File size: 3,777 Bytes
92f9dc0
 
 
 
 
 
193d667
 
 
92f9dc0
 
8dbed1b
92f9dc0
 
 
 
 
 
 
 
 
 
 
8dbed1b
 
7890281
8dbed1b
7890281
8dbed1b
c33c1e2
92f9dc0
193d667
92f9dc0
193d667
 
92f9dc0
 
 
 
 
193d667
92f9dc0
 
 
 
8dbed1b
 
 
 
92f9dc0
 
 
 
 
c33c1e2
193d667
 
92f9dc0
 
8dbed1b
92f9dc0
193d667
 
 
 
c33c1e2
92f9dc0
 
 
 
193d667
92f9dc0
 
193d667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import tarfile
import datasets
import pandas as pd
from typing import Dict, List
import io
from tqdm import tqdm
import csv
import os

_DESCRIPTION = """
This dataset consists of over 385 hours of audio extracted from various YouTube videos in the Persian language.

Note: This dataset contains raw, unvalidated transcriptions. Users are advised to:
1. Perform their own quality assessment
2. Create their own train/validation/test splits based on their specific needs
3. Validate a subset of the data if needed for their use case
"""

_CITATION = """
Use this repo info/link for citation.
"""

_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"

_HOMEPAGE = "https://huggingface.co/datasets/PerSets/youtube-persian-asr"

_BASE_URL = "https://huggingface.co/datasets/PerSets/youtube-persian-asr/resolve/main/"

_AUDIO_URL = _BASE_URL + "data/unvalidated_{shard_idx}.tar"

class FarsiYoutubeDataset(datasets.GeneratorBasedBuilder):
    
    DEFAULT_WRITER_BATCH_SIZE = 1000

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features({
                "audio": datasets.Audio(sampling_rate=44_000),  # Adjust sampling rate as needed
                "text": datasets.Value("string"),
                "file_name": datasets.Value("string"),
            }),
            supervised_keys=None,
            license=_LICENSE,
            citation=_CITATION,
            version=self.VERSION,
            description=_DESCRIPTION
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        
        archive_paths = [_AUDIO_URL.format(shard_idx=i) for i in range(1, 22)]
        local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}

        return [
            datasets.SplitGenerator(
                name="unvalidated",  # Or adjust splits as needed
                gen_kwargs={
                    #"tar_dir": tar_dir,
                    #"metadata_path": metadata_path,
                    "local_extracted_archive_paths": local_extracted_archive_paths,
                    "archives": [dl_manager.iter_archive(path) for path in archive_paths],
                    "meta_path": _BASE_URL + "unvalidated.csv",
                },
            ),
        ]

    def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
        """Yields examples."""
        # Load TSV metadata
        data_fields = list(self._info().features.keys())
        metadata = {}
        with open(meta_path, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE)
            for row in tqdm(reader, desc="Reading metadata..."):
                if not row["file_name"].endswith(".mp3"):
                    row["file_name"] += ".mp3"
                if "sentence" in row:
                    row['text'] = row['sentence']
                    del row['sentence']
                for field in data_fields:
                    if field not in row:
                        row[field] = ""
                metadata[row["file_name"]] = row

        for i, audio_archive in enumerate(archives):
            for path, file in audio_archive:
                _, filename = os.path.split(path)
                if filename in metadata:
                    result = dict(metadata[filename])
                    # set the audio feature and the path to the extracted file
                    path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
                    result["audio"] = {"path": path, "bytes": file.read()}
                    result["file_name"] = path
                    yield path, result