File size: 5,329 Bytes
6d1ce12 20ac86e f1389f8 48300bf 2cb26b7 48eed25 f8f1ae7 2cb26b7 6005e03 f8f1ae7 6005e03 f8f1ae7 2cb26b7 6d1ce12 c14929e f1389f8 e677ed6 f1389f8 e3a855b f1389f8 f2da4a8 f1389f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Fact Completion Benchmark for Text Models
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
task_ids:
- fact-checking
dataset_info:
features:
- name: dataset_id
dtype: string
- name: stem
dtype: string
- name: 'true'
dtype: string
- name: 'false'
dtype: string
- name: relation
dtype: string
- name: subject
dtype: string
- name: object
dtype: string
splits:
- name: English
num_bytes: 3474255
num_examples: 26254
- name: Chinese
num_bytes: 10588
num_examples: 80
- name: Hindi
num_bytes: 390
num_examples: 2
- name: Spanish
num_bytes: 12754
num_examples: 88
- name: French
num_bytes: 11911
num_examples: 78
- name: Russian
num_bytes: 9169
num_examples: 50
- name: Portuguese
num_bytes: 12421
num_examples: 87
- name: German
num_bytes: 8360
num_examples: 62
- name: Japanese
num_bytes: 13783
num_examples: 77
- name: Italian
num_bytes: 11480
num_examples: 85
- name: Ukrainian
num_bytes: 10031
num_examples: 58
- name: Romanian
num_bytes: 11653
num_examples: 82
- name: Czech
num_bytes: 8130
num_examples: 60
- name: Bulgarian
num_bytes: 17282
num_examples: 88
- name: Serbian
num_bytes: 10240
num_examples: 54
- name: Hungarian
num_bytes: 3417
num_examples: 24
- name: Croatian
num_bytes: 7211
num_examples: 61
- name: Danish
num_bytes: 12016
num_examples: 92
- name: Slovenian
num_bytes: 7534
num_examples: 62
- name: Polish
num_bytes: 6725
num_examples: 47
- name: Dutch
num_bytes: 11245
num_examples: 80
- name: Catalan
num_bytes: 12859
num_examples: 86
- name: Swedish
num_bytes: 11767
num_examples: 91
download_size: 2348937
dataset_size: 3695221
---
# Dataset Card for Fact_Completion
## Dataset Description
- **Homepage:** https://bit.ly/ischool-berkeley-capstone
- **Repository:** https://github.com/daniel-furman/Capstone
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** daniel_[email protected]
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@misc{calibragpt,
author = {Shreshta Bhat and Daniel Furman and Tim Schott},
title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
```
```
@misc{dong2022calibrating,
doi = {10.48550/arXiv.2210.03329},
title={Calibrating Factual Knowledge in Pretrained Language Models},
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
year={2022},
eprint={2210.03329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{meng2022massediting,
doi = {10.48550/arXiv.2210.07229},
title={Mass-Editing Memory in a Transformer},
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
year={2022},
eprint={2210.07229},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@inproceedings{elsahar-etal-2018-rex,
title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples",
author = "Elsahar, Hady and
Vougiouklis, Pavlos and
Remaci, Arslen and
Gravier, Christophe and
Hare, Jonathon and
Laforest, Frederique and
Simperl, Elena",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1544",
}
```
### Contributions
[More Information Needed] |