 0==1
def plural(word):
if word.endswith('y'):
return word[:-1] + 'ies'
elif word[-1] in 'sxo' or word[-2:] in ['sh', 'ch']:
return word + 'es'
elif word.endswith('an'):
return word[:-2] + 'en'
else:
return word + 's'
image_ids = []
qids = []
questions = []
answers = []
labels = []
objects = []
answer_ids = []
answers_lists = []
question_lengths = []
answers_most = []
neg_answer = []
train_captions = {}
for item in captions_train:
if item['image_id'] in train_captions.keys():
print("IMG caption REPEATED!")
assert 0==1
train_captions[item['image_id']] = item['caption']
train_labelings = {}
for item in labelings_train:
if item['image_id'] in train_labelings.keys():
print("IMG labelings REPEATED!")
assert 0==1
train_labelings[str(item['image_id'])] = item['labeling']
print("labeling number:", len(train_labelings.keys()))
train_ocrs = {}
for item in ocrs_train:
if item['image_id'] in train_ocrs.keys():
print("IMG ocrs REPEATED!")
assert 0==1
train_ocrs[str(item['image_id'])] = item['ocr']
if not args.pretrain:
train_ofas = {}
if args.ofa=="normal":
for item in ofas_train:
if item['question_id'] in train_ofas.keys():
print("IMG ofas REPEATED!")
assert 0==1
train_ofas[str(item['question_id'])] = item['OFA_answer']+", "+evid_train[str(item['question_id'])]
elif args.ofa=="finetune":
for k in evid_train.keys():
train_ofas[k] = ofas_train[k]+", "+evid_train[k]
else:
assert 0==1
train_gpt3 = {}
for k in gpt3_train.keys():
qid = k.split("#")[1]
train_gpt3[str(qid)] = ", ".join(gpt3_train[k][0])#[(ans, evid)]
train_wikis = wikis_train
if args.pretrain:
if args.num_wiki > 51:
for key in train_wikis.keys():
for i in range(args.num_wiki):
train_wikis[key][i]=normalize_wiki(train_wikis[key][i])
n = 0
for qid, item in train_row.items():
img_id = str(item['image_id'])
image_ids.append(img_id)
qids.append(qid)
question_clean = item['question']# + answer_sentence
questions.append(question_clean)
# multi-answer
if args.dataset == 'okvqa':
answers.append(item['multi_answers'])
# m_ans_id = [a_dic.get(i, 0) for i in item['multi_answers']]
# most_answer_ids.append(m_ans_id)
#single answer
else:
answers.append(item['answer'])
def _create_gpt3_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, gpt3, wikis,final_txt):
if not args.pretrain:
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer,
'caption': captions,
'labeling':labelings,
'ocr': ocrs,
'ofa':ofas,
'gpt3':gpt3,
'wiki':wikis,
'final_txt':final_txt}
return entry
def _create_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,ofas, wikis,final_txt):
if not args.pretrain:
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer,
'caption': captions,
'labeling':labelings,
'ocr': ocrs,
'ofa':ofas,
'wiki':wikis,
'final_txt':final_txt}
return entry
def _create_vqav2_entry(imgage_ids, q_ids, questions, answer, captions,labelings, ocrs,wikis,final_txt):
if args.pretrain:
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer,
'caption': captions,
'labeling':labelings,
'ocr': ocrs,
'wiki':wikis,
'final_txt':final_txt}
# else:
return entry
def _load_dataset(train_row):
entries=[]
for qid, item in train_row.items():
qid = str(qid)
img_id = str(item['image_id'])
question = item['question']
# multi-answer
if args.dataset == 'okvqa':
answers=item['multi_answers']
#single answer
else:
answers=item['answer']
caption=train_captions[img_id]
labeling=train_labelings[img_id]
ocr_list=train_ocrs[img_id]
ocr = ", ".join(str(i) for i in ocr_list)
if not args.pretrain:
ofa=train_ofas[qid]
gpt3=train_gpt3[qid]
wiki=train_wikis[qid]
if args.pretrain:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
else:
if args.seed > 1000:
print("seed > 1000 denotes that ablation study on 2 encoders")
assert args.input_type==0
if args.gpt3:
if args.input_type==0:
if args.num_wiki > 51:
# When there are a large number of Wiki passages, to save on GPU memory usage, Wiki passages are processed.
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==1:
final_txt = question + " [SEP] " + ofa + " " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
elif args.input_type==2:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==3:
final_txt = question + " [SEP] " + gpt3 + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
else:
print('choose input-type in [0,1,2,3]')
assert 0==1
else:
if args.input_type==0:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==1:
final_txt = question + " [SEP] " + ofa + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
elif args.input_type==2:
if args.num_wiki > 51:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + normalize_wiki(x) for x in wiki[:args.num_wiki]]
else:
final_txt = [question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr + " [SEP] " + x for x in wiki[:args.num_wiki]]
elif args.input_type==3:
final_txt = question + " [SEP] " + caption + " [SEP] " + labeling + " [SEP] " + ocr
else:
print('choose input-type in [0,1,2,3,4,5]')
assert 0==1
if args.pretrain:
entries.append(_create_vqav2_entry(img_id, qid, question, answers, caption,labeling, ocr, wiki, final_txt))
else:
if args.gpt3:
entries.append(_create_gpt3_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa,gpt3, wiki, final_txt))
else:
entries.append(_create_entry(img_id, qid, question, answers, caption,labeling, ocr,ofa, wiki, final_txt))
return entries
def _create_pretrain_entry(imgage_ids, q_ids, questions, answer):#, captions,labelings, ocrs,ofas,final_txt):
entry = {
'img_id': imgage_ids,
'qid': q_ids,
'question': questions,
'answer': answer}#,
return entry
def _load_pretrain_dataset(train_row):
entries=[]
for qid, item in train_row.items():
qid = str(qid)
img_id = str(item['image_id'])
question = item['question']
# multi-answer
if args.dataset == 'okvqa':
answers=item['multi_answers']
# answers.append(item['multi_answers'])
# m_ans_id = [a_dic.get(i, 0) for i in item['multi_answers']]
# most_answer_ids.append(m_ans_id)
#single answer
else:
answers=item['answer']
entries.append(_create_pretrain_entry(img_id, qid, question, answers))
return entries
class KgDataset(Dataset):
def __init__(self, val=False, val_test=False):
self.entries = _load_dataset(train_row)
self.tokenize()
def __len__(self):
return len(self.entries)
def tokenize(self):
if args.input_type==0:
if args.num_wiki > 51:
max_source_length=200
else:
max_source_length=250 #300
else:
max_source_length=128
max_target_length=5
max_que_length=16
for entry in self.entries:
T5_input_seq, T5_input_ids, T5_input_masks = self.tokenizer_func( T5tokenizer, entry['final_txt'], max_length=max_source_length)
LXM_input_seq, LXM_input_ids, LXM_input_masks = self.tokenizer_func( LXMtokenizer, entry['question'], max_length=max_que_length)
all_Ans_T5_target_seq = []
all_Ans_T5_target_ids = []
all_Ans_T5_target_masks = []
if args.allAns:
for i in range(10):
if i%2==0:
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][i], max_length=max_target_length)
all_Ans_T5_target_seq.append(T5_target_seq)
all_Ans_T5_target_ids.append(torch.from_numpy(np.array(T5_target_ids)))
all_Ans_T5_target_masks.append(torch.from_numpy(np.array(T5_target_masks)))
# print()
all_Ans_T5_target_ids=torch.stack(all_Ans_T5_target_ids)
all_Ans_T5_target_masks=torch.stack(all_Ans_T5_target_masks)
entry['T5_target_seq']=all_Ans_T5_target_seq
entry['T5_target_ids']=all_Ans_T5_target_ids
entry['T5_target_masks']=all_Ans_T5_target_masks
else:
T5_target_seq, T5_target_ids, T5_target_masks = self.tokenizer_func( T5tokenizer, entry['answer'][0], max_length=max_target_length)
entry['T5_target_seq']=T5_target_seq#torch.from_numpy(np.array(T5_target_seq))
entry['T5_target_ids']=torch.from_numpy(np.array(T5_target_ids))
entry['T5_target_masks']=torch.from_numpy(np.array(T5_target_masks))
entry['T5_input_seq']=T5_input_seq#torch.from_numpy(np.array(T5_input_seq))
entry['T5_input_ids']=torch.from_numpy(np.array(T5_input_ids))
entry['T5_input_masks']=torch.from_numpy(np.array(T5_input_masks))
entry['LXM_input_seq']=LXM_input_seq#torch.from_numpy(np.array(LXM_input_seq))
entry['LXM_input_ids']=torch.from_numpy(np.array(LXM_input_ids))
entry['LXM_input_masks']=torch.from_numpy(np.array(LXM_input_masks))
def tokenizer_func(self, tokenizer, text, max_length=0):
if max_length==0:
print('plz set the max length of input sequence!')
assert 1==2
out_seq = tokenizer(
text,
# batch_data['final_txt'],
padding='max_length',
max_length=max_length,
truncation=True,
# return_tensors="pt",
)
tokens=out_seq.input_ids #['input_ids']
masks=out_seq.attention_mask
length = len(tokens)
return out_seq, tokens, masks
def __getitem__(self, index):
entry = self.entries[index]
qid=entry['qid']
question=entry['question']
answer=entry['answer']
img_id=entry['img_id']
image_feature = pretrain_feature[img_id]['feats']
image_caption = entry['caption']
image_labeling = entry['labeling']
image_ocr_list = entry['ocr']
image_ocr = ", ".join(str(i) for i in image_ocr_list)
if not args.pretrain:
ofa = entry['ofa']
if args.gpt3:
gpt3 = entry['gpt3']
wiki = entry['wiki']
final_txt = entry['final_txt']
spatial_feature = pretrain_feature[img_id]['sp_feats']
T5_input_seq, T5_input_ids, T5_input_masks = entry['T5_input_seq'], entry['T5_input_ids'], entry['T5_input_masks']#self.tokenizer_func( T5tokenizer, final_txt, max_length=max_source_length)
LXM_input_seq, LXM_input_ids, LXM_input_masks = entry['LXM_input_seq'], entry['LXM_input_ids'], entry['LXM_input_masks']
LXM_token_type_ids = torch.from_numpy(np.array(LXM_input_seq['token_type_ids']))#.to(device)
T5_target_seq, T5_target_ids, T5_target_masks=entry['T5_target_seq'],entry['T5_target_ids'],entry['T5_target_masks']
if not args.pretrain:
if not args.gpt3:
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks
elif args.gpt3:
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, ofa, gpt3, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks
else:
return qid, question, answer, image_feature, spatial_feature, image_caption, image_labeling, image_ocr, wiki, final_txt, T5_input_seq,T5_input_ids,T5_input_masks,LXM_input_ids,LXM_input_masks,LXM_token_type_ids,T5_target_seq,T5_target_ids,T5_target_masks
def my_collate(batch):
batch = list(zip(*batch))
if not args.pretrain:
if not args.gpt3:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'wiki': batch[9], 'final_txt': batch[10],
'T5_input_seq': batch[11], 'T5_input_ids': batch[12],'T5_input_masks': batch[13],'LXM_input_ids':batch[14], 'LXM_input_masks':batch[15], 'LXM_token_type_ids':batch[16], 'T5_target_seq':batch[17],'T5_target_ids':batch[18],'T5_target_masks':batch[19]}
elif args.gpt3:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11],
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]}
else:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'wiki': batch[8], 'final_txt': batch[9],
'T5_input_seq': batch[10], 'T5_input_ids': batch[11],'T5_input_masks': batch[12],'LXM_input_ids':batch[13], 'LXM_input_masks':batch[14], 'LXM_token_type_ids':batch[15], 'T5_target_seq':batch[16],'T5_target_ids':batch[17],'T5_target_masks':batch[18]}
del batch
return res
def my_val_collate(batch):
batch = list(zip(*batch))
if 1:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8], 'wiki': batch[9], 'final_txt': batch[10],
'T5_input_seq': batch[11], 'T5_input_ids': batch[12],'T5_input_masks': batch[13],'LXM_input_ids':batch[14], 'LXM_input_masks':batch[15], 'LXM_token_type_ids':batch[16], 'T5_target_seq':batch[17],'T5_target_ids':batch[18],'T5_target_masks':batch[19]}
del batch
return res
def my_gpt3_collate(batch):
batch = list(zip(*batch))
if 1:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8],'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11],
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]}
del batch
return res
def my_val_gpt3_collate(batch):
batch = list(zip(*batch))
if 1:
res = {'id': batch[0], 'ques': batch[1], 'ans': batch[2],
'img': batch[3], 'spatial': batch[4],
'caption': batch[5], 'labeling': batch[6], 'ocr': batch[7], 'ofa': batch[8],'gpt3': batch[9], 'wiki': batch[10], 'final_txt': batch[11],
'T5_input_seq': batch[12], 'T5_input_ids': batch[13],'T5_input_masks': batch[14],'LXM_input_ids':batch[15], 'LXM_input_masks':batch[16], 'LXM_token_type_ids':batch[17], 'T5_target_seq':batch[18],'T5_target_ids':batch[19],'T5_target_masks':batch[20]}
del batch
return res
|