Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
mapama247 commited on
Commit
a45ed89
1 Parent(s): 8c8406c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -81
README.md CHANGED
@@ -6,101 +6,75 @@ languages:
6
  multilinguality:
7
  - monolingual
8
  task_categories:
 
9
  - text-classification
10
  - multi-label-text-classification
11
  task_ids:
12
  - named-entity-recognition
 
 
13
  ---
14
-
15
  # CANTEMIST Corpus
16
-
17
- ## BibTeX citation
18
- If you use these resources in your work, please cite the following paper:
19
-
20
- ```bibtex
21
- @inproceedings{miranda2020named,
22
- title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results},
23
- author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M},
24
- booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings},
25
- year={2020}
26
- }
27
- ```
28
-
29
  ## Digital Object Identifier (DOI) and access to dataset files
30
-
31
- TO DO: link to zenodo
32
-
33
- ## Introduction
34
-
35
- TO DO: This is a dataset for Named Entity Recognition (NER) from...
36
-
37
- ### Supported Tasks and Leaderboards
38
-
39
- Named Entities Recognition, Language Model
40
-
41
  ### Languages
42
-
43
  ES - Spanish
44
-
45
- ### Directory structure
46
-
47
- * cantemist-ner.py
48
- * dev.conll
49
- * test.conll
50
- * train.conll
51
  * README.md
52
-
 
 
 
53
  ## Dataset Structure
54
-
55
  ### Data Instances
56
-
57
  Three four-column files, one for each split.
58
-
59
  ### Data Fields
60
-
61
- Every file has four columns:
62
- * 1st column: Word form or punctuation symbol
63
  * 2nd column: Original BRAT file name
64
  * 3rd column: Spans
65
  * 4th column: IOB tag
66
-
67
- ### Example:
68
  <pre>
69
- El cc_onco101 662_664 O
70
- informe cc_onco101 665_672 O
71
- HP cc_onco101 673_675 O
72
- es cc_onco101 676_678 O
73
- compatible cc_onco101 679_689 O
74
- con cc_onco101 690_693 O
75
- adenocarcinoma cc_onco101 694_708 B-MORFOLOGIA_NEOPLASIA
76
- moderadamente cc_onco101 709_722 I-MORFOLOGIA_NEOPLASIA
77
- diferenciado cc_onco101 723_735 I-MORFOLOGIA_NEOPLASIA
78
- que cc_onco101 736_739 O
79
- afecta cc_onco101 740_746 O
80
- a cc_onco101 747_748 O
81
- grasa cc_onco101 749_754 O
82
- peripancreática cc_onco101 755_770 O
83
- sobrepasando cc_onco101 771_783 O
84
- la cc_onco101 784_786 O
85
- serosa cc_onco101 787_793 O
86
- , cc_onco101 793_794 O
87
- infiltración cc_onco101 795_807 O
88
- perineural cc_onco101 808_818 O
89
- . cc_onco101 818_819 O
90
  </pre>
91
 
92
  ### Data Splits
93
 
94
- * train: 18,916 tokens
95
- * development: 17,656 tokens
96
- * test: 10,886 tokens
97
 
98
  ## Dataset Creation
99
 
100
- ### Methodology
101
-
102
- TO DO
103
-
104
  ### Curation Rationale
105
 
106
  For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
@@ -109,34 +83,54 @@ For compatibility with similar datasets in other languages, we followed as close
109
 
110
  #### Initial Data Collection and Normalization
111
 
112
- TO DO
113
 
114
  #### Who are the source language producers?
115
 
116
- TO DO
117
 
118
  ### Annotations
119
 
120
  #### Annotation process
121
 
122
- TO DO
123
 
124
  #### Who are the annotators?
125
 
126
- TO DO
 
 
 
 
 
 
127
 
128
  ### Dataset Curators
129
 
130
- TO DO: Martin?
131
 
132
- ### Personal and Sensitive Information
133
 
134
- No personal or sensitive information included.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- ## Contact
137
 
138
- TO DO: Casimiro?
139
 
140
- ## License
141
 
142
- <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.
 
6
  multilinguality:
7
  - monolingual
8
  task_categories:
9
+ - token-classification
10
  - text-classification
11
  - multi-label-text-classification
12
  task_ids:
13
  - named-entity-recognition
14
+ licenses:
15
+ - cc-by-4-0
16
  ---
 
17
  # CANTEMIST Corpus
18
+ ## Dataset Description
19
+ ### Dataset Summary
20
+ Collection of 1301 oncological clinical case reports written in Spanish, , with tumor morphology mentions annotated and mapped to a controlled terminology, eCIE-O. The training subset contains 501 documents, the development subsets 500, and the test subset 300.
21
+ All documents of the corpus have been manually annotated by clinical experts with mentions of tumor morphology (in Spanish, “morfología de neoplasia”). Every tumor morphology mention is linked to an eCIE-O code (the Spanish equivalent of ICD-O).
22
+ This dataset was designed for the CANcer TExt Mining Shared Task, sponsored by [Plan de Impulso de las Tecnologías del Lenguaje (Plan-TL)](https://plantl.mineco.gob.es/Paginas/index.aspx).
23
+ For further information, please visit [the official website](https://temu.bsc.es/cantemist/).
 
 
 
 
 
 
 
24
  ## Digital Object Identifier (DOI) and access to dataset files
25
+ https://zenodo.org/record/3978041
26
+ ### Supported Tasks
27
+ Named Entity Recognition
 
 
 
 
 
 
 
 
28
  ### Languages
 
29
  ES - Spanish
30
+ ### Directory Structure
 
 
 
 
 
 
31
  * README.md
32
+ * cantemist.py
33
+ * TODO
34
+ * TODO
35
+ * TODO
36
  ## Dataset Structure
 
37
  ### Data Instances
 
38
  Three four-column files, one for each split.
 
39
  ### Data Fields
40
+ Every file has 4 columns:
41
+ * 1st column: Word form or punctuation symbol
 
42
  * 2nd column: Original BRAT file name
43
  * 3rd column: Spans
44
  * 4th column: IOB tag
45
+ #### Example
 
46
  <pre>
47
+ El cc_onco101 662_664 O
48
+ informe cc_onco101 665_672 O
49
+ HP cc_onco101 673_675 O
50
+ es cc_onco101 676_678 O
51
+ compatible cc_onco101 679_689 O
52
+ con cc_onco101 690_693 O
53
+ adenocarcinoma cc_onco101 694_708 B-MORFOLOGIA_NEOPLASIA
54
+ moderadamente cc_onco101 709_722 I-MORFOLOGIA_NEOPLASIA
55
+ diferenciado cc_onco101 723_735 I-MORFOLOGIA_NEOPLASIA
56
+ que cc_onco101 736_739 O
57
+ afecta cc_onco101 740_746 O
58
+ a cc_onco101 747_748 O
59
+ grasa cc_onco101 749_754 O
60
+ peripancreática cc_onco101 755_770 O
61
+ sobrepasando cc_onco101 771_783 O
62
+ la cc_onco101 784_786 O
63
+ serosa cc_onco101 787_793 O
64
+ , cc_onco101 793_794 O
65
+ infiltración cc_onco101 795_807 O
66
+ perineural cc_onco101 808_818 O
67
+ . cc_onco101 818_819 O
68
  </pre>
69
 
70
  ### Data Splits
71
 
72
+ * train: 18,916 tokens (TODO)
73
+ * development: 17,656 tokens (TODO)
74
+ * test: 10,886 tokens (TODO)
75
 
76
  ## Dataset Creation
77
 
 
 
 
 
78
  ### Curation Rationale
79
 
80
  For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
 
83
 
84
  #### Initial Data Collection and Normalization
85
 
86
+ TODO
87
 
88
  #### Who are the source language producers?
89
 
90
+ Humans, there is no machine generated data.
91
 
92
  ### Annotations
93
 
94
  #### Annotation process
95
 
96
+ The dataset was annotated performing regular quality control analysis and following strict guidelines.
97
 
98
  #### Who are the annotators?
99
 
100
+ Clinical experts.
101
+
102
+ ### Personal and Sensitive Information
103
+
104
+ No personal or sensitive information included.
105
+
106
+ ## Additional Information
107
 
108
  ### Dataset Curators
109
 
110
+ The Text Mining Unit from Barcelona Supercomputing center.
111
 
112
+ ### Contact
113
 
114
+ encargo-pln-life@bsc.es
115
+
116
+ ### Citation Information
117
+
118
+ If you use these resources in your work, please cite the following paper:
119
+
120
+ ```bibtex
121
+ @article{miranda2020named,
122
+ title={Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.},
123
+ author={Miranda-Escalada, Antonio and Farr{\'e}, Eul{\`a}lia and Krallinger, Martin},
124
+ journal={IberLEF@ SEPLN},
125
+ pages={303--323},
126
+ year={2020}
127
+ }
128
+ ```
129
 
130
+ ### Funding
131
 
132
+ This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
133
 
134
+ ### Licensing Information
135
 
136
+ <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.