File size: 2,427 Bytes
ed9f5c0
 
3f3b425
ed9f5c0
 
 
 
 
1a51200
 
73b1792
b4c9486
 
 
f518896
ed9f5c0
 
 
57550c1
ed9f5c0
47ad8f5
ed9f5c0
811db32
ae3850d
ed9f5c0
 
d136859
ed9f5c0
 
 
 
 
c26b2bf
57550c1
ed9f5c0
fbd10c4
 
 
 
 
 
 
 
 
 
6960846
57550c1
 
6960846
 
 
 
659f4a3
6e42104
ed9f5c0
 
 
 
 
 
319e620
ed9f5c0
b97725a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language: fa
pretty_name: Farsi Youtube 2024 ASR Dataset
tags:
- Farsi
- Persian
- ASR
- youtube
task_categories:
  - automatic-speech-recognition
dataset_size: "N > 400k"
dataset_info:
 splits:
  - name: unvalidated
    num_examples: 425468
license: cc0-1.0
---

# Farsi Youtube 2024 ASR Dataset

This dataset consists of over **385** hours of transcribed audio extracted from various YouTube videos in the Persian language (more than 400k rows).

This dataset is similar to the [Filimo ASR dataset](https://huggingface.co/datasets/PerSets/filimo-persian-asr) in terms of structure and content, and both can be used alongside each other, but not as substitutes for one another.

## Dataset Description

The dataset includes Farsi content from various types of videos spanning from older productions up to mid-2024, including:
- Podcasts
- TV Shows
- Educational Content
- Interviews
- Documentaries

Utterances and sentences are extracted based on the timing of subtitles.

The list of videos used in this dataset is stored in the `yt_ids.csv` file as follows:
```
13XpMM7RT2c	20231207	سرگذشت پُل پوت هیولای کامبوج و رهبر خمرهای سرخ
yU6LtnpVKLo	20231210	راز بزرگترین جاسوس عرب|بیوگرافی اشرف مروان
b9cTFkO6Q18	20231214	دقیقا چه اتفاقی افتاده؟ بالاخره توی این درگیری کی پیروز شد؟ 7 -27 نوامبر
wW76xHcxw48	20231217	حقایق شنیده نشده درباره نجات دنیا از جنگ هسته ای!
pr1dNDD6viM	20231123	افشای زندگی صدام حسین! | قسمت دوم
...
```

## Note
This dataset contains raw, unvalidated auto-generated transcriptions. Transcriptions may include inaccuracies due to mal-transcriptions, and timing may occasionally be imprecise. Many efforts have been made to cleanse the data using various methods and software.
Users are advised to:
- Perform their own quality assessment
- Create their own train/validation/test splits based on their specific needs
- Validate a subset of the data if needed for their use case

For validating the data you can use [AnnoTitan](https://github.com/dhpour/annotitan), which is a crowdsourcing app developed for such ASR data.

## Usage
<details>

Huggingface datasets library:
```python
from datasets import load_dataset
dataset = load_dataset('PerSets/youtube-persian-asr', trust_remote_code=True)
```
</details>