Datasets:

Languages:
Spanish
License:
Blanca commited on
Commit
e986b08
·
1 Parent(s): f81a918

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -11
README.md CHANGED
@@ -56,7 +56,9 @@ task_ids: []
56
 
57
  ### Dataset Summary
58
 
59
- For document classification, we use the Multilingual Document Classification Corpus (MLDoc) [(Schwenk and Li, 2018; Lewis et al., 2004)](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf), a cross-lingual document classification dataset covering 8 languages. We use the Spanish portion to evaluate our models on monolingual classification. The corpus consists of 14,458 news articles from Reuters classified in four categories: Corporate/Industrial, Economics, Government/Social and Markets.
 
 
60
 
61
  ### Supported Tasks and Leaderboards
62
 
@@ -71,45 +73,49 @@ The dataset is in English, German, French, Spanish, Italian, Russian, Japanese a
71
  ### Data Instances
72
 
73
  <pre>
74
-
75
  </pre>
76
 
77
  ### Data Fields
78
 
79
-
 
80
 
81
  ### Data Splits
82
 
83
- - esp.train: 273037 lines
84
- - esp.testa: 54837 lines (used as dev)
85
- - esp.testb: 53049 lines (used as test)
86
 
87
  ## Dataset Creation
88
 
89
  ### Curation Rationale
 
90
  [N/A]
91
 
92
  ### Source Data
93
 
 
94
 
 
95
 
96
  #### Initial Data Collection and Normalization
97
 
98
-
99
 
100
  #### Who are the source language producers?
101
 
102
-
103
 
104
  ### Annotations
105
 
106
  #### Annotation process
107
 
108
-
109
 
110
  #### Who are the annotators?
111
 
112
-
113
 
114
  ### Personal and Sensitive Information
115
 
@@ -137,7 +143,11 @@ This dataset contributes to the development of language models in Spanish.
137
 
138
  ### Licensing Information
139
 
140
- Creative Commons Attribution Non Commercial 4.0
 
 
 
 
141
 
142
  ### Citation Information
143
 
@@ -158,6 +168,18 @@ The following paper must be cited when using this corpus:
158
  isbn = {979-10-95546-00-9},
159
  language = {english}
160
  }
 
 
 
 
 
 
 
 
 
 
 
 
161
  ```
162
 
163
 
 
56
 
57
  ### Dataset Summary
58
 
59
+ For document classification, we use the Multilingual Document Classification Corpus (MLDoc) [(Schwenk and Li, 2018)](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf), a cross-lingual document classification dataset covering 8 languages. We use the Spanish portion to evaluate our models on monolingual classification as part of the EvalEs Spanish language benchmark. The corpus consists of 14,458 news articles from Reuters classified in four categories: Corporate/Industrial, Economics, Government/Social and Markets.
60
+
61
+ This dataset can't be downloaded straight from HuggingFace as it requires signing specific agreements. The detailed instructions on how to download it can be found in this [repository](https://github.com/facebookresearch/MLDoc).
62
 
63
  ### Supported Tasks and Leaderboards
64
 
 
73
  ### Data Instances
74
 
75
  <pre>
76
+ MCAT b' FRANCFORT, 17 feb (Reuter) - La Bolsa de Francfort abri\xc3\xb3 la sesi\xc3\xb3n de corros con baja por la ca\xc3\xadda del viernes en Wall Street y una toma de beneficios. El d\xc3\xb3lar ayudaba a apuntalar al mercado, que pronto podr\xc3\xada reanudar su tendencia alcista. Volkswagen bajaba por los da\xc3\xb1os ocasionados por la huelga de camioneros en Espa\xc3\xb1a. Preussag participaba en un joint venture de exploraci\xc3\xb3n petrol\xc3\xadfera en Filipinas con Atlantic Richfield Co. A las 0951 GMT, el Dax 30 bajaba 10,49 puntos, un 0,32 pct, a 3.237,69 tras abrir a un m\xc3\xa1ximo de 3.237,69. (c) Reuters Limited 1997. '
77
  </pre>
78
 
79
  ### Data Fields
80
 
81
+ - Label: CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Government/Social) and MCAT (Markets)
82
+ - Text
83
 
84
  ### Data Splits
85
 
86
+ - train.tsv: 9,458 lines
87
+ - valid.tsv: 1,000 lines
88
+ - test.tsv: 4,000 lines
89
 
90
  ## Dataset Creation
91
 
92
  ### Curation Rationale
93
+
94
  [N/A]
95
 
96
  ### Source Data
97
 
98
+ The source data is from the Reuters Corpus. In 2000, Reuters Ltd made available a large collection of Reuters News stories for use in research and development of natural language processing, information retrieval, and machine learning systems. This corpus, known as "Reuters Corpus, Volume 1" or RCV1, is significantly larger than the older, well-known Reuters-21578 collection heavily used in the text classification community.
99
 
100
+ For more information visit the paper [(Lewis et al., 2004)](https://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf).
101
 
102
  #### Initial Data Collection and Normalization
103
 
104
+ For more information visit the paper [(Lewis et al., 2004)](https://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf).
105
 
106
  #### Who are the source language producers?
107
 
108
+ For more information visit the paper [(Lewis et al., 2004)](https://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf).
109
 
110
  ### Annotations
111
 
112
  #### Annotation process
113
 
114
+ For more information visit the paper [(Schwenk and Li, 2018; Lewis et al., 2004)](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf).
115
 
116
  #### Who are the annotators?
117
 
118
+ For more information visit the paper [(Schwenk and Li, 2018; Lewis et al., 2004)](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf).
119
 
120
  ### Personal and Sensitive Information
121
 
 
143
 
144
  ### Licensing Information
145
 
146
+ Access to the actual news stories of the Reuters Corpus (both RCV1 and RCV2) requires a NIST agreement. The stories in the Reuters Corpus are under the copyright of Reuters Ltd and/or Thomson Reuters, and their use is governed by the following agreements:
147
+ - Organizational agreement: This agreement must be signed by the person responsible for the data at your organization, and sent to NIST.
148
+ - Individual agreement: This agreement must be signed by all researchers using the Reuters Corpus at your organization, and kept on file at your organization.
149
+
150
+ For more information about the agreement see [here](https://trec.nist.gov/data/reuters/reuters.html)
151
 
152
  ### Citation Information
153
 
 
168
  isbn = {979-10-95546-00-9},
169
  language = {english}
170
  }
171
+
172
+ @inproceedings{schwenk-li-2018-corpus,
173
+ title = "A Corpus for Multilingual Document Classification in Eight Languages",
174
+ author = "Schwenk, Holger and
175
+ Li, Xian",
176
+ booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
177
+ month = may,
178
+ year = "2018",
179
+ address = "Miyazaki, Japan",
180
+ publisher = "European Language Resources Association (ELRA)",
181
+ url = "https://aclanthology.org/L18-1560",
182
+ }
183
  ```
184
 
185