Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -6,101 +6,75 @@ languages:
|
|
6 |
multilinguality:
|
7 |
- monolingual
|
8 |
task_categories:
|
|
|
9 |
- text-classification
|
10 |
- multi-label-text-classification
|
11 |
task_ids:
|
12 |
- named-entity-recognition
|
|
|
|
|
13 |
---
|
14 |
-
|
15 |
# CANTEMIST Corpus
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results},
|
23 |
-
author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M},
|
24 |
-
booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
-
```
|
28 |
-
|
29 |
## Digital Object Identifier (DOI) and access to dataset files
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
## Introduction
|
34 |
-
|
35 |
-
TO DO: This is a dataset for Named Entity Recognition (NER) from...
|
36 |
-
|
37 |
-
### Supported Tasks and Leaderboards
|
38 |
-
|
39 |
-
Named Entities Recognition, Language Model
|
40 |
-
|
41 |
### Languages
|
42 |
-
|
43 |
ES - Spanish
|
44 |
-
|
45 |
-
### Directory structure
|
46 |
-
|
47 |
-
* cantemist-ner.py
|
48 |
-
* dev.conll
|
49 |
-
* test.conll
|
50 |
-
* train.conll
|
51 |
* README.md
|
52 |
-
|
|
|
|
|
|
|
53 |
## Dataset Structure
|
54 |
-
|
55 |
### Data Instances
|
56 |
-
|
57 |
Three four-column files, one for each split.
|
58 |
-
|
59 |
### Data Fields
|
60 |
-
|
61 |
-
|
62 |
-
* 1st column: Word form or punctuation symbol
|
63 |
* 2nd column: Original BRAT file name
|
64 |
* 3rd column: Spans
|
65 |
* 4th column: IOB tag
|
66 |
-
|
67 |
-
### Example:
|
68 |
<pre>
|
69 |
-
El cc_onco101
|
70 |
-
informe cc_onco101
|
71 |
-
HP cc_onco101
|
72 |
-
es cc_onco101
|
73 |
-
compatible cc_onco101
|
74 |
-
con cc_onco101
|
75 |
-
adenocarcinoma cc_onco101
|
76 |
-
moderadamente cc_onco101
|
77 |
-
diferenciado cc_onco101
|
78 |
-
que cc_onco101
|
79 |
-
afecta cc_onco101
|
80 |
-
a cc_onco101
|
81 |
-
grasa cc_onco101
|
82 |
-
peripancreática cc_onco101
|
83 |
-
sobrepasando cc_onco101
|
84 |
-
la cc_onco101
|
85 |
-
serosa cc_onco101
|
86 |
-
, cc_onco101
|
87 |
-
infiltración cc_onco101
|
88 |
-
perineural cc_onco101
|
89 |
-
. cc_onco101
|
90 |
</pre>
|
91 |
|
92 |
### Data Splits
|
93 |
|
94 |
-
* train: 18,916 tokens
|
95 |
-
* development: 17,656 tokens
|
96 |
-
* test: 10,886 tokens
|
97 |
|
98 |
## Dataset Creation
|
99 |
|
100 |
-
### Methodology
|
101 |
-
|
102 |
-
TO DO
|
103 |
-
|
104 |
### Curation Rationale
|
105 |
|
106 |
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
|
@@ -109,34 +83,54 @@ For compatibility with similar datasets in other languages, we followed as close
|
|
109 |
|
110 |
#### Initial Data Collection and Normalization
|
111 |
|
112 |
-
|
113 |
|
114 |
#### Who are the source language producers?
|
115 |
|
116 |
-
|
117 |
|
118 |
### Annotations
|
119 |
|
120 |
#### Annotation process
|
121 |
|
122 |
-
|
123 |
|
124 |
#### Who are the annotators?
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
### Dataset Curators
|
129 |
|
130 |
-
|
131 |
|
132 |
-
###
|
133 |
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
|
138 |
-
|
139 |
|
140 |
-
|
141 |
|
142 |
-
<a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.
|
|
|
6 |
multilinguality:
|
7 |
- monolingual
|
8 |
task_categories:
|
9 |
+
- token-classification
|
10 |
- text-classification
|
11 |
- multi-label-text-classification
|
12 |
task_ids:
|
13 |
- named-entity-recognition
|
14 |
+
licenses:
|
15 |
+
- cc-by-4-0
|
16 |
---
|
|
|
17 |
# CANTEMIST Corpus
|
18 |
+
## Dataset Description
|
19 |
+
### Dataset Summary
|
20 |
+
Collection of 1301 oncological clinical case reports written in Spanish, , with tumor morphology mentions annotated and mapped to a controlled terminology, eCIE-O. The training subset contains 501 documents, the development subsets 500, and the test subset 300.
|
21 |
+
All documents of the corpus have been manually annotated by clinical experts with mentions of tumor morphology (in Spanish, “morfología de neoplasia”). Every tumor morphology mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O).
|
22 |
+
This dataset was designed for the CANcer TExt Mining Shared Task, sponsored by [Plan de Impulso de las Tecnologías del Lenguaje (Plan-TL)](https://plantl.mineco.gob.es/Paginas/index.aspx).
|
23 |
+
For further information, please visit [the official website](https://temu.bsc.es/cantemist/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
## Digital Object Identifier (DOI) and access to dataset files
|
25 |
+
https://zenodo.org/record/3978041
|
26 |
+
### Supported Tasks
|
27 |
+
Named Entity Recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
### Languages
|
|
|
29 |
ES - Spanish
|
30 |
+
### Directory Structure
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
* README.md
|
32 |
+
* cantemist.py
|
33 |
+
* TODO
|
34 |
+
* TODO
|
35 |
+
* TODO
|
36 |
## Dataset Structure
|
|
|
37 |
### Data Instances
|
|
|
38 |
Three four-column files, one for each split.
|
|
|
39 |
### Data Fields
|
40 |
+
Every file has 4 columns:
|
41 |
+
* 1st column: Word form or punctuation symbol
|
|
|
42 |
* 2nd column: Original BRAT file name
|
43 |
* 3rd column: Spans
|
44 |
* 4th column: IOB tag
|
45 |
+
#### Example
|
|
|
46 |
<pre>
|
47 |
+
El cc_onco101 662_664 O
|
48 |
+
informe cc_onco101 665_672 O
|
49 |
+
HP cc_onco101 673_675 O
|
50 |
+
es cc_onco101 676_678 O
|
51 |
+
compatible cc_onco101 679_689 O
|
52 |
+
con cc_onco101 690_693 O
|
53 |
+
adenocarcinoma cc_onco101 694_708 B-MORFOLOGIA_NEOPLASIA
|
54 |
+
moderadamente cc_onco101 709_722 I-MORFOLOGIA_NEOPLASIA
|
55 |
+
diferenciado cc_onco101 723_735 I-MORFOLOGIA_NEOPLASIA
|
56 |
+
que cc_onco101 736_739 O
|
57 |
+
afecta cc_onco101 740_746 O
|
58 |
+
a cc_onco101 747_748 O
|
59 |
+
grasa cc_onco101 749_754 O
|
60 |
+
peripancreática cc_onco101 755_770 O
|
61 |
+
sobrepasando cc_onco101 771_783 O
|
62 |
+
la cc_onco101 784_786 O
|
63 |
+
serosa cc_onco101 787_793 O
|
64 |
+
, cc_onco101 793_794 O
|
65 |
+
infiltración cc_onco101 795_807 O
|
66 |
+
perineural cc_onco101 808_818 O
|
67 |
+
. cc_onco101 818_819 O
|
68 |
</pre>
|
69 |
|
70 |
### Data Splits
|
71 |
|
72 |
+
* train: 18,916 tokens (TODO)
|
73 |
+
* development: 17,656 tokens (TODO)
|
74 |
+
* test: 10,886 tokens (TODO)
|
75 |
|
76 |
## Dataset Creation
|
77 |
|
|
|
|
|
|
|
|
|
78 |
### Curation Rationale
|
79 |
|
80 |
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
|
|
|
83 |
|
84 |
#### Initial Data Collection and Normalization
|
85 |
|
86 |
+
TODO
|
87 |
|
88 |
#### Who are the source language producers?
|
89 |
|
90 |
+
Humans, there is no machine generated data.
|
91 |
|
92 |
### Annotations
|
93 |
|
94 |
#### Annotation process
|
95 |
|
96 |
+
The dataset was annotated performing regular quality control analysis and following strict guidelines.
|
97 |
|
98 |
#### Who are the annotators?
|
99 |
|
100 |
+
Clinical experts.
|
101 |
+
|
102 |
+
### Personal and Sensitive Information
|
103 |
+
|
104 |
+
No personal or sensitive information included.
|
105 |
+
|
106 |
+
## Additional Information
|
107 |
|
108 |
### Dataset Curators
|
109 |
|
110 |
+
The Text Mining Unit from Barcelona Supercomputing center.
|
111 |
|
112 |
+
### Contact
|
113 |
|
114 |
+
encargo-pln-life@bsc.es
|
115 |
+
|
116 |
+
### Citation Information
|
117 |
+
|
118 |
+
If you use these resources in your work, please cite the following paper:
|
119 |
+
|
120 |
+
```bibtex
|
121 |
+
@article{miranda2020named,
|
122 |
+
title={Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.},
|
123 |
+
author={Miranda-Escalada, Antonio and Farr{\'e}, Eul{\`a}lia and Krallinger, Martin},
|
124 |
+
journal={IberLEF@ SEPLN},
|
125 |
+
pages={303--323},
|
126 |
+
year={2020}
|
127 |
+
}
|
128 |
+
```
|
129 |
|
130 |
+
### Funding
|
131 |
|
132 |
+
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
|
133 |
|
134 |
+
### Licensing Information
|
135 |
|
136 |
+
<a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.
|