File size: 6,510 Bytes
6df3a2d ddf0ff9 6df3a2d ddf0ff9 6df3a2d 10c3919 d3d037f 10c3919 73f4700 10c3919 9446612 10c3919 6124a41 6df3a2d 10c3919 6124a41 6df3a2d 4deb44a 6df3a2d 10c3919 6df3a2d 2f30823 6df3a2d 10c3919 6df3a2d e32fc85 6df3a2d 57eff4f 6df3a2d e32fc85 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 6124a41 6df3a2d 9446612 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 6124a41 6df3a2d 10c3919 6df3a2d 10c3919 ed9ab00 10c3919 6df3a2d 10c3919 2a4a191 10c3919 6df3a2d 10c3919 6df3a2d 10c3919 6df3a2d 7c6e802 6df3a2d 7c6e802 6df3a2d 7c6e802 6df3a2d ed9ab00 7c6e802 ed9ab00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- es
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: Spanish Question Answering Corpus (SQAC)
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
---
# SQAC (Spanish Question-Answering Corpus)
## Dataset Description
SQAC is an extractive QA dataset for the Spanish language.
- **Paper:** [MarIA: Spanish Language Models](https://upcommons.upc.edu/bitstream/handle/2117/367156/6405-5863-1-PB%20%281%29.pdf?sequence=1)
- **Point of Contact:** [email protected]
- **Leaderboard:** [EvalEs] (https://plantl-gob-es.github.io/spanish-benchmark/)
### Dataset Summary
Contains 6,247 contexts and 18,817 questions with their respective answers, 1 to 5 for each fragment.
The sources of the contexts are:
* Encyclopedic articles from the [Spanish Wikipedia](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode).
* News articles from [Wikinews](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/).
* Newswire and literature text from the [AnCora corpus](http://clic.ub.edu/corpus/en), used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode).
### Supported Tasks
Extractive-QA
### Languages
- Spanish (es)
### Directory Structure
- README.md
- SQAC.py
- dev.json
- test.json
- train.json
## Dataset Structure
### Data Instances
<pre>
{
'id': '6cf3dcd6-b5a3-4516-8f9e-c5c1c6b66628',
'title': 'Historia de Japón',
'context': 'La historia de Japón (日本の歴史 o 日本史, Nihon no rekishi / Nihonshi?) es la sucesión de hechos acontecidos dentro del archipiélago japonés. Algunos de estos hechos aparecen aislados e influenciados por la naturaleza geográfica de Japón como nación insular, en tanto que otra serie de hechos, obedece a influencias foráneas como en el caso del Imperio chino, el cual definió su idioma, su escritura y, también, su cultura política. Asimismo, otra de las influencias foráneas fue la de origen occidental, lo que convirtió al país en una nación industrial, ejerciendo con ello una esfera de influencia y una expansión territorial sobre el área del Pacífico. No obstante, dicho expansionismo se detuvo tras la Segunda Guerra Mundial y el país se posicionó en un esquema de nación industrial con vínculos a su tradición cultural.',
'question': '¿Qué influencia convirtió Japón en una nación industrial?',
'answers': {
'text': ['la de origen occidental'],
'answer_start': [473]
}
}
</pre>
### Data Fields
<pre>
{
id: str
title: str
context: str
question: str
answers: {
answer_start: [int]
text: [str]
}
}
</pre>
### Data Splits
| Split | Size |
| ------------- | ------------- |
| `train` | 15,036 |
| `dev` | 1,864 |
| `test` | 1.910 |
## Content analysis
### Number of articles, paragraphs and questions
* Number of articles: 3,834
* Number of contexts: 6,247
* Number of questions: 18,817
* Number of sentences: 48,026
* Questions/Context ratio: 3.01
* Sentences/Context ratio: 7.70
### Number of tokens
* Total tokens in context: 1,561,616
* Average tokens/context: 250
* Total tokens in questions: 203,235
* Average tokens/question: 10.80
* Total tokens in answers: 90,307
* Average tokens/answer: 4.80
### Lexical variation
46.38% of the words in the Question can be found in the Context.
### Question type
| Question | Count | % |
|----------|-------:|---:|
| qué | 6,381 | 33.91 % |
| quién/es | 2,952 | 15.69 % |
| cuál/es | 2,034 | 10.81 % |
| cómo | 1,949 | 10.36 % |
| dónde | 1,856 | 9.86 % |
| cuándo | 1,639 | 8.71 % |
| cuánto | 1,311 | 6.97 % |
| cuántos | 495 |2.63 % |
| adónde | 100 | 0.53 % |
| cuánta | 49 | 0.26 % |
| no question mark | 43 | 0.23 % |
| cuántas | 19 | 0.10 % |
## Dataset Creation
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines from SQUAD 1.0 [(Rajpurkar, Pranav et al.)](http://arxiv.org/abs/1606.05250).
### Source Data
#### Initial Data Collection and Normalization
The source data are scraped articles from Wikinews, the Spanish Wikipedia and the AnCora corpus.
- [Spanish Wikipedia](https://es.wikipedia.org)
- [Spanish Wikinews](https://es.wikinews.org/)
- [AnCora corpus](http://clic.ub.edu/corpus/en)
#### Who are the source language producers?
Contributors to the aforementioned sites.
### Annotations
#### Annotation process
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [(Rajpurkar, Pranav et al.)](http://arxiv.org/abs/1606.05250).
#### Who are the annotators?
Native language speakers.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
This corpus contributes to the development of language models in Spanish.
### Discussion of Biases
No postprocessing steps were applied to mitigate potential social biases.
## Additional Information
### Dataset Curators
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]).
### Citation Information
```
@article{maria,
author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas},
title = {MarIA: Spanish Language Models},
journal = {Procesamiento del Lenguaje Natural},
volume = {68},
number = {0},
year = {2022},
issn = {1989-7553},
url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405},
pages = {39--60}
}
```
### Contact Information
For further information, send an email to [email protected].
## Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
## Licensing information
This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License.
## Funding
This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).
|