hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
13b4d3a68baccbd7f4bd02979209b96592b03de0
2,076
py
Python
data_processing/dataset_processor.py
nazariinyzhnyk/fashion-img-segmentation
99bc08fcda1fbc6453442b0d96a84bf40e7d0c4a
[ "MIT" ]
1
2020-05-30T02:33:45.000Z
2020-05-30T02:33:45.000Z
data_processing/dataset_processor.py
nazariinyzhnyk/fashion-img-segmentation
99bc08fcda1fbc6453442b0d96a84bf40e7d0c4a
[ "MIT" ]
null
null
null
data_processing/dataset_processor.py
nazariinyzhnyk/fashion-img-segmentation
99bc08fcda1fbc6453442b0d96a84bf40e7d0c4a
[ "MIT" ]
null
null
null
from mrcnn import utils import os import cv2 import numpy as np from data_processing import resize_image, get_label_names class DatasetProcessor(utils.Dataset): def __init__(self, df): super().__init__(self) self.label_names = get_label_names(os.path.join('..', 'data', 'label_descriptions.json')) # Add classes for i, name in enumerate(self.label_names): self.add_class("fashion", i + 1, name) # Add images for i, row in df.iterrows(): self.add_image("fashion", image_id=row.name, path=os.path.join('..', 'data', 'images', row.name), labels=row['CategoryId'], annotations=row['EncodedPixels'], height=row['Height'], width=row['Width']) self.img_size = 512 def image_reference(self, image_id): info = self.image_info[image_id] return info['path'], [self.label_names[int(x)] for x in info['labels']] def load_image(self, image_id): img_path = self.image_info[image_id]['path'] return resize_image(img_path, self.img_size) def load_mask(self, image_id): info = self.image_info[image_id] mask = np.zeros((self.img_size, self.img_size, len(info['annotations'])), dtype=np.uint8) labels = [] for m, (annotation, label) in enumerate(zip(info['annotations'], info['labels'])): sub_mask = np.full(info['height'] * info['width'], 0, dtype=np.uint8) annotation = [int(x) for x in annotation.split(' ')] for i, start_pixel in enumerate(annotation[::2]): sub_mask[start_pixel: start_pixel + annotation[2 * i + 1]] = 1 sub_mask = sub_mask.reshape((info['height'], info['width']), order='F') sub_mask = cv2.resize(sub_mask, (self.img_size, self.img_size), interpolation=cv2.INTER_NEAREST) mask[:, :, m] = sub_mask labels.append(int(label) + 1) return mask, np.array(labels)
37.745455
108
0.585742
062874b1bb9104c34d08db9ad838ce9d1d3cbe3f
6,939
py
Python
ros/src/tl_detector/light_classification/tl_classifier.py
iammsg/Capstone-Project
7191dea6168dc39b95c636d59b3a5d6d4ccd98c1
[ "MIT" ]
null
null
null
ros/src/tl_detector/light_classification/tl_classifier.py
iammsg/Capstone-Project
7191dea6168dc39b95c636d59b3a5d6d4ccd98c1
[ "MIT" ]
9
2020-01-28T22:44:12.000Z
2022-03-11T23:47:37.000Z
ros/src/tl_detector/light_classification/tl_classifier.py
iammsg/Capstone-Project
7191dea6168dc39b95c636d59b3a5d6d4ccd98c1
[ "MIT" ]
null
null
null
import os import cv2 import numpy as np import rospy import tensorflow as tf from styx_msgs.msg import TrafficLight import time import json from datetime import datetime import os dir = os.path.dirname(__file__) class TLClassifier(object): def now(self): return str(datetime.now().strftime('%I:%M:%S.%f')) def log(self, msg): filename = os.path.join(dir, '../../../../master.log') f = open(filename, 'a+') f.write('{} [tl_classifier]: {}\n'.format(self.now(), msg)) f.close() #def __init__(self): def __init__(self, model_file): # TODO load classifier self.current_light = TrafficLight.UNKNOWN cwd = os.path.dirname(os.path.realpath(__file__)) model_path = os.path.join(cwd, "train_model/{}".format(model_file)) rospy.logwarn("model_path={}".format(model_path)) # load frozen tensorflow model self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self.category_index = {1: {'id': 1, 'name': 'Green'}, 2: {'id': 2, 'name': 'Red'}, 3: {'id': 3, 'name': 'Yellow'}, 4: {'id': 4, 'name': 'off'}} # create tensorflow session for detection config = tf.ConfigProto() config.gpu_options.allow_growth = True # end self.sess = tf.Session(graph=self.detection_graph, config=config) # Definite input and output Tensors for detection_graph self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') """ Sample response (some fields are added later): { "lights": { "green": {"count": 2, "sum": 1.98, "average": 0.99202722311019897}, "red": {"count": 0, "sum": 0.0, "average": 0.0}, "final": {"color": "GREEN", "average": 0.99, "state": 2} }, "boxes": [ {"xmin": 312, "score": 0.99, "ymin": 122, "ymax": 287, "xmax": 393}, {"xmin": 652, "score": 0.99, "ymin": 140, "ymax": 295, "xmax": 731} ], "filename": "/home/james/github/udacity/jmsktm/T2-CarND-Capstone/images/img-01-49-57-974795.jpg", "waypoints": {"current": 747, "traffic_light": 753}, "time": {"dashed": "01-49-57-974795", "colon": "01:49:57.974795"} } """ def get_classification(self, image): current_time = datetime.now() time_colon = str(current_time.strftime('%I:%M:%S.%f')) time_dashed = str(current_time.strftime('%I-%M-%S-%f')) result = { "time": { "colon": time_colon, "dashed": time_dashed } } filename = os.path.join(dir, '../../../../images/img-{}.jpg'.format(result["time"]["dashed"])) result["filename"] = filename """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ # return TrafficLight.RED # TODO implement light color prediction image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) (im_width, im_height, _) = image_rgb.shape image_np = np.expand_dims(image_rgb, axis=0) # Actual detection. with self.detection_graph.as_default(): (boxes, scores, classes, num) = self.sess.run( [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], feed_dict={self.image_tensor: image_np}) boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes).astype(np.int32) min_score_thresh = .70 red_count = 0 red_sum = 0.0 red_average = 0.0 green_count = 0 green_sum = 0.0 green_average = 0.0 total_count = 0 average = 1.0 count = 0 height, width, channels = image.shape arr = [] for i in range(boxes.shape[0]): if scores is None or scores[i] > min_score_thresh: total_count += 1 class_name = self.category_index[classes[i]]['name'] # Traffic light thing if class_name == 'Red' or class_name == 'Yellow': red_count += 1 red_sum += scores[i] elif class_name == 'Green': green_count += 1 green_sum += scores[i] box = boxes[i] ymin, xmin, ymax, xmax = box xmin1 = int(xmin * width) ymin1 = int(ymin * height) xmax1 = int(xmax * width) ymax1 = int(ymax * height) score = round(scores[i], 2) arr.append({ "xmin": xmin1, "ymin": ymin1, "xmax": xmax1, "ymax": ymax1, "score": score }) result["boxes"] = arr if red_count > 0: red_average = red_sum / red_count if green_count > 0: green_average = green_sum / green_count light_color = 'UNKNOWN' self.current_light = TrafficLight.UNKNOWN if red_count > 0 and red_average > min_score_thresh and red_average > green_average: light_color = 'RED' red_sum = round(red_sum, 2) average = round(red_average, 2) self.current_light = TrafficLight.RED elif green_count > 0 and green_average > min_score_thresh and green_average > red_average: light_color = 'GREEN' green_sum = round(green_sum, 2) average = round(green_average, 2) self.current_light = TrafficLight.GREEN result["lights"] = { "red": { "count": red_count, "sum": red_sum, "average": red_average }, "green": { "count": green_count, "sum": green_sum, "average": green_average }, "final": { "color": light_color, "average": average, "state": self.current_light } } return result
37.711957
106
0.576452
1b490ba9b28b7ae6444832cc5cd9240f19101f87
851
py
Python
coblog/urls.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
1
2020-12-19T15:55:47.000Z
2020-12-19T15:55:47.000Z
coblog/urls.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
null
null
null
coblog/urls.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
null
null
null
"""coblog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('blog.urls', namespace='blog')), ]
32.730769
77
0.703878
ba45ce35c091ae4088db67a455c7a72e1ca4862d
1,027
py
Python
src/rps/heredity_problems/mendels_first_law.py
Vikdemen/RosalindPS
05cb3c2162e569bd92a99b9be127999cae1babf7
[ "MIT" ]
1
2020-03-01T11:57:56.000Z
2020-03-01T11:57:56.000Z
src/rps/heredity_problems/mendels_first_law.py
Vikdemen/RosalindPS
05cb3c2162e569bd92a99b9be127999cae1babf7
[ "MIT" ]
null
null
null
src/rps/heredity_problems/mendels_first_law.py
Vikdemen/RosalindPS
05cb3c2162e569bd92a99b9be127999cae1babf7
[ "MIT" ]
1
2020-03-01T18:39:44.000Z
2020-03-01T18:39:44.000Z
""" Given: Three positive integers k, m, and n, representing a population containing k+m+n organisms: k individuals are homozygous dominant for a factor, m are heterozygous, and n are homozygous recessive. Return: The probability that two randomly selected mating organisms will produce an individual possessing a dominant allele (and thus displaying the dominant phenotype). Assume that any two organisms can mate. """ from __future__ import annotations from typing import List from rps.heredity_problems.mendel import calculate_dominant_probabilities def probability_of_dominants(lines: List[str]) -> str: """ :param lines: A single line with 3 space-separated numbers representing number of organism with dominant homozygous, heterozygous and recessive homozygous :return: The probability of offspring with dominant allele from 2 random parents """ line, = lines k, m, n = [int(num) for num in line.split()] dominant = calculate_dominant_probabilities(k, m, n) return f"{dominant:.4f}"
46.681818
120
0.770204
a71497fc2e3c9991d0a18c534d45853aa45d8cd9
2,087
py
Python
src/account/views.py
BusyJay/sokoban
a7fac324e9ee725c7954016d368d799ca2a7c47c
[ "MIT" ]
1
2018-07-08T06:12:02.000Z
2018-07-08T06:12:02.000Z
src/account/views.py
BusyJay/sokoban
a7fac324e9ee725c7954016d368d799ca2a7c47c
[ "MIT" ]
null
null
null
src/account/views.py
BusyJay/sokoban
a7fac324e9ee725c7954016d368d799ca2a7c47c
[ "MIT" ]
null
null
null
from django.conf import settings from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth import login as auth_login, logout as auth_logout from django.http import HttpResponse from django.shortcuts import render, resolve_url from django.utils.http import is_safe_url from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_protect from django.views.decorators.debug import sensitive_post_parameters from sokoban.utils import json_api @sensitive_post_parameters() @csrf_protect @never_cache @json_api def login(request): redirect_to = request.REQUEST.get('next', '') if request.method == 'GET': request.session.set_test_cookie() return render(request, 'accounts/login.html', dictionary=dict( form=AuthenticationForm(), next=redirect_to, )) elif request.method == 'POST': login_form = AuthenticationForm(data=request.POST) if not login_form.is_valid(): return { 'errors': login_form.errors.as_ul(), }, 400 if not is_safe_url(url=redirect_to, host=request.get_host()): redirect_to = resolve_url(settings.LOGIN_REDIRECT_URL) auth_login(request, login_form.get_user()) if request.session.test_cookie_worked(): request.session.delete_test_cookie() return { 'username': request.user.username, 'next': redirect_to, } else: return HttpResponse(status=405) @json_api def logout(request): next_page = '/' if 'next' in request.REQUEST: next_page = request.REQUEST['next'] # Security check -- don't allow redirection to a different host. if not is_safe_url(url=next_page, host=request.get_host()): next_page = request.path if request.method == 'GET': return render(request, 'accounts/logged_out.html', dictionary=dict( next=next_page, )) else: auth_logout(request) return { 'success': 1, }
32.107692
75
0.667465
885ffac482ce6a6c47e37ca2153588eabd2be5cd
18,819
py
Python
log_complete/model_717.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_717.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_717.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('C6A', ['C8pro']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 179250.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C6A_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C6A_obs', C6A()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(C6A(C8pro=None), C6A_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6pro(C3A=None), C6pro_0)
91.354369
710
0.806525
0c376b04830cf7cc698bd6837d06666e9ddce082
5,424
py
Python
rsl/config.py
torchingloom/invenio-instance
b2cd4112e3960fa90fedf33bbedb2367f2ec47ac
[ "MIT" ]
null
null
null
rsl/config.py
torchingloom/invenio-instance
b2cd4112e3960fa90fedf33bbedb2367f2ec47ac
[ "MIT" ]
null
null
null
rsl/config.py
torchingloom/invenio-instance
b2cd4112e3960fa90fedf33bbedb2367f2ec47ac
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2021 RSL. # # rsl is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Default configuration for rsl. You overwrite and set instance-specific configuration by either: - Configuration file: ``<virtualenv prefix>/var/instance/invenio.cfg`` - Environment variables: ``APP_<variable name>`` """ import os from pathlib import Path from datetime import timedelta from invenio_app.config import APP_DEFAULT_SECURE_HEADERS from invenio_previewer.config import PREVIEWER_PREFERENCE as BASE_PREFERENCE def _(x): """Identity function used to trigger string extraction.""" return x # Rate limiting # ============= #: Storage for ratelimiter. RATELIMIT_STORAGE_URL = 'redis://localhost:6379/3' # I18N # ==== #: Default language BABEL_DEFAULT_LANGUAGE = 'ru' #: Default time zone BABEL_DEFAULT_TIMEZONE = 'Europe/Moscow' #: Other supported languages (do not include the default language in list). I18N_LANGUAGES = [ ('ru', _('Русский')) ] # Base templates # ============== #: Global base template. BASE_TEMPLATE = 'invenio_theme/page.html' #: Cover page base template (used for e.g. login/sign-up). COVER_TEMPLATE = 'invenio_theme/page_cover.html' #: Footer base template. FOOTER_TEMPLATE = 'invenio_theme/footer.html' #: Header base template. HEADER_TEMPLATE = 'invenio_theme/header.html' #: Settings base template. SETTINGS_TEMPLATE = 'invenio_theme/page_settings.html' # Theme configuration # =================== #: The Invenio theme. APP_THEME = ['semantic-ui'] #: Site name. THEME_SITENAME = _('rsl') #: Use default frontpage. THEME_FRONTPAGE = True #: Frontpage title. THEME_FRONTPAGE_TITLE = _('rsl') #: Frontpage template. THEME_FRONTPAGE_TEMPLATE = 'rsl/frontpage.html' # Email configuration # =================== #: Email address for support. SUPPORT_EMAIL = "[email protected]" #: Disable email sending by default. MAIL_SUPPRESS_SEND = True # Assets # ====== #: Static files collection method (defaults to copying files). COLLECT_STORAGE = 'flask_collect.storage.file' # Accounts # ======== #: Email address used as sender of account registration emails. SECURITY_EMAIL_SENDER = SUPPORT_EMAIL #: Email subject for account registration emails. SECURITY_EMAIL_SUBJECT_REGISTER = _("Welcome to rsl!") #: Redis session storage URL. ACCOUNTS_SESSION_REDIS_URL = 'redis://localhost:6379/1' #: Enable session/user id request tracing. This feature will add X-Session-ID #: and X-User-ID headers to HTTP response. You MUST ensure that NGINX (or other #: proxies) removes these headers again before sending the response to the #: client. Set to False, in case of doubt. ACCOUNTS_USERINFO_HEADERS = True # Celery configuration # ==================== BROKER_URL = 'amqp://guest:guest@localhost:5672/' #: URL of message broker for Celery (default is RabbitMQ). CELERY_BROKER_URL = 'amqp://guest:guest@localhost:5672/' #: URL of backend for result storage (default is Redis). CELERY_RESULT_BACKEND = 'redis://localhost:6379/2' #: Scheduled tasks configuration (aka cronjobs). CELERY_BEAT_SCHEDULE = { 'indexer': { 'task': 'invenio_indexer.tasks.process_bulk_queue', 'schedule': timedelta(minutes=5), }, 'accounts': { 'task': 'invenio_accounts.tasks.clean_session_table', 'schedule': timedelta(minutes=60), }, } # Database # ======== #: Database URI including user and password SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://postgres:123@localhost/rsl-invenio' # JSONSchemas # =========== #: Hostname used in URLs for local JSONSchemas. JSONSCHEMAS_HOST = 'rsl.com' # Flask configuration # =================== # See details on # http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values #: Secret key - each installation (dev, production, ...) needs a separate key. #: It should be changed before deploying. SECRET_KEY = 'asdasdqwe90qwe90;qwe;;2e&as;ldsal;dlasdnmasd' #: Max upload size for form data via application/mulitpart-formdata. MAX_CONTENT_LENGTH = 100 * 1024 * 1024 # 100 MiB #: Sets cookie with the secure flag by default SESSION_COOKIE_SECURE = True #: Since HAProxy and Nginx route all requests no matter the host header #: provided, the allowed hosts variable is set to localhost. In production it #: should be set to the correct host and it is strongly recommended to only #: route correct hosts to the application. APP_ALLOWED_HOSTS = ['rsl.com', 'localhost', 'local.invenio', '127.0.0.1', '*'] # OAI-PMH # ======= OAISERVER_ID_PREFIX = 'oai:rsl.com:' # Previewers # ========== #: Include IIIF preview for images. PREVIEWER_PREFERENCE = ['iiif_image'] + BASE_PREFERENCE # Debug # ===== # Flask-DebugToolbar is by default enabled when the application is running in # debug mode. More configuration options are available at # https://flask-debugtoolbar.readthedocs.io/en/latest/#configuration #: Switches off incept of redirects by Flask-DebugToolbar. DEBUG_TB_INTERCEPT_REDIRECTS = False # Configures Content Security Policy for PDF Previewer # Remove it if you are not using PDF Previewer APP_DEFAULT_SECURE_HEADERS['content_security_policy'] = { 'default-src': ["'self'", "'unsafe-inline'"], 'object-src': ["'none'"], 'style-src': ["'self'", "'unsafe-inline'", "https://fonts.googleapis.com"], 'font-src': ["'self'", "data:", "https://fonts.gstatic.com"], } WTF_CSRF_ENABLED = False
31.534884
84
0.721792
fe48a7ec25fe0f5d9086e7d73c74d028c0a8705d
2,576
py
Python
WidgetsUnlimited/operations/simulator.py
AlanHorowitz/open-ended-capstone
80590af5b09c2245f124cec20ed7594d62cff30e
[ "MIT" ]
null
null
null
WidgetsUnlimited/operations/simulator.py
AlanHorowitz/open-ended-capstone
80590af5b09c2245f124cec20ed7594d62cff30e
[ "MIT" ]
null
null
null
WidgetsUnlimited/operations/simulator.py
AlanHorowitz/open-ended-capstone
80590af5b09c2245f124cec20ed7594d62cff30e
[ "MIT" ]
null
null
null
from model.metadata import Table from .generator import DataGenerator, GeneratorRequest from .base import BaseSystem from typing import List class OperationsSimulator: """ A simulator of activity in Widgets Unlimited's source systems. A sequence of generation requests are processed and new and updated records are fed to the source systems. The source systems will expose these changes via different protocols to be ingested by the Data Warehouse. """ def __init__(self, data_generator: DataGenerator, source_systems: List[BaseSystem]): self._data_generator = data_generator self._source_systems = set(source_systems) self._source_system_lookup = {} def add_tables(self, source_system: BaseSystem, tables: List[Table]) -> None: """ Associate a list of Tables to a source system and pass the tables to both source system and data generator for initialization. Create a dictionary mapping table names to the source system objects. A table may only be associated with a single source system. :param source_system: source system object :param tables: list of Table objects :return: None, raises an exception if source system is unknown or table is added more than once """ if source_system not in self._source_systems: raise Exception("Error. May not add tables to unknown source system") for table in tables: table_name = table.get_name() if table_name in self._source_system_lookup: raise Exception("Error. Table may only be added once to simulator") self._source_system_lookup[table_name] = source_system source_system.add_tables(tables) self._data_generator.add_tables(tables) def process( self, batch_id: int, generator_requests: List[GeneratorRequest] ) -> None: """ Feed a list of generator requests to the DataGenerator, then pass the inputs and updates for each table on to the associated source system. :param batch_id: identifier used to correlate requests :param generator_requests: list of generator parameter objects :return: None """ for request in generator_requests: table = request.table op_system: BaseSystem = self._source_system_lookup[table.get_name()] i_rows, u_rows = self._data_generator.generate(request, batch_id) op_system.insert(table, i_rows) op_system.update(table, u_rows)
42.933333
119
0.692935
24c47051d17926e9a104a129a551d7d6f05f4ba9
545
py
Python
manage.py
guillaumepiot/cotidia-demo
497177fa63942ee22288e93ed7d4867854110dd0
[ "BSD-3-Clause" ]
null
null
null
manage.py
guillaumepiot/cotidia-demo
497177fa63942ee22288e93ed7d4867854110dd0
[ "BSD-3-Clause" ]
7
2020-02-11T23:47:40.000Z
2022-03-11T23:42:02.000Z
manage.py
guillaumepiot/cotidia-demo
497177fa63942ee22288e93ed7d4867854110dd0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "consult.settings.local") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
34.0625
77
0.688073
621aae82a06746cc648ac34db4a5733a56265f48
6,428
py
Python
main.py
JDACS4C-IMPROVE/TGSA
cdd9903b889112b04325bec9f61935d05d9e9179
[ "MIT" ]
13
2021-06-17T15:01:49.000Z
2022-03-11T05:19:28.000Z
main.py
JDACS4C-IMPROVE/TGSA
cdd9903b889112b04325bec9f61935d05d9e9179
[ "MIT" ]
null
null
null
main.py
JDACS4C-IMPROVE/TGSA
cdd9903b889112b04325bec9f61935d05d9e9179
[ "MIT" ]
10
2021-10-06T08:56:58.000Z
2022-03-22T04:55:44.000Z
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" import torch import torch.nn as nn import numpy as np import pandas as pd from utils import load_data from utils import EarlyStopping, set_random_seed from utils import train, validate from preprocess_gene import get_STRING_graph, get_predefine_cluster from models.TGDRP import TGDRP import argparse import fitlog def arg_parse(): parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, default=42, help='seed') parser.add_argument('--device', type=str, default='cuda:6', help='device') parser.add_argument('--model', type=str, default='TGDRP', help='Name of the model') parser.add_argument('--batch_size', type=int, default=128, help='batch size (default: 128)') parser.add_argument('--lr', type=float, default=0.0001, help='learning rate') parser.add_argument('--layer_drug', type=int, default=3, help='layer for drug') parser.add_argument('--dim_drug', type=int, default=128, help='hidden dim for drug') parser.add_argument('--layer', type=int, default=3, help='number of GNN layer') parser.add_argument('--hidden_dim', type=int, default=8, help='hidden dim for cell') parser.add_argument('--weight_decay', type=float, default=0, help='weight decay') parser.add_argument('--dropout_ratio', type=float, default=0.2, help='dropout ratio') parser.add_argument('--epochs', type=int, default=300, help='maximum number of epochs (default: 300)') parser.add_argument('--patience', type=int, default=10, help='patience for earlystopping (default: 10)') parser.add_argument('--edge', type=float, default=0.95, help='threshold for cell line graph') parser.add_argument('--setup', type=str, default='known', help='experimental setup') parser.add_argument('--pretrain', type=int, default=1, help='whether use pre-trained weights (0 for False, 1 for True') parser.add_argument('--weight_path', type=str, default='', help='filepath for pretrained weights') parser.add_argument('--mode', type=str, default='test', help='train or test') return parser.parse_args() def main(): args = arg_parse() set_random_seed(args.seed) drug_dict = np.load('./data/Drugs/drug_feature_graph.npy', allow_pickle=True).item() cell_dict = np.load('./data/CellLines_DepMap/CCLE_580_18281/census_706/cell_feature_all.npy', allow_pickle=True).item() edge_index = np.load('./data/CellLines_DepMap/CCLE_580_18281/census_706/edge_index_PPI_{}.npy'.format(args.edge)) IC = pd.read_csv('./data/PANCANCER_IC_82833_580_170.csv') train_loader, val_loader, test_loader = load_data(IC, drug_dict, cell_dict, edge_index, args) print(len(IC), len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) print('mean degree:{}'.format(len(edge_index[0]) / 706)) args.num_feature = cell_dict['ACH-000001'].x.shape[1] genes_path = './data/CellLines_DepMap/CCLE_580_18281/census_706' edge_index = get_STRING_graph(genes_path, args.edge) cluster_predefine = get_predefine_cluster(edge_index, genes_path, args.edge, args.device) model = TGDRP(cluster_predefine, args).to(args.device) if args.mode == 'train': if args.pretrain and args.weight_path != '': model.GNN_drug.load_state_dict(torch.load('./model_pretrain/{}.pth'.format(args.weight_path))['model_state_dict']) criterion = nn.MSELoss() opt = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) log_folder = os.path.join(os.getcwd(), "logs", model._get_name()) if not os.path.exists(log_folder): os.makedirs(log_folder) fitlog.set_log_dir(log_folder) fitlog.add_hyper(args) fitlog.add_hyper_in_file(__file__) stopper = EarlyStopping(mode='lower', patience=args.patience) for epoch in range(1, args.epochs + 1): print("=====Epoch {}".format(epoch)) print("Training...") train_loss = train(model, train_loader, criterion, opt, args.device) fitlog.add_loss(train_loss.item(), name='Train MSE', step=epoch) print('Evaluating...') rmse, _, _, _ = validate(model, val_loader, args.device) print("Validation rmse:{}".format(rmse)) fitlog.add_metric({'val': {'RMSE': rmse}}, step=epoch) early_stop = stopper.step(rmse, model) if early_stop: break print('EarlyStopping! Finish training!') print('Testing...') stopper.load_checkpoint(model) train_rmse, train_MAE, train_r2, train_r = validate(model, train_loader, args.device) val_rmse, val_MAE, val_r2, val_r = validate(model, val_loader, args.device) test_rmse, test_MAE, test_r2, test_r = validate(model, test_loader, args.device) print('Train reslut: rmse:{} r2:{} r:{}'.format(train_rmse, train_r2, train_r)) print('Val reslut: rmse:{} r2:{} r:{}'.format(val_rmse, val_r2, val_r)) print('Test reslut: rmse:{} r2:{} r:{}'.format(test_rmse, test_r2, test_r)) fitlog.add_best_metric( {'epoch': epoch - args.patience, "train": {'RMSE': train_rmse, 'MAE': train_MAE, 'pearson': train_r, "R2": train_r2}, "valid": {'RMSE': stopper.best_score, 'MAE': val_MAE, 'pearson': val_r, 'R2': val_r2}, "test": {'RMSE': test_rmse, 'MAE': test_MAE, 'pearson': test_r, 'R2': test_r2}}) elif args.mode == 'test': weight = "TGDRP_pre" if args.pretrain else "TGDRP" model.load_state_dict(torch.load('./weights/{}.pth'.format(weight), map_location=args.device)['model_state_dict']) test_rmse, test_MAE, test_r2, test_r = validate(model, test_loader, args.device) print('Test RMSE: {}, MAE: {}, R2: {}, R: {}'.format(round(test_rmse.item(), 4), round(test_MAE, 4), round(test_r2, 4), round(test_r, 4))) if __name__ == "__main__": main()
50.614173
127
0.626167
2e0fa094285a5b3d5267707b6c8f3c80d4708a20
6,618
py
Python
python-2-apps/fn_crowdstrike_query-1.0.0/fn_crowdstrike_query/util/customize.py
JayDi11a/Geralds-IBM-SOAR-Integrations
0e0eb18adbaf3a266e1dc5a316df7cd5a93f88d0
[ "MIT" ]
null
null
null
python-2-apps/fn_crowdstrike_query-1.0.0/fn_crowdstrike_query/util/customize.py
JayDi11a/Geralds-IBM-SOAR-Integrations
0e0eb18adbaf3a266e1dc5a316df7cd5a93f88d0
[ "MIT" ]
1
2022-03-06T00:10:13.000Z
2022-03-06T00:10:13.000Z
python-2-apps/fn_crowdstrike_query/fn_crowdstrike_query/util/customize.py.OLD.py
JayDi11a/Geralds-IBM-SOAR-Integrations
0e0eb18adbaf3a266e1dc5a316df7cd5a93f88d0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Generate the Resilient customizations required for fn_crowdstrike_query""" from __future__ import print_function from resilient_circuits.util import * def customization_data(client=None): """Produce any customization definitions (types, fields, message destinations, etc) that should be installed by `resilient-circuits customize` """ # This import data contains: # Function inputs: # artifact_type # artifact_value # incident_id # Message Destinations: # crowdstrike_query # Functions: # query_malware_user_connection yield ImportDefinition(u""" eyJ0YXNrX29yZGVyIjogW10sICJ3b3JrZmxvd3MiOiBbXSwgImFjdGlvbnMiOiBbXSwgImxheW91 dHMiOiBbXSwgImV4cG9ydF9mb3JtYXRfdmVyc2lvbiI6IDIsICJpZCI6IDI0LCAiaW5kdXN0cmll cyI6IG51bGwsICJwaGFzZXMiOiBbXSwgImFjdGlvbl9vcmRlciI6IFtdLCAiZ2VvcyI6IG51bGws ICJzZXJ2ZXJfdmVyc2lvbiI6IHsibWFqb3IiOiAzMCwgInZlcnNpb24iOiAiMzAuMi44OCIsICJi dWlsZF9udW1iZXIiOiA4OCwgIm1pbm9yIjogMn0sICJ0aW1lZnJhbWVzIjogbnVsbCwgIndvcmtz cGFjZXMiOiBbXSwgImF1dG9tYXRpY190YXNrcyI6IFtdLCAiZnVuY3Rpb25zIjogW3siZGlzcGxh eV9uYW1lIjogIlF1ZXJ5IE1hbHdhcmUgVXNlciBDb25uZWN0aW9uIiwgImRlc2NyaXB0aW9uIjog eyJjb250ZW50IjogIlRoaXMgZnVuY3Rpb24gcGFzc2VzIGluIHRoZSBhcnRpZmFjdCAoZmlsZSBu YW1lKSBmb3IgaXRzIHBvdGVudGlhbCB0aHJlYXQgYmVoYXZpb3IgYW5kIHRoZSBuYW1lIGFzc29j aWF0ZWQgd2l0aCB0aGF0IHRocmVhdCBkZXRlY3Rpb24uIiwgImZvcm1hdCI6ICJ0ZXh0In0sICJj cmVhdG9yIjogeyJkaXNwbGF5X25hbWUiOiAiR2VyYWxkIFRyb3RtYW4iLCAidHlwZSI6ICJ1c2Vy IiwgImlkIjogNCwgIm5hbWUiOiAiZ2VyYWxkLnRyb3RtYW5AaWJtLmNvbSJ9LCAidmlld19pdGVt cyI6IFt7InNob3dfaWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3df bGlua19oZWFkZXIiOiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50Ijog ImVhZDIxNGMyLTEzZmUtNDNmNi1hM2M3LTY3NmE4ODMzOGRiYiIsICJzdGVwX2xhYmVsIjogbnVs bH0sIHsic2hvd19pZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19s aW5rX2hlYWRlciI6IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAi M2EyZTM0N2ItNjcyZS00MjYzLTg3ODctYTNlOWViYTRhYzkxIiwgInN0ZXBfbGFiZWwiOiBudWxs fSwgeyJzaG93X2lmIjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xp bmtfaGVhZGVyIjogZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICI5 YmE0OTg4Ny0wZGNmLTQwY2UtYTVlYS05YzBjNDNmODMxYmYiLCAic3RlcF9sYWJlbCI6IG51bGx9 XSwgImV4cG9ydF9rZXkiOiAicXVlcnlfbWFsd2FyZV91c2VyX2Nvbm5lY3Rpb24iLCAidXVpZCI6 ICI0Yjg2MDFlYi04Mzc0LTQzZGItOWQxNC1iZmU0YjM5ZjAzMjIiLCAibGFzdF9tb2RpZmllZF9i eSI6IHsiZGlzcGxheV9uYW1lIjogIkdlcmFsZCBUcm90bWFuIiwgInR5cGUiOiAidXNlciIsICJp ZCI6IDQsICJuYW1lIjogImdlcmFsZC50cm90bWFuQGlibS5jb20ifSwgInZlcnNpb24iOiAxLCAi d29ya2Zsb3dzIjogW10sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTM2NTg4ODc5ODkxLCAiZGVz dGluYXRpb25faGFuZGxlIjogImNyb3dkc3RyaWtlX3F1ZXJ5IiwgImlkIjogODIsICJuYW1lIjog InF1ZXJ5X21hbHdhcmVfdXNlcl9jb25uZWN0aW9uIn1dLCAibm90aWZpY2F0aW9ucyI6IG51bGws ICJyZWd1bGF0b3JzIjogbnVsbCwgImluY2lkZW50X3R5cGVzIjogW3siY3JlYXRlX2RhdGUiOiAx NTM2NjE4NTE1OTc4LCAiZGVzY3JpcHRpb24iOiAiQ3VzdG9taXphdGlvbiBQYWNrYWdlcyAoaW50 ZXJuYWwpIiwgImV4cG9ydF9rZXkiOiAiQ3VzdG9taXphdGlvbiBQYWNrYWdlcyAoaW50ZXJuYWwp IiwgImlkIjogMCwgIm5hbWUiOiAiQ3VzdG9taXphdGlvbiBQYWNrYWdlcyAoaW50ZXJuYWwpIiwg InVwZGF0ZV9kYXRlIjogMTUzNjYxODUxNTk3OCwgInV1aWQiOiAiYmZlZWMyZDQtMzc3MC0xMWU4 LWFkMzktNGEwMDA0MDQ0YWEwIiwgImVuYWJsZWQiOiBmYWxzZSwgInN5c3RlbSI6IGZhbHNlLCAi cGFyZW50X2lkIjogbnVsbCwgImhpZGRlbiI6IGZhbHNlfV0sICJzY3JpcHRzIjogW10sICJ0eXBl cyI6IFtdLCAibWVzc2FnZV9kZXN0aW5hdGlvbnMiOiBbeyJ1dWlkIjogIjVjYTFlMjA4LTk4YTgt NGYyOS1iOWE2LTY1MmNjOTg1MjkxZCIsICJleHBvcnRfa2V5IjogImNyb3dkc3RyaWtlX3F1ZXJ5 IiwgIm5hbWUiOiAiQ3Jvd2RTdHJpa2UgUXVlcnkiLCAiZGVzdGluYXRpb25fdHlwZSI6IDAsICJw cm9ncmFtbWF0aWNfbmFtZSI6ICJjcm93ZHN0cmlrZV9xdWVyeSIsICJleHBlY3RfYWNrIjogdHJ1 ZSwgInVzZXJzIjogWyJnZXJhbGQudHJvdG1hbkBpYm0uY29tIl19XSwgImluY2lkZW50X2FydGlm YWN0X3R5cGVzIjogW10sICJyb2xlcyI6IFtdLCAiZmllbGRzIjogW3sib3BlcmF0aW9ucyI6IFtd LCAicmVhZF9vbmx5IjogdHJ1ZSwgIm5hbWUiOiAiaW5jX3RyYWluaW5nIiwgInRlbXBsYXRlcyI6 IFtdLCAidHlwZV9pZCI6IDAsICJjaG9zZW4iOiBmYWxzZSwgInRleHQiOiAiU2ltdWxhdGlvbiIs ICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgImV4cG9ydF9rZXkiOiAiaW5jaWRl bnQvaW5jX3RyYWluaW5nIiwgInRvb2x0aXAiOiAiV2hldGhlciB0aGUgaW5jaWRlbnQgaXMgYSBz aW11bGF0aW9uIG9yIGEgcmVndWxhciBpbmNpZGVudC4gIFRoaXMgZmllbGQgaXMgcmVhZC1vbmx5 LiIsICJyaWNoX3RleHQiOiBmYWxzZSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAicHJlZml4Ijog bnVsbCwgImludGVybmFsIjogZmFsc2UsICJ2YWx1ZXMiOiBbXSwgImJsYW5rX29wdGlvbiI6IGZh bHNlLCAiaW5wdXRfdHlwZSI6ICJib29sZWFuIiwgImNoYW5nZWFibGUiOiB0cnVlLCAiaGlkZV9u b3RpZmljYXRpb24iOiBmYWxzZSwgImlkIjogMzcsICJ1dWlkIjogImMzZjBlM2VkLTIxZTEtNGQ1 My1hZmZiLWZlNWNhMzMwOGNjYSJ9LCB7Im9wZXJhdGlvbnMiOiBbXSwgInR5cGVfaWQiOiAxMSwg Im9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJpbmNpZGVudF9pZCIsICJibGFua19vcHRp b24iOiBmYWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTE1 LCAicmVhZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogImVhZDIxNGMyLTEzZmUtNDNmNi1hM2M3LTY3 NmE4ODMzOGRiYiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5cGUiOiAibnVtYmVyIiwgInRv b2x0aXAiOiAiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBs YXRlcyI6IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL2luY2lkZW50X2lkIiwgImhpZGVf bm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJpbmNpZGVu dF9pZCIsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdfSwg eyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTEsICJvcGVyYXRpb25fcGVybXMiOiB7fSwg InRleHQiOiAiYXJ0aWZhY3RfdHlwZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6 IG51bGwsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgImlkIjogMTUwLCAicmVhZF9vbmx5IjogZmFsc2Us ICJ1dWlkIjogIjNhMmUzNDdiLTY3MmUtNDI2My04Nzg3LWEzZTllYmE0YWM5MSIsICJjaG9zZW4i OiBmYWxzZSwgImlucHV0X3R5cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIiIsICJpbnRlcm5hbCI6 IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXki OiAiX19mdW5jdGlvbi9hcnRpZmFjdF90eXBlIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2Us ICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJhcnRpZmFjdF90eXBlIiwgImRlZmF1bHRfY2hv c2VuX2J5X3NlcnZlciI6IGZhbHNlLCAidmFsdWVzIjogW119LCB7Im9wZXJhdGlvbnMiOiBbXSwg InR5cGVfaWQiOiAxMSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJhcnRpZmFjdF92 YWx1ZSIsICJibGFua19vcHRpb24iOiBmYWxzZSwgInByZWZpeCI6IG51bGwsICJjaGFuZ2VhYmxl IjogdHJ1ZSwgImlkIjogMTQ5LCAicmVhZF9vbmx5IjogZmFsc2UsICJ1dWlkIjogIjliYTQ5ODg3 LTBkY2YtNDBjZS1hNWVhLTljMGM0M2Y4MzFiZiIsICJjaG9zZW4iOiBmYWxzZSwgImlucHV0X3R5 cGUiOiAidGV4dCIsICJ0b29sdGlwIjogIiIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0 IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9hcnRp ZmFjdF92YWx1ZSIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAi IiwgIm5hbWUiOiAiYXJ0aWZhY3RfdmFsdWUiLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjog ZmFsc2UsICJ2YWx1ZXMiOiBbXX1dLCAib3ZlcnJpZGVzIjogW10sICJleHBvcnRfZGF0ZSI6IDE1 MzY1ODkwODA4ODh9 """ )
62.433962
87
0.955878
8093ba3a64743151f52da01ac6dd3832d0c30355
10,174
py
Python
docs/conf.py
WilliamMayor/jingerly
225feb2e71b4256302209c815cccd54b694d52eb
[ "MIT" ]
null
null
null
docs/conf.py
WilliamMayor/jingerly
225feb2e71b4256302209c815cccd54b694d52eb
[ "MIT" ]
null
null
null
docs/conf.py
WilliamMayor/jingerly
225feb2e71b4256302209c815cccd54b694d52eb
[ "MIT" ]
1
2020-02-23T15:07:47.000Z
2020-02-23T15:07:47.000Z
# -*- coding: utf-8 -*- # # . documentation build configuration file, created by # sphinx-quickstart on Sat Feb 14 21:29:17 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'jinjerly' copyright = u'2015, William Mayor' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.3' # The full version, including alpha/beta/rc tags. release = '0.0.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'sphinxdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'sphinx.tex', u'. Documentation', u'Author', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'sphinx', u'. Documentation', [u'Author'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'sphinx', u'. Documentation', u'Author', 'sphinx', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'.' epub_author = u'Author' epub_publisher = u'Author' epub_copyright = u'2015, Author' # The basename for the epub file. It defaults to the project name. #epub_basename = u'.' # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the PIL. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True
30.644578
80
0.716139
d4219fbd51a1b331ee29a550a7a35f570e296d0e
471
py
Python
cudaBLAS/pythonMatMultTest.py
CUDA-me-impressed/CuMat-Compiler
d5050f96a2712d4d135c1729484cd91db2bdd42e
[ "MIT" ]
2
2020-10-18T10:29:34.000Z
2021-01-05T15:46:34.000Z
cudaBLAS/pythonMatMultTest.py
CUDA-me-impressed/CuMat-Compiler
d5050f96a2712d4d135c1729484cd91db2bdd42e
[ "MIT" ]
11
2020-10-08T18:41:20.000Z
2021-03-19T14:49:19.000Z
cudaBLAS/pythonMatMultTest.py
CUDA-me-impressed/CuMat-Compiler
d5050f96a2712d4d135c1729484cd91db2bdd42e
[ "MIT" ]
null
null
null
import numpy as np import timeit def printAsCuMatMatrix(mat): np.set_printoptions(threshold=9999999999) file = "[" file = file + np.array2string(mat, separator=', ').replace('],', '\\').replace('[', '').replace(']','') file = file + ']' return file dim = (200,200) x = np.ones(dim, dtype=np.float64) * 2.1 y = np.ones(dim) * 2.65 time = timeit.timeit( lambda: np.matmul(np.matmul(x,x),y), number=10 ) print(f"{time} ms".format(time * 1000/ 10))
22.428571
107
0.615711
0e77c6b78f329c8168b2504893ea04df09895b99
782
py
Python
user/views.py
Emmanuel-otieno/Awward_clone
ce0fb841984cae619599b51600403d7a1d873fc8
[ "Unlicense" ]
null
null
null
user/views.py
Emmanuel-otieno/Awward_clone
ce0fb841984cae619599b51600403d7a1d873fc8
[ "Unlicense" ]
null
null
null
user/views.py
Emmanuel-otieno/Awward_clone
ce0fb841984cae619599b51600403d7a1d873fc8
[ "Unlicense" ]
null
null
null
from django.shortcuts import render,redirect from django.contrib.auth.decorators import login_required from django.contrib import messages from .forms import UserRegisterForm # Create your views here. def register(request): if request.method == 'POST': form= UserRegisterForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') messages.success(request, f'Your Account has been created! you are now able to log in {username}! ') return redirect('login') else: form= UserRegisterForm() return render (request, 'users/register.html', {'form': form}) @login_required def profile(request): return render(request, 'users/profile.html')
30.076923
115
0.671355
bbff12c368c3635418ef4eed40dfee7495e72e9a
2,636
py
Python
venv/Lib/site-packages/pkginfo/tests/test_index.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
54
2019-10-30T19:32:23.000Z
2022-03-16T13:40:40.000Z
venv/Lib/site-packages/pkginfo/tests/test_index.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
301
2020-10-03T10:46:31.000Z
2022-03-27T23:46:23.000Z
venv/Lib/site-packages/pkginfo/tests/test_index.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
19
2019-12-14T05:21:22.000Z
2021-06-29T14:33:59.000Z
import unittest class IndexTests(unittest.TestCase): def _getTargetClass(self): from pkginfo.index import Index return Index def _makeOne(self): return self._getTargetClass()() def test_empty(self): index = self._makeOne() self.assertEqual(len(index), 0) self.assertEqual(len(index.keys()), 0) self.assertEqual(len(index.values()), 0) self.assertEqual(len(index.items()), 0) def _makeDummy(self): from pkginfo.distribution import Distribution class DummyDistribution(Distribution): name = 'dummy' version = '1.0' return DummyDistribution() def test___getitem___miss(self): index = self._makeOne() self.assertRaises(KeyError, index.__getitem__, 'nonesuch') def test___setitem___value_not_dist(self): class NotDistribution: name = 'dummy' version = '1.0' dummy = NotDistribution() index = self._makeOne() self.assertRaises(ValueError, index.__setitem__, 'dummy-1.0', dummy) def test___setitem___bad_key(self): index = self._makeOne() dummy = self._makeDummy() self.assertRaises(ValueError, index.__setitem__, 'nonesuch', dummy) def test___setitem___valid_key(self): index = self._makeOne() dummy = self._makeDummy() index['dummy-1.0'] = dummy self.assertTrue(index['dummy-1.0'] is dummy) self.assertEqual(len(index), 1) self.assertEqual(len(index.keys()), 1) self.assertEqual(list(index.keys())[0], 'dummy-1.0') self.assertEqual(len(index.values()), 1) self.assertEqual(list(index.values())[0], dummy) self.assertEqual(len(index.items()), 1) self.assertEqual(list(index.items())[0], ('dummy-1.0', dummy)) def test_add_not_dist(self): index = self._makeOne() class NotDistribution: name = 'dummy' version = '1.0' dummy = NotDistribution() self.assertRaises(ValueError, index.add, dummy) def test_add_valid_dist(self): index = self._makeOne() dummy = self._makeDummy() index.add(dummy) self.assertTrue(index['dummy-1.0'] is dummy) self.assertEqual(len(index), 1) self.assertEqual(len(index.keys()), 1) self.assertEqual(list(index.keys())[0], 'dummy-1.0') self.assertEqual(len(index.values()), 1) self.assertEqual(list(index.values())[0], dummy) self.assertEqual(len(index.items()), 1) self.assertEqual(list(index.items())[0], ('dummy-1.0', dummy))
34.233766
76
0.614568
ea90319590a2ee38fc301b13217a6a409333eff4
1,819
py
Python
prophy/tests/test_float.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
14
2015-02-19T22:00:37.000Z
2020-11-30T03:03:55.000Z
prophy/tests/test_float.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
31
2015-06-22T11:11:10.000Z
2021-05-12T06:35:47.000Z
prophy/tests/test_float.py
florczakraf/prophy
a42a6151a77b31afa05300fc2e1f52cc15a298cf
[ "MIT" ]
16
2015-06-12T06:48:06.000Z
2019-11-26T22:48:13.000Z
import prophy import pytest def Float(): class Float(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [("value", prophy.r32)] return Float def Double(): class Double(prophy.with_metaclass(prophy.struct_generator, prophy.struct)): _descriptor = [("value", prophy.r64)] return Double @pytest.mark.parametrize("FloatTypeFactory", [Float, Double]) def test_float(FloatTypeFactory): FloatType = FloatTypeFactory() x = FloatType() assert x.value == 0.0 x.value = 1.455 assert x.value == 1.455 with pytest.raises(Exception): x.value = b"45.486" y = FloatType() y.value = 4.1 y.copy_from(x) assert y.value == 1.455 @pytest.mark.parametrize("FloatTypeFactory, one, minus_one, too_long, too_short", [ (Float, b"\x3f\x80\x00\x00", b"\xbf\x80\x00\x00", b"\xff\xff\xff\xff\xff", b"\xff\xff\xff"), (Double, b"\x3f\xf0\x00\x00\x00\x00\x00\x00", b"\xbf\xf0\x00\x00\x00\x00\x00\x00", b"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff", b"\xff\xff\xff\xff\xff") ]) def test_float_codec(FloatTypeFactory, one, minus_one, too_long, too_short): x = FloatTypeFactory()() x.value = 8 assert str(x) == "value: 8\n" x.decode(one, ">") assert x.value == 1.0 x.decode(minus_one, ">") assert x.value == -1.0 x.value = 1.0 assert x.encode(">") == one x.value = -1.0 assert x.encode(">") == minus_one with pytest.raises(prophy.ProphyError) as e: x.decode(too_long, ">") assert "not all bytes of {} read".format(FloatTypeFactory.__name__) in str(e.value) with pytest.raises(prophy.ProphyError) as e: x.decode(too_short, ">") assert "too few bytes to decode integer" in str(e.value)
25.263889
87
0.619021
3699bce78aeda766266e83dd1ef7aebc36ff7596
282
py
Python
basic-service/tanya/solve.py
tanyav2/hackasat-qualifier-2021
595338e375f3c7f53b0f8b1cc886eb62462c750e
[ "MIT" ]
null
null
null
basic-service/tanya/solve.py
tanyav2/hackasat-qualifier-2021
595338e375f3c7f53b0f8b1cc886eb62462c750e
[ "MIT" ]
null
null
null
basic-service/tanya/solve.py
tanyav2/hackasat-qualifier-2021
595338e375f3c7f53b0f8b1cc886eb62462c750e
[ "MIT" ]
null
null
null
import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("localhost", 12345)) data = s.recv(22) # split string into two variables ns = data.decode("utf-8").split(" ") n1 = int(ns[0]) n2 = int(ns[2]) sum = n1 + n2 str_sum = str(sum) s.send(str_sum.encode())
18.8
53
0.673759
dc293028476940544df3d74d1cb040e4eb5ed61b
37,005
bzl
Python
internal/rollup/rollup_bundle.bzl
tarekbecker/rules_nodejs
8da02819ecf966f2a7acc4ef2c2f2f0f2d8ab4a7
[ "Apache-2.0" ]
null
null
null
internal/rollup/rollup_bundle.bzl
tarekbecker/rules_nodejs
8da02819ecf966f2a7acc4ef2c2f2f0f2d8ab4a7
[ "Apache-2.0" ]
null
null
null
internal/rollup/rollup_bundle.bzl
tarekbecker/rules_nodejs
8da02819ecf966f2a7acc4ef2c2f2f0f2d8ab4a7
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rollup bundling The versions of Rollup and terser are controlled by the Bazel toolchain. You do not need to install them into your project. """ load("@build_bazel_rules_nodejs//internal/common:node_module_info.bzl", "NodeModuleSources", "collect_node_modules_aspect") load("//internal/common:collect_es6_sources.bzl", _collect_es2015_sources = "collect_es6_sources") load("//internal/common:expand_into_runfiles.bzl", "expand_path_into_runfiles") load("//internal/common:module_mappings.bzl", "get_module_mappings") _ROLLUP_MODULE_MAPPINGS_ATTR = "rollup_module_mappings" def _rollup_module_mappings_aspect_impl(target, ctx): mappings = get_module_mappings(target.label, ctx.rule.attr) return struct(rollup_module_mappings = mappings) rollup_module_mappings_aspect = aspect( _rollup_module_mappings_aspect_impl, attr_aspects = ["deps"], ) def _trim_package_node_modules(package_name): # trim a package name down to its path prior to a node_modules # segment. 'foo/node_modules/bar' would become 'foo' and # 'node_modules/bar' would become '' segments = [] for n in package_name.split("/"): if n == "node_modules": break segments += [n] return "/".join(segments) # This function is similar but slightly different than _compute_node_modules_root # in /internal/node/node.bzl. TODO(gregmagolan): consolidate these functions def _compute_node_modules_root(ctx): """Computes the node_modules root from the node_modules and deps attributes. Args: ctx: the skylark execution context Returns: The node_modules root as a string """ node_modules_root = None if ctx.attr.node_modules: if NodeModuleSources in ctx.attr.node_modules: node_modules_root = "/".join(["external", ctx.attr.node_modules[NodeModuleSources].workspace, "node_modules"]) elif ctx.files.node_modules: # ctx.files.node_modules is not an empty list node_modules_root = "/".join([f for f in [ ctx.attr.node_modules.label.workspace_root, _trim_package_node_modules(ctx.attr.node_modules.label.package), "node_modules", ] if f]) for d in ctx.attr.deps: if NodeModuleSources in d: possible_root = "/".join(["external", d[NodeModuleSources].workspace, "node_modules"]) if not node_modules_root: node_modules_root = possible_root elif node_modules_root != possible_root: fail("All npm dependencies need to come from a single workspace. Found '%s' and '%s'." % (node_modules_root, possible_root)) if not node_modules_root: # there are no fine grained deps and the node_modules attribute is an empty filegroup # but we still need a node_modules_root even if its empty node_modules_root = "/".join([f for f in [ ctx.attr.node_modules.label.workspace_root, ctx.attr.node_modules.label.package, "node_modules", ] if f]) return node_modules_root # Expand entry_point into runfiles and strip the file extension def _entry_point_path(ctx): return "/".join([ expand_path_into_runfiles(ctx, ctx.file.entry_point.dirname), ctx.file.entry_point.basename, ])[:-(len(ctx.file.entry_point.extension) + 1)] def write_rollup_config(ctx, plugins = [], root_dir = None, filename = "_%s.rollup.conf.js", output_format = "iife", additional_entry_points = []): """Generate a rollup config file. This is also used by the ng_rollup_bundle and ng_package rules in @angular/bazel. Args: ctx: Bazel rule execution context plugins: extra plugins (defaults to []) See the ng_rollup_bundle in @angular/bazel for example of usage. root_dir: root directory for module resolution (defaults to None) filename: output filename pattern (defaults to `_%s.rollup.conf.js`) output_format: passed to rollup output.format option, e.g. "umd" additional_entry_points: additional entry points for code splitting Returns: The rollup config file. See https://rollupjs.org/guide/en#configuration-files """ config = ctx.actions.declare_file(filename % ctx.label.name) # build_file_path includes the BUILD.bazel file, transform here to only include the dirname build_file_dirname = "/".join(ctx.build_file_path.split("/")[:-1]) entry_points = [_entry_point_path(ctx)] + additional_entry_points mappings = dict() all_deps = ctx.attr.deps + ctx.attr.srcs for dep in all_deps: if hasattr(dep, _ROLLUP_MODULE_MAPPINGS_ATTR): for k, v in getattr(dep, _ROLLUP_MODULE_MAPPINGS_ATTR).items(): if k in mappings and mappings[k] != v: fail(("duplicate module mapping at %s: %s maps to both %s and %s" % (dep.label, k, mappings[k], v)), "deps") mappings[k] = v if not root_dir: # This must be .es6 to match collect_es6_sources.bzl root_dir = "/".join([ctx.bin_dir.path, build_file_dirname, ctx.label.name + ".es6"]) node_modules_root = _compute_node_modules_root(ctx) is_default_node_modules = False if node_modules_root == "node_modules" and ctx.attr.node_modules.label.package == "" and ctx.attr.node_modules.label.name == "node_modules_none": is_default_node_modules = True ctx.actions.expand_template( output = config, template = ctx.file._rollup_config_tmpl, substitutions = { "TMPL_additional_plugins": ",\n".join(plugins), "TMPL_banner_file": "\"%s\"" % ctx.file.license_banner.path if ctx.file.license_banner else "undefined", "TMPL_global_name": ctx.attr.global_name if ctx.attr.global_name else ctx.label.name, "TMPL_inputs": ",".join(["\"%s\"" % e for e in entry_points]), "TMPL_is_default_node_modules": "true" if is_default_node_modules else "false", "TMPL_module_mappings": str(mappings), "TMPL_named_exports": str(ctx.attr.named_exports), "TMPL_node_modules_root": node_modules_root, "TMPL_output_format": output_format, "TMPL_rootDir": root_dir, "TMPL_stamp_data": "\"%s\"" % ctx.version_file.path if ctx.version_file else "undefined", "TMPL_target": str(ctx.label), "TMPL_workspace_name": ctx.workspace_name, }, ) return config def run_rollup(ctx, sources, config, output): """Creates an Action that can run rollup on set of sources. This is also used by ng_package and ng_rollup_bundle rules in @angular/bazel. Args: ctx: Bazel rule execution context sources: JS sources to rollup config: rollup config file output: output file Returns: the sourcemap output file """ map_output = ctx.actions.declare_file(output.basename + ".map", sibling = output) _run_rollup(ctx, sources, config, output, map_output) return map_output def _filter_js_inputs(all_inputs): # Note: make sure that "all_inputs" is not a depset. # Iterating over a depset is deprecated! return [ f for f in all_inputs # We also need to include ".map" files as these can be read by # the "rollup-plugin-sourcemaps" plugin. if f.path.endswith(".js") or f.path.endswith(".json") or f.path.endswith(".map") ] def _run_rollup(ctx, sources, config, output, map_output = None): args = ctx.actions.args() args.add_all(["--config", config.path]) if map_output: args.add_all(["--output.file", output.path]) args.add_all(["--output.sourcemap", "--output.sourcemapFile", map_output.path]) else: args.add_all(["--output.dir", output.path]) args.add_all(["--output.sourcemap"]) # We will produce errors as needed. Anything else is spammy: a well-behaved # bazel rule prints nothing on success. args.add("--silent") if ctx.attr.globals: args.add("--external") args.add_joined(ctx.attr.globals.keys(), join_with = ",") args.add("--globals") args.add_joined(["%s:%s" % g for g in ctx.attr.globals.items()], join_with = ",") direct_inputs = [config] direct_inputs += _filter_js_inputs(ctx.files.node_modules) # Also include files from npm fine grained deps as inputs. # These deps are identified by the NodeModuleSources provider. for d in ctx.attr.deps: if NodeModuleSources in d: # Note: we can't avoid calling .to_list() on sources direct_inputs += _filter_js_inputs(d[NodeModuleSources].sources.to_list()) if ctx.file.license_banner: direct_inputs += [ctx.file.license_banner] if ctx.version_file: direct_inputs += [ctx.version_file] outputs = [output] if map_output: outputs += [map_output] ctx.actions.run( progress_message = "Bundling JavaScript %s [rollup]" % output.short_path, executable = ctx.executable._rollup, inputs = depset(direct_inputs, transitive = [sources]), outputs = outputs, arguments = [args], ) def _run_tsc(ctx, input, output): args = ctx.actions.args() # No types needed since we are just downleveling. # `--types` proceeded by another config argument means an empty types array # for the command line parser. # See https://github.com/Microsoft/TypeScript/issues/18581#issuecomment-330700612 args.add("--types") args.add("--skipLibCheck") args.add_all(["--target", "es5"]) args.add_all(["--lib", "es2015,dom"]) args.add("--allowJS") args.add(input.path) args.add_all(["--outFile", output.path]) ctx.actions.run( progress_message = "Downleveling JavaScript to ES5 %s [typescript]" % output.short_path, executable = ctx.executable._tsc, inputs = [input], outputs = [output], arguments = [args], ) def _run_tsc_on_directory(ctx, input_dir, output_dir): config = ctx.actions.declare_file("_%s.code-split.tsconfig.json" % ctx.label.name) args = ctx.actions.args() args.add_all(["--project", config.path]) args.add_all(["--input", input_dir.path]) args.add_all(["--output", output_dir.path]) ctx.actions.run( progress_message = "Downleveling JavaScript to ES5 %s [typescript]" % output_dir.short_path, executable = ctx.executable._tsc_directory, inputs = [input_dir], outputs = [output_dir, config], arguments = [args], ) def run_uglify(**kwargs): print("WARNING: run_uglify has been renamed to run_terser. Please update callsites") run_terser(**kwargs) def run_terser(ctx, input, output, debug = False, comments = True, config_name = None, in_source_map = None): """Runs terser on an input file. This is also used by https://github.com/angular/angular. Args: ctx: Bazel rule execution context input: input file output: output file debug: if True then output is beautified (defaults to False) comments: if True then copyright comments are preserved in output file (defaults to True) config_name: allows callers to control the name of the generated terser configuration, which will be `_[config_name].terser.json` in the package where the target is declared in_source_map: sourcemap file for the input file, passed to the "--source-map content=" option of rollup. Returns: The sourcemap file """ map_output = ctx.actions.declare_file(output.basename + ".map", sibling = output) _run_terser(ctx, input, output, map_output, debug, comments, config_name, in_source_map) return map_output def _run_terser(ctx, input, output, map_output, debug = False, comments = True, config_name = None, in_source_map = None): inputs = [input] outputs = [output] args = ctx.actions.args() if map_output: # Running terser on an individual file if not config_name: config_name = ctx.label.name if debug: config_name += ".debug" config = ctx.actions.declare_file("_%s.terser.json" % config_name) args.add_all(["--config-file", config.path]) outputs += [map_output, config] args.add(input.path) args.add_all(["--output", output.path]) # Source mapping options are comma-packed into one argv # see https://github.com/terser-js/terser#command-line-usage source_map_opts = ["includeSources", "base=" + ctx.bin_dir.path] if in_source_map: source_map_opts.append("content=" + in_source_map.path) inputs.append(in_source_map) # This option doesn't work in the config file, only on the CLI args.add_all(["--source-map", ",".join(source_map_opts)]) if comments: args.add("--comments") if debug: args.add("--debug") args.add("--beautify") ctx.actions.run( progress_message = "Optimizing JavaScript %s [terser]" % output.short_path, executable = ctx.executable._terser_wrapped, inputs = inputs, outputs = outputs, arguments = [args], ) def run_sourcemapexplorer(ctx, js, map, output): """Runs source-map-explorer to produce an HTML visualization of the sourcemap. Args: ctx: bazel rule execution context js: Javascript bundle map: sourcemap from the bundle back to original sources output: file where the HTML report is written """ # We must run in a shell in order to redirect stdout. # TODO(alexeagle): file a feature request on ctx.actions.run so that stdout # could be natively redirected to produce the output file ctx.actions.run_shell( inputs = [js, map], tools = [ctx.executable._source_map_explorer], outputs = [output], command = "$1 --html $2 $3 > $4", arguments = [ ctx.executable._source_map_explorer.path, js.path, map.path, output.path, ], ) def _generate_toplevel_entry(ctx, bundles_folder, output): """Generates a native ESmodule that imports the entry point """ main_entry_point_basename = _entry_point_path(ctx).split("/")[-1] + ".js" ctx.actions.write(output, """import('./%s/%s');""" % (bundles_folder, main_entry_point_basename)) def _generate_code_split_entry(ctx, bundles_folder, output): """Generates a SystemJS boilerplate/entry point file. See doc for additional_entry_points for more information on purpose and usage of this generated file. The SystemJS packages map outputted to the file is generated from the entry_point and additional_entry_point attributes and is targetted as a specific bundle variant specified by `folder`. For example, a rollup_bundle in may be configured like so: ``` rollup_bundle( name = "bundle", additional_entry_points = [ "src/hello-world/hello-world.module.ngfactory", "src/todos/todos.module.ngfactory", ], entry_point = "src/main.prod", deps = ["//src"], ) ``` In this case, the main_entry_point_dirname will evaluate to `src/` and this will be stripped from the entry points for the map. If folder is `bundle_chunks`, the generated SystemJS boilerplate/entry point file will look like: ``` (function(global) { System.config({ packages: { '': {map: { "./main.prod": "bundle_chunks/main.prod", "./hello-world/hello-world.module.ngfactory": "bundle_chunks/hello-world.module.ngfactory", "./todos/todos.module.ngfactory": "bundle_chunks/todos.module.ngfactory"}, defaultExtension: 'js'}, } }); System.import('main.prod').catch(function(err) { console.error(err); }); })(this); ``` Args: ctx: bazel rule execution context bundles_folder: the folder name with the bundled chunks to map to output: the file to generate """ entry_point_path = _entry_point_path(ctx) main_entry_point_basename = entry_point_path.split("/")[-1] + ".js" main_entry_point_dirname = "/".join(entry_point_path.split("/")[:-1]) + "/" entry_points = {} for e in [entry_point_path] + ctx.attr.additional_entry_points: entry_point = e[len(main_entry_point_dirname):] entry_points["./" + entry_point] = bundles_folder + "/" + entry_point.split("/")[-1] ctx.actions.expand_template( output = output, template = ctx.file._system_config_tmpl, substitutions = { "TMPL_entry_points": str(entry_points), "TMPL_main_entry_point": main_entry_point_basename, }, ) def _rollup_bundle(ctx): if len(ctx.attr.entry_point.files.to_list()) != 1: fail("labels in entry_point must contain exactly one file") if ctx.attr.additional_entry_points: # Generate code split bundles if additional entry points have been specified. # See doc for additional_entry_points for more information. # Note: "_chunks" is needed on the output folders since ctx.label.name + ".es2015" is already # a folder that contains the re-rooted es2015 sources rollup_config = write_rollup_config(ctx, output_format = "es", additional_entry_points = ctx.attr.additional_entry_points) code_split_es2015_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks_es2015") _run_rollup(ctx, _collect_es2015_sources(ctx), rollup_config, code_split_es2015_output_dir) code_split_es2015_min_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks_min_es2015") _run_terser(ctx, code_split_es2015_output_dir, code_split_es2015_min_output_dir, None) code_split_es2015_min_debug_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks_min_debug_es2015") _run_terser(ctx, code_split_es2015_output_dir, code_split_es2015_min_debug_output_dir, None, debug = True) code_split_es5_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks") _run_tsc_on_directory(ctx, code_split_es2015_output_dir, code_split_es5_output_dir) code_split_es5_min_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks_min") _run_terser(ctx, code_split_es5_output_dir, code_split_es5_min_output_dir, None) code_split_es5_min_debug_output_dir = ctx.actions.declare_directory(ctx.label.name + "_chunks_min_debug") _run_terser(ctx, code_split_es5_output_dir, code_split_es5_min_debug_output_dir, None, debug = True) # Generate the SystemJS boilerplate/entry point files _generate_toplevel_entry(ctx, ctx.label.name + "_chunks_es2015", ctx.outputs.build_es2015) _generate_toplevel_entry(ctx, ctx.label.name + "_chunks_min_es2015", ctx.outputs.build_es2015_min) _generate_toplevel_entry(ctx, ctx.label.name + "_chunks_min_debug_es2015", ctx.outputs.build_es2015_min_debug) _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_es5) _generate_code_split_entry(ctx, ctx.label.name + "_chunks_min", ctx.outputs.build_es5_min) _generate_code_split_entry(ctx, ctx.label.name + "_chunks_min_debug", ctx.outputs.build_es5_min_debug) # There is no UMD/CJS bundle when code-splitting but we still need to satisfy the output _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_umd) _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_umd_min) _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_cjs) _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_es5_umd) _generate_code_split_entry(ctx, ctx.label.name + "_chunks", ctx.outputs.build_es5_umd_min) # There is no source map explorer output when code-splitting but we still need to satisfy the output ctx.actions.expand_template( output = ctx.outputs.explore_html, template = ctx.file._no_explore_html, substitutions = {}, ) files = [ ctx.outputs.build_es2015, ctx.outputs.build_es2015_min, ctx.outputs.build_es2015_min_debug, ctx.outputs.build_es5, ctx.outputs.build_es5_min, ctx.outputs.build_es5_min_debug, code_split_es2015_output_dir, code_split_es2015_min_output_dir, code_split_es2015_min_debug_output_dir, code_split_es5_output_dir, code_split_es5_min_output_dir, code_split_es5_min_debug_output_dir, ] output_group = OutputGroupInfo( es2015 = depset([ctx.outputs.build_es2015, code_split_es2015_output_dir]), es2015_min = depset([ctx.outputs.build_es2015_min, code_split_es2015_min_output_dir]), es2015_min_debug = depset([ctx.outputs.build_es2015_min_debug, code_split_es2015_min_debug_output_dir]), es5 = depset([ctx.outputs.build_es5, code_split_es5_output_dir]), es5_min = depset([ctx.outputs.build_es5_min, code_split_es5_min_output_dir]), es5_min_debug = depset([ctx.outputs.build_es5_min_debug, code_split_es5_min_debug_output_dir]), ) else: # Generate the bundles rollup_config = write_rollup_config(ctx) es2015_map = run_rollup(ctx, _collect_es2015_sources(ctx), rollup_config, ctx.outputs.build_es2015) es2015_min_map = run_terser(ctx, ctx.outputs.build_es2015, ctx.outputs.build_es2015_min, config_name = ctx.label.name + "es2015_min", in_source_map = es2015_map) es2015_min_debug_map = run_terser(ctx, ctx.outputs.build_es2015, ctx.outputs.build_es2015_min_debug, debug = True, config_name = ctx.label.name + "es2015_min_debug", in_source_map = es2015_map) _run_tsc(ctx, ctx.outputs.build_es2015, ctx.outputs.build_es5) es5_min_map = run_terser(ctx, ctx.outputs.build_es5, ctx.outputs.build_es5_min) es5_min_debug_map = run_terser(ctx, ctx.outputs.build_es5, ctx.outputs.build_es5_min_debug, debug = True) cjs_rollup_config = write_rollup_config(ctx, filename = "_%s_cjs.rollup.conf.js", output_format = "cjs") cjs_map = run_rollup(ctx, _collect_es2015_sources(ctx), cjs_rollup_config, ctx.outputs.build_cjs) umd_rollup_config = write_rollup_config(ctx, filename = "_%s_umd.rollup.conf.js", output_format = "umd") umd_map = run_rollup(ctx, _collect_es2015_sources(ctx), umd_rollup_config, ctx.outputs.build_umd) umd_min_map = run_terser(ctx, ctx.outputs.build_umd, ctx.outputs.build_umd_min, config_name = ctx.label.name + "umd_min", in_source_map = umd_map) _run_tsc(ctx, ctx.outputs.build_umd, ctx.outputs.build_es5_umd) es5_umd_min_map = run_terser(ctx, ctx.outputs.build_es5_umd, ctx.outputs.build_es5_umd_min, config_name = ctx.label.name + "es5umd_min") run_sourcemapexplorer(ctx, ctx.outputs.build_es5_min, es5_min_map, ctx.outputs.explore_html) files = [ctx.outputs.build_es5_min, es5_min_map] output_group = OutputGroupInfo( cjs = depset([ctx.outputs.build_cjs, cjs_map]), es2015 = depset([ctx.outputs.build_es2015, es2015_map]), es2015_min = depset([ctx.outputs.build_es2015_min, es2015_min_map]), es2015_min_debug = depset([ctx.outputs.build_es2015_min_debug, es2015_min_debug_map]), es5 = depset([ctx.outputs.build_es5]), es5_min = depset([ctx.outputs.build_es5_min, es5_min_map]), es5_min_debug = depset([ctx.outputs.build_es5_min_debug, es5_min_debug_map]), es5_umd = depset([ctx.outputs.build_es5_umd]), es5_umd_min = depset([ctx.outputs.build_es5_umd_min, es5_umd_min_map]), umd = depset([ctx.outputs.build_umd, umd_map]), umd_min = depset([ctx.outputs.build_umd_min, umd_min_map]), ) return [ DefaultInfo( files = depset(files), # NB: we don't include any runfiles here since they would always be built # regardless if they are requested or not ), output_group, ] # Expose our list of aspects so derivative rules can override the deps attribute and # add their own additional aspects. # If users are in a different repo and load the aspect themselves, they will create # different Provider symbols (e.g. NodeModuleInfo) and we won't find them. # So users must use these symbols that are load'ed in rules_nodejs. ROLLUP_DEPS_ASPECTS = [rollup_module_mappings_aspect, collect_node_modules_aspect] ROLLUP_ATTRS = { "srcs": attr.label_list( doc = """JavaScript source files from the workspace. These can use ES2015 syntax and ES Modules (import/export)""", allow_files = [".js"], ), "additional_entry_points": attr.string_list( doc = """Additional entry points of the application for code splitting, passed as the input to rollup. These should be a path relative to the workspace root. When additional_entry_points are specified, rollup_bundle will split the bundle in multiple entry points and chunks. There will be a main entry point chunk as well as entry point chunks for each additional_entry_point. The file names of these entry points will correspond to the file names specified in entry_point and additional_entry_points. There will also be one or more common chunks that are shared between entry points named chunk-<HASH>.js. The number of common chunks is variable depending on the code being bundled. Entry points and chunks will be outputted to folders: - <label-name>_chunks_es2015 // es2015 - <label-name>_chunks // es5 - <label-name>_chunks_min // es5 minified - <label-name>_chunks_min_debug // es5 minified debug The following files will be outputted that contain the SystemJS boilerplate to map the entry points to their file names and load the main entry point: flavors: - <label-name>.es2015.js // es2015 with EcmaScript modules - <label-name>.js // es5 syntax with CJS modules - <label-name>.min.js // es5 minified - <label-name>.min_debug.js // es5 minified debug NOTE: additional_entry_points MUST be in the same folder or deeper than the main entry_point for the SystemJS boilerplate/entry point to be valid. For example, if the main entry_point is `src/main` then all additional_entry_points must be under `src/**` such as `src/bar` or `src/foo/bar`. Alternate additional_entry_points configurations are valid but the SystemJS boilerplate/entry point files will not be usable and it is up to the user in these cases to handle the SystemJS boilerplate manually. It is sufficient to load one of these SystemJS boilerplate/entry point files as a script in your HTML to load your application""", ), "entry_point": attr.label( doc = """The starting point of the application, passed as the `--input` flag to rollup. If the entry JavaScript file belongs to the same package (as the BUILD file), you can simply reference it by its relative name to the package directory: ``` rollup_bundle( name = "bundle", entry_point = ":main.js", ) ``` You can specify the entry point as a typescript file so long as you also include the ts_library target in deps: ``` ts_library( name = "main", srcs = ["main.ts"], ) rollup_bundle( name = "bundle", deps = [":main"] entry_point = ":main.ts", ) ``` The rule will use the corresponding `.js` output of the ts_library rule as the entry point. If the entry point target is a rule, it should produce a single JavaScript entry file that will be passed to the nodejs_binary rule. For example: ``` filegroup( name = "entry_file", srcs = ["main.js"], ) rollup_bundle( name = "bundle", entry_point = ":entry_file", ) ``` """, mandatory = True, allow_single_file = True, ), "global_name": attr.string( doc = """A name given to this package when referenced as a global variable. This name appears in the bundle module incantation at the beginning of the file, and governs the global symbol added to the global context (e.g. `window`) as a side- effect of loading the UMD/IIFE JS bundle. Rollup doc: "The variable name, representing your iife/umd bundle, by which other scripts on the same page can access it." This is passed to the `output.name` setting in Rollup.""", ), "globals": attr.string_dict( doc = """A dict of symbols that reference external scripts. The keys are variable names that appear in the program, and the values are the symbol to reference at runtime in a global context (UMD bundles). For example, a program referencing @angular/core should use ng.core as the global reference, so Angular users should include the mapping `"@angular/core":"ng.core"` in the globals.""", default = {}, ), "license_banner": attr.label( doc = """A .txt file passed to the `banner` config option of rollup. The contents of the file will be copied to the top of the resulting bundles. Note that you can replace a version placeholder in the license file, by using the special version `0.0.0-PLACEHOLDER`. See the section on stamping in the README.""", allow_single_file = [".txt"], ), "named_exports": attr.string_list_dict( doc = """A dict of symbols informing rollup of objects exported by modules that do not conform to commonjs, amd, or umd formats. """, default = {}, ), "node_modules": attr.label( doc = """Dependencies from npm that provide some modules that must be resolved by rollup. This attribute is DEPRECATED. As of version 0.13.0 the recommended approach to npm dependencies is to use fine grained npm dependencies which are setup with the `yarn_install` or `npm_install` rules. For example, in a rollup_bundle target that used the `node_modules` attribute, ``` rollup_bundle( name = "bundle", ... node_modules = "//:node_modules", ) ``` which specifies all files within the `//:node_modules` filegroup to be inputs to the `bundle`. Using fine grained npm dependencies, `bundle` is defined with only the npm dependencies that are needed: ``` rollup_bundle( name = "bundle", ... deps = [ "@npm//foo", "@npm//bar", ... ], ) ``` In this case, only the `foo` and `bar` npm packages and their transitive deps are includes as inputs to the `bundle` target which reduces the time required to setup the runfiles for this target (see https://github.com/bazelbuild/bazel/issues/5153). The @npm external repository and the fine grained npm package targets are setup using the `yarn_install` or `npm_install` rule in your WORKSPACE file: yarn_install( name = "npm", package_json = "//:package.json", yarn_lock = "//:yarn.lock", ) """, default = Label("//:node_modules_none"), ), "deps": attr.label_list( doc = """Other rules that produce JavaScript outputs, such as `ts_library`.""", aspects = ROLLUP_DEPS_ASPECTS, ), "_no_explore_html": attr.label( default = Label("@build_bazel_rules_nodejs//internal/rollup:no_explore.html"), allow_single_file = True, ), "_rollup": attr.label( executable = True, cfg = "host", default = Label("@build_bazel_rules_nodejs//internal/rollup:rollup"), ), "_rollup_config_tmpl": attr.label( default = Label("@build_bazel_rules_nodejs//internal/rollup:rollup.config.js"), allow_single_file = True, ), "_source_map_explorer": attr.label( executable = True, cfg = "host", default = Label("@build_bazel_rules_nodejs//internal/rollup:source-map-explorer"), ), "_system_config_tmpl": attr.label( default = Label("@build_bazel_rules_nodejs//internal/rollup:system.config.js"), allow_single_file = True, ), "_terser_wrapped": attr.label( executable = True, cfg = "host", default = Label("@build_bazel_rules_nodejs//internal/rollup:terser-wrapped"), ), "_tsc": attr.label( executable = True, cfg = "host", default = Label("@build_bazel_rules_nodejs//internal/rollup:tsc"), ), "_tsc_directory": attr.label( executable = True, cfg = "host", default = Label("@build_bazel_rules_nodejs//internal/rollup:tsc-directory"), ), } ROLLUP_OUTPUTS = { "build_cjs": "%{name}.cjs.js", "build_es2015": "%{name}.es2015.js", "build_es2015_min": "%{name}.min.es2015.js", "build_es2015_min_debug": "%{name}.min_debug.es2015.js", "build_es5": "%{name}.js", "build_es5_min": "%{name}.min.js", "build_es5_min_debug": "%{name}.min_debug.js", "build_es5_umd": "%{name}.es5umd.js", "build_es5_umd_min": "%{name}.min.es5umd.js", "build_umd": "%{name}.umd.js", "build_umd_min": "%{name}.min.umd.js", "explore_html": "%{name}.explore.html", } rollup_bundle = rule( implementation = _rollup_bundle, attrs = ROLLUP_ATTRS, outputs = ROLLUP_OUTPUTS, ) """Produces several bundled JavaScript files using Rollup and terser. Load it with `load("@build_bazel_rules_nodejs//:defs.bzl", "rollup_bundle")` It performs this work in several separate processes: 1. Call rollup on the original sources 2. Downlevel the resulting code to es5 syntax for older browsers 3. Minify the bundle with terser, possibly with pretty output for human debugging. The default output of a `rollup_bundle` rule is the non-debug-minified es5 bundle. However you can request one of the other outputs with a dot-suffix on the target's name. For example, if your `rollup_bundle` is named `my_rollup_bundle`, you can use one of these labels: To request the ES2015 syntax (e.g. `class` keyword) without downleveling or minification, use the `:my_rollup_bundle.es2015.js` label. To request the ES5 downleveled bundle without minification, use the `:my_rollup_bundle.js` label To request the debug-minified es5 bundle, use the `:my_rollup_bundle.min_debug.js` label. To request a UMD-bundle, use the `:my_rollup_bundle.umd.js` label. To request a CommonJS bundle, use the `:my_rollup_bundle.cjs.js` label. You can also request an analysis from source-map-explorer by buildng the `:my_rollup_bundle.explore.html` label. However this is currently broken for `rollup_bundle` ES5 mode because we use tsc for downleveling and it doesn't compose the resulting sourcemaps with an input sourcemap. See https://github.com/bazelbuild/rules_nodejs/issues/175 For debugging, note that the `rollup.config.js` and `terser.config.json` files can be found in the bazel-bin folder next to the resulting bundle. An example usage can be found in https://github.com/bazelbuild/rules_nodejs/tree/master/internal/e2e/rollup """ # Adding the above docstring as `doc` attribute # causes a build error but ONLY on Ubuntu 14.04 on BazelCI. # ``` # File "internal/npm_package/npm_package.bzl", line 221, in <module> # outputs = NPM_PACKAGE_OUTPUTS, # TypeError: rule() got an unexpected keyword argument 'doc' # ``` # This error does not occur on any other platform on BazelCI including Ubuntu 16.04. # TOOD(gregmagolan): Figure out why and/or file a bug to Bazel # See https://github.com/bazelbuild/buildtools/issues/471#issuecomment-485283200
43.382181
201
0.674368
08d93d9115e0536bd183b34532c584fad2d0a901
2,478
py
Python
src/robot/model/message.py
bradyarthur/RobotFramework
f45747dfec1095359379ba0088cecd955a83e576
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/robot/model/message.py
bradyarthur/RobotFramework
f45747dfec1095359379ba0088cecd955a83e576
[ "ECL-2.0", "Apache-2.0" ]
1
2021-01-21T03:06:37.000Z
2021-01-21T03:06:37.000Z
src/robot/model/message.py
bradyarthur/RobotFramework
f45747dfec1095359379ba0088cecd955a83e576
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from robot.utils import html_escape, py3to2 from .body import BodyItem from .itemlist import ItemList @py3to2 class Message(BodyItem): """A message created during the test execution. Can be a log message triggered by a keyword, or a warning or an error that occurred during parsing or test execution. """ type = BodyItem.MESSAGE_TYPE repr_args = ('message', 'level') __slots__ = ['message', 'level', 'html', 'timestamp'] def __init__(self, message='', level='INFO', html=False, timestamp=None, parent=None): #: The message content as a string. self.message = message #: Severity of the message. Either ``TRACE``, ``DEBUG``, ``INFO``, #: ``WARN``, ``ERROR``, ``FAIL`` or ``SKIP`. The last two are only used #: with keyword failure messages. self.level = level #: ``True`` if the content is in HTML, ``False`` otherwise. self.html = html #: Timestamp in format ``%Y%m%d %H:%M:%S.%f``. self.timestamp = timestamp #: The object this message was triggered by. self.parent = parent @property def html_message(self): """Returns the message content as HTML.""" return self.message if self.html else html_escape(self.message) @property def id(self): if not self.parent: return 'm1' return '%s-m%d' % (self.parent.id, self.parent.messages.index(self) + 1) def visit(self, visitor): """:mod:`Visitor interface <robot.model.visitor>` entry-point.""" visitor.visit_message(self) def __str__(self): return self.message class Messages(ItemList): __slots__ = [] def __init__(self, message_class=Message, parent=None, messages=None): ItemList.__init__(self, message_class, {'parent': parent}, messages)
34.901408
90
0.66021
6e56812ff4d0924178dc5c8e2476bf37e6411018
20,136
py
Python
tests.py
wannaphong/TextRecognitionDataGenerator
bb23f065c1cafef8a58851a2d196417cdca19b49
[ "MIT" ]
8
2019-06-01T14:59:12.000Z
2021-06-14T04:27:45.000Z
tests.py
wannaphong/TextRecognitionDataGenerator
bb23f065c1cafef8a58851a2d196417cdca19b49
[ "MIT" ]
10
2020-01-28T22:45:39.000Z
2022-02-10T00:22:28.000Z
tests.py
wannaphong/TextRecognitionDataGenerator
bb23f065c1cafef8a58851a2d196417cdca19b49
[ "MIT" ]
4
2019-07-25T09:40:52.000Z
2020-03-18T14:17:23.000Z
import os import sys import unittest import subprocess import hashlib import string sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), './TextRecognitionDataGenerator'))) try: os.mkdir('tests/out') except: pass from TextRecognitionDataGenerator.data_generator import FakeTextDataGenerator from TextRecognitionDataGenerator import background_generator from TextRecognitionDataGenerator.string_generator import ( create_strings_from_file, create_strings_from_dict, create_strings_from_wikipedia, create_strings_randomly ) def md5(filename): hash_md5 = hashlib.md5() with open(filename, "rb") as f: hash_md5.update(f.read()) h = hash_md5.hexdigest() return h def empty_directory(path): for f in os.listdir(path): os.remove(os.path.join(path, f)) class DataGenerator(unittest.TestCase): def test_create_string_from_wikipedia(self): """ Test that the function returns different output if called twice. (And that it doesn't throw of course) """ strings = create_strings_from_wikipedia(20, 2, 'en') self.assertTrue( len(strings) == 2 and strings[0] != strings[1] and len(strings[0].split(' ')) >= 20 and len(strings[1].split(' ')) >= 20 ) def test_create_string_from_file(self): strings = create_strings_from_file('tests/test.txt', 6) self.assertTrue( len(strings) == 6 and strings[0] != strings[1] and strings[0] == strings[3] ) def test_create_strings_from_dict(self): strings = create_strings_from_dict(3, False, 2, ['TEST\n', 'TEST\n', 'TEST\n', 'TEST\n']) self.assertTrue( len(strings) == 2 and len(strings[0].split(' ')) == 3 ) def test_generate_data_with_format(self): FakeTextDataGenerator.generate( 0, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_0.jpg') == md5('tests/expected_results/TEST TEST TEST_0.jpg') ) os.remove('tests/out/TEST TEST TEST_0.jpg') def test_generate_data_with_extension(self): FakeTextDataGenerator.generate( 1, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 32, 'png', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_1.png') == md5('tests/expected_results/TEST TEST TEST_1.png') ) os.remove('tests/out/TEST TEST TEST_1.png') def test_generate_data_with_skew_angle(self): FakeTextDataGenerator.generate( 2, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 15, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_2.jpg') == md5('tests/expected_results/TEST TEST TEST_2.jpg') ) os.remove('tests/out/TEST TEST TEST_2.jpg') def test_generate_data_with_blur(self): FakeTextDataGenerator.generate( 3, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 3, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_3.jpg') == md5('tests/expected_results/TEST TEST TEST_3.jpg') ) os.remove('tests/out/TEST TEST TEST_3.jpg') def test_generate_data_with_sine_distorsion(self): FakeTextDataGenerator.generate( 4, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 3, False, 1, 1, 2, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_4.jpg') == md5('tests/expected_results/TEST TEST TEST_4.jpg') ) os.remove('tests/out/TEST TEST TEST_4.jpg') def test_generate_data_with_cosine_distorsion(self): FakeTextDataGenerator.generate( 5, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 3, False, 1, 2, 2, False, 0, -1, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_5.jpg') == md5('tests/expected_results/TEST TEST TEST_5.jpg') ) os.remove('tests/out/TEST TEST TEST_5.jpg') def test_generate_data_with_left_alignment(self): FakeTextDataGenerator.generate( 6, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, 600, 0, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_6.jpg') == md5('tests/expected_results/TEST TEST TEST_6.jpg') ) os.remove('tests/out/TEST TEST TEST_6.jpg') def test_generate_data_with_center_alignment(self): FakeTextDataGenerator.generate( 7, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, 800, 1, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_7.jpg') == md5('tests/expected_results/TEST TEST TEST_7.jpg') ) os.remove('tests/out/TEST TEST TEST_7.jpg') def test_generate_data_with_right_alignment(self): FakeTextDataGenerator.generate( 8, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, 1000, 2, '#010101', 0, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_8.jpg') == md5('tests/expected_results/TEST TEST TEST_8.jpg') ) os.remove('tests/out/TEST TEST TEST_8.jpg') def test_raise_if_handwritten_and_vertical(self): try: FakeTextDataGenerator.generate( 9, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, True, 0, 1000, 2, '#010101', 1, 1, (5,5,5,5), 0 ) raise Exception("Vertical handwritten did not throw") except ValueError: pass def test_generate_vertical_text(self): FakeTextDataGenerator.generate( 10, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 32, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 1, 1, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_10.jpg') == md5('tests/expected_results/TEST TEST TEST_10.jpg') ) os.remove('tests/out/TEST TEST TEST_10.jpg') def test_generate_horizontal_text_with_variable_space(self): FakeTextDataGenerator.generate( 11, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 32, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 4, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_11.jpg') == md5('tests/expected_results/TEST TEST TEST_11.jpg') ) os.remove('tests/out/TEST TEST TEST_11.jpg') def test_generate_vertical_text_with_variable_space(self): FakeTextDataGenerator.generate( 12, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 32, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 1, 2, (5,5,5,5), 0 ) self.assertTrue( md5('tests/out/TEST TEST TEST_12.jpg') == md5('tests/expected_results/TEST TEST TEST_12.jpg') ) os.remove('tests/out/TEST TEST TEST_12.jpg') def test_generate_text_with_unknown_orientation(self): try: FakeTextDataGenerator.generate( 12, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 32, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 100, 2, (5,5,5,5), 0 ) raise Exception("Unknown orientation did not throw") except ValueError: pass def test_generate_data_with_fit(self): FakeTextDataGenerator.generate( 13, 'TEST TEST TEST', 'tests/font.ttf', 'tests/out/', 64, 'jpg', 0, False, 0, False, 1, 0, 0, False, 0, -1, 0, '#010101', 0, 1, (0,0,0,0), 1 ) self.assertTrue( md5('tests/out/TEST TEST TEST_13.jpg') == md5('tests/expected_results/TEST TEST TEST_13.jpg') ) os.remove('tests/out/TEST TEST TEST_13.jpg') def test_generate_string_with_letters(self): s = create_strings_randomly(1, False, 1, True, False, False, 'en')[0] self.assertTrue( all([l in string.ascii_letters for l in s]) ) def test_generate_string_with_numbers(self): s = create_strings_randomly(1, False, 1, False, True, False, 'en')[0] self.assertTrue( all([l in '0123456789' for l in s]) ) def test_generate_string_with_symbols(self): s = create_strings_randomly(1, False, 1, False, False, True, 'en')[0] self.assertTrue( all([l in '!"#$%&\'()*+,-./:;?@[\\]^_`{|}~' for l in s]) ) def test_generate_chinese_string(self): s = create_strings_randomly(1, False, 1, True, False, False, 'cn')[0] cn_chars = [chr(i) for i in range(19968, 40908)] self.assertTrue( all([l in cn_chars for l in s]) ) def test_generate_data_with_white_background(self): background_generator.plain_white(64, 128).convert('RGB').save('tests/out/white_background.jpg') self.assertTrue( md5('tests/out/white_background.jpg') == md5('tests/expected_results/white_background.jpg') ) os.remove('tests/out/white_background.jpg') def test_generate_data_with_gaussian_background(self): background_generator.gaussian_noise(64, 128).convert('RGB').save('tests/out/gaussian_background.jpg') self.assertTrue( md5('tests/out/gaussian_background.jpg') == md5('tests/expected_results/gaussian_background.jpg') ) os.remove('tests/out/gaussian_background.jpg') def test_generate_data_with_quasicrystal_background(self): bkgd = background_generator.quasicrystal(64, 128) self.assertTrue( len(bkgd.histogram()) > 20 and bkgd.size == (128, 64) ) class CommandLineInterface(unittest.TestCase): def test_output_dir(self): args = ['python3', 'run.py', '-c', '1', '--output_dir', '../tests/out_2/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out_2/')) == 1) empty_directory('tests/out_2/') def test_language_english(self): args = ['python3', 'run.py', '-l', 'en', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_language_french(self): args = ['python3', 'run.py', '-l', 'fr', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_language_spanish(self): args = ['python3', 'run.py', '-l', 'es', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_language_german(self): args = ['python3', 'run.py', '-l', 'de', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_language_chinese(self): args = ['python3', 'run.py', '-l', 'cn', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_count_parameter(self): args = ['python3', 'run.py', '-c', '10', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 10) empty_directory('tests/out/') def test_random_sequences_letter_only(self): args = ['python3', 'run.py', '-rs', '-let', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(all([c in string.ascii_letters for f in os.listdir('tests/out/') for c in f.split('_')[0]])) empty_directory('tests/out/') def test_random_sequences_number_only(self): args = ['python3', 'run.py', '-rs', '-num', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(all([c in '0123456789' for f in os.listdir('tests/out/') for c in f.split('_')[0]])) empty_directory('tests/out/') def test_random_sequences_symbols_only(self): args = ['python3', 'run.py', '-rs', '-sym', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() with open('tests/out/labels.txt', 'r') as f: self.assertTrue(all([c in "!\"#$%&'()*+,-./:;?@[\\]^_`{|}~" for c in f.readline().split(' ')[1][:-1]])) empty_directory('tests/out/') def test_handwritten(self): args = ['python3', 'run.py', '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_personalfont(self): args = ['python3', 'run.py', '--font', 'fonts/latin/Aller_Bd.ttf' , '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 1) empty_directory('tests/out/') def test_personalfont_unlocated(self): args = ['python3', 'run.py', '--font', 'fonts/latin/unlocatedFont.ttf' , '-c', '1', '--output_dir', '../tests/out/'] subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() self.assertTrue(len(os.listdir('tests/out/')) == 0) empty_directory('tests/out/') # def test_word_count(self): # args = ['python3', 'run.py', '-c', '1', '-w', '5'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') # # def test_extension_jpg(self): # args = ['python3', 'run.py', '-c', '1', '-e', 'jpg'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') # # def test_extension_png(self): # args = ['python3', 'run.py', '-c', '1', '-e', 'png'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') # # def test_name_format_0(self): # args = ['python3', 'run.py', '-c', '1', '-na', '0'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') # # def test_name_format_1(self): # args = ['python3', 'run.py', '-c', '1', '-na', '1'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') # # def test_name_format_2(self): # args = ['python3', 'run.py', '-c', '1', '-na', '2'] # subprocess.Popen(args, cwd="TextRecognitionDataGenerator/").wait() # self.assertTrue(False) # empty_directory('tests/out/') if __name__=='__main__': unittest.main()
28.083682
124
0.480979
0fb85f11d1b565eb1d9774c265013ce60ad26d59
19,230
py
Python
tests/scenario_tests_async/test_events_shared_channels.py
korymath/bolt-python
67e0286d756ba92510315d044303f43b03380b52
[ "MIT" ]
1
2021-05-02T16:06:44.000Z
2021-05-02T16:06:44.000Z
tests/scenario_tests_async/test_events_shared_channels.py
korymath/bolt-python
67e0286d756ba92510315d044303f43b03380b52
[ "MIT" ]
1
2021-02-23T21:05:57.000Z
2021-02-23T21:05:57.000Z
tests/scenario_tests_async/test_events_shared_channels.py
korymath/bolt-python
67e0286d756ba92510315d044303f43b03380b52
[ "MIT" ]
null
null
null
import asyncio import json from random import random from time import time import pytest from slack_sdk.signature import SignatureVerifier from slack_sdk.web.async_client import AsyncWebClient from slack_bolt.app.async_app import AsyncApp from slack_bolt.authorization import AuthorizeResult from slack_bolt.context.say.async_say import AsyncSay from slack_bolt.request.async_request import AsyncBoltRequest from tests.mock_web_api_server import ( setup_mock_web_api_server, cleanup_mock_web_api_server, ) from tests.utils import remove_os_env_temporarily, restore_os_env valid_token = "xoxb-valid" async def authorize(enterprise_id, team_id, client: AsyncWebClient): assert enterprise_id == "E_INSTALLED" assert team_id == "T_INSTALLED" auth_test = await client.auth_test(token=valid_token) return AuthorizeResult.from_auth_test_response( auth_test_response=auth_test, bot_token=valid_token, ) class TestAsyncEventsSharedChannels: signing_secret = "secret" valid_token = "xoxb-valid" mock_api_server_base_url = "http://localhost:8888" signature_verifier = SignatureVerifier(signing_secret) web_client = AsyncWebClient(token=None, base_url=mock_api_server_base_url) @pytest.fixture def event_loop(self): old_os_env = remove_os_env_temporarily() try: setup_mock_web_api_server(self) loop = asyncio.get_event_loop() yield loop loop.close() cleanup_mock_web_api_server(self) finally: restore_os_env(old_os_env) def generate_signature(self, body: str, timestamp: str): return self.signature_verifier.generate_signature( body=body, timestamp=timestamp, ) def build_headers(self, timestamp: str, body: str): return { "content-type": ["application/json"], "x-slack-signature": [self.generate_signature(body, timestamp)], "x-slack-request-timestamp": [timestamp], } def build_valid_app_mention_request(self) -> AsyncBoltRequest: timestamp, body = str(int(time())), json.dumps(app_mention_body) return AsyncBoltRequest(body=body, headers=self.build_headers(timestamp, body)) @pytest.mark.asyncio async def test_mock_server_is_running(self): resp = await self.web_client.api_test(token=valid_token) assert resp != None @pytest.mark.asyncio async def test_app_mention(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("app_mention")(whats_up) request = self.build_valid_app_mention_request() response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 await asyncio.sleep(1) # wait a bit after auto ack() assert self.mock_received_requests["/chat.postMessage"] == 1 @pytest.mark.asyncio async def test_process_before_response(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, process_before_response=True, ) app.event("app_mention")(whats_up) request = self.build_valid_app_mention_request() response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 # no sleep here assert self.mock_received_requests["/chat.postMessage"] == 1 @pytest.mark.asyncio async def test_middleware_skip(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("app_mention", middleware=[skip_middleware])(whats_up) request = self.build_valid_app_mention_request() response = await app.async_dispatch(request) assert response.status == 404 assert self.mock_received_requests["/auth.test"] == 1 @pytest.mark.asyncio async def test_simultaneous_requests(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("app_mention")(random_sleeper) request = self.build_valid_app_mention_request() times = 10 tasks = [] for i in range(times): tasks.append(asyncio.ensure_future(app.async_dispatch(request))) await asyncio.sleep(5) # Verifies all the tasks have been completed with 200 OK assert sum([t.result().status for t in tasks if t.done()]) == 200 * times assert self.mock_received_requests["/auth.test"] == times assert self.mock_received_requests["/chat.postMessage"] == times def build_valid_reaction_added_request(self) -> AsyncBoltRequest: timestamp, body = str(int(time())), json.dumps(reaction_added_body) return AsyncBoltRequest(body=body, headers=self.build_headers(timestamp, body)) @pytest.mark.asyncio async def test_reaction_added(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("reaction_added")(whats_up) request = self.build_valid_reaction_added_request() response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 await asyncio.sleep(1) # wait a bit after auto ack() assert self.mock_received_requests["/chat.postMessage"] == 1 @pytest.mark.asyncio async def test_stable_auto_ack(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("reaction_added")(always_failing) for _ in range(10): request = self.build_valid_reaction_added_request() response = await app.async_dispatch(request) assert response.status == 200 @pytest.mark.asyncio async def test_self_events(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("reaction_added")(whats_up) self_event = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "reaction_added", "user": "W23456789", # bot_user_id "item": { "type": "message", "channel": "C111", "ts": "1599529504.000400", }, "reaction": "heart_eyes", "item_user": "W111", "event_ts": "1599616881.000800", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } timestamp, body = str(int(time())), json.dumps(self_event) request = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 await asyncio.sleep(1) # wait a bit after auto ack() # The listener should not be executed assert self.mock_received_requests.get("/chat.postMessage") is None @pytest.mark.asyncio async def test_self_joined_left_events(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("reaction_added")(whats_up) join_event_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "member_joined_channel", "user": "W23456789", # bot_user_id "channel": "C111", "channel_type": "C", "team": "T_INSTALLED", "inviter": "U222", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } left_event_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "member_left_channel", "user": "W23456789", # bot_user_id "channel": "C111", "channel_type": "C", "team": "T_INSTALLED", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } @app.event("member_joined_channel") async def handle_member_joined_channel(say): await say("What's up?") @app.event("member_left_channel") async def handle_member_left_channel(say): await say("What's up?") timestamp, body = str(int(time())), json.dumps(join_event_body) request = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 timestamp, body = str(int(time())), json.dumps(left_event_body) request = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 await asyncio.sleep(1) # wait a bit after auto ack() # The listeners should be executed assert self.mock_received_requests.get("/chat.postMessage") == 2 @pytest.mark.asyncio async def test_joined_left_events(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app.event("reaction_added")(whats_up) join_event_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "member_joined_channel", "user": "W111", # other user "channel": "C111", "channel_type": "C", "team": "T_INSTALLED", "inviter": "U222", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } left_event_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "member_left_channel", "user": "W111", # other user "channel": "C111", "channel_type": "C", "team": "T_INSTALLED", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } @app.event("member_joined_channel") async def handle_member_joined_channel(say): await say("What's up?") @app.event("member_left_channel") async def handle_member_left_channel(say): await say("What's up?") timestamp, body = str(int(time())), json.dumps(join_event_body) request = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 assert self.mock_received_requests["/auth.test"] == 1 timestamp, body = str(int(time())), json.dumps(left_event_body) request = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 await asyncio.sleep(1) # wait a bit after auto ack() # The listeners should be executed assert self.mock_received_requests.get("/chat.postMessage") == 2 @pytest.mark.asyncio async def test_uninstallation_and_revokes(self): app = AsyncApp( client=self.web_client, signing_secret=self.signing_secret, authorize=authorize, ) app._client = AsyncWebClient( token="uninstalled-revoked", base_url=self.mock_api_server_base_url ) @app.event("app_uninstalled") async def handler1(say: AsyncSay): await say(channel="C111", text="What's up?") @app.event("tokens_revoked") async def handler2(say: AsyncSay): await say(channel="C111", text="What's up?") app_uninstalled_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": {"type": "app_uninstalled"}, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } timestamp, body = str(int(time())), json.dumps(app_uninstalled_body) request: AsyncBoltRequest = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 tokens_revoked_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "tokens_revoked", "tokens": {"oauth": ["UXXXXXXXX"], "bot": ["UXXXXXXXX"]}, }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } timestamp, body = str(int(time())), json.dumps(tokens_revoked_body) request: AsyncBoltRequest = AsyncBoltRequest( body=body, headers=self.build_headers(timestamp, body) ) response = await app.async_dispatch(request) assert response.status == 200 # AsyncApp doesn't call auth.test when booting assert self.mock_received_requests.get("/auth.test") is None await asyncio.sleep(1) # wait a bit after auto ack() assert self.mock_received_requests["/chat.postMessage"] == 2 app_mention_body = { "token": "verification_token", "team_id": "T_INSTALLED", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "client_msg_id": "9cbd4c5b-7ddf-4ede-b479-ad21fca66d63", "type": "app_mention", "text": "<@W111> Hi there!", "user": "W222", "ts": "1595926230.009600", "team": "T_INSTALLED", "channel": "C111", "event_ts": "1595926230.009600", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1595926230, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } reaction_added_body = { "token": "verification_token", "team_id": "T_SOURCE", "enterprise_id": "E_SOURCE", "api_app_id": "A111", "event": { "type": "reaction_added", "user": "W111", "item": {"type": "message", "channel": "C111", "ts": "1599529504.000400"}, "reaction": "heart_eyes", "item_user": "W111", "event_ts": "1599616881.000800", }, "type": "event_callback", "event_id": "Ev111", "event_time": 1599616881, "authorizations": [ { "enterprise_id": "E_INSTALLED", "team_id": "T_INSTALLED", "user_id": "W111", "is_bot": True, "is_enterprise_install": False, } ], } async def random_sleeper(body, say, payload, event): assert body == app_mention_body assert body["event"] == payload assert payload == event seconds = random() + 2 # 2-3 seconds await asyncio.sleep(seconds) await say(f"Sending this message after sleeping for {seconds} seconds") async def whats_up(body, say, payload, event): assert body["event"] == payload assert payload == event await say("What's up?") async def skip_middleware(req, resp, next): # return next() pass async def always_failing(): raise Exception("Something wrong!")
34.035398
87
0.561258
09032824deadde17dc95c755a9a0d23a22540272
623
py
Python
lib/sedna/__init__.py
wangyuan249/sedna
304059ef46e87a637eff22a92f1b0894216fa3ea
[ "Apache-2.0" ]
1
2021-01-29T11:12:54.000Z
2021-01-29T11:12:54.000Z
lib/sedna/__init__.py
kevinshan/sedna
9411a2cd0ef5e86ed76a910d60685e37d4404b65
[ "Apache-2.0" ]
null
null
null
lib/sedna/__init__.py
kevinshan/sedna
9411a2cd0ef5e86ed76a910d60685e37d4404b65
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .__version__ import __version__
38.9375
74
0.76886
8f97a64707f7e163039bd21801880aef0f192d11
6,387
py
Python
telecarla_scenario_runner/script/plot_results.py
hofbi/telecarla
020704a3b7087bc426f5ff97655c7e676c8b01bf
[ "MIT" ]
26
2020-06-09T18:28:07.000Z
2022-03-19T01:27:40.000Z
telecarla_scenario_runner/script/plot_results.py
hofbi/telecarla
020704a3b7087bc426f5ff97655c7e676c8b01bf
[ "MIT" ]
15
2020-06-21T21:04:44.000Z
2022-02-20T17:24:58.000Z
telecarla_scenario_runner/script/plot_results.py
hofbi/telecarla
020704a3b7087bc426f5ff97655c7e676c8b01bf
[ "MIT" ]
7
2020-06-21T11:55:53.000Z
2021-12-18T09:16:06.000Z
""" Plot results of one or multiple scenario runner evaluations """ import argparse import os import re import statistics import sys import xml.etree.cElementTree as ET import matplotlib.pyplot as plt import numpy as np class ScenarioResult: """ Collection of multiple results for the same scenario """ def __init__(self, name): self._name = name self._collisions = [] self._durations = [] def __lt__(self, other): return self.name < other.name def add_result(self, collision, duration): self._collisions.append(collision) self._durations.append(duration) @property def collision_rate(self): return np.sum(self.collisions) / len(self.collisions) @property def mean_duration(self): return statistics.mean(self.durations) @property def std_dev_duration(self): return statistics.stdev(self.durations) @property def collisions(self): return self._collisions @property def durations(self): return self._durations @property def name(self): return self._name def main(): """main""" parser = argparse.ArgumentParser( description="Plot the results from the scenario evaluation", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--eval_dir", type=str, default=os.path.join( os.path.dirname(os.path.abspath(sys.argv[0])), "..", "output" ), help="Path to the scenario runner results", ) parser.add_argument( "--out_dir", type=str, default=os.path.join( os.path.dirname(os.path.abspath(sys.argv[0])), "..", "output" ), help="Path to the output directory", ) parser.add_argument( "--yerr", action="store_true", help="Show the standard deviation" ) parser.add_argument("--show", action="store_true", help="Show the plot") args = parser.parse_args() scenario_result_files = get_scenario_result_file_paths(args.eval_dir) scenario_results = get_scenario_results(scenario_result_files) plot_results(scenario_results, args.yerr) plt.savefig(os.path.join(args.out_dir, os.path.basename(args.eval_dir))) if args.show: plt.show() def plot_results(scenario_results, show_yerr): """ Plot the results :param scenario_results: :param show_yerr: :return: """ plt.figure("Scenario Runner Results") sorted_results = sorted(scenario_results.values()) durations = [result.mean_duration for result in sorted_results] failure_rates = [result.collision_rate for result in sorted_results] failures = [a * b for a, b in zip(durations, failure_rates)] indices = range(1, len(scenario_results) + 1) average = sum(durations) / len(durations) if show_yerr: duration_errors = [result.std_dev_duration for result in sorted_results] plt.bar( indices, durations, yerr=duration_errors, align="center", label="Mean Duration (∅%.0fs)" % average, ) else: plt.bar( indices, durations, align="center", label="Mean Duration (∅%.0fs)" % average ) average = sum(failure_rates) / len(failure_rates) * 100 rects = plt.bar( indices, failures, align="center", label="Collision Rate (∅{0:.0f}%)".format(average), ) auto_label(rects, failure_rates) plt.xlabel("Scenario") plt.ylabel("Mean Scenario Duration [s]") plt.legend() def auto_label(rects, values): """ Add labels to the bar plot :param rects: :param values: :return: """ for index, rect in enumerate(rects): plt.annotate( "{0:.2f}%".format(100 * float(values[index])), xy=(rect.get_x() + rect.get_width() / 2, rect.get_height()), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha="center", va="bottom", ) def get_scenario_results(scenario_result_files): """ Parse scenario results from files :param scenario_result_files: :return: """ scenario_results = {} for scenario_result_file in scenario_result_files: fix_cdata(scenario_result_file) root = ET.parse(scenario_result_file).getroot() test_suite = root[0] test_name = test_suite.attrib["name"] if test_name not in scenario_results: scenario_results[test_name] = ScenarioResult(test_name) scenario_results[test_name].add_result( has_collision(test_suite), get_duration(test_suite) ) return scenario_results def fix_cdata(scenario_result_file): """ Currently the scenario runner produces invalid XML CDATA, which is fixed by this function to have a valid XML for the parser :param scenario_result_file: :return: """ with open(scenario_result_file, "r") as file: file_data = file.read() file_data = file_data.replace(r"\[CDATA\[", r"[CDATA[") file_data = file_data.replace(r"\]\]", "]]") with open(scenario_result_file, "w") as file: file.write(file_data) def has_collision(test_suite): """ Check if a run has a colition :param test_suite: :return: """ return test_suite[0].find("failure") is not None def get_duration(test_suite): """ Get the duration of a single run :param test_suite: :return: """ duration_case = test_suite[1] if len(list(duration_case)) > 0: text = duration_case[0].text else: text = duration_case.text durations = re.findall(r"[-+]?\d*\.\d+|\d+", text) return float(durations[0]) def get_scenario_result_file_paths(eval_dir): """ Get all scenario result file paths located in the given directory :param eval_dir: :return: """ scenario_results = [] for root, dirs, files in os.walk(eval_dir): for scenario_file in files: if scenario_file.endswith(".xml"): scenario_results.append( os.path.abspath(os.path.join(root, scenario_file)) ) return scenario_results if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
26.502075
88
0.627994
23e8320d0330d1ec8f7c296ccce6c6ea052ae6e2
12,809
py
Python
ief_core/tests/old_tests/test_rnn.py
zeshanmh/ief
1b7dbd340ecb8ccf40d22de989e3bc3d92135a45
[ "MIT" ]
5
2021-04-11T04:49:24.000Z
2022-03-28T18:43:45.000Z
ief_core/tests/old_tests/test_rnn.py
clinicalml/ief
97bcaad85ec820fbe062a86c6c500a308904f029
[ "MIT" ]
1
2021-12-13T06:33:16.000Z
2021-12-16T02:04:14.000Z
ief_core/tests/old_tests/test_rnn.py
clinicalml/ief
97bcaad85ec820fbe062a86c6c500a308904f029
[ "MIT" ]
1
2022-02-01T03:10:16.000Z
2022-02-01T03:10:16.000Z
import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl import sys import optuna import os from lifelines.utils import concordance_index from sklearn.metrics import r2_score from torch.utils.data import DataLoader, TensorDataset from torchcontrib.optim import SWA from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from argparse import ArgumentParser from distutils.util import strtobool sys.path.append('../') sys.path.append('../../data/ml_mmrf') sys.path.append('../../data/') from ml_mmrf_v1.data import load_mmrf from synthetic.synthetic_data import load_synthetic_data_trt, load_synthetic_data_noisy from models.rnn import GRU from main_trainer import * from semi_synthetic.ss_data import * def test_gru_load(): checkpoint_path = '../tbp_logs/rnn_pkpd_semi_synthetic_subsample_best/version_0/checkpoints/epoch=969.ckpt' checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) hparams = checkpoint['hyper_parameters'] gru = GRU(**hparams); gru.setup(1) gru.load_state_dict(checkpoint['state_dict']) assert 'dim_data' in gru.hparams assert 'dim_treat' in gru.hparams assert 'dim_base' in gru.hparams assert gru.hparams['mtype'] == 'pkpd_gru' valid_loader = gru.val_dataloader() (nelbo, nll, kl, _), _ = gru.forward(*valid_loader.dataset.tensors, anneal = 1.) print(nelbo) def test_gru(): seed_everything(0) parser = ArgumentParser() parser.add_argument('--model_name', type=str, default='gru', help='fomm, ssm, or gru') parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') parser.add_argument('--anneal', type=float, default=1., help='annealing rate') parser.add_argument('--fname', type=str, help='name of save file') parser.add_argument('--imp_sampling', type=bool, default=False, help='importance sampling to estimate marginal likelihood') parser.add_argument('--nsamples', default=1, type=int) parser.add_argument('--nsamples_syn', default=100, type=int, help='number of training samples for synthetic data') parser.add_argument('--optimizer_name', type=str, default='adam') parser.add_argument('--dataset', default='mm', type=str) parser.add_argument('--eval_type', type=str, default='nelbo') parser.add_argument('--loss_type', type=str, default='semisup') parser.add_argument('--bs', default=600, type=int, help='batch size') parser.add_argument('--fold', default=1, type=int) # THIS LINE IS KEY TO PULL THE MODEL NAME temp_args, _ = parser.parse_known_args() # add rest of args from FOMM and base trainer parser = GRU.add_model_specific_args(parser) parser = Trainer.add_argparse_args(parser) # parse args and convert to dict args = parser.parse_args() args.max_epochs = 100 dict_args = vars(args) # initialize FOMM w/ args and train model = GRU(**dict_args) trainer = Trainer.from_argparse_args(args, deterministic=True, logger=False, checkpoint_callback=False) trainer.fit(model) # evaluate on validation set; this should match what we were getting with the old codebase (after 100 epochs) valid_loader = model.val_dataloader() (nelbo, nll, kl, _), _ = model.forward(*valid_loader.dataset.tensors, anneal = 1.) assert (nelbo.item() - 146.43) < 1e-1 def run_gru_ss(): model_configs = [ # (0, 1000, 'gru', 514, 0.198, False, 'l2', .0023), # (0, 1500, 'gru', 578, 0.0445, False, 'l2', .000655), # (0, 2000, 'gru', 677, 0.00585, True, 'l1', .000599), # (0, 10000, 'gru', 676, 0.002312, True, 'l1', 0.001280), # (0, 1000, 'pkpd_gru', 290, 0.09916, False, 'l2', .002916), # (0, 1500, 'pkpd_gru', 502, 0.02635, False, 'l2', .001307), # (0, 2000, 'pkpd_gru', 298, 0.031917, False, 'l2', .006825) (0, 1000, 'gru', 250, 0.01, False, 'l1', 1e-3), (0, 1500, 'gru', 500, 0.01, False, 'l1', 1e-3), (0, 2000, 'gru', 250, 0.01, False, 'l1', 1e-3), (0, 10000, 'gru', 500, 0.01, False, 'l1', 1e-3), (0, 1000, 'pkpd_gru', 500, 0.01, True, 'l2', 1e-3), (0, 1500, 'pkpd_gru', 500, 0.01, False, 'l2', 1e-3), (0, 2000, 'pkpd_gru', 500, 0.01, False, 'l1', 1e-3) ] fname = './gru_ss_results_take2.txt' parser = ArgumentParser() parser.add_argument('--model_name', type=str, default='gru', help='fomm, ssm, or gru') parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') parser.add_argument('--anneal', type=float, default=1., help='annealing rate') parser.add_argument('--fname', type=str, help='name of save file') parser.add_argument('--imp_sampling', type=bool, default=False, help='importance sampling to estimate marginal likelihood') parser.add_argument('--nsamples', default=1, type=int) parser.add_argument('--nsamples_syn', default=1000, type=int, help='number of training samples for synthetic data') parser.add_argument('--optimizer_name', type=str, default='adam') parser.add_argument('--dataset', default='semi_synthetic', type=str) parser.add_argument('--eval_type', type=str, default='nelbo') parser.add_argument('--loss_type', type=str, default='unsup') parser.add_argument('--bs', default=2000, type=int, help='batch size') parser.add_argument('--fold', default=1, type=int) parser.add_argument('--seed', default=1, type=int) parser.add_argument('--ss_missing', type=strtobool, default=True, help='whether to add missing data in semi synthetic setup or not') parser.add_argument('--ss_in_sample_dist', type=strtobool, default=True, help='whether to use mm training patients to generate validation/test set in semi synthetic data') # THIS LINE IS KEY TO PULL THE MODEL NAME temp_args, _ = parser.parse_known_args() # add rest of args from FOMM and base trainer parser = GRU.add_model_specific_args(parser) parser = Trainer.add_argparse_args(parser) # parse args and convert to dict args = parser.parse_args() fi = open(fname, 'w') for k,model_config in enumerate(model_configs): seed, nsamples_syn, mtype, dim_hidden, C, reg_all, reg_type, lr = model_config seed_everything(seed) args.lr = lr args.max_epochs = 1000 args.nsamples_syn = nsamples_syn args.mtype = mtype args.dim_hidden = dim_hidden args.alpha1_type = 'linear' args.add_stochastic = False args.C = C; args.reg_all = reg_all; args.reg_type = reg_type dict_args = vars(args) trial = optuna.trial.FixedTrial({'lr': args.lr, 'C': args.C, 'reg_all': args.reg_all, 'reg_type': args.reg_type, 'dim_hidden': args.dim_hidden}) # initialize FOMM w/ args and train model = GRU(trial, **dict_args) in_sample_dist = model.hparams.ss_in_sample_dist; add_missing = model.hparams.ss_missing print(f'[RUNNING] model config {k+1}: N = {args.nsamples_syn}, mtype = {args.mtype}, C = {args.C}, reg_all = {args.reg_all}, reg_type = {args.reg_type}, in_sample_dist = {in_sample_dist}, add_missing = {add_missing}') fi.write(f'[RUNNING] model config {k+1}: N = {args.nsamples_syn}, mtype = {args.mtype}, C = {args.C}, reg_all = {args.reg_all}, reg_type = {args.reg_type}, in_sample_dist = {in_sample_dist}, add_missing = {add_missing}\n') trainer = Trainer.from_argparse_args(args, deterministic=True, logger=False, checkpoint_callback=False, gpus=[2], check_val_every_n_epoch=10) trainer.fit(model) # evaluate on validation set; this should match what we were getting with the old codebase (after 100 epochs) if torch.cuda.is_available(): device = torch.device('cuda:2') else: device = torch.device('cpu') ddata = load_ss_data(model.hparams['nsamples_syn'], gen_fly=True, eval_mult=200, in_sample_dist=in_sample_dist, add_missing=add_missing) print(f'eval set size: {ddata["valid"][0]["X"].shape}') nelbos = [] for i in range(1,5): _, valid_loader = load_ss_helper(ddata, tvt='valid', bs=model.hparams['bs'], device=device, valid_fold=i) batch_nelbos = [] for i_batch, valid_batch_loader in enumerate(valid_loader): (nelbo, nll, kl, _), _ = model.forward(*valid_batch_loader, anneal = 1.) nelbo, nll, kl = nelbo.item(), nll.item(), kl.item() batch_nelbos.append(nelbo) # (nelbo, nll, kl, _), _ = model.forward(*valid_loader.dataset.tensors, anneal = 1.) nelbos.append(np.mean(batch_nelbos)) print(f'[COMPLETE] model config {k+1}: mean nelbo: {np.mean(nelbos)}, std nelbo: {np.std(nelbos)}') fi.write(f'[COMPLETE] model config {k+1}: mean nelbo: {np.mean(nelbos)}, std nelbo: {np.std(nelbos)}\n\n') print() def test_gru_pkpd(): seed_everything(0) configs = [ (1000, 'pkpd_gru_att', 500, 0.01, True, 'l2') # (1000, 'gru', 250, 0.01, True, 'l2') ] parser = ArgumentParser() parser.add_argument('--model_name', type=str, default='gru', help='fomm, ssm, or gru') parser.add_argument('--lr', type=float, default=1e-3, help='learning rate') parser.add_argument('--anneal', type=float, default=1., help='annealing rate') parser.add_argument('--fname', type=str, help='name of save file') parser.add_argument('--imp_sampling', type=bool, default=False, help='importance sampling to estimate marginal likelihood') parser.add_argument('--nsamples', default=1, type=int) parser.add_argument('--nsamples_syn', default=100, type=int, help='number of training samples for synthetic data') parser.add_argument('--optimizer_name', type=str, default='adam') parser.add_argument('--dataset', default='mm', type=str) parser.add_argument('--eval_type', type=str, default='nelbo') parser.add_argument('--loss_type', type=str, default='unsup') parser.add_argument('--bs', default=600, type=int, help='batch size') parser.add_argument('--fold', default=1, type=int) parser.add_argument('--optuna', type=strtobool, default=True, help='whether to use optuna to optimize hyperparams') parser.add_argument('--ss_missing', type=strtobool, default=False, help='whether to add missing data in semi synthetic setup or not') parser.add_argument('--ss_in_sample_dist', type=strtobool, default=False, help='whether to use mm training patients to generate validation/test set in semi synthetic data') parser.add_argument('--att_mask', type=strtobool, default=False, help='set to True for SSMAtt and FOMMAtt') # THIS LINE IS KEY TO PULL THE MODEL NAME temp_args, _ = parser.parse_known_args() # add rest of args from GRU and base trainer parser = GRU.add_model_specific_args(parser) parser = Trainer.add_argparse_args(parser) for k,config in enumerate(configs): print(f'running config: {config}') max_epochs, mtype, dh, C, reg_all, reg_type = config # parse args and convert to dict args = parser.parse_args() args.max_epochs = max_epochs args.mtype = mtype args.dim_hidden = dh args.reg_type = reg_type args.C = C args.reg_all = reg_all args.alpha1_type = 'linear' args.add_stochastic = False dict_args = vars(args) # initialize FOMM w/ args and train trial = optuna.trial.FixedTrial({'lr': args.lr, 'C': args.C, 'reg_all': args.reg_all, 'reg_type': args.reg_type, 'dim_hidden': args.dim_hidden}) model = GRU(trial, **dict_args) # early_stop_callback = EarlyStopping( # monitor='val_loss', # min_delta=0.00, # patience=10, # verbose=False, # mode='min' # ) checkpoint_callback = ModelCheckpoint(filepath='./checkpoints/gru_att1{epoch:05d}-{val_loss:.2f}') trainer = Trainer.from_argparse_args(args, deterministic=True, logger=False, gpus=[2], \ early_stop_callback=False, checkpoint_callback=checkpoint_callback) trainer.fit(model) # evaluate on validation set; this should match what we were getting with the old codebase (after 100 epochs) valid_loader = model.val_dataloader() nelbos = [] for i in range(50): (nelbo, nll, kl, _), _ = model.forward(*valid_loader.dataset.tensors, anneal = 1.) nelbos.append(nelbo.item()) print(f'final nll for {config} (config {k+1}): mean: {np.mean(nelbos)}, std: {np.std(nelbos)}') # assert (nelbo.item() - 183.759) < 1e-1 if __name__ == '__main__': # run_gru_ss() test_gru_pkpd()
51.649194
230
0.666406
723203e05697d79668f0deb0825cc7523aa5ba48
7,223
py
Python
tests/test_TDict.py
tadashi-aikawa/dict-mixin
6418694aa2f7a8dc2c1990818a917e9b22ec1d16
[ "MIT" ]
3
2018-03-09T05:01:34.000Z
2020-10-29T01:29:28.000Z
tests/test_TDict.py
tadashi-aikawa/dict-mixin
6418694aa2f7a8dc2c1990818a917e9b22ec1d16
[ "MIT" ]
13
2017-11-07T08:28:51.000Z
2020-07-11T09:20:47.000Z
tests/test_TDict.py
tadashi-aikawa/dict-mixin
6418694aa2f7a8dc2c1990818a917e9b22ec1d16
[ "MIT" ]
1
2017-03-11T19:19:33.000Z
2017-03-11T19:19:33.000Z
# coding: utf-8 from owlmixin import OwlMixin, TOption from owlmixin.owlcollections import TDict, TList # For python 3.5.0-3.5.1 try: from typing import Text except ImportError: pass class Address(OwlMixin): name: str class Spot(OwlMixin): names: TList[str] address: TOption[Address] class TestGet: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).get("a").get().to_dict() == { "names": ["spot1"], "address": { "name": "address1" } } def test_not_found(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).get("c").is_none() class TestMap: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} # Sort for test assert sorted(Spot.from_dicts_by_key(d).map(lambda k, v: v.names), key=len) == [["spot1"], ["spot21", "spot22"]] class TestMapValues: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} # Sort for test assert Spot.from_dicts_by_key(d).map_values(lambda v: len(v.names)).to_dict() == {"a": 1, "b": 2} class TestMapValues2: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} # Sort for test assert Spot.from_dicts_by_key(d).map_values2(lambda k, v: f"len({k}.name) -> {len(v.names)}").to_dict() == { "a": "len(a.name) -> 1", "b": "len(b.name) -> 2" } class TestFilter: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).filter(lambda k, v: v.address.get()).to_dicts() == [{ "names": ["spot1"], "address": { "name": "address1" } }] class TestReject: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).reject(lambda k, v: v.address.get()).to_dicts() == [{ "names": ["spot21", "spot22"] }] class TestSum: def test_normal(self): assert TDict({"a": 1, "b": 2, "c": 3}).sum() == 6 class TestSumBy: def test_normal(self): d = {"aaa": {"names": ["spot1"], "address": {"name": "address1"}}, "bb": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).sum_by(lambda k, v: len(k) * len(v.names)) == 7 class TestSize: def test_normal(self): d = {"a": {"names": ["spot1"], "address": {"name": "address1"}}, "b": {"names": ["spot21", "spot22"]}} assert Spot.from_dicts_by_key(d).size() == 2 class TestFind: def test_normal(self): d = { "a": { "names": ["spot1"], "address": { "name": "address1" } }, "b": { "names": ["spot21", "spot22"] }, "c": { "names": ["spot31", "spot32", "spot33"] } } assert Spot.from_dicts_by_key(d).find(lambda k, v: len(v.names) == 2).get().to_dict(ignore_none=True) == { "names": ["spot21", "spot22"] } def test_not_found(self): d = { "a": { "names": ["spot1"], "address": { "name": "address1" } }, "b": { "names": ["spot21", "spot22"] }, "c": { "names": ["spot31", "spot32"] } } assert Spot.from_dicts_by_key(d).find(lambda k, v: v.names == 3).is_none() class TestToList: def test_normal(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} # Sort for test assert sorted(Spot.from_dicts_by_key(d).to_list().to_dicts(ignore_none=True), key=lambda x: x["names"][0]) == [{ "names": ["spot1"] }, { "names": ["spot21", "spot22"] }, { "names": ["spot31", "spot32"] }] class TestAll: def test_true(self): d = {"a": {"names": ["spot1"]}, "bb": {"names": ["spot21", "spot22"]}, "cc": {"names": ["spot31", "spot32"]}} assert Spot.from_dicts_by_key(d).all(lambda k, v: len(k) == len(v.names)) is True def test_false(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} assert Spot.from_dicts_by_key(d).all(lambda k, v: len(k) == len(v.names)) is False class TestAny: def test_true(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} assert Spot.from_dicts_by_key(d).any(lambda k, v: len(k) == len(v.names)) is True def test_false(self): d = { "aaa": { "names": ["spot1"] }, "bbb": { "names": ["spot21", "spot22"] }, "ccc": { "names": ["spot31", "spot32"] } } assert Spot.from_dicts_by_key(d).any(lambda k, v: len(k) == len(v.names)) is False class TestAssign: def test_normal(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} d2 = {"c": {"names": ["spot3"]}, "d": {"names": ["spot4"]}} spots_by_key: TDict[Spot] = Spot.from_dicts_by_key(d) actual: TDict[Spot] = spots_by_key.assign(d2) assert { "a": { "names": ["spot1"] }, "b": { "names": ["spot21", "spot22"] }, "c": { "names": ["spot3"] }, "d": { "names": ["spot4"] } } == actual.to_dict() actual['a'] = None assert actual['a'] is None assert d['a'] is not None assert spots_by_key['a'] is not None class TestPickBy: def test_normal(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} actual: TDict[Spot] = Spot.from_dicts_by_key(d).pick_by(lambda k, v: len(v.names) > 1 and k in ["a", "b"]) assert {"b": {"names": ["spot21", "spot22"]}} == actual.to_dict() class TestOmitBy: def test_normal(self): d = {"a": {"names": ["spot1"]}, "b": {"names": ["spot21", "spot22"]}, "c": {"names": ["spot31", "spot32"]}} actual: TDict[Spot] = Spot.from_dicts_by_key(d).omit_by(lambda k, v: len(v.names) > 1 and k in ["a", "b"]) assert {"a": {"names": ["spot1"]}, "c": {"names": ["spot31", "spot32"]}} == actual.to_dict()
30.348739
120
0.47418
180b33ab8cca22ba43ba48d81418db32aceeff8d
5,899
py
Python
bot.py
theerfan/PublicQABot
d18b351e8ad502ddc60f9f2a870be9fe8601b71b
[ "MIT" ]
4
2019-07-04T20:36:59.000Z
2022-03-03T09:00:55.000Z
bot.py
theerfan/PublicQABot
d18b351e8ad502ddc60f9f2a870be9fe8601b71b
[ "MIT" ]
null
null
null
bot.py
theerfan/PublicQABot
d18b351e8ad502ddc60f9f2a870be9fe8601b71b
[ "MIT" ]
null
null
null
import telegram from telegram.ext import Updater, Dispatcher, MessageHandler, MessageQueue, CommandHandler, Filters TOKEN = "REDACTED" bot = telegram.Bot(TOKEN) updater = Updater(token=TOKEN) dispatcher = updater.dispatcher jq = updater.job_queue list_of_active_users = dict() FAIL_TEXT = "متاسفانه مشکلی پیش اومد، لطفا دوباره پیام‌تون رو ارسال کنید." WELCOME_TEXT = "سلام. به بات پرسش و پاسخ خوش آمدید." WAIT_TEXT = "پیام شما دریافت شد؛ لطفا شکیبا باشید تا مسئولین جواب بدند." RESPONDED_TEXT = "جوابتون رو اینجا دادیم" # must not start with an @ RESPONDER_ID = "REDACTED" # must start with an @ CHANNEL_ID = "REDACTED" DEV_ID = "REDACTED" ASKED_TEXT = "پرسیده اند که" ANSWERED_TEXT = "و جواب این است که" HIDDEN_STATE = "مخفی" SHOWING_STATE = "نمایان" YOUR_STATE = "وضعیت فعلی شما: " def start(bot, update): message = update.message chat_id = message.chat_id user = message.from_user.username add_to_users(user, chat_id) bot.send_message(chat_id=chat_id, text=WELCOME_TEXT) def receive(bot, update): user = username = update.message.from_user username = user.username message = update.message add_to_users(username, message.chat_id) if username == RESPONDER_ID: receive_from_ta(bot, update) else: receive_from_users(bot, update, user, message) def add_to_users(user, chat_id): if user not in list_of_active_users.keys(): list_of_active_users.update({user: {'id': chat_id, 'visible': True}}) def format_tas_outgoing_string(text, answer_text, caption=None): half = txt = "" checkText = text if not text: text = caption splitMessage = text.split('\n') asker = {"name": splitMessage[0], "handle": splitMessage[1][1:]} for i in range(2, len(splitMessage)): half += str(splitMessage[i]) if checkText and caption: half += "\n" + caption if list_of_active_users[asker["handle"]]["visible"]: txt = asker["name"] txt += " " + ASKED_TEXT + ":\n" + half + "\n\n" + ANSWERED_TEXT + ":\n" + answer_text return txt, asker def receive_from_ta(bot, update): sent_in_channel = None answer = update.message message = answer.reply_to_message caption = message.caption answer_text = answer.text txt, asker = format_tas_outgoing_string(message.text, answer_text, caption) sent_in_channel = returnSentMedia(bot, CHANNEL_ID, message, txt) sent_link = sent_in_channel.link bot.send_message(chat_id=list_of_active_users[asker["handle"]]["id"], text='<a href="' + sent_link + '">' + RESPONDED_TEXT + '</a>', parse_mode=telegram.ParseMode.HTML) def not_sent_error(bot, message, ex): bot.send_message(chat_id=message.chat_id, text=FAIL_TEXT) bot.send_message(chat_id=list_of_active_users[DEV_ID]["id"], text=str(ex) +"\n" + message.chat_id) def receive_from_users(bot, update, user, message): try: if is_a_registered_member(user): txt = user.full_name + "\n" + "@" + user.username + "\n" + message.text bot.send_message(chat_id=list_of_active_users[RESPONDER_ID]["id"], text=txt) bot.send_message(chat_id=message.chat_id, text=WAIT_TEXT) except Exception as ex: not_sent_error(bot, message, ex) def returnSentMedia(bot, ta_id, message, txt): sent_in_channel = None if message.video: sent_in_channel = bot.send_video(chat_id=ta_id , video=message.video.file_id, caption=txt) if message.photo: photos = message.photo lastPhoto = len(photos) - 1 sent_in_channel = bot.send_photo(chat_id=ta_id, photo=message.photo[lastPhoto].file_id, caption=txt) if message.audio: sent_in_channel = bot.send_audio(chat_id=ta_id, photo=message.audio.file_id, caption=txt) if message.document: sent_in_channel = bot.send_document(chat_id=ta_id, photo=message.document.file_id, caption=txt) if not sent_in_channel: sent_in_channel = bot.send_message(chat_id=ta_id, text=txt) return sent_in_channel def forward_media(bot, update): ta_id = chat_id = list_of_active_users[RESPONDER_ID]["id"] message = update.message user = message.from_user username = user.username chat_id = message.chat_id add_to_users(username, chat_id) txt = "" if username != RESPONDER_ID: try: if message.caption: txt += message.caption if message.text and txt != "": txt += "\n" + message.text txt = user.full_name + "\n" + "@" + username + "\n" + txt returnSentMedia(bot, ta_id, message, txt) bot.send_message(chat_id=message.chat_id, text=WAIT_TEXT) except Exception as ex: not_sent_error(bot, message, ex) def is_a_registered_member(user): ''' Will be changed if in a future event we only want the opinion of the participants, As of April 3rd, 2019 it's being used for an "Asrane" event, so there's no use to it. ''' return True def toggle_name_visibility(bot, update): message = update.message user = message.from_user username = user.username chat_id = message.chat_id if username in list_of_active_users.keys(): user_in_list = list_of_active_users[username] user_in_list["visible"] = not user_in_list["visible"] if user_in_list["visible"]: bot.send_message(chat_id=chat_id, text=YOUR_STATE + SHOWING_STATE) else: bot.send_message(chat_id=chat_id, text=YOUR_STATE + HIDDEN_STATE) dispatcher.add_handler(CommandHandler('start', start)) dispatcher.add_handler(CommandHandler('toggle', toggle_name_visibility)) dispatcher.add_handler(MessageHandler(Filters.text, receive)) dispatcher.add_handler(MessageHandler(Filters.audio | Filters.video | Filters.photo | Filters.document, forward_media)) updater.start_polling()
37.100629
119
0.68537
a498960ba6c4d99d2c29abba40d960990e60d4a6
842
py
Python
molecool/io/xyz.py
rtb1c13/molecool
b296f7c3afea4bad32e4b20000a0ec1e82c7c3ce
[ "BSD-3-Clause" ]
null
null
null
molecool/io/xyz.py
rtb1c13/molecool
b296f7c3afea4bad32e4b20000a0ec1e82c7c3ce
[ "BSD-3-Clause" ]
1
2020-05-08T15:52:06.000Z
2020-05-08T15:52:55.000Z
molecool/io/xyz.py
rtb1c13/molecool
b296f7c3afea4bad32e4b20000a0ec1e82c7c3ce
[ "BSD-3-Clause" ]
null
null
null
""" Functions to manipulate xyz files """ import numpy as np def open_xyz(file_location): # Open an xyz file and return symbols and coordinates. xyz_file = np.genfromtxt(fname=file_location, skip_header=2, dtype='unicode') symbols = xyz_file[:,0] coords = (xyz_file[:,1:]) coords = coords.astype(np.float) return symbols, coords def write_xyz(file_location, symbols, coordinates): # Write an xyz file given a file location, symbols, and coordinates. num_atoms = len(symbols) with open(file_location, 'w+') as f: f.write('{}\n'.format(num_atoms)) f.write('XYZ file\n') for i in range(num_atoms): f.write('{}\t{}\t{}\t{}\n'.format(symbols[i], coordinates[i,0], coordinates[i,1], coordinates[i,2]))
30.071429
100
0.602138
0640362b1b5f8b321827749bf43fc6efba3566f0
9,237
py
Python
gewittergefahr/scripts/run_echo_top_tracking.py
dopplerchase/GewitterGefahr
4415b08dd64f37eba5b1b9e8cc5aa9af24f96593
[ "MIT" ]
26
2018-10-04T01:07:35.000Z
2022-01-29T08:49:32.000Z
gewittergefahr/scripts/run_echo_top_tracking.py
liuximarcus/GewitterGefahr
d819874d616f98a25187bfd3091073a2e6d5279e
[ "MIT" ]
4
2017-12-25T02:01:08.000Z
2018-12-19T01:54:21.000Z
gewittergefahr/scripts/run_echo_top_tracking.py
liuximarcus/GewitterGefahr
d819874d616f98a25187bfd3091073a2e6d5279e
[ "MIT" ]
11
2017-12-10T23:05:29.000Z
2022-01-29T08:49:33.000Z
"""Tracks storms based on echo top.""" import argparse from gewittergefahr.gg_io import myrorss_io from gewittergefahr.gg_utils import radar_utils from gewittergefahr.gg_utils import time_conversion from gewittergefahr.gg_utils import echo_top_tracking SEPARATOR_STRING = '\n\n' + '*' * 50 + '\n\n' NATIVE_ECHO_TOP_FIELD_NAMES = [ radar_utils.ECHO_TOP_18DBZ_NAME, radar_utils.ECHO_TOP_50DBZ_NAME ] RADAR_DIR_ARG_NAME = 'input_radar_dir_name' TARRED_RADAR_DIR_ARG_NAME = 'input_radar_dir_name_tarred' ECHO_CLASSIFN_DIR_ARG_NAME = 'input_echo_classifn_dir_name' FIRST_SPC_DATE_ARG_NAME = 'first_spc_date_string' LAST_SPC_DATE_ARG_NAME = 'last_spc_date_string' ECHO_TOP_FIELD_ARG_NAME = 'echo_top_field_name' MIN_ECHO_TOP_ARG_NAME = 'min_echo_top_km' MIN_SIZE_ARG_NAME = 'min_size_pixels' MIN_INTERMAX_DISTANCE_ARG_NAME = 'min_intermax_distance_metres' MAX_VELOCITY_DIFF_ARG_NAME = 'max_velocity_diff_m_s01' MAX_LINK_DISTANCE_ARG_NAME = 'max_link_distance_m_s01' OUTPUT_DIR_ARG_NAME = 'output_tracking_dir_name' RADAR_DIR_HELP_STRING = ( 'Name of top-level radar directory. Files therein will be found by ' '`echo_top_tracking._find_input_radar_files`.') TARRED_RADAR_DIR_HELP_STRING = ( '[used only if {0:s} = "{1:s}" or "{2:s}"] Name of top-level directory with' ' tarred MYRORSS files. These files will be untarred before tracking (into' ' `{3:s}`) and the untarred files will be deleted after tracking.' ).format( ECHO_TOP_FIELD_ARG_NAME, NATIVE_ECHO_TOP_FIELD_NAMES[0], NATIVE_ECHO_TOP_FIELD_NAMES[1], RADAR_DIR_ARG_NAME ) ECHO_CLASSIFN_DIR_HELP_STRING = ( 'Name of top-level directory with echo-classification files. Files therein' ' will be found by `echo_classification.find_classification_file` and read ' 'by `echo_classification.read_classifications`. Tracking will be performed' ' only on convective pixels. If you do not want to use a convective mask, ' 'leave this argument alone.') SPC_DATE_HELP_STRING = ( 'SPC date (format "yyyymmdd"). Tracking will be performed for all SPC ' 'dates in the period `{0:s}`...`{1:s}`.' ).format(FIRST_SPC_DATE_ARG_NAME, LAST_SPC_DATE_ARG_NAME) ECHO_TOP_FIELD_HELP_STRING = ( 'Name of echo-top field to use for tracking. Must be accepted by ' '`echo_top_tracking._check_radar_field`.') MIN_ECHO_TOP_HELP_STRING = ( 'Minimum echo top. Smaller values are not considered storms.') MIN_SIZE_HELP_STRING = 'Minimum storm-object size.' MIN_INTERMAX_DISTANCE_HELP_STRING = ( 'Minimum distance between any pair of local maxima at the same time. See ' '`echo_top_tracking._remove_redundant_local_maxima` for details.') MAX_VELOCITY_DIFF_HELP_STRING = ( 'Used to connect local maxima (storm objects) between times. See ' '`echo_top_tracking._link_local_maxima_in_time` for details.') MAX_LINK_DISTANCE_HELP_STRING = ( 'Used to connect local maxima (storm objects) between times. See ' '`echo_top_tracking._link_local_maxima_in_time` for details.') OUTPUT_DIR_HELP_STRING = ( 'Name of top-level output directory. Output files will be written by ' '`storm_tracking_io.write_processed_file`, to locations therein determined ' 'by `storm_tracking_io.find_processed_file`.') TARRED_RADAR_DIR_NAME_DEFAULT = '/condo/swatcommon/common/myrorss' INPUT_ARG_PARSER = argparse.ArgumentParser() INPUT_ARG_PARSER.add_argument( '--' + RADAR_DIR_ARG_NAME, type=str, required=True, help=RADAR_DIR_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + TARRED_RADAR_DIR_ARG_NAME, type=str, required=False, default=TARRED_RADAR_DIR_NAME_DEFAULT, help=TARRED_RADAR_DIR_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + ECHO_CLASSIFN_DIR_ARG_NAME, type=str, required=False, default='', help=ECHO_CLASSIFN_DIR_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + FIRST_SPC_DATE_ARG_NAME, type=str, required=True, help=SPC_DATE_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + LAST_SPC_DATE_ARG_NAME, type=str, required=True, help=SPC_DATE_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + ECHO_TOP_FIELD_ARG_NAME, type=str, required=False, default=radar_utils.ECHO_TOP_40DBZ_NAME, help=ECHO_TOP_FIELD_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + MIN_ECHO_TOP_ARG_NAME, type=float, required=False, default=4., help=MIN_ECHO_TOP_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + MIN_SIZE_ARG_NAME, type=int, required=False, default=echo_top_tracking.DEFAULT_MIN_SIZE_PIXELS, help=MIN_SIZE_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + MIN_INTERMAX_DISTANCE_ARG_NAME, type=float, required=False, default=echo_top_tracking.DEFAULT_MIN_INTERMAX_DISTANCE_METRES, help=MIN_INTERMAX_DISTANCE_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + MAX_VELOCITY_DIFF_ARG_NAME, type=float, required=False, default=echo_top_tracking.DEFAULT_MAX_VELOCITY_DIFF_M_S01, help=MAX_VELOCITY_DIFF_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + MAX_LINK_DISTANCE_ARG_NAME, type=float, required=False, default=echo_top_tracking.DEFAULT_MAX_LINK_DISTANCE_M_S01, help=MAX_LINK_DISTANCE_HELP_STRING) INPUT_ARG_PARSER.add_argument( '--' + OUTPUT_DIR_ARG_NAME, type=str, required=True, help=OUTPUT_DIR_HELP_STRING) def _run(top_radar_dir_name, top_radar_dir_name_tarred, top_echo_classifn_dir_name, first_spc_date_string, last_spc_date_string, echo_top_field_name, min_echo_top_km, min_size_pixels, min_intermax_distance_metres, max_velocity_diff_m_s01, max_link_distance_m_s01, top_output_dir_name): """Tracks storms based on echo top. This is effectively the main method. :param top_radar_dir_name: See documentation at top of file. :param top_radar_dir_name_tarred: Same. :param top_echo_classifn_dir_name: Same. :param first_spc_date_string: Same. :param last_spc_date_string: Same. :param echo_top_field_name: Same. :param min_echo_top_km: Same. :param min_size_pixels: Same. :param min_intermax_distance_metres: Same. :param max_velocity_diff_m_s01: Same. :param max_link_distance_m_s01: Same. :param top_output_dir_name: Same. """ if echo_top_field_name in NATIVE_ECHO_TOP_FIELD_NAMES: spc_date_strings = time_conversion.get_spc_dates_in_range( first_spc_date_string=first_spc_date_string, last_spc_date_string=last_spc_date_string) for this_spc_date_string in spc_date_strings: this_tar_file_name = '{0:s}/{1:s}/{2:s}.tar'.format( top_radar_dir_name_tarred, this_spc_date_string[:4], this_spc_date_string) myrorss_io.unzip_1day_tar_file( tar_file_name=this_tar_file_name, field_names=[echo_top_field_name], spc_date_string=this_spc_date_string, top_target_directory_name=top_radar_dir_name) print(SEPARATOR_STRING) if top_echo_classifn_dir_name in ['', 'None']: top_echo_classifn_dir_name = None echo_top_tracking.run_tracking( top_radar_dir_name=top_radar_dir_name, top_output_dir_name=top_output_dir_name, first_spc_date_string=first_spc_date_string, last_spc_date_string=last_spc_date_string, echo_top_field_name=echo_top_field_name, top_echo_classifn_dir_name=top_echo_classifn_dir_name, min_echo_top_km=min_echo_top_km, min_intermax_distance_metres=min_intermax_distance_metres, min_polygon_size_pixels=min_size_pixels, max_velocity_diff_m_s01=max_velocity_diff_m_s01, max_link_distance_m_s01=max_link_distance_m_s01, min_track_duration_seconds=0) print(SEPARATOR_STRING) if echo_top_field_name in NATIVE_ECHO_TOP_FIELD_NAMES: for this_spc_date_string in spc_date_strings: myrorss_io.remove_unzipped_data_1day( spc_date_string=this_spc_date_string, top_directory_name=top_radar_dir_name, field_names=[echo_top_field_name] ) if __name__ == '__main__': INPUT_ARG_OBJECT = INPUT_ARG_PARSER.parse_args() _run( top_radar_dir_name=getattr(INPUT_ARG_OBJECT, RADAR_DIR_ARG_NAME), top_radar_dir_name_tarred=getattr( INPUT_ARG_OBJECT, TARRED_RADAR_DIR_ARG_NAME), top_echo_classifn_dir_name=getattr( INPUT_ARG_OBJECT, ECHO_CLASSIFN_DIR_ARG_NAME), first_spc_date_string=getattr( INPUT_ARG_OBJECT, FIRST_SPC_DATE_ARG_NAME), last_spc_date_string=getattr(INPUT_ARG_OBJECT, LAST_SPC_DATE_ARG_NAME), echo_top_field_name=getattr(INPUT_ARG_OBJECT, ECHO_TOP_FIELD_ARG_NAME), min_echo_top_km=getattr(INPUT_ARG_OBJECT, MIN_ECHO_TOP_ARG_NAME), min_size_pixels=getattr(INPUT_ARG_OBJECT, MIN_SIZE_ARG_NAME), min_intermax_distance_metres=getattr( INPUT_ARG_OBJECT, MIN_INTERMAX_DISTANCE_ARG_NAME), max_velocity_diff_m_s01=getattr( INPUT_ARG_OBJECT, MAX_VELOCITY_DIFF_ARG_NAME), max_link_distance_m_s01=getattr( INPUT_ARG_OBJECT, MAX_LINK_DISTANCE_ARG_NAME), top_output_dir_name=getattr(INPUT_ARG_OBJECT, OUTPUT_DIR_ARG_NAME) )
40.69163
80
0.761936
78db2eb650151c9726e8651058d7cffe4555fdf0
4,792
py
Python
data/external/repositories_2to3/42139/KDDCup13Track2-master/cluster_hc.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/42139/KDDCup13Track2-master/cluster_hc.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/42139/KDDCup13Track2-master/cluster_hc.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
#!/usr/bin/env python # Given weighted graph, perform hierarchical clustering from common import * import argparse import csv import numpy as np import scipy as sp import pickle as pickle from pprint import pprint import networkx as nx from itertools import combinations, product import heapq as hq from cluster_common import * # from collections import defaultdict def getSimilarity_Average(G_sim, cl1, cl2): edge_sum = sum([G_sim[v1][v2]['weight'] for v1, v2 in product(cl1, cl2) if G_sim.has_edge(v1, v2)]) return edge_sum / float(len(cl1) * len(cl2)) def getSimilarity_AvgPresent(G_sim, cl1, cl2): edgeweights = [G_sim[v1][v2]['weight'] for v1, v2 in product(cl1, cl2) if G_sim.has_edge(v1, v2)] return sum(edgeweights) / float(len(edgeweights)) def getSimilarity_Min(G_sim, cl1, cl2): return min([G_sim[v1][v2]['weight'] for v1, v2 in product(cl1, cl2) if G_sim.has_edge(v1, v2)]) def hcluster(G_sim, threshold_sim, sim_func): sim_funcs = { 'average': getSimilarity_Average, 'avgpresent': getSimilarity_AvgPresent, 'min': getSimilarity_Min } chosen_simfunc = sim_funcs[sim_func] print_err("Finding connected components") connected_components = nx.connected_component_subgraphs(G_sim) all_clusters = [] print_err('Clustering', len(connected_components), 'components') for component_i, cc in enumerate(connected_components): print_err('Starting component', component_i+1, 'of', len(connected_components), '(V={:}, E={:})'.format(len(cc), cc.size())) if len(cc) == 2: cl = list(cc.nodes()) if cc.size(weight='weight') >= threshold_sim: all_clusters.append(cl) continue elif len(cc) < 2: continue clusters = [[v] for v in cc] removed = set() adjclusters = [set() for i in range(len(cc))] c_sim = nx.to_scipy_sparse_matrix(cc, weight='weight', format='coo') pq = [(sim, r, c) for (sim, r, c) in zip(-c_sim.data, c_sim.row, c_sim.col) if r < c] for _, r, c in pq: adjclusters[r].add(c) adjclusters[c].add(r) hq.heapify(pq) while pq: similarity, c1, c2 = hq.heappop(pq) similarity = -similarity if c1 in removed or c2 in removed: continue if similarity < threshold_sim: break # print_err(clusters[c1]) # print_err(clusters[c2]) # print_err(c1, c2, similarity) # for i, cl in enumerate(clusters): # if i not in removed: # print_err(i, cl) # print_err("--") clusters.append(clusters[c1] + clusters[c2]) removed.add(c1) removed.add(c2) toremove = set([c1, c2]) adjclusters.append((adjclusters[c1] | adjclusters[c2]) - toremove) for nc in adjclusters[-1]: if nc in removed: continue adjclusters[nc] -= toremove adjclusters[nc].add(len(clusters)-1) nsim = chosen_simfunc(G_sim, clusters[-1], clusters[nc]) if nsim >= threshold_sim: hq.heappush(pq, (-nsim, len(clusters)-1, nc)) # else: # print_err("Not merged:") # print_err(len(clusters)-1, clusters[len(clusters)-1]) # print_err(nc, clusters[nc]) # print_err(len(clusters)-1, nc, nsim) # print_err("----") all_clusters.extend([cl for i, cl in enumerate(clusters) if i not in removed and len(cl) > 1]) return sorted(all_clusters, key=len, reverse=True) def main(): parser = argparse.ArgumentParser() parser.add_argument('edgelist') parser.add_argument('outfile', nargs='?') parser.add_argument('-t', '--interconnectivity', default=0.83, type=float) parser.add_argument('-d', '--density', default=0.83, type=float) parser.add_argument('-m', '--min-edge', default=0.05, type=float) parser.add_argument('-l', '--linkage', default='average') parser.add_argument('-a', '--authorprefeat', default='generated/Author_prefeat.pickle') args = parser.parse_args() if args.outfile == None: args.outfile = args.edgelist.replace('.prob','') + '.clusters' threshold_min_weight = args.min_edge threshold_interconnectivity = args.interconnectivity threshold_density = args.density print_err("Loading graph") G_sim = nx.read_weighted_edgelist(enforce_min(skip_comments(open(args.edgelist, 'rb')), threshold_min_weight), nodetype=int, delimiter=',') print_err('Loaded (V={:}, E={:})'.format(len(G_sim), G_sim.size())) print_err("Clustering") clusters = hcluster(G_sim, threshold_interconnectivity, args.linkage) print_err("Writing clusters") G_nsim = nx.read_weighted_edgelist(skip_comments(open(args.edgelist, 'rb')), nodetype=int, delimiter=',') print_err("Loading pickled author pre-features") authors = pickle.load(open(args.authorprefeat, 'rb')) outputClusters(clusters, open(args.outfile, 'wb'), G_nsim, authors, threshold_density) if __name__ == "__main__": main()
37.4375
141
0.679466
7790d490a481d17a059a7dfee406a3429d42670d
2,273
py
Python
rqalpha/mod/rqalpha_mod_sys_transaction_cost/__init__.py
meteor27/alpha_mod
4f7f0edf8338451a69f177058ec80766d846769e
[ "Apache-2.0" ]
null
null
null
rqalpha/mod/rqalpha_mod_sys_transaction_cost/__init__.py
meteor27/alpha_mod
4f7f0edf8338451a69f177058ec80766d846769e
[ "Apache-2.0" ]
2
2021-01-25T09:49:55.000Z
2021-01-25T09:50:37.000Z
rqalpha/mod/rqalpha_mod_sys_transaction_cost/__init__.py
meteor27/alpha_mod
4f7f0edf8338451a69f177058ec80766d846769e
[ "Apache-2.0" ]
2
2021-01-10T10:35:13.000Z
2021-01-10T10:43:13.000Z
# -*- coding: utf-8 -*- # 版权所有 2019 深圳米筐科技有限公司(下称“米筐科技”) # # 除非遵守当前许可,否则不得使用本软件。 # # * 非商业用途(非商业用途指个人出于非商业目的使用本软件,或者高校、研究所等非营利机构出于教育、科研等目的使用本软件): # 遵守 Apache License 2.0(下称“Apache 2.0 许可”),您可以在以下位置获得 Apache 2.0 许可的副本:http://www.apache.org/licenses/LICENSE-2.0。 # 除非法律有要求或以书面形式达成协议,否则本软件分发时需保持当前许可“原样”不变,且不得附加任何条件。 # # * 商业用途(商业用途指个人出于任何商业目的使用本软件,或者法人或其他组织出于任何目的使用本软件): # 未经米筐科技授权,任何个人不得出于任何商业目的使用本软件(包括但不限于向第三方提供、销售、出租、出借、转让本软件、本软件的衍生产品、引用或借鉴了本软件功能或源代码的产品或服务),任何法人或其他组织不得出于任何目的使用本软件,否则米筐科技有权追究相应的知识产权侵权责任。 # 在此前提下,对本软件的使用同样需要遵守 Apache 2.0 许可,Apache 2.0 许可与本许可冲突之处,以本许可为准。 # 详细的授权流程,请联系 [email protected] 获取。 import click from rqalpha import cli __config__ = { # A股最小手续费 "cn_stock_min_commission": 5, # 港股最小手续费 "hk_stock_min_commission": 50, # 设置手续费乘数,默认为1 "commission_multiplier": 1, # 印花税乘数,默认为1 "tax_multiplier": 1, } cli_prefix = "mod__sys_transaction_cost__" cli.commands['run'].params.append( click.Option( ('-cm', '--commission-multiplier', cli_prefix + "commission_multiplier"), type=click.FLOAT, help="[sys_simulation] set commission multiplier" ) ) cli.commands['run'].params.append( click.Option( ('-cnsmc', '--cn-stock-min-commission', cli_prefix + 'cn_stock_min_commission'), type=click.FLOAT, help="[sys_simulation] set minimum commission in chinese stock trades." ) ) cli.commands['run'].params.append( click.Option( ('-hksmc', '--hk-stock-min-commission', cli_prefix + 'hk_stock_min_commission'), type=click.FLOAT, help="[sys_simulation] set minimum commission in Hong Kong stock trades." ) ) # [deprecated] cli.commands['run'].params.append( click.Option( ('-smc', '--stock-min-commission', cli_prefix + 'cn_stock_min_commission'), type=click.FLOAT, help="[sys_simulation][deprecated] set minimum commission in chinese stock trades." ) ) cli.commands['run'].params.append( click.Option( ('-tm', '--tax-multiplier', cli_prefix + "tax_multiplier"), type=click.FLOAT, help="[sys_simulation] set tax multiplier" ) ) def load_mod(): from .mod import TransactionCostMod return TransactionCostMod()
28.4125
144
0.673999
2fe877dd963542ab459cce83de295fce0d921eab
453
py
Python
src/ucis/scdb/scdb_scope.py
furiosa-ai/pyucis
233277abf5a86e1158ae2cc09d91152ca9f1e517
[ "Apache-2.0" ]
16
2020-03-25T21:31:49.000Z
2022-01-18T22:34:05.000Z
src/ucis/scdb/scdb_scope.py
furiosa-ai/pyucis
233277abf5a86e1158ae2cc09d91152ca9f1e517
[ "Apache-2.0" ]
4
2020-01-05T00:26:00.000Z
2022-01-27T07:44:06.000Z
src/ucis/scdb/scdb_scope.py
furiosa-ai/pyucis
233277abf5a86e1158ae2cc09d91152ca9f1e517
[ "Apache-2.0" ]
4
2019-12-23T06:23:11.000Z
2022-01-09T07:41:32.000Z
''' Created on Mar 25, 2020 @author: ballance ''' from ucis.scope import Scope from ucis.source_info import SourceInfo class SCDBScope(Scope): def __init__(self): Scope.__init__(self) pass def createScope(self, name:str, srcinfo:SourceInfo, weight:int, source, type, flags)->Scope: Scope.createScope(self, name, srcinfo, weight, source, type, flags)
18.875
75
0.593819
2e61fa89ecb45046b2800e940389c95f899ca6cc
21,796
py
Python
cisco_aci/tests/test_capacity.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
null
null
null
cisco_aci/tests/test_capacity.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
null
null
null
cisco_aci/tests/test_capacity.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2010-2018 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import os import pytest import logging import simplejson as json from requests import Session from datadog_checks.cisco_aci.api import SessionWrapper, Api from datadog_checks.cisco_aci.capacity import Capacity from datadog_checks.cisco_aci import CiscoACICheck from datadog_checks.utils.containers import hash_mutable import conftest from .common import FIXTURE_LIST_FILE_MAP log = logging.getLogger('test_cisco_aci') class ApiMock: def __init__(self): pass def get_eqpt_capacity(self, eqpt): return [ {}, { 'other': {} }, { 'attributes': {} }, { 'attributes': {"other": "other"} }, { 'attributes': {"other": "other"}, "children": [] }, { 'attributes': {"dn": "/pod-3/node-4/"}, "children": [] }, { 'attributes': { "dn": "/pod-1/node-2/" }, "children": [ {"eqptcapacityL3TotalUsageCap5min": {"attributes": { "v4TotalEpCapCum": "1", "v6TotalEpCapCum": "2" }}}, {"eqptcapacityL3TotalUsage5min": {"attributes": { "v4TotalEpCum": "3", "v6TotalEpCum": "4" }}}, {"eqptcapacityVlanUsage5min": {"attributes": { "totalCapCum": "5", "totalCum": "6" }}}, {"eqptcapacityPolUsage5min": {"attributes": { "polUsageCapCum": "7", "polUsageCum": "8" }}}, {"eqptcapacityMcastUsage5min": {"attributes": { "localEpCapCum": "9", "localEpCum": "10" }}}, {"other": ""}, ] } ] def get_capacity_contexts(self, context): return [ {}, {"other": {}}, {"ctxClassCnt": {"attributes": {}}}, {"ctxClassCnt": {"other": {}}}, { "ctxClassCnt": { "attributes": { "other": "other", } } }, { "ctxClassCnt": { "attributes": { "dn": "/pod-3/node-4/", } } }, { "ctxClassCnt": { "attributes": { "count": "666", "dn": "/pod-1/node-2/", "other": "other" } } } ] def get_apic_capacity_limits(self): return [ {}, {"other": {}}, {"fvcapRule": {}}, {"fvcapRule": {"other": {}}}, {"fvcapRule": {"attributes": {}}}, {"fvcapRule": {"attributes": {"constraint": "100"}}}, { "fvcapRule": { "attributes": { "subj": "subj1", } } }, { "fvcapRule": { "attributes": { "subj": "fabricNode", } } }, { "fvcapRule": { "attributes": { "constraint": "1", "subj": "vzBrCP", } } }, { "fvcapRule": { "attributes": { "constraint": "2.0", "subj": "fvTenant", } } }, { "fvcapRule": { "attributes": { "constraint": "3", "subj": "fvCEp", } } }, { "fvcapRule": { "attributes": { "constraint": "4", "subj": "plannerAzureDomainTmpl", } } }, { "fvcapRule": { "attributes": { "constraint": "5", "subj": "fvCtx", } } }, { "fvcapRule": { "attributes": { "constraint": "6", "subj": "plannerAzureDomainTmpl", } } }, { "fvcapRule": { "attributes": { "constraint": "7", "subj": "plannerAzureDomain", } } }, { "fvcapRule": { "attributes": { "constraint": "8", "subj": "vnsGraphInst", } } }, { "fvcapRule": { "attributes": { "constraint": "9", "subj": "fvBD", } } }, { "fvcapRule": { "attributes": { "constraint": "10", "subj": "fvAEPg", } } }, { "fvcapRule": { "attributes": { "constraint": "11", "subj": "plannerVmwareDomain", } } } ] def get_apic_capacity_metrics(self, capacity_metric, query=None): return [ {}, {"other": {}}, {"moCount": {}}, {"moCount": {"other": {}}}, {"moCount": {"attributes": {}}}, {"moCount": {"attributes": {"count": "666"}}} ] def test_get_eqpt_capacity(aggregator): check = CiscoACICheck(conftest.CHECK_NAME, {}, {}) api = ApiMock() capacity = Capacity(api, instance={"tags": ["user_tag:1", "utag:2"]}, check_tags=["check_tag:1", "ctag:2"], gauge=check.gauge, log=check.log) capacity._get_eqpt_capacity() tags = ['fabric_pod_id:1', 'node_id:2', 'check_tag:1', 'ctag:2', 'user_tag:1', 'utag:2'] hn = 'pod-1-node-2' aggregator.assert_metric('cisco_aci.capacity.leaf.policy_cam.utilized', value=8.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.vlan.limit', value=5.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.ipv6_endpoint.limit', value=2.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.policy_cam.limit', value=7.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.ipv4_endpoint.limit', value=1.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.ipv6_endpoint.utilized', value=4.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.vlan.utilized', value=6.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.multicast.limit', value=9.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.multicast.utilized', value=10.0, tags=tags, hostname=hn, count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.ipv4_endpoint.utilized', value=3.0, tags=tags, hostname=hn, count=1) # Assert coverage for this check on this instance aggregator.assert_all_metrics_covered() def test_get_contexts(aggregator): check = CiscoACICheck(conftest.CHECK_NAME, {}, {}) api = ApiMock() capacity = Capacity(api, instance={"tags": ["user_tag:1", "utag:2"]}, check_tags=["check_tag:1", "ctag:2"], gauge=check.gauge, log=check.log) capacity._get_contexts() tags = ['check_tag:1', 'ctag:2', 'user_tag:1', 'utag:2'] aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.utilized', value=666.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2', count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.utilized', value=666.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2', count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2', count=1) aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.utilized', value=666.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.limit', value=800.0, tags=['fabric_pod_id:1', 'node_id:2'] + tags, hostname='pod-1-node-2', count=1) # Assert coverage for this check on this instance aggregator.assert_all_metrics_covered() def test_get_apic_capacity_limits(aggregator): check = CiscoACICheck(conftest.CHECK_NAME, {}, {}) api = ApiMock() capacity = Capacity(api, instance={"tags": ["user_tag:1", "utag:2"]}, check_tags=["check_tag:1", "ctag:2"], gauge=check.gauge, log=check.log) capacity._get_apic_capacity_limits() tags = ['check_tag:1', 'ctag:2', 'user_tag:1', 'utag:2'] aggregator.assert_metric('cisco_aci.capacity.apic.tenant.limit', value=2.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.service_graph.limit', value=8.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.bridge_domain.limit', value=9.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.azure_domain.endpoint_group.limit', value=7.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.vmware_domain.endpoint_group.limit', value=11.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.fabric_node.limit', value=0.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.contract.limit', value=1.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.azure_domain.limit', value=4.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.azure_domain.limit', value=6.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.endpoint_group.limit', value=10.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.private_network.limit', value=5.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.endpoint.limit', value=3.0, tags=tags, hostname='', count=1) # Assert coverage for this check on this instance aggregator.assert_all_metrics_covered() def test_get_apic_capacity_metrics(aggregator): check = CiscoACICheck(conftest.CHECK_NAME, {}, {}) api = ApiMock() capacity = Capacity(api, instance={"tags": ["user_tag:1", "utag:2"]}, check_tags=["check_tag:1", "ctag:2"], gauge=check.gauge, log=check.log) capacity._get_apic_capacity_metrics() tags = ['check_tag:1', 'ctag:2', 'user_tag:1', 'utag:2'] aggregator.assert_metric('cisco_aci.capacity.apic.endpoint.utilized', value=666.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.bridge_domain.utilized', value=666.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.tenant.utilized', value=666.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.private_network.utilized', value=666.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.endpoint_group.utilized', value=666.0, tags=tags, hostname='', count=1) aggregator.assert_metric('cisco_aci.capacity.apic.fabric_node.utilized', value=6.0, tags=tags, hostname='', count=1) # Assert coverage for this check on this instance aggregator.assert_all_metrics_covered() class FakeSess(SessionWrapper): """ This mock: 1. Takes the requested path and replace all special characters to underscore 2. Fetch the corresponding hash from FIXTURE_LIST_FILE_MAP 3. Returns the corresponding file content """ def make_request(self, path): mock_path = path.replace('/', '_') mock_path = mock_path.replace('?', '_') mock_path = mock_path.replace('&', '_') mock_path = mock_path.replace('=', '_') mock_path = mock_path.replace(',', '_') mock_path = mock_path.replace('-', '_') mock_path = mock_path.replace('.', '_') mock_path = mock_path.replace('"', '_') mock_path = mock_path.replace('(', '_') mock_path = mock_path.replace(')', '_') mock_path = mock_path.replace('[', '_') mock_path = mock_path.replace(']', '_') mock_path = mock_path.replace('|', '_') try: mock_path = FIXTURE_LIST_FILE_MAP[mock_path] mock_path = os.path.join(conftest.CAPACITY_FIXTURES_DIR, mock_path) mock_path += '.txt' log.info(os.listdir(conftest.CAPACITY_FIXTURES_DIR)) with open(mock_path, 'r') as f: return json.loads(f.read()) except Exception: return {"imdata": []} @pytest.fixture def session_mock(): session = Session() setattr(session, 'send', conftest.mock_send) fake_session_wrapper = FakeSess(conftest.ACI_URL, session, 'cookie') return fake_session_wrapper def test_capacity_end_to_end(aggregator, session_mock): check = CiscoACICheck(conftest.CHECK_NAME, {}, {}) api = Api(conftest.ACI_URLS, conftest.USERNAME, password=conftest.PASSWORD, log=check.log, sessions=[session_mock]) api._refresh_sessions = False check._api_cache[hash_mutable(conftest.CONFIG_WITH_TAGS)] = api check.check(conftest.CONFIG_WITH_TAGS) tags = ['cisco', 'project:cisco_aci'] aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.utilized', value=44.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.utilized', value=1.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.utilized', value=1.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.utilized', value=34.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.endpoint_group.utilized', value=205.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.private_network.utilized', value=85.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.bridge_domain.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.tenant.utilized', value=90.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.utilized', value=94.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.utilized', value=0.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.utilized', value=0.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.utilized', value=78.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.endpoint_group.limit', value=15000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.endpoint_group.limit', value=3500.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.endpoint.limit', value=180000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.endpoint.utilized', value=76.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.bridge_domain.utilized', value=154.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.vmware_domain.limit', value=5.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.private_network.limit', value=3000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.utilized', value=32.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.utilized', value=4.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.utilized', value=4.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.utilized', value=27.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.contract.limit', value=1000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.azure_domain.endpoint_group.limit', value=9000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.fabric_node.limit', value=200.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.bridge_domain.limit', value=15000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.fabric_node.utilized', value=2.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.tenant.limit', value=3000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.limit', value=800.0, tags=['fabric_pod_id:1', 'node_id:101'] + tags, hostname='pod-1-node-101') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.limit', value=800.0, tags=['fabric_pod_id:1', 'node_id:201'] + tags, hostname='pod-1-node-201') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.limit', value=800.0, tags=['fabric_pod_id:1', 'node_id:202'] + tags, hostname='pod-1-node-202') aggregator.assert_metric('cisco_aci.capacity.leaf.vrf.limit', value=800.0, tags=['fabric_pod_id:1', 'node_id:102'] + tags, hostname='pod-1-node-102') aggregator.assert_metric('cisco_aci.capacity.apic.vmware_domain.endpoint_group.limit', value=15000.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.azure_domain.limit', value=5.0, tags=tags, hostname='') aggregator.assert_metric('cisco_aci.capacity.apic.service_graph.limit', value=600.0, tags=tags, hostname='')
49.762557
120
0.562901
99051d771d01044fe34af1853799adb6c3943988
3,051
py
Python
matrixprofile/algorithms/mpx.py
KSaiRahul21/matrixprofile
d8250e30d90ed0453bb7c35bb34ab0c04ae7b334
[ "Apache-2.0" ]
null
null
null
matrixprofile/algorithms/mpx.py
KSaiRahul21/matrixprofile
d8250e30d90ed0453bb7c35bb34ab0c04ae7b334
[ "Apache-2.0" ]
null
null
null
matrixprofile/algorithms/mpx.py
KSaiRahul21/matrixprofile
d8250e30d90ed0453bb7c35bb34ab0c04ae7b334
[ "Apache-2.0" ]
1
2020-04-10T19:15:17.000Z
2020-04-10T19:15:17.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals range = getattr(__builtins__, 'xrange', range) # end of py2 compatability boilerplate import math import numpy as np from matrixprofile import core from matrixprofile.algorithms.cympx import mpx_parallel as cympx_parallel from matrixprofile.algorithms.cympx import mpx_ab_parallel as cympx_ab_parallel def mpx(ts, w, query=None, cross_correlation=False, n_jobs=1): """ The MPX algorithm computes the matrix profile without using the FFT. Parameters ---------- ts : array_like The time series to compute the matrix profile for. w : int The window size. query : array_like Optionally a query series. cross_correlation : bool, Default=False Setermine if cross_correlation distance should be returned. It defaults to Euclidean Distance. n_jobs : int, Default = 1 Number of cpu cores to use. Returns ------- dict : profile A MatrixProfile data structure. >>> { >>> 'mp': The matrix profile, >>> 'pi': The matrix profile 1NN indices, >>> 'rmp': The right matrix profile, >>> 'rpi': The right matrix profile 1NN indices, >>> 'lmp': The left matrix profile, >>> 'lpi': The left matrix profile 1NN indices, >>> 'metric': The distance metric computed for the mp, >>> 'w': The window size used to compute the matrix profile, >>> 'ez': The exclusion zone used, >>> 'join': Flag indicating if a similarity join was computed, >>> 'sample_pct': Percentage of samples used in computing the MP, >>> 'data': { >>> 'ts': Time series data, >>> 'query': Query data if supplied >>> } >>> 'class': "MatrixProfile" >>> 'algorithm': "mpx" >>> } """ ts = core.to_np_array(ts).astype('d') n_jobs = core.valid_n_jobs(n_jobs) is_join = False if core.is_array_like(query): query = core.to_np_array(query).astype('d') is_join = True mp, mpi, mpb, mpib = cympx_ab_parallel(ts, query, w, int(cross_correlation), n_jobs) else: mp, mpi = cympx_parallel(ts, w, int(cross_correlation), n_jobs) mp = np.asarray(mp) mpi = np.asarray(mpi) distance_metric = 'euclidean' if cross_correlation: distance_metric = 'cross_correlation' return { 'mp': mp, 'pi': mpi, 'rmp': None, 'rpi': None, 'lmp': None, 'lpi': None, 'metric': distance_metric, 'w': w, 'ez': int(np.floor(w / 4)), 'join': is_join, 'sample_pct': 1, 'data': { 'ts': ts, 'query': query }, 'class': 'MatrixProfile', 'algorithm': 'mpx' }
29.911765
79
0.579154
a626250de91365f58cfe051b4944c144f5e92339
871
py
Python
graphics/density.py
tman540/probability-simulator
c3bc679d1f77fd751bc981734583bdc017290aef
[ "MIT" ]
null
null
null
graphics/density.py
tman540/probability-simulator
c3bc679d1f77fd751bc981734583bdc017290aef
[ "MIT" ]
null
null
null
graphics/density.py
tman540/probability-simulator
c3bc679d1f77fd751bc981734583bdc017290aef
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import matplotlib.style as style # Set theme of graph style.use('ggplot') def heatmap(data): # Define separate lists for x and y x, y = [], [] # Separate the x and the y for point in data: x.append(point[0]) y.append(point[1]) # Define the color map jet = plt.get_cmap('jet') # Set the x and the y label plt.xlabel("x", fontsize=5) plt.ylabel("y", fontsize=5) # Set the title and the window title of the graph plt.title("Heatmap of thrown darts") plt.gcf().canvas.set_window_title("Heatmap of thrown darts") # Define the 2d histogram using the the x,y as arguments. # THe bins are the size blocks, cmap is the color mapping plt.hist2d(x, y, bins=(10, 10), cmap=jet) # Display the graph plt.show() # todo: Return plot for saving command in shell
27.21875
64
0.647532
9c699c988522045cdf0f46825a21b7560d6deb81
1,774
py
Python
src/m6e_grid_layout.py
colledkm/24-Tkinter
4a900678902bf5d51d7df5e49cfb83262de742e6
[ "MIT" ]
null
null
null
src/m6e_grid_layout.py
colledkm/24-Tkinter
4a900678902bf5d51d7df5e49cfb83262de742e6
[ "MIT" ]
null
null
null
src/m6e_grid_layout.py
colledkm/24-Tkinter
4a900678902bf5d51d7df5e49cfb83262de742e6
[ "MIT" ]
97
2019-01-31T13:03:14.000Z
2019-02-04T18:42:49.000Z
""" Example showing for tkinter and ttk: -- How to layout objects using a grid of rows and columns. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Mark Hays, Amanda Stouder, Aaron Wilkin, their colleagues, and PUT_YOUR_NAME_HERE. """ # TODO: 1. PUT YOUR NAME IN THE ABOVE LINE. import tkinter from tkinter import ttk def main(): root = tkinter.Tk() frame = ttk.Frame(root, padding=10) frame.grid() # ------------------------------------------------------------------------- # This example puts the widgets in a 3-column, 2-row grid # with some of the grid-places empty. Here are the WIDGETS: # ------------------------------------------------------------------------- label = ttk.Label(frame, text="Example of gridding\nrows and columns") entry_box = ttk.Entry(frame) button1 = ttk.Button(frame, text="Do you like\nyour button HERE?") button1['command'] = (lambda: print('Do you like green eggs and ham, Sam?')) button2 = ttk.Button(frame, text="or HERE?") button2['command'] = (lambda: print("I DO like green eggs and ham, Sam I am!")) # ------------------------------------------------------------------------- # Here is the use of GRID with rows and columns: # ------------------------------------------------------------------------- label.grid(row=0, column=0) entry_box.grid(row=0, column=1) button1.grid(row=0, column=2) button2.grid(row=1, column=1) root.mainloop() # ----------------------------------------------------------------------------- # Calls main to start the ball rolling. # ----------------------------------------------------------------------------- main()
34.784314
79
0.468997
3357437eb4b1662ee121c3fe3c9ab5a2bb9e3cab
6,552
py
Python
tests/test_serialization.py
foobarbazmeow/marshmallow-recipe
5bce8abd5db1abec4d60cfa2cd1428c6c5738566
[ "MIT" ]
null
null
null
tests/test_serialization.py
foobarbazmeow/marshmallow-recipe
5bce8abd5db1abec4d60cfa2cd1428c6c5738566
[ "MIT" ]
null
null
null
tests/test_serialization.py
foobarbazmeow/marshmallow-recipe
5bce8abd5db1abec4d60cfa2cd1428c6c5738566
[ "MIT" ]
null
null
null
import dataclasses import datetime import decimal import uuid from typing import Any, cast import marshmallow as m import pytest import marshmallow_recipe as mr def test_simple_types() -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class SimpleTypesContainers: str_field: str optional_str_field: str | None bool_field: bool optional_bool_field: bool | None decimal_field: decimal.Decimal optional_decimal_field: decimal.Decimal | None int_field: int optional_int_field: int | None float_field: float optional_float_field: float | None uuid_field: uuid.UUID optional_uuid_field: uuid.UUID | None datetime_field: datetime.datetime optional_datetime_field: datetime.datetime | None date_field: datetime.date optional_date_field: datetime.date | None dict_field: dict[str, Any] optional_dict_field: dict[str, Any] | None raw = dict( str_field="42", optional_str_field="42", bool_field=True, optional_bool_field=True, decimal_field="42.00", optional_decimal_field="42.00", int_field=42, optional_int_field=42, float_field=42.0, optional_float_field=42.0, uuid_field="15f75b02-1c34-46a2-92a5-18363aadea05", optional_uuid_field="15f75b02-1c34-46a2-92a5-18363aadea05", datetime_field="2022-02-20T11:33:48.607289+00:00", optional_datetime_field="2022-02-20T11:33:48.607289+00:00", date_field="2022-02-20", optional_date_field="2022-02-20", dict_field=dict(key="value"), optional_dict_field=dict(key="value"), ) loaded = mr.load(SimpleTypesContainers, raw) dumped = mr.dump(loaded) assert loaded == SimpleTypesContainers( str_field="42", optional_str_field="42", bool_field=True, optional_bool_field=True, decimal_field=decimal.Decimal("42.00"), optional_decimal_field=decimal.Decimal("42.00"), int_field=42, optional_int_field=42, float_field=42.0, optional_float_field=42.0, uuid_field=uuid.UUID("15f75b02-1c34-46a2-92a5-18363aadea05"), optional_uuid_field=uuid.UUID("15f75b02-1c34-46a2-92a5-18363aadea05"), datetime_field=datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, datetime.timezone.utc), optional_datetime_field=datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, datetime.timezone.utc), date_field=datetime.date(2022, 2, 20), optional_date_field=datetime.date(2022, 2, 20), dict_field=dict(key="value"), optional_dict_field=dict(key="value"), ) assert dumped == raw assert mr.schema(SimpleTypesContainers) is mr.schema(SimpleTypesContainers) def test_nested_dataclass() -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class BoolContainer: bool_field: bool @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class Container: bool_container_field: BoolContainer raw = dict(bool_container_field=dict(bool_field=True)) loaded = mr.load(Container, raw) dumped = mr.dump(loaded) assert loaded == Container(bool_container_field=BoolContainer(bool_field=True)) assert dumped == raw assert mr.schema(Container) is mr.schema(Container) def test_custom_name() -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class BoolContainer: bool_field: bool = dataclasses.field(metadata=mr.metadata(name="BoolField")) raw = dict(BoolField=False) loaded = mr.load(BoolContainer, raw) dumped = mr.dump(loaded) assert loaded == BoolContainer(bool_field=False) assert dumped == raw assert mr.schema(BoolContainer) is mr.schema(BoolContainer) def test_unknown_field() -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class BoolContainer: bool_field: bool loaded = mr.load(BoolContainer, dict(bool_field=True, int_field=42)) dumped = mr.dump(loaded) assert loaded == BoolContainer(bool_field=True) assert dumped == dict(bool_field=True) assert mr.schema(BoolContainer) is mr.schema(BoolContainer) @pytest.mark.parametrize( "raw, dt", [ ("2022-02-20T11:33:48.607289+00:00", datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, datetime.timezone.utc)), ("2022-02-20T11:33:48.607289", datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, datetime.timezone.utc)), ], ) def test_datetime_field_load(raw: str, dt: datetime.datetime) -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class DateTimeContainer: datetime_field: datetime.datetime loaded = mr.load(DateTimeContainer, dict(datetime_field=raw)) assert loaded == DateTimeContainer(datetime_field=dt) @pytest.mark.parametrize( "dt, raw", [ (datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, datetime.timezone.utc), "2022-02-20T11:33:48.607289+00:00"), (datetime.datetime(2022, 2, 20, 11, 33, 48, 607289, None), "2022-02-20T11:33:48.607289+00:00"), ], ) def test_datetime_field_dump(dt: datetime.datetime, raw: str) -> None: @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class DateTimeContainer: datetime_field: datetime.datetime dumped = mr.dump(DateTimeContainer(datetime_field=dt)) assert dumped == dict(datetime_field=raw) @pytest.mark.skip("Bug in marshmallow") def test_dump_invalid_int_value(): @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class IntContainer: int_field: int with pytest.raises(m.ValidationError): mr.dump(IntContainer(int_field=cast(int, "invalid"))) def test_dump_invalid_value(): @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class UUIDContainer: uuid_field: uuid.UUID with pytest.raises(m.ValidationError) as exc_info: mr.dump(UUIDContainer(uuid_field=cast(uuid.UUID, "invalid"))) assert exc_info.value.messages == {"uuid_field": ["Not a valid UUID."]} def test_dump_many_invalid_value(): @dataclasses.dataclass(frozen=True, slots=True, kw_only=True) class UUIDContainer: uuid_field: uuid.UUID with pytest.raises(m.ValidationError) as exc_info: mr.dump_many([UUIDContainer(uuid_field=cast(uuid.UUID, "invalid"))]) assert exc_info.value.messages == {0: {"uuid_field": ["Not a valid UUID."]}}
33.773196
120
0.688797
8d4b883cfecb3e2c64a2b6e0276c301f23f699fe
2,525
py
Python
src/oci/os_management/models/change_scheduled_job_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/os_management/models/change_scheduled_job_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/os_management/models/change_scheduled_job_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ChangeScheduledJobCompartmentDetails(object): """ Compartment id for a scheduled job """ def __init__(self, **kwargs): """ Initializes a new ChangeScheduledJobCompartmentDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this ChangeScheduledJobCompartmentDetails. :type compartment_id: str """ self.swagger_types = { 'compartment_id': 'str' } self.attribute_map = { 'compartment_id': 'compartmentId' } self._compartment_id = None @property def compartment_id(self): """ Gets the compartment_id of this ChangeScheduledJobCompartmentDetails. The `OCID`__ of the compartment into which the resource should be moved. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The compartment_id of this ChangeScheduledJobCompartmentDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this ChangeScheduledJobCompartmentDetails. The `OCID`__ of the compartment into which the resource should be moved. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this ChangeScheduledJobCompartmentDetails. :type: str """ self._compartment_id = compartment_id def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
32.792208
245
0.689505
9c4b5297fa20d93766f9d0b3cbb1674a32b9d5fa
8,307
py
Python
typeclasses/readable/readable_commands.py
sgsabbage/arxcode
ff1587721f9896062ffdcaf008dcd842baaec5d2
[ "MIT" ]
42
2018-08-12T00:55:24.000Z
2021-12-24T15:16:08.000Z
typeclasses/readable/readable_commands.py
sgsabbage/arxcode
ff1587721f9896062ffdcaf008dcd842baaec5d2
[ "MIT" ]
312
2018-10-22T23:03:27.000Z
2022-02-06T13:02:58.000Z
typeclasses/readable/readable_commands.py
sgsabbage/arxcode
ff1587721f9896062ffdcaf008dcd842baaec5d2
[ "MIT" ]
42
2018-08-12T00:41:48.000Z
2022-01-27T14:03:16.000Z
from commands.base import ArxCommand from evennia.utils.ansi import parse_ansi from server.utils.arx_utils import sub_old_ansi from typeclasses.readable.exceptions import ChapterNotFoundError, AddChapterError from world.templates.exceptions import AlreadySignedError from server.utils import arx_more from world.templates.models import WrittenWork from evennia.commands.cmdset import CmdSet from evennia.utils.evtable import EvTable class WriteCmdSet(CmdSet): key = "WriteCmd" priority = 0 duplicates = True def at_cmdset_creation(self): """Init the cmdset""" self.add(CmdWrite()) self.add(CmdRead()) class SignCmdSet(CmdSet): key = "SignCmd" priority = 0 duplicates = True def at_cmdset_creation(self): self.add(CmdSign()) class CmdSign(ArxCommand): """ Signs a document Usage: sign <chapter> Places your signature on a document. """ key = "sign" locks = "cmd:all()" def func(self): try: caller = self.caller obj = self.obj chapter = obj.get_chapter(self.args) chapter.add_signature(self.caller) caller.msg("You sign your name on %s." % obj.name) except (ChapterNotFoundError, AlreadySignedError) as err: self.msg(err) class CmdWrite(ArxCommand): """ Write a story that can be recorded on a scroll/book/letter. Usage: write[/body] <story> write/title <title> write/proof write/language <language> write/finish write/listworks [<story ID>] write/record <book>=<new book name> write/add <book name>=<story ID>,<chapter number> Writes stories that you can then add as chapters to a book object, which can then be read with the 'read' command. To write a story, use write/title to name the story, 'write' to add the story's content, and then write/finish to create it. To set the language of the story to be something other than the default, use write/language to specify it. To add stories to a book, first name the book with write/record, then add chapters with write/add. For example, to rename 'a scroll' to 'Furen's Book of Wisdom', use 'write/record Furen's Book of Wisdom'. Once a book has chapters added to it, its name may no longer be changed. """ key = "write" locks = "cmd:all()" story_switches = ("title", "proof", "language", "finish", "body") book_switches = ("record", "add") work_switches = ("listworks",) @property def draft(self): if self.caller.ndb.story_draft is None: self.caller.ndb.story_draft = WrittenWork() return self.caller.ndb.story_draft def display(self): msg = f"|wTitle:|n {self.draft.colored_title}\n" lang_string = "" if self.draft.language: lang_string = f" |w(Written in |c{self.draft.language.capitalize()}|w)|n" msg += f"|wBody{lang_string}:|n\n{self.draft.body}" return msg def func(self): """Look for object in inventory that matches args to wear""" try: if not self.switches or self.check_switches(self.story_switches): return self.do_story_switches() if self.check_switches(self.book_switches): return self.do_book_switches() if self.check_switches(self.work_switches): return self.do_work_switches() raise self.error_class("Unrecognized syntax for write.") except (self.error_class, AddChapterError) as err: self.msg(err) def do_story_switches(self): if not self.args and not self.switches: self.switches.append("proof") if not self.switches or "body" in self.switches: self.draft.body = self.args if "title" in self.switches: title = sub_old_ansi(self.args) raw_title = parse_ansi(title, strip_ansi=True) if WrittenWork.objects.filter(title__iexact=raw_title).exists(): raise self.error_class( "Sorry, a written work already exists with that title. " "Try adding a number, (eg: 'Part II')." ) self.draft.colored_title = title self.draft.title = raw_title if "language" in self.switches: lhs = self.lhs.lower() if lhs and lhs not in self.caller.languages.known_languages: self.msg("You cannot speak that language.") return self.draft.language = lhs if "finish" in self.switches: title = self.draft.title colored_title = self.draft.colored_title body = self.draft.body lang = self.draft.language or "" if not title: raise self.error_class("Still needs a title set.") if not body: raise self.error_class("Still needs a body set.") story = self.caller.authored_works.create( title=title, body=body, language=lang, colored_title=colored_title ) self.msg( f"You have created '{story}' (#{story.id}). Use |cwrite/add|n " f"to add it as a chapter to a book." ) del self.caller.ndb.story_draft return # "proof" switch and others fall down to here, to display progress self.msg(self.display(), options={"box": True}) def do_book_switches(self): obj = self.search(self.lhs) if not obj: return try: is_named = obj.has_been_named except AttributeError: raise self.error_class(f"{obj} is not a book.") if "record" in self.switches: if is_named: raise self.error_class(f"'{obj}' has already been named.") obj.set_book_name(self.caller, self.rhs) self.msg(f"You have set the book's name to {self.rhs}.") return if "add" in self.switches: try: work_id, chapter_num = int(self.rhslist[0]), int(self.rhslist[1]) except (ValueError, TypeError): raise self.error_class( "Enter the ID of one of your authored works " "and the chapter number to add." ) work = self.get_work(work_id) obj.add_chapter(work, chapter_num) obj.cmdset.delete_default() obj.cmdset.add_default(SignCmdSet, permanent=True) self.msg(f"You have added {work} as Chapter {chapter_num}.") def get_work(self, work_id): try: return self.caller.authored_works.get(id=work_id) except (WrittenWork.DoesNotExist, TypeError, ValueError): raise self.error_class("You have not written a work by that ID.") def do_work_switches(self): """List all the works written by the character""" if self.args: work = self.get_work(self.args) self.msg(str(work.body)) return table = EvTable("|wID|n", "|wTitle|n", width=78) qs = self.caller.authored_works.all() for work in qs: table.add_row(work.id, work.pretty_title) self.msg(str(table)) class CmdRead(ArxCommand): """ Reads a document Usage: read <book>=<chapter> Reads a chapter from a document. """ key = "read" locks = "cmd:all()" def func(self): try: book = self.search(self.lhs) try: chapter = book.get_chapter(self.rhs) except AttributeError: raise ChapterNotFoundError(f"{book} is not a book.") if ( chapter.written_work.language and chapter.written_work.language.lower() not in self.caller.languages.known_languages ): raise ChapterNotFoundError( "That chapter is written in a language you don't understand." ) arx_more.msg(self.caller, chapter.get_chapter_text()) except (ChapterNotFoundError, self.error_class) as err: self.msg(err)
35.050633
85
0.594077
0ad752ec8b72a023479c45e6834e623231e1a3b4
5,498
py
Python
gssapi/_utils.py
atodorov/python-gssapi
99ee548cd871451047612d2fd1cd0be88bb56bfd
[ "ISC" ]
null
null
null
gssapi/_utils.py
atodorov/python-gssapi
99ee548cd871451047612d2fd1cd0be88bb56bfd
[ "ISC" ]
null
null
null
gssapi/_utils.py
atodorov/python-gssapi
99ee548cd871451047612d2fd1cd0be88bb56bfd
[ "ISC" ]
null
null
null
import sys import types import six import decorator as deco from typing import Optional from gssapi.raw.misc import GSSError def import_gssapi_extension(name): """Import a GSSAPI extension module This method imports a GSSAPI extension module based on the name of the extension (not including the 'ext_' prefix). If the extension is not available, the method retuns None. Args: name (str): the name of the extension Returns: module: Either the extension module or None """ try: path = 'gssapi.raw.ext_{0}'.format(name) __import__(path) return sys.modules[path] except ImportError: return None def flag_property(flag): def setter(self, val): if val: self.flags.add(flag) else: self.flags.discard(flag) def getter(self): return flag in self.flags return property(getter, setter) def inquire_property(name: str, doc: Optional[str] = None): """Creates a property based on an inquire result This method creates a property that calls the :python:`_inquire` method, and return the value of the requested information. Args: name (str): the name of the 'inquire' result information Returns: property: the created property """ def inquire_property(self): if not self._started: msg = (f"Cannot read {name} from a security context whose " "establishment has not yet been started.") raise AttributeError(msg) return getattr(self._inquire(**{name: True}), name) return property(inquire_property, doc=doc) # use UTF-8 as the default encoding, like Python 3 _ENCODING = 'UTF-8' def _get_encoding(): """Gets the current encoding used for strings. This value is used to encode and decode string values like names. Returns: str: the current encoding """ return _ENCODING def set_encoding(enc): """Sets the current encoding used for strings This value is used to encode and decode string values like names. Args: enc: the encoding to use """ global _ENCODING _ENCODING = enc def _encode_dict(d): """Encodes any relevant strings in a dict""" def enc(x): if isinstance(x, six.text_type): return x.encode(_ENCODING) else: return x return dict((enc(k), enc(v)) for k, v in six.iteritems(d)) # in case of Python 3, just use exception chaining @deco.decorator def catch_and_return_token(func, self, *args, **kwargs): """Optionally defer exceptions and return a token instead When `__DEFER_STEP_ERRORS__` is set on the implementing class or instance, methods wrapped with this wrapper will catch and save their :python:`GSSError` exceptions and instead return the result token attached to the exception. The exception can be later retrived through :python:`_last_err` (and :python:`_last_tb` when Python 2 is in use). """ try: return func(self, *args, **kwargs) except GSSError as e: if e.token is not None and self.__DEFER_STEP_ERRORS__: self._last_err = e # skip the "return func" line above in the traceback if six.PY2: self._last_tb = sys.exc_info()[2].tb_next.tb_next else: self._last_err.__traceback__ = e.__traceback__.tb_next return e.token else: raise @deco.decorator def check_last_err(func, self, *args, **kwargs): """Check and raise deferred errors before running the function This method checks :python:`_last_err` before running the wrapped function. If present and not None, the exception will be raised with its original traceback. """ if self._last_err is not None: try: if six.PY2: six.reraise(type(self._last_err), self._last_err, self._last_tb) else: # NB(directxman12): not using six.reraise in Python 3 leads # to cleaner tracebacks, and raise x is valid # syntax in Python 3 (unlike raise x, y, z) raise self._last_err finally: if six.PY2: del self._last_tb # in case of cycles, break glass self._last_err = None else: return func(self, *args, **kwargs) @deco.decorator def check_last_err(func, self, *args, **kwargs): if self._last_err is not None: try: raise self._last_err finally: self._last_err = None else: return func(self, *args, **kwargs) class CheckLastError(type): """Check for a deferred error on all methods This metaclass applies the :python:`check_last_err` decorator to all methods not prefixed by '_'. Additionally, it enabled `__DEFER_STEP_ERRORS__` by default. """ def __new__(cls, name, parents, attrs): attrs['__DEFER_STEP_ERRORS__'] = True for attr_name in attrs: attr = attrs[attr_name] # wrap only methods if not isinstance(attr, types.FunctionType): continue if attr_name[0] != '_': attrs[attr_name] = check_last_err(attr) return super(CheckLastError, cls).__new__(cls, name, parents, attrs)
26.819512
79
0.618225
896e57c47139d74b05a23fda7594338a940cf40a
1,206
py
Python
custom_usermodel/tests/test_models.py
uktrade/return-to-office
d4c53c734611413c9f8a7624e52dc35910c5ff57
[ "MIT" ]
1
2020-10-25T18:16:47.000Z
2020-10-25T18:16:47.000Z
custom_usermodel/tests/test_models.py
uktrade/return-to-office
d4c53c734611413c9f8a7624e52dc35910c5ff57
[ "MIT" ]
1
2020-10-27T07:11:26.000Z
2020-10-27T07:11:26.000Z
custom_usermodel/tests/test_models.py
uktrade/return-to-office
d4c53c734611413c9f8a7624e52dc35910c5ff57
[ "MIT" ]
null
null
null
from custom_usermodel.models import User def test_get_contact_email(): user = User(email="[email protected]", contact_email="[email protected]") assert user.get_contact_email() == "[email protected]" def test_get_contact_email_falls_back_email(): user = User(email="[email protected]") assert not user.contact_email assert user.get_contact_email() == "[email protected]" def test_get_by_email_contact(db): user1 = User.objects.create(email="[email protected]", contact_email="[email protected]") User.objects.create(email="[email protected]", contact_email="[email protected]") assert User.get_by_email("[email protected]") == user1 def test_get_by_email_non_contact(db): user1 = User.objects.create(email="[email protected]", contact_email="[email protected]") User.objects.create(email="[email protected]", contact_email="[email protected]") assert User.get_by_email("[email protected]") == user1 def test_get_by_email_none(db): User.objects.create(email="[email protected]", contact_email="[email protected]") User.objects.create(email="[email protected]", contact_email="[email protected]") assert User.get_by_email("[email protected]") is None
32.594595
91
0.743781
35b6016e18ca191a147eb20e1123bf01d321acef
10,529
py
Python
ch09/improved_spark_mllib_model.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
1
2020-02-13T05:45:13.000Z
2020-02-13T05:45:13.000Z
ch09/improved_spark_mllib_model.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
null
null
null
ch09/improved_spark_mllib_model.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
null
null
null
# !/usr/bin/env python import sys, os, re import json import datetime, iso8601 from tabulate import tabulate # airflow에서 날짜와 기본 경로를 main()으로 전달 def main(base_path): APP_NAME = "train_spark_mllib_model.py" # SparkSession이 없으면 환경 생성 try: sc and spark except NameError as e: import findspark findspark.init() import pyspark import pyspark.sql sc = pyspark.SparkContext() spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate() # # { # "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00", # "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0, # "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS" # } # from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType from pyspark.sql.types import StructType, StructField from pyspark.sql.functions import udf schema = StructType([ StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00" StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00" StructField("Carrier", StringType(), True), # "Carrier":"WN" StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0 StructField("Dest", StringType(), True), # "Dest":"SAN" StructField("Distance", DoubleType(), True), # "Distance":368.0 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00" StructField("FlightNum", StringType(), True), # "FlightNum":"6109" StructField("Origin", StringType(), True), # "Origin":"TUS" ]) input_path = "{}/data/simple_flight_delay_features.json".format( base_path ) features = spark.read.json(input_path, schema=schema) features.first() # # FlightNum을 대체할 Route 변수 추가 # from pyspark.sql.functions import lit, concat features_with_route = features.withColumn( 'Route', concat( features.Origin, lit('-'), features.Dest ) ) features_with_route.show(6) # # 예정된 도착/출발 시간 추가 # from pyspark.sql.functions import hour features_with_hour = features_with_route.withColumn( "CRSDepHourOfDay", hour(features.CRSDepTime) ) features_with_hour = features_with_hour.withColumn( "CRSArrHourOfDay", hour(features.CRSArrTime) ) features_with_hour.select("CRSDepTime", "CRSDepHourOfDay", "CRSArrTime", "CRSArrHourOfDay").show() # # pysmark.ml.feature.Bucketizer를 사용해서 ArrDelay를 on-time, slightly late, very late (0, 1, 2)으로 구간화 # from pyspark.ml.feature import Bucketizer # 구간화 모델 설정 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")] arrival_bucketizer = Bucketizer( splits=splits, inputCol="ArrDelay", outputCol="ArrDelayBucket" ) # 모델 저장 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path) arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path) # 모델 적용 ml_bucketized_features = arrival_bucketizer.transform(features_with_hour) ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show() # # pyspark.ml.feature의 특징 도구 임포트 # from pyspark.ml.feature import StringIndexer, VectorAssembler # 범주 필드를 인덱스로 전환 for column in ["Carrier", "Origin", "Dest", "Route"]: string_indexer = StringIndexer( inputCol=column, outputCol=column + "_index" ) string_indexer_model = string_indexer.fit(ml_bucketized_features) ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features) # 파이프라인 모델 저장 string_indexer_output_path = "{}/models/string_indexer_model_3.0.{}.bin".format( base_path, column ) string_indexer_model.write().overwrite().save(string_indexer_output_path) # 연속형 수치 필드를 명목형 필드의 인덱스와 결합해서 하나의 특징 벡터로 만듦 numeric_columns = [ "DepDelay", "Distance", "DayOfMonth", "DayOfWeek", "DayOfYear", "CRSDepHourOfDay", "CRSArrHourOfDay"] index_columns = ["Carrier_index", "Origin_index", "Dest_index", "Route_index"] vector_assembler = VectorAssembler( inputCols=numeric_columns + index_columns, outputCol="Features_vec" ) final_vectorized_features = vector_assembler.transform(ml_bucketized_features) # 수치 벡터 어셈블러를 저장 vector_assembler_path = "{}/models/numeric_vector_assembler_3.0.bin".format(base_path) vector_assembler.write().overwrite().save(vector_assembler_path) # 인덱스 열 제거 for column in index_columns: final_vectorized_features = final_vectorized_features.drop(column) # 확정된 특징을 검사 final_vectorized_features.show() # # 분류 모델을 교차 검증, 훈련, 평가: 4개의 지표에 대해 5회 반복 # from collections import defaultdict scores = defaultdict(list) feature_importances = defaultdict(list) metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"] split_count = 3 for i in range(1, split_count + 1): print("\nRun {} out of {} of test/train splits in cross validation...".format( i, split_count, ) ) # 훈련/테스트 데이터 분할 training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2]) # 전체 데이터에 대해 랜덤 포레스트 분류 모델을 인스턴스화하고 적합시킴 from pyspark.ml.classification import RandomForestClassifier rfc = RandomForestClassifier( featuresCol="Features_vec", labelCol="ArrDelayBucket", predictionCol="Prediction", maxBins=4657, ) model = rfc.fit(training_data) # 예전 모델 대신 새 모델을 저장 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.baseline.bin".format( base_path ) model.write().overwrite().save(model_output_path) # 테스트 데이터로 모델을 평가 predictions = model.transform(test_data) # 이 테스트/훈련 데이터 분할의 결과를 각 지표별로평가 from pyspark.ml.evaluation import MulticlassClassificationEvaluator for metric_name in metric_names: evaluator = MulticlassClassificationEvaluator( labelCol="ArrDelayBucket", predictionCol="Prediction", metricName=metric_name ) score = evaluator.evaluate(predictions) scores[metric_name].append(score) print("{} = {}".format(metric_name, score)) # # 특징 중요도 수집 # feature_names = vector_assembler.getInputCols() feature_importance_list = model.featureImportances for feature_name, feature_importance in zip(feature_names, feature_importance_list): feature_importances[feature_name].append(feature_importance) # # 지표별 평균과 표준편차 평가 및 표로 출력 # import numpy as np score_averages = defaultdict(float) # 표 데이터 계산 average_stds = [] # ha for metric_name in metric_names: metric_scores = scores[metric_name] average_accuracy = sum(metric_scores) / len(metric_scores) score_averages[metric_name] = average_accuracy std_accuracy = np.std(metric_scores) average_stds.append((metric_name, average_accuracy, std_accuracy)) # 표 출력 print("\nExperiment Log") print("--------------") print(tabulate(average_stds, headers=["Metric", "Average", "STD"])) # # 점수를 실행 사이에 존재하는 점수 로그에 유지 # import pickle # 점수 로그를 적재하거나 빈 로그를 초기화 try: score_log_filename = "{}/models/score_log.pickle".format(base_path) score_log = pickle.load(open(score_log_filename, "rb")) if not isinstance(score_log, list): score_log = [] except IOError: score_log = [] # 기존 점수 로그 계산 score_log_entry = {metric_name: score_averages[metric_name] for metric_name in metric_names} # 각 지표에 대한 점수 변화를 계산하고 디스플레이 try: last_log = score_log[-1] except (IndexError, TypeError, AttributeError): last_log = score_log_entry experiment_report = [] for metric_name in metric_names: run_delta = score_log_entry[metric_name] - last_log[metric_name] experiment_report.append((metric_name, run_delta)) print("\nExperiment Report") print("-----------------") print(tabulate(experiment_report, headers=["Metric", "Score"])) # 기존 평균 점수를 로그에 추가 score_log.append(score_log_entry) # Persist the log for next run pickle.dump(score_log, open(score_log_filename, "wb")) # # 특징 중요도 변화를 분석하고 보고 # # 각 특징에 대한 평균 계산 feature_importance_entry = defaultdict(float) for feature_name, value_list in feature_importances.items(): average_importance = sum(value_list) / len(value_list) feature_importance_entry[feature_name] = average_importance # 특징 중요도를 내림차순으로 정렬하고 출력 import operator sorted_feature_importances = sorted( feature_importance_entry.items(), key=operator.itemgetter(1), reverse=True ) print("\nFeature Importances") print("-------------------") print(tabulate(sorted_feature_importances, headers=['Name', 'Importance'])) # # 이번 실행 결과인 특징 중요도를 이전 실행 결과와 비교 # # 특징 중요도 로그를 적재하거나 빈 로그를 초기화 try: feature_log_filename = "{}/models/feature_log.pickle".format(base_path) feature_log = pickle.load(open(feature_log_filename, "rb")) if not isinstance(feature_log, list): feature_log = [] except IOError: feature_log = [] # 각 특징에 대한 점수 변화를 계산하고 디스플레이 try: last_feature_log = feature_log[-1] except (IndexError, TypeError, AttributeError): last_feature_log = defaultdict(float) for feature_name, importance in feature_importance_entry.items(): last_feature_log[feature_name] = importance # 변동 값 계산 feature_deltas = {} for feature_name in feature_importances.keys(): run_delta = feature_importance_entry[feature_name] - last_feature_log[feature_name] feature_deltas[feature_name] = run_delta # 특징 변동 값을 정렬해 가장 큰 변동이 있는 특징을 먼저 나오게 한다 import operator sorted_feature_deltas = sorted( feature_deltas.items(), key=operator.itemgetter(1), reverse=True ) # 정렬된 특징 변동 값 디스플레이 print("\nFeature Importance Delta Report") print("-------------------------------") print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"])) # 로그에 기존 평균 변동 값을 추가 feature_log.append(feature_importance_entry) # 다음 실행을 위해 로그 유지 pickle.dump(feature_log, open(feature_log_filename, "wb")) if __name__ == "__main__": main(sys.argv[1])
30.607558
113
0.690759
37fb5576a209175df8ff268d4c7d651d74f53d74
9,977
py
Python
FSM Equivalence Checker/trace2dot.py
sizaif/DIKEUE
ed13e16e560003ae9561db6a39662f321b01ef60
[ "Apache-2.0" ]
3
2021-11-16T05:09:23.000Z
2022-03-19T21:51:27.000Z
FSM Equivalence Checker/trace2dot.py
sizaif/DIKEUE
ed13e16e560003ae9561db6a39662f321b01ef60
[ "Apache-2.0" ]
null
null
null
FSM Equivalence Checker/trace2dot.py
sizaif/DIKEUE
ed13e16e560003ae9561db6a39662f321b01ef60
[ "Apache-2.0" ]
2
2021-11-18T00:33:28.000Z
2021-12-15T05:06:21.000Z
#!/usr/bin/env python """ simple script to visualize the trace output of smv / NuSMV via Graphviz's dot-format. first, the trace is parsed and then coded as dot-graph with states as nodes and input (transitions) as arcs between them. even if the counterexample's loop start- and end-state are the same, they are represented by two different nodes as there can be differences in the completeness of the state variables' representation. this is only a simple hack to get quick and dirty trace graphs ;-) """ import os,sys,getopt from collections import OrderedDict digraph = "" try: import pydot except: print ("this module depends on pydot\nplease visit http://dkbza.org/ to obtain these bindings") sys.exit(2) # CHANGE HERE: VIEW_CMD="gv -antialias" #used as: VIEW_CMD [file] DOT_CMD="dot -Tps -o" #used as: DOT_CMD [outfile] [infile] TEMPDIR="/tmp" #store dot-file and rendering if viewmode without output-file # for internal purposes, change only, if you know, what you do DEBUG=False PROFILE=False PSYCO=True if PSYCO: try: import psyco except (ImportError, ): pass else: psyco.full() if DEBUG: print ("psyco enabled") def trace2dotlist(traces): """this function takes the trace output of (nu)smv as a string; then, after cleaning the string of warnings and compiler messages, decomposes the output into separate single traces which are translated to dot-graphs by _singletrace2dot. as a traceoutput can combine several traces, this method returns a list of the dot-graphs""" # beautify ;-) lines = [line for line in traces if not (line.startswith("***") or line.startswith("WARNING") or line == "\n")] map(lambda x: x.lstrip(" "), lines) #print ('lines = \n', lines) # cut list at each "-- specification" index=0 trace_list=[] # trace_list = traces for multiple properties. # each trace consists of sequence of states. # each state consists of a list of variables and their values for line in lines: if (line.startswith("-- no counterexample found with bound")): index = lines.index(line) continue elif line.startswith("-- specification"): # TODO: need to commemnt out the following line formulae = line.rstrip("is false\n").lstrip("-- specification") #print ('formulae = ', formulae) last = index index = lines.index(line) trace_list.append(lines[last: index]) trace_list.append(lines[index: len(lines)]) #sort out postive results. And filter out the empty trace. trace_list = [trace for trace in trace_list if len(trace)>1 and not str(trace[0]).endswith("true")] #print ('### trace_list = #### ', trace_list) # Draw graph for each trace graph=[] for trace in trace_list: graph.append(_singletrace2dot(trace,True)) return graph def _singletrace2dot(trace,is_beautified=False): """translate a single trace into a corresponding dot-graph; wheras the parsing assumes a correct trace given as trace ::= state ( input state )* """ # if not is_beautified: # lines = [line for line in trace if not (line.startswith("***") or # line.startswith("WARNING") or line == "\n" # or line.startswith("-- specification") or line.startswith("-- as demonstrated") # or line.startswith("Trace Description: ") or line.startswith("Trace Type: "))] # map(lambda x: x.lstrip(" "), lines) # else: # lines = trace # strip the headers of each trace. global digraph lines = [] #print ('trace = ', trace) for line in trace: #print(line) if( not (line.startswith("***") or line.startswith("WARNING") or line == "\n" or line.startswith("-- specification") or line.startswith("-- as demonstrated") or line.startswith("Trace Description: ") or line.startswith("Trace Type: "))): lines.append(line.lstrip(" ")) #print (lines) #slice list at "->" index=0 states=[] for item in lines: #print ('item = ', item) if item.startswith("->"): last=index index=lines.index(item) states.append(lines[last:index]) # the first state is empty states.append(lines[index:len(lines)]) #print ('states', states) lines=False #free space! graph = pydot.Graph() loop=False #flag to finally add an additional dotted edge for loop assert states[1][0].startswith("-> State:") #starting with state! digraph = 'Digraph G{\n' digraph += 'rankdir=LR\n' stateVariablesDict = OrderedDict() counter = 0 for item in states[1:]: #first item is header name= item[0].lstrip("-> ").rstrip(" <-\n") if (name.startswith("State")): state=name.lstrip("State: ") node=pydot.Node(state) props=name+'\\n' #to reach pydotfile: need double '\' digraph = digraph + 'S' + str(counter) + '[shape=box,label=\"' + name + '\\n' counter = counter + 1 #print (name) for i in (item[1:]): #props+=i.rstrip('\n') #props+="\\n" isNewValue = False s = str(i).rstrip('\n') variable = s[:s.rfind('=')].strip() value = s[s.rfind('=')+1:].strip() if(variable not in stateVariablesDict): isNewValue = False else: (val, newValInd) = stateVariablesDict[variable] if(str(val) != str(value)): isNewValue = True stateVariablesDict[variable] = (value, isNewValue) #stateVariablesList = [[k, v] for k, v in stateVariablesDict.items()] for var, (val, newValInd) in stateVariablesDict.items(): if(newValInd == True): props += '*' + str(var) + ' = ' + str(val) + '\\n' digraph = digraph + '*' + str(var) + ' = ' + str(val) + '\\n' else: props += str(var) + ' = ' + str(val) + '\\n' digraph = digraph + str(var) + ' = ' + str(val) + '\\n' node.set_label('"'+props+'"') digraph = digraph + '\"]\n' graph.add_node(node) for var, (val, newValInd) in stateVariablesDict.items(): stateVariablesDict[var] = (val, False) elif name.startswith("Input"): assert state #already visited state trans=name.lstrip("Input: ") edge=pydot.Edge(state,trans) hasLoop = [it for it in item[1:] if it.startswith("-- Loop starts here")] #TODO: check trace-syntax, if this can happen only in the last line of a transition # then list-compreh. can be avoided if hasLoop: loop=state #remember state at which loop starts item.remove(hasLoop[0]) props="" for i in (item[1:]): props+=i.rstrip('\n') props+="\\n" edge.set_label(props) graph.add_edge(edge) else: assert False #only states and transitions! if loop: edge=pydot.Edge(state,loop) edge.set_style("dotted,bold") edge.set_label(" LOOP") graph.add_edge(edge) for i in range(1, counter): digraph = digraph + 'S' + str(i-1) + ' -> ' + 'S' + str(i) + '\n' digraph = digraph + '\n}\n' return graph def usage(): print ("usage:") print (str(os.path.basename(sys.argv[0]))+" [-h|--help] [-o|--output=<filename>] filename") print () print (" -o : output to file (else to std.output)") print (" --view : generate preview & open viewer") def main(): global digraph try: opts, args = getopt.getopt(sys.argv[1:], "hvo:", ["view","help","output="]) except getopt.GetoptError: # print help information and exit: usage() sys.exit(2) outputfilename = None verbose = False view=False tempdir=None for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() if o in ("-o", "--output"): outputfilename = a if o == "--view": view=True if args.__len__(): filename=args[0] trace = open(filename,'r').readlines() #trace.close() else: trace=sys.stdin.readlines() graph= trace2dotlist(trace) if outputfilename: outputfile=open(outputfilename,'w') elif view: import tempfile tempdir=tempfile.mkdtemp(dir=TEMPDIR) outputfilename=os.path.join(tempdir,"trace.dot") outputfile=open(outputfilename,'w') else: outputfile=sys.stdout for g in graph: outputfile.write(g.to_string()) outputfile.close() # Draw Digraph: #print (digraph) outputfilename = str(outputfilename) + '_digraph.dot' outputfile = open(outputfilename, 'w') outputfile.write(digraph) outputfile.close() if view: if not tempdir: #for view & output import tempfile tempdir=tempfile.mkdtemp(dir=TEMPDIR) visualgraphfile=os.path.join(tempdir,"trace.ps") os.system("%s %s %s"%(DOT_CMD,visualgraphfile,outputfilename)) os.system("%s %s"%(VIEW_CMD,visualgraphfile)) # if __name__=="__main__": if DEBUG: # for post-mortem debugging import pydb,sys sys.excepthook = pydb.exception_hook elif PROFILE: if PSYCO: raise (Exception, "cannot profile whilst using psyco!!!") import hotshot prof = hotshot.Profile("_hotshot",lineevents=1) prof.runcall(main) prof.close() else: main()
31.773885
103
0.573519
d50f7f0e1065f7b8f4ec000bc8954587328fe0ad
4,141
py
Python
pandasio/utils/tests/test_binary.py
BrianKopp/pandas-io
cbab1146289a6fdbbd2ff7e3aaa55ff64e228fb7
[ "MIT" ]
1
2019-05-11T22:09:35.000Z
2019-05-11T22:09:35.000Z
pandasio/utils/tests/test_binary.py
BrianKopp/pandas-io
cbab1146289a6fdbbd2ff7e3aaa55ff64e228fb7
[ "MIT" ]
null
null
null
pandasio/utils/tests/test_binary.py
BrianKopp/pandas-io
cbab1146289a6fdbbd2ff7e3aaa55ff64e228fb7
[ "MIT" ]
null
null
null
from pandasio.utils.binary import determine_required_bytes_unsigned_integer, read_unsigned_int, \ determine_required_bytes_signed_integer from pandasio.utils.exceptions import ( IntegerLargerThan64BitsException, IntegerNotUnsignedException, NotIntegerException ) import unittest class TestBinaryUtils(unittest.TestCase): def test_determine_byte_requirements(self): with self.assertRaises(IntegerNotUnsignedException): determine_required_bytes_unsigned_integer(-1) with self.assertRaises(NotIntegerException): determine_required_bytes_unsigned_integer(None) with self.assertRaises(NotIntegerException): determine_required_bytes_unsigned_integer([]) self.assertEqual(1, determine_required_bytes_unsigned_integer(0)) self.assertEqual(1, determine_required_bytes_unsigned_integer(1)) self.assertEqual(1, determine_required_bytes_unsigned_integer(2)) self.assertEqual(1, determine_required_bytes_unsigned_integer(3)) self.assertEqual(1, determine_required_bytes_unsigned_integer(255)) self.assertEqual(2, determine_required_bytes_unsigned_integer(256)) self.assertEqual(2, determine_required_bytes_unsigned_integer(65535)) self.assertEqual(4, determine_required_bytes_unsigned_integer(65536)) self.assertEqual(4, determine_required_bytes_unsigned_integer(4294967295)) self.assertEqual(8, determine_required_bytes_unsigned_integer(4294967296)) self.assertEqual(8, determine_required_bytes_unsigned_integer(18446744073709551615)) with self.assertRaises(IntegerLargerThan64BitsException): determine_required_bytes_unsigned_integer(18446744073709551616) return def test_signed_int_bytes(self): with self.assertRaises(NotIntegerException): determine_required_bytes_signed_integer(None) with self.assertRaises(NotIntegerException): determine_required_bytes_signed_integer([]) self.assertEqual(1, determine_required_bytes_signed_integer(0)) self.assertEqual(1, determine_required_bytes_signed_integer(1)) self.assertEqual(1, determine_required_bytes_signed_integer(2)) self.assertEqual(1, determine_required_bytes_signed_integer(3)) self.assertEqual(1, determine_required_bytes_signed_integer(-1)) self.assertEqual(1, determine_required_bytes_signed_integer(-2)) self.assertEqual(1, determine_required_bytes_signed_integer(-3)) self.assertEqual(1, determine_required_bytes_signed_integer(127)) self.assertEqual(1, determine_required_bytes_signed_integer(-128)) self.assertEqual(2, determine_required_bytes_signed_integer(128)) self.assertEqual(2, determine_required_bytes_signed_integer(-129)) self.assertEqual(2, determine_required_bytes_signed_integer(32767)) self.assertEqual(2, determine_required_bytes_signed_integer(-32768)) self.assertEqual(4, determine_required_bytes_signed_integer(32768)) self.assertEqual(4, determine_required_bytes_signed_integer(-32769)) self.assertEqual(4, determine_required_bytes_signed_integer(2147483647)) self.assertEqual(4, determine_required_bytes_signed_integer(-2147483648)) self.assertEqual(8, determine_required_bytes_signed_integer(2147483648)) self.assertEqual(8, determine_required_bytes_signed_integer(-2147483649)) with self.assertRaises(IntegerLargerThan64BitsException): determine_required_bytes_signed_integer(9223372036854775808) return def test_read_unsigned_int(self): self.assertEqual(0, read_unsigned_int(b'\x00')) self.assertEqual(0, read_unsigned_int(b'\x00\x00')) self.assertEqual(0, read_unsigned_int(b'\x00\x00\x00')) self.assertEqual(0, read_unsigned_int(b'\x00\x00\x00\x00')) self.assertEqual(1, read_unsigned_int(b'\x01\x00')) self.assertEqual(255, read_unsigned_int(bytes([255]))) self.assertEqual(256, read_unsigned_int(b'\x00\x01')) return if __name__ == '__main__': unittest.main()
51.123457
97
0.765274
f413e5221b44192deeca79bf84f7a89b86acbb30
5,336
py
Python
syntropy_sdk/models/change_path_object_data_costs.py
SyntropyNet/syntropy-python-sdk
27b7756b136f83886fd2a6e342fa4d4073779ff7
[ "MIT" ]
1
2020-12-17T17:30:12.000Z
2020-12-17T17:30:12.000Z
syntropy_sdk/models/change_path_object_data_costs.py
SyntropyNet/syntropy-python-sdk
27b7756b136f83886fd2a6e342fa4d4073779ff7
[ "MIT" ]
null
null
null
syntropy_sdk/models/change_path_object_data_costs.py
SyntropyNet/syntropy-python-sdk
27b7756b136f83886fd2a6e342fa4d4073779ff7
[ "MIT" ]
null
null
null
# coding: utf-8 """ syntropy-controller No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 0.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ChangePathObjectDataCosts(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { "price": "float", "latency": "float", "jitter": "float", "bandwidth": "float", } attribute_map = { "price": "price", "latency": "latency", "jitter": "jitter", "bandwidth": "bandwidth", } def __init__( self, price=None, latency=None, jitter=None, bandwidth=None ): # noqa: E501 """ChangePathObjectDataCosts - a model defined in Swagger""" # noqa: E501 self._price = None self._latency = None self._jitter = None self._bandwidth = None self.discriminator = None if price is not None: self.price = price if latency is not None: self.latency = latency if jitter is not None: self.jitter = jitter if bandwidth is not None: self.bandwidth = bandwidth @property def price(self): """Gets the price of this ChangePathObjectDataCosts. # noqa: E501 :return: The price of this ChangePathObjectDataCosts. # noqa: E501 :rtype: float """ return self._price @price.setter def price(self, price): """Sets the price of this ChangePathObjectDataCosts. :param price: The price of this ChangePathObjectDataCosts. # noqa: E501 :type: float """ self._price = price @property def latency(self): """Gets the latency of this ChangePathObjectDataCosts. # noqa: E501 :return: The latency of this ChangePathObjectDataCosts. # noqa: E501 :rtype: float """ return self._latency @latency.setter def latency(self, latency): """Sets the latency of this ChangePathObjectDataCosts. :param latency: The latency of this ChangePathObjectDataCosts. # noqa: E501 :type: float """ self._latency = latency @property def jitter(self): """Gets the jitter of this ChangePathObjectDataCosts. # noqa: E501 :return: The jitter of this ChangePathObjectDataCosts. # noqa: E501 :rtype: float """ return self._jitter @jitter.setter def jitter(self, jitter): """Sets the jitter of this ChangePathObjectDataCosts. :param jitter: The jitter of this ChangePathObjectDataCosts. # noqa: E501 :type: float """ self._jitter = jitter @property def bandwidth(self): """Gets the bandwidth of this ChangePathObjectDataCosts. # noqa: E501 :return: The bandwidth of this ChangePathObjectDataCosts. # noqa: E501 :rtype: float """ return self._bandwidth @bandwidth.setter def bandwidth(self, bandwidth): """Sets the bandwidth of this ChangePathObjectDataCosts. :param bandwidth: The bandwidth of this ChangePathObjectDataCosts. # noqa: E501 :type: float """ self._bandwidth = bandwidth def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value if issubclass(ChangePathObjectDataCosts, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ChangePathObjectDataCosts): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.364103
119
0.571402
01347536c2c2020872bc115a011eab009dc8c69d
751
py
Python
test/unit/rules/parameters/test_configuration.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,134
2019-03-02T14:58:34.000Z
2021-05-15T00:57:16.000Z
test/unit/rules/parameters/test_configuration.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,122
2019-03-03T04:27:15.000Z
2021-05-14T20:51:16.000Z
test/unit/rules/parameters/test_configuration.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
297
2019-03-11T09:56:57.000Z
2021-05-14T16:41:19.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from test.unit.rules import BaseRuleTestCase from cfnlint.rules.parameters.Configuration import Configuration # pylint: disable=E0401 class TestParameterConfiguration(BaseRuleTestCase): """Test template parameter configurations""" def setUp(self): """Setup""" super(TestParameterConfiguration, self).setUp() self.collection.register(Configuration()) def test_file_positive(self): """Test Positive""" self.helper_file_positive() def test_file_negative(self): """Test failure""" self.helper_file_negative('test/fixtures/templates/bad/parameters/configuration.yaml', 7)
31.291667
97
0.719041
3991d30c11043707a184da175a9ffae8a84746f1
829
py
Python
kedro-intro/src/kedro_intro/hooks.py
avallarino-ar/kedro_lab
e91bf61c21978f18222e4c7affef39e4707890b8
[ "MIT" ]
11
2022-02-06T18:01:29.000Z
2022-02-23T15:51:48.000Z
kedro-intro/src/kedro_intro/hooks.py
avallarino-ar/kedro_lab
e91bf61c21978f18222e4c7affef39e4707890b8
[ "MIT" ]
6
2022-03-12T02:21:28.000Z
2022-03-20T11:44:29.000Z
kedro-intro/src/kedro_intro/hooks.py
avallarino-ar/kedro_lab
e91bf61c21978f18222e4c7affef39e4707890b8
[ "MIT" ]
6
2021-09-24T16:12:02.000Z
2021-12-12T18:31:14.000Z
"""Project hooks.""" from typing import Any, Dict, Iterable, Optional from kedro.config import ConfigLoader from kedro.framework.hooks import hook_impl from kedro.io import DataCatalog from kedro.versioning import Journal class ProjectHooks: @hook_impl def register_config_loader( self, conf_paths: Iterable[str], env: str, extra_params: Dict[str, Any], ) -> ConfigLoader: return ConfigLoader(conf_paths) @hook_impl def register_catalog( self, catalog: Optional[Dict[str, Dict[str, Any]]], credentials: Dict[str, Dict[str, Any]], load_versions: Dict[str, str], save_version: str, journal: Journal, ) -> DataCatalog: return DataCatalog.from_config( catalog, credentials, load_versions, save_version, journal )
28.586207
80
0.674306
cf7b26098ec943c1cec36af08a970bcbd978abcc
5,758
py
Python
sdk/python/pulumi_azure/lb/backend_address_pool.py
kenny-wealth/pulumi-azure
e57e3a81f95bf622e7429c53f0bff93e33372aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/lb/backend_address_pool.py
kenny-wealth/pulumi-azure
e57e3a81f95bf622e7429c53f0bff93e33372aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/lb/backend_address_pool.py
kenny-wealth/pulumi-azure
e57e3a81f95bf622e7429c53f0bff93e33372aa1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class BackendAddressPool(pulumi.CustomResource): backend_ip_configurations: pulumi.Output[list] """ The Backend IP Configurations associated with this Backend Address Pool. """ load_balancing_rules: pulumi.Output[list] """ The Load Balancing Rules associated with this Backend Address Pool. """ loadbalancer_id: pulumi.Output[str] """ The ID of the Load Balancer in which to create the Backend Address Pool. """ location: pulumi.Output[str] name: pulumi.Output[str] """ Specifies the name of the Backend Address Pool. """ resource_group_name: pulumi.Output[str] """ The name of the resource group in which to create the resource. """ def __init__(__self__, resource_name, opts=None, loadbalancer_id=None, location=None, name=None, resource_group_name=None, __props__=None, __name__=None, __opts__=None): """ Manages a Load Balancer Backend Address Pool. > **NOTE:** When using this resource, the Load Balancer needs to have a FrontEnd IP Configuration Attached :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Backend Address Pool. :param pulumi.Input[str] name: Specifies the name of the Backend Address Pool. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/website/docs/r/lb_backend_address_pool.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if loadbalancer_id is None: raise TypeError("Missing required property 'loadbalancer_id'") __props__['loadbalancer_id'] = loadbalancer_id __props__['location'] = location __props__['name'] = name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['backend_ip_configurations'] = None __props__['load_balancing_rules'] = None super(BackendAddressPool, __self__).__init__( 'azure:lb/backendAddressPool:BackendAddressPool', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, backend_ip_configurations=None, load_balancing_rules=None, loadbalancer_id=None, location=None, name=None, resource_group_name=None): """ Get an existing BackendAddressPool resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] backend_ip_configurations: The Backend IP Configurations associated with this Backend Address Pool. :param pulumi.Input[list] load_balancing_rules: The Load Balancing Rules associated with this Backend Address Pool. :param pulumi.Input[str] loadbalancer_id: The ID of the Load Balancer in which to create the Backend Address Pool. :param pulumi.Input[str] name: Specifies the name of the Backend Address Pool. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the resource. > This content is derived from https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/website/docs/r/lb_backend_address_pool.html.markdown. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["backend_ip_configurations"] = backend_ip_configurations __props__["load_balancing_rules"] = load_balancing_rules __props__["loadbalancer_id"] = loadbalancer_id __props__["location"] = location __props__["name"] = name __props__["resource_group_name"] = resource_group_name return BackendAddressPool(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
50.508772
175
0.697464
6865b9982e6a2ff3ea84fd9d651a105791078365
3,221
py
Python
app/recipe/tests/test_tags_api.py
mzwamshandu/recipe-app-api
cc7da9c7e72da318ca3f36bd4a3fcf173ef1a929
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
mzwamshandu/recipe-app-api
cc7da9c7e72da318ca3f36bd4a3fcf173ef1a929
[ "MIT" ]
null
null
null
app/recipe/tests/test_tags_api.py
mzwamshandu/recipe-app-api
cc7da9c7e72da318ca3f36bd4a3fcf173ef1a929
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Tag, Recipe from recipe.serializers import TagSerializer TAGS_URL = reverse('recipe:tag-list') class PublicTagsApiTests(TestCase): # Test the publicly available tags API def setUp(self): self.client = APIClient() '''def test_login_required(self): # test the login is required for retrieving tags res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED)''' class PrivateTagsApiTests(TestCase): # Test the authorized user tags API def setUp(self): self.user = get_user_model().objects.create_user( '[email protected]', 'password123' ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_tags(self): # Test retrieving tags Tag.objects.create(user=self.user, name='Vegan') Tag.objects.create(user=self.user, name='Dessert') res = self.client.get(TAGS_URL) tags = Tag.objects.all().order_by('-name') serializer = TagSerializer(tags, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_tags_limited_to_user(self): # Testing that tags returned are for the authnticated user user2 = get_user_model().objects.create_user( '[email protected]', 'password123' ) Tag.objects.create(user=user2, name='Fruity') tag = Tag.objects.create(user=self.user, name='Comfort Food') res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], tag.name) def test_create_tag_successful(self): # Test create a new tag payload = {'name': 'Test tag'} self.client.post(TAGS_URL, payload) exists = Tag.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) def test_create_tag_invalid(self): # Test creating a new tag with invalid payload payload = {'name': ''} res = self.client.post(TAGS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_tags_assigned_to_recipe(self): # Test filter tags by those assigned to recipes tag1 = Tag.objects.create(user=self.user, name='Breakfast') tag2 = Tag.objects.create(user=self.user, name='Lunch') recipe = Recipe.objects.create( title='Coriander eggs on toast', time_minutes=10, price=45.00, user=self.user ) recipe.tags.add(tag1) res = self.client.get(TAGS_URL, {'assigned_only': 1}) serializer1 = TagSerializer(tag1) serializer2 = TagSerializer(tag2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data)
32.535354
74
0.652903
8921100f6af7a1a68238269131cbcbe0121a025b
29,247
py
Python
ChemicalReactorNetwork/combustion_chamber_design.py
giovaniceotto/Noelle
436a91a6e2a2baf5ede419e9633cdf3479213786
[ "MIT" ]
6
2020-08-31T12:29:03.000Z
2022-01-10T01:35:24.000Z
ChemicalReactorNetwork/combustion_chamber_design.py
giovaniceotto/LMS
436a91a6e2a2baf5ede419e9633cdf3479213786
[ "MIT" ]
2
2020-07-27T18:12:57.000Z
2020-08-06T02:20:14.000Z
ChemicalReactorNetwork/combustion_chamber_design.py
giovaniceotto/LMS
436a91a6e2a2baf5ede419e9633cdf3479213786
[ "MIT" ]
2
2021-06-11T01:44:46.000Z
2021-06-14T05:01:41.000Z
import numpy as np # np.set_printoptions(precision=2) import scipy.integrate import scipy.signal from rocketpy import Function import CoolProp.CoolProp as CoolProp from CoolProp.CoolProp import PropsSI import cantera as ct print('Runnning Cantera version: ' + ct.__version__) # Matplotlib import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['figure.figsize'] = [10.0, 6.0] mpl.rcParams['figure.dpi'] = 120 mpl.rcParams['savefig.dpi'] = 120 font = {'weight' : 'bold', 'size' : 17} mpl.rc('font', **font) plt.style.use(['science', 'grid']) def create_solution_mechanism(): # Defining Reaction Mechanism # Mechanism II - Marinov + Mevel marinov_species = ct.Species.listFromFile('marinov_ethanol_mechanism.cti') marinov_reactions = ct.Reaction.listFromFile('marinov_ethanol_mechanism.cti') mevel_species = ct.Species.listFromFile('mevel_ethanol_mechanism.cti') mevel_reactions = ct.Reaction.listFromFile('mevel_ethanol_mechanism.cti') new_species = [] new_reactions = [] # Filter species for specie in mevel_species: # Include all nitrogen compounds except for N2 if 'N' in specie.composition and specie.composition != {'N':2}: new_species.append(specie) new_species_names = {specie.name for specie in new_species} # print('N based species: {0}'.format(', '.join(name for name in new_species_names))) marinov_mevel_species = marinov_species + new_species marinov_mevel_species_names = {specie.name.upper() for specie in marinov_mevel_species} # Filter reactions, keeping only those that only involve the selected species # print('\nReactions:') for R in mevel_reactions: if any(reactant in new_species_names for reactant in R.reactants) or any(product in new_species_names for product in R.products): # for reactant in R.reactants: # if reactant not in marinov_mevel_species_names: # print('Missing reactant:', reactant, 'when analyzing reaction', R.equation) # for product in R.products: # if product not in marinov_mevel_species_names: # print('Missing product:', product, 'when analyzing reaction', R.equation) if all(reactant in marinov_mevel_species_names for reactant in R.reactants): if all(product in marinov_mevel_species_names for product in R.products): new_reactions.append(R) # print('Accepted reaction:', R.equation) # print('\n') marinov_mevel_species = marinov_species + new_species marinov_mevel_reactions = marinov_reactions + new_reactions marinov_mevel_gas = ct.Solution( thermo='IdealGas', kinetics='GasKinetics', species=marinov_mevel_species, reactions=marinov_mevel_reactions ) marinov_mevel_gas = ct.Solution('sandiego2016_plus_N_CK.cti') print('Number of species:', marinov_mevel_gas.n_species) print('Number of reactions:', marinov_mevel_gas.n_reactions) return marinov_mevel_gas # Droplet Fed Variable Area Plug Flow Reactor Model class NoelleReactor(object): def __init__(self, gas, area, liquid, N_dot, q_dot_prime=0): # Parameters of the ODE system and auxiliary data are stored in the # ReactorOde object. self.gas = gas self.Tmin = 1 self.A = area self.dA_dx = Function(lambda x: area.differentiate(x)) self.N_dot = N_dot # Liquid information - always at boiling temperature self.droplets_exist = True self.liquid = liquid self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) ## Density self.rho_l = self.liquid.rhomass() ## Boiling temperature self.T_l = self.liquid.T() ## Heat of vaporization self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 1) h_v = self.liquid.hmass() self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) h_l = self.liquid.hmass() self.h_fg = h_v - h_l # Heat Loss due to Regenerative Cooling self.q_dot_prime = 0.0 self.last_x = -100 def state_derivate_with_droplets(self, x, u): """ ODE function u'= f(x, u). Parameters ---------- x : float Axial position in meters. u : np.array State variable. Variables are: u[0] = D^2 (droplet diameter (SMD) squared) u[1] = ml (liquid phase flow rate) u[2] = mg (gas phase flow rate) u[3] = v_d (droplet velocity) u[4] = rho_g (gas phase density) u[5] = T (gas phase temperature) u[6:6+N] = Y_i (mass fraction of the i-th species, out of N species) """ # Get variables from state variable self.droplets_exist = False D2, ml, mg, v_d, rho_g, T = u[:6] if D2 <= 0 or rho_g <= 0 or T <=0: return 0*u D = (D2**0.5)*1e-6 Y = u[6:] A = self.A(x) dA_dx = self.dA_dx(x) rho_g = max(0.5, rho_g) v_g = mg/(rho_g*A) rho_l = self.rho_l # Update gas state self.gas.set_unnormalized_mass_fractions(Y) self.gas.TP = T, rho_g*ct.gas_constant*T/(self.gas.mean_molecular_weight) if self.gas.P > 1e7: self.gas.TP = T, 2e6 # Get cp, MW, omega, etc R_u = ct.gas_constant cp = self.gas.cp omega_i = self.gas.net_production_rates MW_i = self.gas.molecular_weights MW_mix = self.gas.mean_molecular_weight h_i = self.gas.partial_molar_enthalpies mu_g = self.gas.viscosity # Compute dD^2/dx T_bar = 0.5*T + 0.5*self.T_l try: # Update states self.gas.TP = T_bar, self.gas.P self.liquid.update(CoolProp.PT_INPUTS, self.gas.P, T) # Calculate K k_v = self.liquid.conductivity() k_inf = self.gas.thermal_conductivity # PropsSI('conductivity','T', T, 'P', P, 'Air') kg = 0.4*k_v + 0.6*k_inf c_pv = self.liquid.cpmass() K = 8*kg/(rho_l*c_pv) * np.log(1 + c_pv*(T - self.T_l)/self.h_fg) # Roll back states self.gas.TP = T, self.gas.P self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) except ValueError as E: # print(E) # print('ERROR! State Variable:', u) # print('Using K = 7.25e-7 to continue.') K = 7.25e-07 dD2_dx = -K/v_d * 1e12 # Compute dml/dx and dmg/dx dml_dx = np.pi/4 * self.N_dot * rho_l * D * dD2_dx * 1e-12 dmg_dx = -dml_dx # Compute dv_d/dx v_rel = v_d - v_g Re = rho_g*abs(v_d - v_g)*D/mu_g Cd = 24/Re + 6/(1+np.sqrt(Re)) + 0.4 dv_d_dx = -(3*Cd*rho_g*v_rel**2)/(4*rho_l*v_d*D)*v_rel/abs(v_rel) # Check Mach Number # M2 = v_g**2 / (self.gas.cp/self.gas.cv * R_u/MW_mix * T) # s = 0.0001 # dA_dx *= (1 - np.exp(-((M2-1)/s)**2)) # Compute drho_g/dx # TODO: verify if droplets affect this equation drho_g_dx = ( (1 - R_u/(cp*MW_mix)) * (rho_g**2) * (v_g**2) * (dA_dx/A) + ((rho_g*R_u)/(v_g*cp*MW_mix)) * sum(omega_i*(h_i - cp*T*MW_mix)) )/( self.gas.P*(1+ (v_g**2)/(cp*T)) - (rho_g*v_g**2) ) # Compute dT/dx # TODO: remove heat due to cooling and recirculation self.liquid.update(CoolProp.PT_INPUTS, self.gas.P, T) h_g = self.liquid.hmass() self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) h_l = self.liquid.hmass() dT_dx = ( ((v_g**2)/(rho_g*cp)) * drho_g_dx + ((v_g**2)/cp) * (dA_dx/A) - (1/(v_g*rho_g*cp))*sum(h_i*omega_i) + (h_g - h_l)*dml_dx/(mg*cp) ) # drho_g_dx2 = rho_g * ( M2 / (1 - M2) * (1/A * dA_dx) ) # dT_dx2 = ( 1 + M2 / (1 - M2)) * ( (1/A * dA_dx) * M2 * T * (self.gas.cp/self.gas.cv - 1) ) # Compute dY_dx dY_dx = omega_i * MW_i / (rho_g*v_g) # Add droplet vaporization term to ethanol mass fraction dY_dx[37] += dmg_dx/mg return np.hstack(([dD2_dx, dml_dx, dmg_dx, dv_d_dx, drho_g_dx, dT_dx], dY_dx)) def state_derivate_vaporization_controlled_combustion(self, x, u): """ ODE function u'= f(x, u). Parameters ---------- x : float Axial position in meters. u : np.array State variable. Variables are: u[0] = D^2 (droplet diameter (SMD) squared) u[1] = ml (liquid phase flow rate) u[2] = mg (gas phase flow rate) u[3] = v_d (droplet velocity) u[4] = rho_g (gas phase density) u[5] = T (gas phase temperature) u[6] = Phi (gas equivalence ratio) u[7:7+N] = Y_i (mass fraction of the i-th species, out of N species) """ # Get variables from state variable self.droplets_exist = True D2, ml, mg, v_d, rho_g, T, phi = u[:7] if D2 <= 0 or rho_g <= 0 or T <=0: return 0*u D = (D2**0.5)*1e-6 Y = u[7:] A = self.A(x) dA_dx = self.dA_dx(x) rho_l = self.rho_l # Update gas state self.gas.set_equivalence_ratio(phi, fuel='C2H5OH', oxidizer='N2O') self.gas.TP = T, P # rho_g*ct.gas_constant*T/(self.gas.mean_molecular_weight) self.gas.equilibrate('TP') rho_g = self.gas.density v_g = mg/(rho_g*A) # Get cp, MW, omega, etc R_u = ct.gas_constant cp = self.gas.cp omega_i = self.gas.net_production_rates MW_i = self.gas.molecular_weights MW_mix = self.gas.mean_molecular_weight h_i = self.gas.partial_molar_enthalpies mu_g = self.gas.viscosity # Compute dD^2/dx T_bar = 0.5*T + 0.5*self.T_l try: # Update states self.gas.TP = T_bar, self.gas.P self.liquid.update(CoolProp.PT_INPUTS, self.gas.P, T) # Calculate K k_v = self.liquid.conductivity() k_inf = self.gas.thermal_conductivity # PropsSI('conductivity','T', T, 'P', P, 'Air') kg = 0.4*k_v + 0.6*k_inf c_pv = self.liquid.cpmass() K = 8*kg/(rho_l*c_pv) * np.log(1 + c_pv*(T - self.T_l)/self.h_fg) # Roll back states self.gas.TP = T, self.gas.P self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) except ValueError as E: # print(E) # print('ERROR! State Variable:', u) # print('Using K = 7.25e-7 to continue.') K = 7.25e-07 dD2_dx = -K/v_d * 1e12 # Compute dml/dx and dmg/dx dml_dx = np.pi/4 * self.N_dot * rho_l * D * dD2_dx * 1e-12 dmg_dx = -dml_dx # Compute dv_d/dx v_rel = v_d - v_g Re = rho_g*abs(v_d - v_g)*D/mu_g Cd = 24/Re + 6/(1+np.sqrt(Re)) + 0.4 dv_d_dx = -(3*Cd*rho_g*v_rel**2)/(4*rho_l*v_d*D)*v_rel/abs(v_rel) # Compute dphi_dx FOst = 0.18445603193 dphi_dx = 1/(FOst) * dmg_dx /mg_0 # Compute dT_dx # h_g = self.enthalpy(T, P, phi) self.liquid.update(CoolProp.PT_INPUTS, self.gas.P, T) h_g = self.liquid.hmass() self.liquid.update(CoolProp.PQ_INPUTS, self.gas.P, 0) h_l = self.liquid.hmass() dh_dphi = self.enthalpy_partial_phi(T, P, phi) dT_dx = ((h_g - h_l)*dml_dx/mg - dh_dphi*dphi_dx + self.q_dot_prime/mg)/cp return np.hstack(([dD2_dx, dml_dx, dmg_dx, dv_d_dx, 0, dT_dx, dphi_dx], 0*Y)) def state_derivate_reacting_nozzle(self, x, u): """ ODE function u'= f(x, u). Parameters ---------- x : float Axial position in meters. u : np.array State variable. Variables are: u[0] = D^2 (droplet diameter (SMD) squared) u[1] = ml (liquid phase flow rate) u[2] = mg (gas phase flow rate) u[3] = v_d (droplet velocity) u[4] = rho_g (gas phase density) u[5] = T (gas phase temperature) u[6] = 0 u[7:7+N] = Y_i (mass fraction of the i-th species, out of N species) """ # Get variables from state variable self.droplets_exist = False D2, ml, mg, v_d, rho_g, T, phi = u[:7] if D2 <= 0 or rho_g <= 0 or T <=0: return 0*u Y = u[7:] A = self.A(x) dA_dx = self.dA_dx(x) v_g = mg/(rho_g*A) rho_l = self.rho_l # Update gas state self.gas.set_unnormalized_mass_fractions(Y) self.gas.TP = T, rho_g*ct.gas_constant*T/(self.gas.mean_molecular_weight) # Get cp, MW, omega, etc R_u = ct.gas_constant cp = self.gas.cp omega_i = self.gas.net_production_rates MW_i = self.gas.molecular_weights MW_mix = self.gas.mean_molecular_weight h_i = self.gas.partial_molar_enthalpies mu_g = self.gas.viscosity dD2_dx = 0 dml_dx = 0 dmg_dx = 0 dv_d_dx = 0 # Check Mach Number # M2 = v_g**2 / (self.gas.cp/self.gas.cv * R_u/MW_mix * T) # s = 0.0001 # dA_dx *= (1 - np.exp(-((M2-1)/s)**2)) # Compute drho_g/dx drho_g_dx = ( (1 - R_u/(cp*MW_mix)) * (rho_g**2) * (v_g**2) * (dA_dx/A) + ((rho_g*R_u)/(v_g*cp*MW_mix)) * sum(omega_i*(h_i - cp*T*MW_mix)) )/( self.gas.P*(1+ (v_g**2)/(cp*T)) - (rho_g*v_g**2) ) # Compute dT/dx dT_dx = ( ((v_g**2)/(rho_g*cp)) * drho_g_dx + ((v_g**2)/cp) * (dA_dx/A) - (1/(v_g*rho_g*cp))*sum(h_i*omega_i) + self.q_dot_prime/cp/mg ) # drho_g_dx2 = rho_g * ( M2 / (1 - M2) * (1/A * dA_dx) ) # dT_dx2 = ( 1 + M2 / (1 - M2)) * ( (1/A * dA_dx) * M2 * T * (self.gas.cp/self.gas.cv - 1) ) # Compute dY_dx dY_dx = omega_i * MW_i / (rho_g*v_g) return np.hstack(([dD2_dx, dml_dx, dmg_dx, dv_d_dx, drho_g_dx, dT_dx, 0], dY_dx)) def state_derivate_equilibrium_nozzle(self, x, u): """ ODE function u'= f(x, u). Parameters ---------- x : float Axial position in meters. u : np.array State variable. Variables are: u[0] = D^2 (droplet diameter (SMD) squared) u[1] = ml (liquid phase flow rate) u[2] = mg (gas phase flow rate) u[3] = v_d (droplet velocity) u[4] = rho_g (gas phase density) u[5] = T (gas phase temperature) u[6:6+N] = Y_i (mass fraction of the i-th species, out of N species) """ # Get variables from state variable self.droplets_exist = False D2, ml, mg, v_d, rho_g, T = u[:6] Y = u[6:] A = self.A(x) dA_dx = self.dA_dx(x) v_g = mg/(rho_g*A) rho_l = self.rho_l if rho_g < 0: print('x:', x, 'r:', rho_g) rho_g = abs(rho_g) if T < 0: print(x, T) T = max(self.Tmin, T) # Update gas state # self.gas.set_unnormalized_mass_fractions(Y) diff = [] for i in range(3): self.gas.TP = T, rho_g*ct.gas_constant*T/(self.gas.mean_molecular_weight) self.gas.equilibrate('TP') diff += [(rho_g - self.gas.density)] # Get cp, MW, omega, etc R_u = ct.gas_constant cp = self.gas.cp omega_i = self.gas.net_production_rates MW_i = self.gas.molecular_weights MW_mix = self.gas.mean_molecular_weight h_i = self.gas.partial_molar_enthalpies mu_g = self.gas.viscosity # PropsSI('viscosity','T', T, 'P', P, 'Air') # Pa*s dD2_dx = 0 dml_dx = 0 dmg_dx = 0 dv_d_dx = 0 dY_dx = 0*Y # Check Mach Number M2 = v_g**2 / (self.gas.cp/self.gas.cv * R_u/MW_mix * T) s = 0.0001 # dA_dx *= (1 - np.exp(-((M2-1)/s)**2)) if abs(M2 - 1) < 1e-6: dA_dx = abs(dA_dx) # v_g += 10.0 * (M2 - 1)*abs(M2 - 1) # print(M2) # M2 = v_g**2 / (self.gas.cp/self.gas.cv * R_u/MW_mix * T) print(M2) # Compute drho_g/dx drho_g_dx = ( (1 - R_u/(cp*MW_mix)) * (rho_g**2) * (v_g**2) * (dA_dx/A) )/( self.gas.P*(1+ (v_g**2)/(cp*T)) - (rho_g*v_g**2) ) drho_g_dx2 = rho_g * ( M2 / (1 - M2) * (1/A * dA_dx) ) if 100*abs((drho_g_dx2 - drho_g_dx)/drho_g_dx2) > 1.0: print('x:', x) print('Delta rho:', drho_g_dx2 - drho_g_dx) # Compute dT/dx dT_dx = ( ((v_g**2)/(rho_g*cp)) * drho_g_dx + ((v_g**2)/cp) * (dA_dx/A) ) dT_dx2 = ( 1 + M2 / (1 - M2)) * ( (1/A * dA_dx) * M2 * T * (self.gas.cp/self.gas.cv - 1) ) if 100*abs((dT_dx2 - dT_dx)/dT_dx2) > 1.0: print('x:', x) print('Delta T:', 100*abs((dT_dx2 - dT_dx)/dT_dx2)) return np.hstack(([dD2_dx, dml_dx, dmg_dx, dv_d_dx, drho_g_dx, dT_dx], dY_dx)) def enthalpy(self, T, P, phi): # T: temperature in K # P: pressure in Pa # phi: equivalence ratio # gas.enthalpy_mass: J/kg # Set initial state self.gas.TP = T, P self.gas.set_equivalence_ratio(phi, fuel='C2H5OH', oxidizer='N2O') # Calculate equilibrium under constant temperature and pressure self.gas.equilibrate('TP') return self.gas.enthalpy_mass def enthalpy_partial_T(self, T, P, phi, dT=1): return (self.enthalpy(T+dT, P, phi) - self.enthalpy(T, P, phi))/(dT) def enthalpy_partial_phi(self, T, P, phi, dphi=1e-8): return (self.enthalpy(T, P, phi+dphi) - self.enthalpy(T, P, phi))/(dphi) # Setting Up Gas, Reactor and Initial Conditions ## State T_0 = 2922.58 # K P = 15e5 # Pa T_0 = 2000.0 # K # P = 10e5 # Pa ## Gas gas = create_solution_mechanism() gas.TPY = T_0, P, 'N2O: 1.0' # gas.TP = T_0, P # gas.set_equivalence_ratio(1.0, fuel='C2H5OH', oxidizer='N2O') # gas.equilibrate('TP') ## Liquid liquid = CoolProp.AbstractState("HEOS", "Ethanol") # &Water") # liquid.set_mass_fractions([0.92, 0.08]) liquid.update(CoolProp.PQ_INPUTS, gas.P, 0) liquid_density = liquid.rhomass() ## Intial conditions D_0 = 40.002*1e-6 # micro m D2_0 = (D_0*1e6)**2 ml_0 = 0.314 # kg/s mg_0 = 1.103 # kg/s # mg_0 = 1.417 # kg/s rho_g_0 = gas.density # kg/m3 v_d_0 = 93.75 # m/s phi_0 = 0.0 ## Geometry # radius = 1.005*0.9395177184726075*Function('nozzle_geometry2.csv', interpolation='linear') radius = Function('nozzle_geometry.csv', interpolation='linear') radius.source[:, 1] = scipy.signal.savgol_filter(radius.source[:, 1], 21, 3) radius.source = radius.source[::3, :] radius.setInterpolation('spline') # radius = Function(0.053) # radius = Function([(0.0, 0.053), (0.1, 0.053), (0.15, 0.0)], interpolation='linear') area = np.pi*radius**2 ## Droplet flow rate N_dot = 6*ml_0/(liquid_density*np.pi*D_0**3) ## Reactor q_dot_prime = -0*87.8e3 / 0.0838 reactor = NoelleReactor(gas, area, liquid, N_dot, q_dot_prime) # reactor.A() # reactor.dA_dx.plot(-0.275, 0.6) # Analytical Model - Spalding k = gas.thermal_conductivity cp_g = gas.cp Pr = gas.cp_mass * gas.viscosity / gas.thermal_conductivity B = 5.35 G_t = (mg_0 + ml_0)/area(0.0) S = 9*Pr/(2*np.log(1+B)) X0 = rho_g_0 * v_d_0 / G_t xsi_star = (X0 + 3*S/10)/(S +2) x_star = xsi_star * G_t * (D_0/2)**2 / (rho_g_0 * np.log(1+B) * k/cp_g/liquid_density) print(1000*x_star) # Numerical Integration ## Vaporization-Controlled Combustion print('Simulating Vaporization-Controlled Combustion') x_init = -0.275 x_max = 0.060 # x_init = 0.0 # x_max = 0.283 initial_state = np.hstack(([D2_0, ml_0, mg_0, v_d_0, rho_g_0, T_0, phi_0], gas.Y)) def fully_evaporated_event(x, u): return min(u[0], u[1]) fully_evaporated_event.terminal = True def choke_event(x, u): D2, ml, mg, v_d, rho_g, T, phi = u[:7] Y = u[7:] gas.set_equivalence_ratio(phi, fuel='C2H5OH', oxidizer='N2O') A = area(x) v_g = mg/(rho_g*A) gas.TP = T, rho_g*ct.gas_constant*T/(gas.mean_molecular_weight) M2 = v_g**2 / (gas.cp/gas.cv * ct.gas_constant/gas.mean_molecular_weight * T) return M2 - 1 choke_event.terminal = True sol_vaporization_controlled_combustion = scipy.integrate.solve_ivp( fun=reactor.state_derivate_vaporization_controlled_combustion, t_span=(x_init, x_max), y0=initial_state, method='BDF', t_eval=None, dense_output=True, events=[choke_event, fully_evaporated_event], max_step=0.001 ) print(sol_vaporization_controlled_combustion.status) ### Process solution to compute mass fractions states = ct.SolutionArray(gas) for i in range(sol_vaporization_controlled_combustion.y.shape[1]): u = sol_vaporization_controlled_combustion.y[:, i] D2, ml, mg, v_d, rho_g, T, phi = u[:7] gas.set_equivalence_ratio(phi, fuel='C2H5OH', oxidizer='N2O') gas.TP = T, P gas.equilibrate('TP') states.append(gas.state) sol_vaporization_controlled_combustion.y[4, i] = gas.density sol_vaporization_controlled_combustion.y[7:, i] = gas.Y ## Reacting Nozzle print('Simulating Reacting Nozzle - Converging') # x_init = -0.050 x_max = -0.006625 x_init = sol_vaporization_controlled_combustion.t[-1] # x_max = 0.283 initial_state = sol_vaporization_controlled_combustion.y[:, -1] def choke_event(x, u): D2, ml, mg, v_d, rho_g, T, phi = u[:7] Y = u[7:] gas.set_unnormalized_mass_fractions(Y) A = area(x) v_g = mg/(rho_g*A) gas.TP = T, rho_g*ct.gas_constant*T/(gas.mean_molecular_weight) M2 = v_g**2 / (gas.cp/gas.cv * ct.gas_constant/gas.mean_molecular_weight * T) return M2 - 1 choke_event.terminal = True sol_reacting_nozzle_converging = scipy.integrate.solve_ivp( fun=reactor.state_derivate_reacting_nozzle, t_span=(x_init, x_max), y0=initial_state, method='BDF', t_eval=None, dense_output=True, events=choke_event, max_step=0.001 ) print(sol_reacting_nozzle_converging.status) print('Simulating Reacting Nozzle - Diverging') # x_init = -0.050 x_max = 0.060 x_init = 0.0011452 # sol_reacting_nozzle_converging.t[-1] + 0.00556 # x_max = 0.283 initial_state = sol_reacting_nozzle_converging.y[:, -1] sol_reacting_nozzle_diverging = scipy.integrate.solve_ivp( fun=reactor.state_derivate_reacting_nozzle, t_span=(x_init, x_max), y0=initial_state, method='LSODA', t_eval=None, dense_output=True, events=choke_event, max_step=0.001 ) print(sol_reacting_nozzle_diverging.status) solution_y = np.hstack([sol_vaporization_controlled_combustion.y, sol_reacting_nozzle_converging.y, sol_reacting_nozzle_diverging.y]) solution_t = np.hstack([1000*sol_vaporization_controlled_combustion.t, 1000*sol_reacting_nozzle_converging.t, 1000*(sol_reacting_nozzle_diverging.t-0.0077702)]) # solution_y = np.hstack([sol_vaporization_controlled_combustion.y, sol_reacting_nozzle_converging.y]) # solution_t = np.hstack([1000*sol_vaporization_controlled_combustion.t, 1000*sol_reacting_nozzle_converging.t]) # Plot # Hard variables states = ct.SolutionArray(gas) pressure = [] sound_speed = [] for u in solution_y.T: D2, ml, mg, v_d, rho_g, T, phi = u[:7] Y = u[7:] gas.set_unnormalized_mass_fractions(Y) gas.TP = T, rho_g*ct.gas_constant*T/(gas.mean_molecular_weight) # gas.equilibrate('TP') states.append(gas.state) pressure += [gas.P] sound_speed += [(gas.cp/gas.cv * gas.P/gas.density)**0.5] sound_speed = np.array(sound_speed) pressure = np.array(pressure) # Easy ones diameter_ratio = np.sqrt(solution_y[0])/(D_0*1e6) droplet_velocity_ratio = solution_y[3]/solution_y[3][0] ethanol_mass_fraction = solution_y[37+7] equivalence_ratio = solution_y[6] temperature_ratio = solution_y[5]/(1.29*3187.5) gas_density = solution_y[4]/solution_y[4, 0] gas_velocity = solution_y[2]/(solution_y[4]*area(solution_t/1000)) gas_mach = gas_velocity/sound_speed ## Ethanol Droplet Plots # plt.figure(figsize=(10,6)) # plt.plot(solution_t, diameter_ratio, label='Droplet diameter $D/D_0$', linewidth=2) # plt.plot(solution_t, droplet_velocity_ratio, label='Droplet velocity ratio', linewidth=2) # plt.plot(solution_t, gas_velocity/solution_y[3][0], label='Gas velocity ratio', linewidth=2) # plt.plot(solution_t, ethanol_mass_fraction, label=r'Ethanol mass fraction', linewidth=2) # plt.xlabel('Chamber $x$-coordinate (mm)') # plt.ylabel('Non-dimensional parameters') # plt.legend() # plt.show() ## Nozzle Flow Plots # plt.figure(figsize=(12,4)) # plt.plot(solution_t, radius(solution_t/1000)/min(radius(solution_t/1000)), linewidth=5, c='k') # plt.ylim(0, 3.2) # plt.xlabel('Coordenada Axial $x$ (mm)') # plt.ylabel('Valores Adimensionais') # plt.savefig('CRN.svg') # plt.show() plt.figure(figsize=(12,4)) # plt.plot(solution_t, radius(solution_t/1000)/min(radius(solution_t/1000)), linewidth=5, c='k') plt.ylim(0, 2.6) plt.xlim(0, solution_t[-1]-solution_t[0]) plt.plot(solution_t-solution_t[0], diameter_ratio, label='Diâmetro de Gotículas $D/SMD_0$', linewidth=2) plt.xlabel('Coordenada Axial $x$ (mm)') plt.ylabel('Valores Adimensionais') # plt.legend() plt.savefig('CRN_diameter.svg') plt.show() # plt.figure(figsize=(12,4)) # plt.plot(solution_t, radius(solution_t/1000)/min(radius(solution_t/1000)), linewidth=5, c='k') # plt.plot(solution_t, diameter_ratio, label='Diâmetro de Gotículas $D/SMD_0$', linewidth=2) # plt.plot(solution_t, equivalence_ratio, label='Razão de Equivalência $\Phi$', linewidth=2) # # plt.plot(solution_t, temperature_ratio, label='Temperature ratio $T/T_{ad}$', linewidth=2) # # plt.plot(solution_t, gas_density, label=r'Gas Density $\rho/\rho_0$', linewidth=2) # # plt.plot(solution_t, gas_mach, label=r'Gas Mach Number', linewidth=2) # # plt.plot(solution_t, pressure/15e5, label=r'Pressure Ratio', linewidth=2) # plt.xlabel('Coordenada Axial $x$ (mm)') # plt.ylabel('Valores Adimensionais') # # plt.legend() # plt.savefig('CRN_diameter_equivratio.svg') # plt.show() plt.figure(figsize=(12,4)) plt.ylim(0, 2.6) plt.xlim(0, solution_t[-1]-solution_t[0]) plt.plot(solution_t-solution_t[0], diameter_ratio, label='Diâmetro de Gotículas $D/SMD_0$', linewidth=2) # plt.plot(solution_t, equivalence_ratio, label='Razão de Equivalência $\Phi$', linewidth=2) plt.plot(solution_t-solution_t[0], temperature_ratio, label='Temperatura $T/T_{ad}$', linewidth=2) plt.xlabel('Coordenada Axial $x$ (mm)') plt.ylabel('Valores Adimensionais') # plt.legend() plt.savefig('CRN_diameter_temp.svg') plt.show() plt.figure(figsize=(12,4)) plt.ylim(0, 2.6) plt.xlim(0, solution_t[-1]-solution_t[0]) plt.plot(solution_t-solution_t[0], diameter_ratio, label='Diâmetro de Gotículas $D/SMD_0$', linewidth=2) plt.plot(solution_t-solution_t[0], equivalence_ratio, label='Razão de Equivalência $\Phi$', linewidth=2) # plt.plot(solution_t, temperature_ratio, label='Temperatura $T/T_{ad}$', linewidth=2) plt.plot(solution_t-solution_t[0], gas_mach, label='Número de Mach', linewidth=2) plt.xlabel('Coordenada Axial $x$ (mm)') plt.ylabel('Valores Adimensionais') # plt.legend() plt.savefig('CRN_diameter_temp_mach.svg') plt.show() plt.figure(figsize=(12,4)) plt.ylim(0, 2.6) plt.xlim(0, solution_t[-1]-solution_t[0]) plt.plot(solution_t-solution_t[0], diameter_ratio, label='Diâmetro de Gotículas $D/SMD_0$', linewidth=2) # plt.plot(solution_t, equivalence_ratio, label='Razão de Equivalência $\Phi$', linewidth=2) plt.plot(solution_t-solution_t[0], temperature_ratio, label='Temperatura $T/T_{ad}$', linewidth=2) plt.plot(solution_t-solution_t[0], gas_mach, label='Número de Mach', linewidth=2) plt.xlabel('Coordenada Axial $x$ (mm)') plt.ylabel('Valores Adimensionais') plt.legend() plt.savefig('CRN_legend.svg') plt.show() ## Combustion Flow plt.figure(figsize=(10,6)) plt.plot(solution_t, area(solution_t/1000)/min(solution_t/1000), label='Area ratio $A/A_{*}$', linewidth=5, c='k') plt.plot(solution_t, states('CO2').Y, label=r'$Y_{CO_2}$', linewidth=2) # plt.plot(solution_t, states('N2O').Y, label=r'$Y_{N_2O}$', linewidth=2) # plt.plot(solution_t, states('C2H5OH').Y, label=r'$Y_{C_2H_5OH}$', linewidth=2) plt.plot(solution_t, states('H2O').Y, label=r'$Y_{H_2O}$', linewidth=2) plt.plot(solution_t, states('O2').Y, label=r'$Y_{O_2}$', linewidth=2) # plt.plot(solution_t, temperature_ratio, label='Temperature ratio $T/T_{ad}$', linewidth=2) # plt.plot(solution_t, pressure/15e5, label=r'Pressure Ratio', linewidth=2) # plt.plot(1000*area.source[:, 0], area.source[:, 1]/max(area.source[:, 1]), label='Area ratio $A/A_{*}$', linewidth=5, c='k') plt.xlabel('Chamber $x$-coordinate (mm)') plt.ylabel('Non-dimensional parameters') plt.legend() # plt.show() # reactor.gas.set_unnormalized_mass_fractions(sol_with_droplets.y[6:, -1]) # reactor.gas()
36.107407
160
0.609943
f4d5719da80cd81b9498f918d2cb3fcef37ae073
1,696
py
Python
tchannel/retry.py
srcclr/tchannel-python
5e82535f96ba247ade5a040010edfa026e0f7dce
[ "MIT" ]
null
null
null
tchannel/retry.py
srcclr/tchannel-python
5e82535f96ba247ade5a040010edfa026e0f7dce
[ "MIT" ]
4
2021-03-17T08:31:59.000Z
2021-06-25T15:49:37.000Z
tchannel/retry.py
susanstdemos/test-python-pip
5e82535f96ba247ade5a040010edfa026e0f7dce
[ "MIT" ]
4
2016-06-05T14:20:55.000Z
2020-08-24T16:28:41.000Z
# Copyright (c) 2015 Uber Technologies, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import ( absolute_import, division, print_function, unicode_literals ) #: Retry the request on failures to connect to a remote host. This is the #: default retry behavior. CONNECTION_ERROR = 'c' #: Never retry the request. NEVER = 'n' #: Retry the request on timeouts waiting for a response. TIMEOUT = 't' #: Retry the request on failures to connect and timeouts after connecting. CONNECTION_ERROR_AND_TIMEOUT = 'ct' DEFAULT = CONNECTION_ERROR #: The default number of times to retry a request. This is in addition to the #: original request. DEFAULT_RETRY_LIMIT = 4
39.44186
79
0.772406
7101e726fa86a28ff667ccace12722a4d65a8fa7
5,104
py
Python
tidepool_data_science_models/models/simple_metabolism_OLD.py
tidepool-org/data-science-models
cd06e9aad95a0bc6cc2a81871e567c88159b86d3
[ "BSD-2-Clause" ]
1
2020-10-17T19:48:38.000Z
2020-10-17T19:48:38.000Z
tidepool_data_science_models/models/simple_metabolism_OLD.py
tidepool-org/data-science-models
cd06e9aad95a0bc6cc2a81871e567c88159b86d3
[ "BSD-2-Clause" ]
4
2020-05-27T16:38:56.000Z
2020-11-21T21:09:23.000Z
tidepool_data_science_models/models/simple_metabolism_OLD.py
tidepool-org/data-science-models
cd06e9aad95a0bc6cc2a81871e567c88159b86d3
[ "BSD-2-Clause" ]
null
null
null
""" These are the original functions for modeling insulin and carbs for the FDA loop risk analysis written by Ed (with superficial modifications). They are here for reference and testing. """ import numpy as np from tidepool_data_science_models.models.simple_metabolism_model import STEADY_STATE_IOB_FACTOR_FDA def simple_metabolism_model( carb_amount=0, # grams (g) insulin_amount=np.nan, # units of insulin (U) cir=12.5, # carb-to-insulin-ratio (g/U) isf=50, # insulin sensitivity factor (mg/dL/U) ): """ Compute an 8 hour long, 5-min interval time series metabolic response to insulin and carbs inputs at t0. If insulin is not given, Args: carb_amount: carb amount at t0 (g) insulin_amount: insulin amount at t0 (U) cir: carb to insulin ratio (g/U) isf: insulin sensitivity factor (mg/dL/U) Returns: tuple: ( net_change_in_bg, t_5min, carb_amount, insulin_amount, iob_5min ) """ # +CS minutes_in_model = 8 * 60 # 8 hr * 60 minutes/hr # +CS why do we have 2 time series? Reduce computation with just 5 min time series? # create a time series t = np.arange(0, minutes_in_model, 1) # in minutes t_5min = np.arange(0, minutes_in_model, 5) # +CS Why do we assume the an insulin amount if it's not given? # This could be more generalized? # if insulin amount is not given, # calculate carb amount like a bolus calculator if np.isnan(insulin_amount): insulin_amount = carb_amount / cir # insulin amount # insulin model if insulin_amount != 0: # model constants tau1 = 55 tau2 = 70 Kcl = 1 insulin_equation = ( insulin_amount * (1 / (Kcl * (tau2 - tau1))) * (np.exp(-t / tau2) - np.exp(-t / tau1)) ) ia = np.cumsum(insulin_equation) iob = insulin_amount - ia iob_5min = iob[t_5min] insulin_effect = -isf * ia ie_5min = insulin_effect[t_5min] decrease_due_to_insulin_5min = np.append(0, ie_5min[1:] - ie_5min[:-1]) else: decrease_due_to_insulin_5min = np.zeros(len(t_5min)) iob_5min = np.zeros(len(t_5min)) # carb model if carb_amount > 0: K = isf / cir # carb gain tau = 42 theta = 20 c_t = ( K * carb_amount * (1 - np.exp((theta - t) / tau)) * np.heaviside(t - theta, 1) ) ce_5min = c_t[t_5min] increase_due_to_carbs_5min = np.append(0, ce_5min[1:] - ce_5min[:-1]) else: increase_due_to_carbs_5min = np.zeros(len(t_5min)) net_change_in_bg_5min = decrease_due_to_insulin_5min + increase_due_to_carbs_5min # +CS - Why are we returning the carb and insulin amt? return net_change_in_bg_5min, t_5min, carb_amount, insulin_amount, iob_5min def get_iob_from_sbr(sbr_actual): """ Compute insulin on board for 8 hours following with the initial condition being insulin on board from the scheduled basal rate for 8 hours. Parameters ---------- sbr_actual isf cir Returns ------- """ # TODO: Further clarify this # Cameron added explanation since it was unclear what was going on until I stared # at it for a while. Ed, please edit if these aren't correct. # Step 1: Get 8 hr iob from a bolus that is 1/12 of the scheduled basal rate. # This assumes basal rate is a series of boluses at 5 min intervals. _, _, _, _, iob_sbr = simple_metabolism_model( carb_amount=0, insulin_amount=sbr_actual / 12, cir=0, # This doesn't matter for this use of the model isf=0, # Same as above ) # Step 2: Allocate iob_with_zeros = np.append(iob_sbr, np.zeros(8 * 12)) # Step 3: Copy the decay curves across the whole matrix iob_matrix = np.tile(iob_with_zeros, (8 * 12, 1)).T # Step 4: Shift each decay curve by the number of time steps nrows, ncols = np.shape(iob_matrix) for t_pre in np.arange(1, ncols): iob_matrix[:, t_pre] = np.roll(iob_matrix[:, t_pre], t_pre) # Step 5: Fill the upper triangle with zeros # NOTE 2020-04-28: Cameron commented this out since he and Ed # determined it isn't necessary in this algo version. Now # the refactored code matches this exactly for testing. # iob_matrix_tri = iob_matrix * np.tri(nrows, ncols, 0) # Step 6: Sum across the curves to get the iob at every time step iob_sbr_t = np.sum(iob_matrix, axis=1) # Step 7: Just get the last 8 hours iob_sbr_t = iob_sbr_t[95:-1] return iob_sbr_t def get_steady_state_iob_from_sbr(sbr): """ Get the steady state insulin on board for a given scheduled basal rate. This is the iob once the basal insulin stacking and metabolism clearing reach equilibrium. Parameters ---------- sbr Returns ------- """ return sbr * STEADY_STATE_IOB_FACTOR_FDA
30.201183
101
0.627155
f1505314eef374ce1b7cebf3c65b692d219c1017
1,076
py
Python
nova/policies/image_size.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
1
2015-11-30T19:44:00.000Z
2015-11-30T19:44:00.000Z
nova/policies/image_size.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
11
2017-06-19T01:28:55.000Z
2017-06-23T02:01:47.000Z
nova/policies/image_size.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
3
2018-04-04T15:15:01.000Z
2018-04-19T18:14:25.000Z
# Copyright 2016 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from nova.policies import base BASE_POLICY_NAME = 'os_compute_api:image-size' POLICY_ROOT = 'os_compute_api:image-size:%s' image_size_policies = [ policy.RuleDefault( name=POLICY_ROOT % 'discoverable', check_str=base.RULE_ANY), policy.RuleDefault( name=BASE_POLICY_NAME, check_str=base.RULE_ADMIN_OR_OWNER), ] def list_rules(): return image_size_policies
29.081081
78
0.729554
0f645f459c9bbd8f6b8427684f08752b746ea9d2
2,500
py
Python
main.py
stevenraphael/pathsize
981be00f08a6d3c2e07f480e827ed078111b3e46
[ "MIT" ]
null
null
null
main.py
stevenraphael/pathsize
981be00f08a6d3c2e07f480e827ed078111b3e46
[ "MIT" ]
null
null
null
main.py
stevenraphael/pathsize
981be00f08a6d3c2e07f480e827ed078111b3e46
[ "MIT" ]
null
null
null
""" Usage: main.py <path> [--top=<top>] [--nofiles] main.py -h | --help Options: -h --help show this screen --top=<top> how many of the largest items to show [default: 1000]. --nofiles excludes files in the path from being printed. """ import os, sys, docopt def listsizes(path, top, nofiles): """ Prints the sizes of items (folders/files) directly contained in the given path, sorted from largest to smallest. Arguments: path: a path to the folder that the function works with. top: an integer detailing the number of items to be printed (how many of the largest items will be printed). nofiles: excludes files in the path from being printed if nofiles is true. """ sizes = [] # Creates a list of (file/directory, size) pairs for f in os.listdir(path): newpath = os.path.join(path, f) if os.path.isfile(newpath): if not nofiles: sizes.append([f, os.path.getsize(newpath)]) elif not os.path.islink(newpath): try: sizes.append(['<DIR> ' + f, recursivesize(newpath)]) except PermissionError: print(f'Unable to fully access {f}: Permission denied') sizes.sort(key=lambda s: -1 * s[1]) sizes = sizes[:top] alignspacing = max(len(s[0]) for s in sizes) + 5 MB = 2 ** 20 KB = 2 ** 10 for s in sizes: if s[1] > MB: print(f'{s[0] : <{alignspacing}} {round(s[1] / MB, 2):.2f} MB') elif s[1] > KB: print(f'{s[0] : <{alignspacing}} {round(s[1] / KB, 2):.2f} KB') else: print(f'{s[0] : <{alignspacing}} {s[1]} bytes') def recursivesize(path='.'): """ Given a path to a folder, gets the cumulative size of the folder, excluding simlinks contained in the folder. If no path is specified, the path defaults to the current path. """ total = 0 for f in os.listdir(path): newpath = os.path.join(path,f) if os.path.isfile(newpath): total += os.path.getsize(newpath) elif not os.path.islink(newpath): total += recursivesize(newpath) return total def main(): args = docopt.docopt(__doc__) nofiles = args['--nofiles'] path = args['<path>'] top = int(args['--top']) if args['--top'] else 1000 listsizes(path, top, nofiles) if __name__ == '__main__': main()
32.051282
116
0.5648
811256eda4ed17632e5268ee45dbbda9f22608d4
31,378
py
Python
heudiconv/tests/test_bids.py
neurorepro/heudiconv
a694f83204df3d3d7c0aa70be492253f9659367d
[ "Apache-2.0" ]
1
2019-11-01T18:25:57.000Z
2019-11-01T18:25:57.000Z
heudiconv/tests/test_bids.py
neurorepro/heudiconv
a694f83204df3d3d7c0aa70be492253f9659367d
[ "Apache-2.0" ]
1
2021-06-21T20:42:25.000Z
2021-06-21T21:30:42.000Z
heudiconv/tests/test_bids.py
neurorepro/heudiconv
a694f83204df3d3d7c0aa70be492253f9659367d
[ "Apache-2.0" ]
2
2018-08-13T19:35:00.000Z
2022-02-11T16:03:40.000Z
"""Test functions in heudiconv.bids module. """ import re import os import os.path as op from random import random from datetime import (datetime, timedelta, ) from collections import (namedtuple, OrderedDict, ) from glob import glob import nibabel from heudiconv.utils import ( load_json, save_json, create_tree, ) from heudiconv.bids import ( maybe_na, treat_age, find_fmap_groups, populate_intended_for, get_shim_setting, get_key_info_for_fmap_assignment, find_compatible_fmaps_for_run, find_compatible_fmaps_for_session, select_fmap_from_compatible_groups, SHIM_KEY, AllowedCriteriaForFmapAssignment, ) import pytest def test_maybe_na(): for na in '', ' ', None, 'n/a', 'N/A', 'NA': assert maybe_na(na) == 'n/a' for notna in 0, 1, False, True, 'value': assert maybe_na(notna) == str(notna) def test_treat_age(): assert treat_age(0) == '0' assert treat_age('0') == '0' assert treat_age('0000') == '0' assert treat_age('0000Y') == '0' assert treat_age('000.1Y') == '0.1' assert treat_age('1M') == '0.08' assert treat_age('12M') == '1' assert treat_age('0000.1') == '0.1' assert treat_age(0000.1) == '0.1' SHIM_LENGTH = 6 TODAY = datetime.today() # Test scenarios: # -file with "ShimSetting" field # -file with no "ShimSetting", in "foo" dir, should return "foo" # -file with no "ShimSetting", in "fmap" dir, acq-CatchThis, should return # "CatchThis" # -file with no "ShimSetting", in "fmap" dir, acq-fMRI, should return "func" A_SHIM = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] @pytest.mark.parametrize( "fname, content, expected_return", [ (op.join('foo', 'bar.json'), {SHIM_KEY: A_SHIM}, A_SHIM), (op.join('dont_catch_this', 'foo', 'bar.json'), {}, 'foo'), (op.join('dont_catch_this', 'fmap', 'bar_acq-CatchThis.json'), {}, 'CatchThis'), (op.join('dont_catch_this', 'fmap', 'bar_acq-fMRI.json'), {}, 'func'), ] ) def test_get_shim_setting(tmpdir, fname, content, expected_return): """ Tests for get_shim_setting """ json_name = op.join(str(tmpdir), fname) json_dir = op.dirname(json_name) if not op.exists(json_dir): os.makedirs(json_dir) save_json(json_name, content) assert get_shim_setting(json_name) == expected_return def test_get_key_info_for_fmap_assignment(tmpdir, monkeypatch): """ Test get_key_info_for_fmap_assignment """ # Stuff needed to mock reading of a NIfTI file header: # affines (qforms/sforms) are 4x4 matrices MY_AFFINE = [[random() for i in range(4)] for j in range(4)] # dims are arrays with 8 elements with the first one indicating the number # of dims in the image; remaining elements are 1: MY_DIM = [4] + [round(256 * random()) for i in range(4)] + [1] * 3 # We use namedtuples so that we can use the .dot notation, to mock # nibabel headers: MyHeader = namedtuple('MyHeader', 'affine dim') MY_HEADER = MyHeader(MY_AFFINE, MY_DIM) MyMockNifti = namedtuple('MyMockNifti', 'header') def mock_nibabel_load(file): """ Pretend we run nibabel.load, but return only a header with just a few fields """ return MyMockNifti(MY_HEADER) monkeypatch.setattr(nibabel, "load", mock_nibabel_load) json_name = op.join(str(tmpdir), 'foo.json') # 1) Call for a non-existing file should give an error: with pytest.raises(FileNotFoundError): assert get_key_info_for_fmap_assignment('foo.json') # 2) matching_parameters = 'Shims' save_json(json_name, {SHIM_KEY: A_SHIM}) # otherwise get_key_info_for_fmap_assignment will give an error key_info = get_key_info_for_fmap_assignment( json_name, matching_parameter='Shims' ) assert key_info == [A_SHIM] # 3) matching_parameters = 'ImagingVolume' key_info = get_key_info_for_fmap_assignment( json_name, matching_parameter='ImagingVolume' ) assert key_info == [MY_AFFINE, MY_DIM[1:3]] # 4) invalid matching_parameters: with pytest.raises(ValueError): assert get_key_info_for_fmap_assignment( json_name, matching_parameter='Invalid' ) def generate_scans_tsv(session_struct): """ Generates the contents of the "_scans.tsv" file, given a session structure. Currently, it will have the columns "filename" and "acq_time". The acq_time will increase by one minute from run to run. Parameters: ---------- session_struct : dict structure for the session, as a dict with modality: files Returns: ------- scans_file_content : str multi-line string with the content of the file """ # for each modality in session_struct (k), get the filenames: scans_fnames = [ op.join(k, vk) for k, v in session_struct.items() for vk in sorted(v.keys()) if vk.endswith('.nii.gz') ] # for each file, increment the acq_time by one minute: scans_file_content = ['filename\tacq_time'] + [ '%s\t%s' % (fn, (TODAY + timedelta(minutes=i)).isoformat()) for fn, i in zip(scans_fnames, range(len(scans_fnames))) ] # convert to multiline string: return "\n".join(scans_file_content) def create_dummy_pepolar_bids_session(session_path): """ Creates a dummy BIDS session, with slim json files and empty nii.gz The fmap files are pepolar The json files have ShimSettings Parameters: ---------- session_path : str or os.path path to the session (or subject) level folder Returns: ------- session_struct : dict Structure of the directory that was created expected_result : dict dictionary with fmap names as keys and the expected "IntendedFor" as values. expected_fmap_groups : dict dictionary with the expected fmap groups expected_compatible_fmaps : dict dictionary with the expected fmap groups for each non-fmap run in the session """ session_parent, session_basename = op.split(session_path.rstrip(op.sep)) if session_basename.startswith('ses-'): prefix = op.split(session_parent)[1] + '_' + session_basename else: prefix = session_basename # 1) Simulate the file structure for a session: # Generate some random ShimSettings: dwi_shims = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] func_shims_A = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] func_shims_B = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] # Dict with the file structure for the session: # -anat: anat_struct = { '{p}_{m}.{e}'.format(p=prefix, m=mod, e=ext): dummy_content for ext, dummy_content in zip(['nii.gz', 'json'], ['', {}]) for mod in ['T1w', 'T2w'] } # -dwi: dwi_struct = { '{p}_acq-A_run-{r}_dwi.nii.gz'.format(p=prefix, r=runNo): '' for runNo in [1, 2] } dwi_struct.update({ '{p}_acq-A_run-{r}_dwi.json'.format(p=prefix, r=runNo): {'ShimSetting': dwi_shims} for runNo in [1, 2] }) # -func: func_struct = { '{p}_acq-{a}_bold.nii.gz'.format(p=prefix, a=acq): '' for acq in ['A', 'B', 'unmatched'] } func_struct.update({ '{p}_acq-A_bold.json'.format(p=prefix): {'ShimSetting': func_shims_A}, '{p}_acq-B_bold.json'.format(p=prefix): {'ShimSetting': func_shims_B}, '{p}_acq-unmatched_bold.json'.format(p=prefix): { 'ShimSetting': ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] }, }) # -fmap: # * NIfTI files: fmap_struct = { '{p}_acq-{a}_dir-{d}_run-{r}_epi.nii.gz'.format(p=prefix, a=acq, d=d, r=r): '' for acq in ['dwi', 'fMRI'] for d in ['AP', 'PA'] for r in [1, 2] } # * dwi shims: expected_fmap_groups = { '{p}_acq-dwi_run-{r}_epi'.format(p=prefix, r=r): [ '{p}_acq-dwi_dir-{d}_run-{r}_epi.json'.format( p=op.join(session_path, 'fmap', prefix), d=d, r=r ) for d in ['AP', 'PA'] ] for r in [1, 2] } fmap_struct.update({ '{p}_acq-dwi_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=r): {'ShimSetting': dwi_shims} for d in ['AP', 'PA'] for r in [1, 2] }) # * func_shims (_A and _B): expected_fmap_groups.update({ '{p}_acq-fMRI_run-{r}_epi'.format(p=prefix, r=r): [ '{p}_acq-fMRI_dir-{d}_run-{r}_epi.json'.format( p=op.join(session_path, 'fmap', prefix), d=d, r=r ) for d in ['AP', 'PA'] ] for r in [1, 2] }) fmap_struct.update({ '{p}_acq-fMRI_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=r): {'ShimSetting': shims} for r, shims in {'1': func_shims_A, '2': func_shims_B}.items() for d in ['AP', 'PA'] }) # structure for the full session (init the OrderedDict as a list to preserve order): session_struct = OrderedDict([ ('fmap', fmap_struct), ('anat', anat_struct), ('dwi', dwi_struct), ('func', func_struct), ]) # add "_scans.tsv" file to the session_struct scans_file_content = generate_scans_tsv(session_struct) session_struct.update({'{p}_scans.tsv'.format(p=prefix): scans_file_content}) create_tree(session_path, session_struct) # 2) Now, let's create a dict with the fmap groups compatible for each run # -anat: empty expected_compatible_fmaps = { '{p}_{m}.json'.format(p=op.join(session_path, 'anat', prefix), m=mod): {} for mod in ['T1w', 'T2w'] } # -dwi: each of the runs (1, 2) is compatible with both of the dwi fmaps (1, 2): expected_compatible_fmaps.update({ '{p}_acq-A_run-{r}_dwi.json'.format(p=op.join(session_path, 'dwi', prefix), r=runNo): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-dwi_run-{r}_epi'.format(p=prefix, r=r) for r in [1, 2] ] } for runNo in [1, 2] }) # -func: acq-A is compatible w/ fmap fMRI run 1; acq-2 w/ fmap fMRI run 2 expected_compatible_fmaps.update({ '{p}_acq-{a}_bold.json'.format(p=op.join(session_path, 'func', prefix), a=acq): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-fMRI_run-{r}_epi'.format(p=prefix, r=runNo) ] } for runNo, acq in {'1': 'A', '2': 'B'}.items() }) # -func (cont): acq-unmatched is empty expected_compatible_fmaps.update({ '{p}_acq-unmatched_bold.json'.format(p=op.join(session_path, 'func', prefix)): {} }) # 3) Then, let's create a dict with what we expect for the "IntendedFor": sub_match = re.findall('(sub-([a-zA-Z0-9]*))', session_path) sub_str = sub_match[0][0] expected_prefix = session_path.split(sub_str)[-1].split(op.sep)[-1] # dict, with fmap names as keys and the expected "IntendedFor" as values. expected_result = { '{p}_acq-dwi_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=runNo): intended_for # (runNo=1 goes with the long list, runNo=2 goes with None): for runNo, intended_for in zip( [1, 2], [[op.join(expected_prefix, 'dwi', '{p}_acq-A_run-{r}_dwi.nii.gz'.format(p=prefix, r=r)) for r in [1,2]], None] ) for d in ['AP', 'PA'] } expected_result.update( { '{p}_acq-fMRI_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=runNo): [ op.join(expected_prefix, 'func', '{p}_acq-{a}_bold.nii.gz'.format(p=prefix, a=acq)) ] # runNo=1 goes with acq='A'; runNo=2 goes with acq='B' for runNo, acq in zip([1, 2], ['A', 'B']) for d in ['AP', 'PA'] } ) return session_struct, expected_result, expected_fmap_groups, expected_compatible_fmaps def create_dummy_no_shim_settings_bids_session(session_path): """ Creates a dummy BIDS session, with slim json files and empty nii.gz The fmap files are pepolar The json files don't have ShimSettings Parameters: ---------- session_path : str or os.path path to the session (or subject) level folder Returns: ------- session_struct : dict Structure of the directory that was created expected_result : dict dictionary with fmap names as keys and the expected "IntendedFor" as values. None it returns a third argument (None) to have the same signature as create_dummy_pepolar_bids_session """ session_parent, session_basename = op.split(session_path.rstrip(op.sep)) if session_basename.startswith('ses-'): prefix = op.split(session_parent)[1] + '_' + session_basename else: prefix = session_basename # 1) Simulate the file structure for a session: # Dict with the file structure for the session. # All json files will be empty. # -anat: anat_struct = { '{p}_{m}.{e}'.format(p=prefix, m=mod, e=ext): dummy_content for ext, dummy_content in zip(['nii.gz', 'json'], ['', {}]) for mod in ['T1w', 'T2w'] } # -dwi: dwi_struct = { '{p}_acq-A_run-{r}_dwi.{e}'.format(p=prefix, r=runNo, e=ext): dummy_content for ext, dummy_content in zip(['nii.gz', 'json'], ['', {}]) for runNo in [1, 2] } # -func: func_struct = { '{p}_acq-{a}_bold.{e}'.format(p=prefix, a=acq, e=ext): dummy_content for ext, dummy_content in zip(['nii.gz', 'json'], ['', {}]) for acq in ['A', 'B'] } # -fmap: fmap_struct = { '{p}_acq-{a}_dir-{d}_run-{r}_epi.{e}'.format(p=prefix, a=acq, d=d, r=r, e=ext): dummy_content for ext, dummy_content in zip(['nii.gz', 'json'], ['', {}]) for acq in ['dwi', 'fMRI'] for d in ['AP', 'PA'] for r in [1, 2] } expected_fmap_groups = { '{p}_acq-{a}_run-{r}_epi'.format(p=prefix, a=acq, r=r): [ '{p}_acq-{a}_dir-{d}_run-{r}_epi.json'.format( p=op.join(session_path, 'fmap', prefix), a=acq, d=d, r=r ) for d in ['AP', 'PA'] ] for acq in ['dwi', 'fMRI'] for r in [1, 2] } # structure for the full session (init the OrderedDict as a list to preserve order): session_struct = OrderedDict([ ('fmap', fmap_struct), ('anat', anat_struct), ('dwi', dwi_struct), ('func', func_struct), ]) # add "_scans.tsv" file to the session_struct scans_file_content = generate_scans_tsv(session_struct) session_struct.update({'{p}_scans.tsv'.format(p=prefix): scans_file_content}) create_tree(session_path, session_struct) # 2) Now, let's create a dict with the fmap groups compatible for each run # -anat: empty expected_compatible_fmaps = { '{p}_{m}.json'.format(p=op.join(session_path, 'anat', prefix), m=mod): {} for mod in ['T1w', 'T2w'] } # -dwi: each of the runs (1, 2) is compatible with both of the dwi fmaps (1, 2): expected_compatible_fmaps.update({ '{p}_acq-A_run-{r}_dwi.json'.format(p=op.join(session_path, 'dwi', prefix), r=runNo): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-dwi_run-{r}_epi'.format(p=prefix, r=r) for r in [1, 2] ] } for runNo in [1, 2] }) # -func: each of the acq (A, B) is compatible w/ both fmap fMRI runs (1, 2) expected_compatible_fmaps.update({ '{p}_acq-{a}_bold.json'.format(p=op.join(session_path, 'func', prefix), a=acq): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-fMRI_run-{r}_epi'.format(p=prefix, r=r) for r in [1, 2] ] } for acq in ['A', 'B'] }) # 3) Now, let's create a dict with what we expect for the "IntendedFor": # NOTE: The "expected_prefix" (the beginning of the path to the # "IntendedFor") should be relative to the subject level (see: # https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#fieldmap-data) sub_match = re.findall('(sub-([a-zA-Z0-9]*))', session_path) sub_str = sub_match[0][0] expected_prefix = session_path.split(sub_str)[-1].split(op.sep)[-1] # dict, with fmap names as keys and the expected "IntendedFor" as values. expected_result = { # (runNo=1 goes with the long list, runNo=2 goes with None): '{p}_acq-dwi_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=runNo): intended_for for runNo, intended_for in zip( [1, 2], [[op.join(expected_prefix, 'dwi', '{p}_acq-A_run-{r}_dwi.nii.gz'.format(p=prefix, r=r)) for r in [1,2]], None] ) for d in ['AP', 'PA'] } expected_result.update( { # The first "fMRI" run gets all files in the "func" folder; # the second shouldn't get any. '{p}_acq-fMRI_dir-{d}_run-{r}_epi.json'.format(p=prefix, d=d, r=runNo): intended_for for runNo, intended_for in zip( [1, 2], [[op.join(expected_prefix, 'func', '{p}_acq-{a}_bold.nii.gz'.format(p=prefix, a=acq)) for acq in ['A', 'B']], None] ) for d in ['AP', 'PA'] } ) return session_struct, expected_result, expected_fmap_groups, expected_compatible_fmaps def create_dummy_magnitude_phase_bids_session(session_path): """ Creates a dummy BIDS session, with slim json files and empty nii.gz The fmap files are a magnitude/phase pair The json files have ShimSettings We just need to test a very simple case to make sure the mag/phase have the same "IntendedFor" field: Parameters: ---------- session_path : str or os.path path to the session (or subject) level folder Returns: ------- session_struct : dict Structure of the directory that was created expected_result : dict dictionary with fmap names as keys and the expected "IntendedFor" as values. expected_fmap_groups : dict dictionary with the expected fmap groups """ session_parent, session_basename = op.split(session_path.rstrip(op.sep)) if session_basename.startswith('ses-'): prefix = op.split(session_parent)[1] + '_' + session_basename else: prefix = session_basename # 1) Simulate the file structure for a session: # Generate some random ShimSettings: dwi_shims = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] func_shims_A = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] func_shims_B = ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] # Dict with the file structure for the session: # -dwi: dwi_struct = { '{p}_acq-A_run-{r}_dwi.nii.gz'.format(p=prefix, r=runNo): '' for runNo in [1, 2] } dwi_struct.update({ '{p}_acq-A_run-{r}_dwi.json'.format(p=prefix, r=runNo): {'ShimSetting': dwi_shims} for runNo in [1, 2] }) # -func: func_struct = { '{p}_acq-{a}_bold.nii.gz'.format(p=prefix, a=acq): '' for acq in ['A', 'B', 'unmatched'] } func_struct.update({ '{p}_acq-A_bold.json'.format(p=prefix): {'ShimSetting': func_shims_A}, '{p}_acq-B_bold.json'.format(p=prefix): {'ShimSetting': func_shims_B}, '{p}_acq-unmatched_bold.json'.format(p=prefix): { 'ShimSetting': ['{0:.4f}'.format(random()) for i in range(SHIM_LENGTH)] }, }) # -fmap: # * Case 1 in https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#fieldmap-data fmap_struct = { '{p}_acq-case1_{s}.nii.gz'.format(p=prefix, s=suffix): '' for suffix in ['phasediff', 'magnitude1', 'magnitude2'] } expected_fmap_groups = { '{p}_acq-case1'.format(p=prefix): [ '{p}_acq-case1_phasediff.json'.format(p=op.join(session_path, 'fmap', prefix)) ] } fmap_struct.update({ '{p}_acq-case1_phasediff.json'.format(p=prefix): {'ShimSetting': dwi_shims} }) # * Case 2: fmap_struct.update({ '{p}_acq-case2_{s}.nii.gz'.format(p=prefix, s=suffix): '' for suffix in ['magnitude1', 'magnitude2', 'phase1', 'phase2'] }) expected_fmap_groups.update({ '{p}_acq-case2'.format(p=prefix): [ '{p}_acq-case2_phase{n}.json'.format( p=op.join(session_path, 'fmap', prefix), n=n ) for n in [1, 2] ] }) fmap_struct.update({ '{p}_acq-case2_phase{n}.json'.format(p=prefix, n=n): {'ShimSetting': func_shims_A} for n in [1, 2] }) # * Case 3: fmap_struct.update({ '{p}_acq-case3_{s}.nii.gz'.format(p=prefix, s=suffix): '' for suffix in ['magnitude', 'fieldmap'] }) expected_fmap_groups.update({ '{p}_acq-case3'.format(p=prefix): [ '{p}_acq-case3_fieldmap.json'.format(p=op.join(session_path, 'fmap', prefix)) ] }) fmap_struct.update({ '{p}_acq-case3_fieldmap.json'.format(p=prefix): {'ShimSetting': func_shims_B} }) # structure for the full session (init the OrderedDict as a list to preserve order): session_struct = OrderedDict([ ('fmap', fmap_struct), ('dwi', dwi_struct), ('func', func_struct), ]) # add "_scans.tsv" file to the session_struct scans_file_content = generate_scans_tsv(session_struct) session_struct.update({'{p}_scans.tsv'.format(p=prefix): scans_file_content}) create_tree(session_path, session_struct) # 2) Now, let's create a dict with the fmap groups compatible for each run # -dwi: each of the runs (1, 2) is compatible with case1 fmap: expected_compatible_fmaps = { '{p}_acq-A_run-{r}_dwi.json'.format(p=op.join(session_path, 'dwi', prefix), r=runNo): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-case1'.format(p=prefix) ] } for runNo in [1, 2] } # -func: acq-A is compatible w/ fmap case2; acq-B w/ fmap case3 expected_compatible_fmaps.update({ '{p}_acq-{a}_bold.json'.format(p=op.join(session_path, 'func', prefix), a=acq): { key: val for key, val in expected_fmap_groups.items() if key in [ '{p}_acq-case{c}'.format(p=prefix, c=caseNo) ] } for caseNo, acq in {'2': 'A', '3': 'B'}.items() }) # -func (cont): acq-unmatched is empty expected_compatible_fmaps.update({ '{p}_acq-unmatched_bold.json'.format(p=op.join(session_path, 'func', prefix)): {} }) # 3) Now, let's create a dict with what we expect for the "IntendedFor": sub_match = re.findall('(sub-([a-zA-Z0-9]*))', session_path) sub_str = sub_match[0][0] expected_prefix = session_path.split(sub_str)[-1].split(op.sep)[-1] # dict, with fmap names as keys and the expected "IntendedFor" as values. expected_result = { '{p}_acq-case1_{s}.json'.format(p=prefix, s='phasediff'): [op.join(expected_prefix, 'dwi', '{p}_acq-A_run-{r}_dwi.nii.gz'.format(p=prefix, r=r)) for r in [1, 2]] } expected_result.update({ '{p}_acq-case2_phase{n}.json'.format(p=prefix, n=n): # populate_intended_for writes lists: [op.join(expected_prefix, 'func', '{p}_acq-A_bold.nii.gz'.format(p=prefix))] for n in [1, 2] }) expected_result.update({ '{p}_acq-case3_fieldmap.json'.format(p=prefix): # populate_intended_for writes lists: [op.join(expected_prefix, 'func', '{p}_acq-B_bold.nii.gz'.format(p=prefix))] }) return session_struct, expected_result, expected_fmap_groups, expected_compatible_fmaps # Test cases: # A) pepolar fmaps with ShimSetting in json files # B) same, with no ShimSetting # C) magnitude/phase, with ShimSetting @pytest.mark.parametrize( "simulation_function", [create_dummy_pepolar_bids_session, create_dummy_no_shim_settings_bids_session, create_dummy_magnitude_phase_bids_session] ) def test_find_fmap_groups(tmpdir, simulation_function): """ Test for find_fmap_groups """ folder = op.join(str(tmpdir), 'sub-foo') _, _, expected_fmap_groups, _ = simulation_function(folder) fmap_groups = find_fmap_groups(op.join(folder, 'fmap')) assert fmap_groups == expected_fmap_groups # Test cases: # A) pepolar fmaps with ShimSetting in json files # B) same, with no ShimSetting # C) magnitude/phase, with ShimSetting @pytest.mark.parametrize( "simulation_function", [create_dummy_pepolar_bids_session, create_dummy_no_shim_settings_bids_session, create_dummy_magnitude_phase_bids_session] ) def test_find_compatible_fmaps_for_run(tmpdir, simulation_function): """ Test find_compatible_fmaps_for_run. Parameters: ---------- tmpdir simulation_function : function function to create the directory tree and expected results """ folder = op.join(str(tmpdir), 'sub-foo') _, _, expected_fmap_groups, expected_compatible_fmaps = simulation_function(folder) for modality in ['anat', 'dwi', 'func']: for json_file in glob(op.join(folder, modality, '*.json')): compatible_fmaps = find_compatible_fmaps_for_run( json_file, expected_fmap_groups, matching_parameters='Shims' ) assert compatible_fmaps == expected_compatible_fmaps[json_file] # Test two scenarios for each case: # -study without sessions # -study with sessions # Cases: # A) pepolar fmaps with ShimSetting in json files # B) same, with no ShimSetting # C) magnitude/phase, with ShimSetting @pytest.mark.parametrize( "folder, expected_prefix, simulation_function", [ (folder, expected_prefix, sim_func) for folder, expected_prefix in zip(['no_sessions/sub-1', 'sessions/sub-1/ses-pre'], ['', 'ses-pre']) for sim_func in [create_dummy_pepolar_bids_session, create_dummy_no_shim_settings_bids_session, create_dummy_magnitude_phase_bids_session] ] ) def test_find_compatible_fmaps_for_session(tmpdir, folder, expected_prefix, simulation_function): """ Test find_compatible_fmaps_for_session. Parameters: ---------- tmpdir simulation_function : function function to create the directory tree and expected results """ session_folder = op.join(str(tmpdir), folder) _, _, _, expected_compatible_fmaps = simulation_function(session_folder) compatible_fmaps = find_compatible_fmaps_for_session(session_folder, matching_parameters='Shims') assert compatible_fmaps == expected_compatible_fmaps # Test two scenarios for each case: # -study without sessions # -study with sessions # Cases: # A) pepolar fmaps with ShimSetting in json files # B) same, with no ShimSetting # C) magnitude/phase, with ShimSetting @pytest.mark.parametrize( "folder, expected_prefix, simulation_function", [ (folder, expected_prefix, sim_func) for folder, expected_prefix in zip(['no_sessions/sub-1', 'sessions/sub-1/ses-pre'], ['', 'ses-pre']) for sim_func in [create_dummy_pepolar_bids_session, create_dummy_no_shim_settings_bids_session, create_dummy_magnitude_phase_bids_session] ] ) def test_select_fmap_from_compatible_groups(tmpdir, folder, expected_prefix, simulation_function): """Test select_fmap_from_compatible_groups""" session_folder = op.join(str(tmpdir), folder) _, _, _, expected_compatible_fmaps = simulation_function(session_folder) for json_file, fmap_groups in expected_compatible_fmaps.items(): for criterion in AllowedCriteriaForFmapAssignment: if not op.dirname(json_file).endswith('fmap'): selected_fmap = select_fmap_from_compatible_groups( json_file, fmap_groups, criterion=criterion ) # when the criterion is 'First', you should get the first of # the compatible_fmaps (for that json_file), if it is 'Closest', # it should be the last one (the fmaps are "run" at the # beginning of the session) if selected_fmap: if criterion == 'First': assert selected_fmap == sorted(expected_compatible_fmaps[json_file])[0] elif criterion == 'Closest': assert selected_fmap == sorted(expected_compatible_fmaps[json_file])[-1] else: assert not expected_compatible_fmaps[json_file] # Test two scenarios for each case: # -study without sessions # -study with sessions # Cases: # A) pepolar fmaps with ShimSetting in json files # B) same, with no ShimSetting # C) magnitude/phase, with ShimSetting @pytest.mark.parametrize( "folder, expected_prefix, simulation_function", [ (folder, expected_prefix, sim_func) for folder, expected_prefix in zip(['no_sessions/sub-1', 'sessions/sub-1/ses-pre'], ['', 'ses-pre']) for sim_func in [create_dummy_pepolar_bids_session, create_dummy_no_shim_settings_bids_session, create_dummy_magnitude_phase_bids_session] ] ) def test_populate_intended_for(tmpdir, folder, expected_prefix, simulation_function): """ Test populate_intended_for. Parameters: ---------- tmpdir folder : str or os.path path to BIDS study to be simulated, relative to tmpdir expected_prefix : str expected start of the "IntendedFor" elements simulation_function : function function to create the directory tree and expected results """ session_folder = op.join(str(tmpdir), folder) session_struct, expected_result, _, _ = simulation_function(session_folder) populate_intended_for(session_folder, matching_parameters='Shims', criterion='First') # Now, loop through the jsons in the fmap folder and make sure it matches # the expected result: fmap_folder = op.join(session_folder, 'fmap') for j in session_struct['fmap'].keys(): if j.endswith('.json'): assert j in expected_result.keys() data = load_json(op.join(fmap_folder, j)) if expected_result[j]: assert data['IntendedFor'] == expected_result[j] # Also, make sure the run with random shims is not here: # (It is assured by the assert above, but let's make it # explicit) run_prefix = j.split('_acq')[0] assert '{p}_acq-unmatched_bold.nii.gz'.format(p=run_prefix) not in data['IntendedFor'] else: assert 'IntendedFor' not in data.keys()
38.126367
153
0.618969
16532b04692155bf7f8eb5cfafb62618641d6ef5
16,129
py
Python
simulation/Growth_rate_under_both_effect_figure4AC.py
YuanxiaoGao/Evolution_of_reproductive_strategies_in_incipient_multicellularity
13eb51639fcee630a76e197b50ef321e3a94ce0f
[ "MIT" ]
null
null
null
simulation/Growth_rate_under_both_effect_figure4AC.py
YuanxiaoGao/Evolution_of_reproductive_strategies_in_incipient_multicellularity
13eb51639fcee630a76e197b50ef321e3a94ce0f
[ "MIT" ]
null
null
null
simulation/Growth_rate_under_both_effect_figure4AC.py
YuanxiaoGao/Evolution_of_reproductive_strategies_in_incipient_multicellularity
13eb51639fcee630a76e197b50ef321e3a94ce0f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 16 11:56:54 2019 @author: gao """ #-*-encoding:utf-8 -*- ################################################################ # 2018-06-25 # ################################################################ """ code description: Aim: get one given life cycle's growth rate-grate' Parameters and Variables: C: [# of germ cells, # of soma cells]=[defectors,ccooperactors] (np array: int elements) T: time for one times disvision, totally depends on cell composition of last stepself. essentially based on payoff on colony level. P: probability for each cell type to divide. np.array([pi,pj]), which decided by cell payoff (composition). m: type switching probability. b: benefits for gemrs. c: costs for somas. w: synergy or discounting effects. W_i: intensity of selection. z: simulation times for each trajectory. grate: growth rate lambda. x0: the initial guessing root. ---------------- """ import numpy as np import operator as op from functools import reduce from scipy.misc import derivative import sys #------------------------------------------------------------------------------------------------------------ '''import all lcs; which is total 128 lcs for M <=10''' with open("../simulation/LC.txt", "r") as file: lcs = eval(file.readline()) # read lc list num_lcs=len(lcs) # number of lcs #------------------------------------------------------------------------------------------------------------ '''Parameter values b, c, m, k, Wi, in which k is the number of the cooperators--soma''' '''exhaustive cluster parameters''' t_pterb_cluster=int(sys.argv[1]) # from 0 to grid_num grid_num points k_cluster=int(sys.argv[2]) # two value +-1 to make the two figures i_th=int(sys.argv[3]) # i_th lc in lcc len(lc_data) # i_th (0,7) from 0 to 6 = M<=4 '''transform cluster parameters into local parameters''' grid_num=7 # grid size in figure, so check figure.py file first grid=np.linspace(1,7,num=grid_num,endpoint=True) ti=grid[t_pterb_cluster] k=grid[k_cluster] lc=lcs[i_th] '''constant parameter''' z=int(5000) # simulation times for each trajectory b=10 c=1 Wi=0.1 # fixed intensity of selection m=0.01 chi_ratio=0.4 #------------------------------------------------------------------------------------------------------------ '''find each lc's newborn compositions and crutial size for fragment; Return: 1-- number of newborn state (int) 2-- newborn Composition (np.ndarray), 3-- group max size (int) for reproduction, 4-- offspring number of offspring group size(list): [#of 1 cell, #of 2 cells,....] ''' def Newborn(lc): # lc is a life cycle in list form such as [1,1,2] size_lc=int(sum(lc)) # max group size M = fragemnt size #------- composition of all newborn states offtype=list(set(lc)) # how many d newborn=[] # newborn composition for i in range(len(offtype)): for j in range(offtype[i]+1): newborn.append(np.array([offtype[i]-j,j])) num_newbornstate=len(newborn) # number of newborn state #------- offspring number of every offspring types,e.g how many 1 cells produced.... num_offtype=[] for i in range(1,size_lc): num_offtype.append(lc.count(i)) off_num_cell=np.sum(np.vstack(newborn),axis=1) return num_newbornstate,np.vstack(newborn),size_lc,num_offtype,off_num_cell num_newbornstate,newbornstate,size_lc,num_offtype,num_cell_newborn = Newborn(lc) #------------------------------------------------------------------------------------------------------------ #---------- mode 2 ---------volunteer game ''' volunteer game: cooperators get b-c from C and D, while defectors get b (is at least there is one cooperator, and get 0 from defectors); b>c. Cell payoff Pay; germ are defectors Return pay_germ,pay_soma C--colony composition [defectors,cooperactors] b--benefit for germs c--costs for somas ''' def Pay(C,b,c,k): if C[1]>=k: # defectors get b IF existing at least w cooperators pay_g=b else: pay_g=0 # defectors get 0 pay_s=pay_g-c # cooperactor gets b-c return pay_g,pay_s #------------------------------------------------------------------------------------------------------------ '''fitness by usring e^payoff; Return f_germ,f_soma C--colony composition [defectors,ccooperactors] Wi--intensity of selection WARNNING: here we may calculate the non-exist cells' fitness, but it doesn't play a role later. ''' def Fitness(C,Wi): p_g,p_s=Pay(C,b,c,k) # cll payoff f_g=np.exp(Wi*p_g) # define fitness f_g=e**(w*pay_g) f_s=np.exp(Wi*p_s) # define fitness f_s=e**(w*pay_s) return f_g,f_s #------------------------------------------------------------------------------------------------------------ '''Probability P for each possible division; Return np.array([p_a*(n**2,2*m*n,m**2),p_b*(n**2,2*m*n,m**2)]) with shape (1,6) crossponding to [g->2g, g->g+s, g->2s, s->2s, s->s+g, s->2g] compositions changes with [[1,0], [0,1], [-1,2], [0,1], [1,0], [2,-1]] C--colony composition m--mutation rate ''' def P(C,m): f_g,f_s=Fitness(C,Wi) # cell fitness ratio_f_g=C[0]*f_g/(C[0]*f_g+C[1]*f_s) # proba for germs ~ f_g ratio_f_s=C[1]*f_s/(C[0]*f_g+C[1]*f_s) # proba for somas ~ f_s muta=np.array([(1.0-m)**2,2*m*(1.0-m),m**2]) # mutation order: no-half-both proba=np.hstack((ratio_f_g*muta,ratio_f_s*muta)) # proba * random mutation return proba #------------------------------------------------------------------------------------------------------------ '''Division time T=K/<average(f)>; Return - growth time for one step''' def CHI_equal(item): t=np.log((item+1)/item) return t def T(C): num_cell=(C[0]+C[1]) if num_cell==ti: coef=chi_ratio*np.log((num_cell+1)/num_cell) # netural coefficient ln[i+j+1]/[i+j] else: coef=np.log((num_cell+1)/num_cell) # netural coefficient ln[i+j+1]/[i+j] f_g,f_s=Fitness(C,Wi) # call fitness time=coef*(num_cell)/(C[0]*f_g+C[1]*f_s) # C[k]=0 makes sense to the non-exist Fitness ----linear with size effects time_s=time return time_s #------------------------------------------------------------------------------------------------------------ '''One times division function; Return - next cell composition np.array([g,s])''' '''here is the only random thing we code in this file!!!!!''' def Division(C): # a tuple after calling #---------- which cell type to divide p=P(C,m).tolist() # call probability and convert into list divi_id=np.random.multinomial(1, p, size=1) # divide ID or direction index=np.nonzero(divi_id)[1] c_delta=np.array([[1,0],[0,1],[-1,2],[0,1],[1,0],[2,-1]]) # composition changes with P(C,m) next_c=C+c_delta[int(index)] # composition after division return next_c # next cell composition && probability for this division #------------------------------------------------------------------------------------------------------------ '''One trajectory for a given nrebornstate; Return - final C(compositon), cumulative T(time). One_tra{Fragment[ncr]}, so structure is the following ncr() ->Fragment() -> One trajectory() ''' #---------- step 1 --------- '''combination function''' def ncr(n, r): if r>n: return 0.0 else: r = min(r, n-r) # take the smaller numer = reduce(op.mul, range(n, n-r, -1), 1) # op.mul: operator.mul(a, b)¶ denom = reduce(op.mul, range(1, r+1), 1) return numer//denom #---------- step 2 --------- '''fragment function; partition composition into offspring type(newbornstate); Return a list [#of type 1, #of type 2,....]; read more in notebook: fragment analysis ''' def Fragment(comp): # a given colony cell composition off_dis=[] for i in range(num_newbornstate): # for example lc [1,2] -> 1 and 2 offsize=np.sum(newbornstate[i]) # for example above 1->[1,0] or [0,1], while 2->[2,0],[1,1] or [0,2] i_cell=newbornstate[i][0] # for example above [1,0]->1 j_cell=newbornstate[i][1] # for example above [1,0]->0 off_i=ncr(comp[0],i_cell)*ncr(comp[1],j_cell)/ncr(np.sum(comp),offsize) # probability for comp to get i cells offspring newbornstate[i] off_dis.append(num_offtype[offsize-1]*off_i) # number of getting the offspring newbornstate[i] return off_dis #---------- step 3 --------- '''one trajectory from newborn to final possible offsprings. Give one a newbornstate: np.array([g,s]); Return 1: []--final offspring number of each newborn type; 2: float--growth time ''' def One_tra(C_newbron): # C_newbron: newborn cell composition cum_t=0.0 # count growth time newbron_size=C_newbron[0]+C_newbron[1] # size of newborn division_times=size_lc-newbron_size # how many division times left i=0 # count division_times while i<division_times: # division_times next_c=Division(C_newbron) cum_t+=T(C_newbron) C_newbron=next_c i+=1 offspring=Fragment(C_newbron) # call fragment function to get offspring return offspring, cum_t #------------------------------------------------------------------------------------------------------------------------- '''COLLECT all matrix data; Return offtype+T for z times simulation; M_data()=[], with length newbornstates; in which each element is a np.array with shape(z,newbornstates+1); and in each np.array, columns corresponds to -[#of newbornstate1, #of newbornstate2,...., t] ''' def M_data(): Matrix=[] for new_bron in newbornstate: #--------- one row's data with shape z*(num_newbornstate+1) z_off=[] # list of each offspring for z-th simulations and time T for i in range(int(z)): offspring, cum_t=One_tra(new_bron) offspring.insert(len(offspring),cum_t) # insert the T at the end of offtype size z*(offtype+1) z_off.append(offspring) # put offtype+T into a list; size z*(offtype+1) row=np.array(z_off) # convert each row data into a np.array Matrix.append(row) # collect all row data; size (num_newbornstate*z*(offtype+1)) return Matrix # a list containning np.array, each array is a matrix of z trajectories #------------------------------------------------------------------------------------------------------------------------- ''' Construct Q by using the simulated data above. Return rooting function grate ----- growth rate i.e. lambda Warning: here we use the mass of the population i.e. the number of the whole cells ''' data = M_data() # save the simulated data in case of changing when recall afterwards def F(grate): Q=[] for i in range(num_newbornstate): # i means each newbornstate #------construct e^(-grate*T) # z is simulation times i.e. trajectories lines e1=np.full((1,int(z)),np.exp(-1.0)) # construct [e^-1,e^-1,e^-1] e2=np.power(e1,data[i][:,-1]) # construct [e^-T,e^-T,e^-T] e3=np.ones((1,z))*grate # construct z [grate,grate,...] e4=np.power(e2,e3) # construct Z [e^(-grate*T),...] #----- get N*e^(-grate*T) off_time=np.multiply(data[i][:,:-1],e4.reshape((z,1))) # each simulated line * t #----sigma all column of off_time= sigma-tao(=z) N*e^(-grate*T) row=(np.sum(off_time,axis=0))/float(z) # get a row of Q with shape(1,num_newbornstate) Q.append(row.tolist()) # collect all rows Q_np=np.array(Q) # change row list into np.array() Q1=Q_np-np.eye(num_newbornstate) # ndarray Q-I expr=np.linalg.det(Q1) # convert into matrix for calculating det return expr ##------------------------------------------------------------------------------------------------------------ '''Solve equation to find growth rate; Return growth rate''' #---------- step 1 --------- ''' Estimate the max lambda by finding the minimum time ''' t_row_min=[] t_row_max=[] for i in range(num_newbornstate): t_row_min.append(np.amin(data[i][:,-1])) t_row_max.append(np.amax(data[i][:,-1])) T_min=min(t_row_min) # min time T_max=max(t_row_max) # max time x0=(np.log(sum(lc)))/T_min+0.1 # the first root guess -- right boundary x_mini=(np.log(2))/T_max-0.1 root_step=1e-3 # sign of the right boundary step=(x0-x_mini)/root_step +1 # for later check the f0 f1 having the same sign or not #---------- step 2 --------- ''' methods1: Fine single roots by using Bisection''' ''' here the bisection cannot work because the maximum roots are the double roots!!!!!''' def Find_single_root(func,x): # x0 is the first root guess #--find the root left and right boundaries by setting the right first f0=np.sign(func(x)) # sign of the first try f1=np.sign(func(x-root_step)) #------find the max root boundary to the left n=0 while f0*f1>0 and (x-n*root_step)>=x_mini: f0=np.sign(func(x-n*root_step)) # right f1=np.sign(func(x-(n+1)*root_step)) # left n+=1 #---- cannot find the single roots if (x-n*root_step)<=x_mini: return None, None #----- can find the single roots else: if f0*f1 !=0: left=x-n*root_step right=x-(n-1)*root_step #------find the root between boundary (left, right) by bisection while abs(left-right)>10**(-14): left_sign=np.sign(func(left)) # left sign mean=(left+right)/2 mean_sign=np.sign(func(mean)) # middle sign if left_sign*mean_sign>0: # left and middle are the same sign left=mean else: right=mean elif f0==0: mean=x-(n-1)*root_step # since n add extra 1 after f0 anf f1, here should remove it elif f1==0: mean=x-n*root_step return mean, n ''' methods2: Fine double roots by using derivative ''' #--first derivative def F_d(x): # derivative of f f_d=derivative(F, x, dx=1e-6) return f_d def Find_double_root(x): # x0 is the first root guess single_root,n=Find_single_root(F_d,x) # find the first deriviate=0 of the function root0=1 while single_root is not None: n0=n if abs(F(single_root))<10**(-5): # first deriviate=0 is also the root break else: # if the first deriviate is not the root new_single_root,new_n=Find_single_root(F_d,x-n0*root_step) if new_single_root is None: # no double roots root0=0 break else: single_root,n=new_single_root,new_n+n0 if root0==1: return single_root else: return None #------------------------------------------------------------------------------------------------------------ '''output result''' single_root,n=Find_single_root(F,x0) if single_root is not None: root=single_root else: double_root=Find_double_root(x0) root=double_root with open('data/%d_%d_%d.txt'%(t_pterb_cluster,k_cluster,i_th), 'w') as f: f.write(str(single_root))
38.130024
128
0.539339
bb52d97991aa92b0f056065eb4ebd1266985edfa
10,555
py
Python
snn_lib/utilities.py
zhongyuchen/snn-iir
58f0cb4a0dfcf5be630543fdfd88741f6061bcac
[ "Apache-2.0" ]
5
2021-03-10T11:57:43.000Z
2022-03-02T13:15:45.000Z
snn_lib/utilities.py
zhongyuchen/snn-iir
58f0cb4a0dfcf5be630543fdfd88741f6061bcac
[ "Apache-2.0" ]
null
null
null
snn_lib/utilities.py
zhongyuchen/snn-iir
58f0cb4a0dfcf5be630543fdfd88741f6061bcac
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ # File Name : utilities.py # Author: Haowen Fang # Email: [email protected] # Description: utility functions. """ import random import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import filters import matplotlib import torch from torch.utils.data import Dataset, DataLoader # matplotlib.use('Qt5Agg') def generate_rand_pattern(pattern_num, synapse_num, length, min_spike_num, max_spike_num): """ Create random test case. Each pattern belongs to different class Each test case has multiple spike trains, corresponding to different synapse. 1 indicates a spike, 0 indicates no spike. pattern_num: number of random patterns synapse_num: number of spike trains of each pattern length: length of patterns min_spike_num: minimum number of spikes in each spike train max_spike_num: maximum number of spikes in each spike train if min_spike_num == max_spike_num, all spike trains have same number of spikes x_train: [pattern_idx, synapse_num, time] y_train_onehot: [pattern_num, pattern_num], one hot label y_train_cat: [pattern_number], categorical label """ x_train = np.zeros([pattern_num, synapse_num, length], dtype=np.float32) y_train_onehot = np.zeros([pattern_num, pattern_num], dtype=np.float32) y_train_cat = np.zeros(pattern_num, dtype=np.float32) for i in range(pattern_num): for j in range(synapse_num): spike_number = random.randint(min_spike_num, max_spike_num) spike_time = random.sample(range(length), spike_number) x_train[i, j, spike_time] = 1 y_train_onehot[i, i] = 1 y_train_cat[i] = i return x_train, y_train_onehot, y_train_cat def filter_spike(spike_train, filter_type='exp', tau_m=10, tau_s=2.5, normalize=True): """ generate filtered spike train spike_train: 1d array, 1 represents spike filter_type: exp or dual_exp tau_m: time constant used by dual_exp tau_s: time constant used by exp and dual exp """ length = len(spike_train) eta = tau_m / tau_s v_0 = np.power(eta, eta / (eta - 1)) / (eta - 1) psp_m = 0 psp_s = 0 target_pattern = np.zeros([1, length], dtype=np.float32) if filter_type == 'dual_exp': for i in range(length): psp_m = psp_m * np.exp(-1 / tau_m) + spike_train[i] psp_s = psp_s * np.exp(-1 / tau_s) + spike_train[i] if normalize: target_pattern[0, i] = (psp_m - psp_s) * v_0 else: target_pattern[0, i] = (psp_m - psp_s) elif filter_type == 'exp': for i in range(length): psp_s = psp_s * np.exp(-1 / tau_s) + spike_train[i] target_pattern[0, i] = psp_s return target_pattern def filter_spike_multiple(spike_trains, filter_type='exp', tau_m=10, tau_s=2.5, normalize=True): """ create filtered spike train for a batch spike_train_batch[number of spike_trains, time] """ spike_train_num, time = spike_trains.shape filtered_spikes = np.zeros(spike_trains.shape, dtype=np.float32) # for each spike train in the instance for i in range(spike_train_num): filtered_spikes[i] = filter_spike(spike_trains[i], filter_type=filter_type, tau_m=tau_m,tau_s=tau_s, normalize=normalize) return filtered_spikes def mutate_spike_pattern(template_pattern, mean, sigma): """ create new spike pattern based on provided template, jitter follows normal distribution :param template_pattern: 2d array[input_dimension, time] :param mean: mean of normal distribution :param sigma: standard deviation of normal distribution :return: 2d array [input_dimension, time] """ input_size, length = template_pattern.shape mutated_pattern = np.zeros([input_size, length],dtype=np.float32) input_idx, spike_time = np.where(template_pattern != 0) delta_t = np.rint(np.random.normal(mean, sigma, spike_time.shape)).astype(int) mutated_spike_time = spike_time + delta_t # print(delta_t) # find the time larger than time range, set to maximum time mutated_spike_time[np.where(mutated_spike_time >= length)] = length - 1 # find the time less than 0, set to 0 mutated_spike_time[np.where(mutated_spike_time < 0)] = 0 mutated_pattern[input_idx, mutated_spike_time] = 1 return mutated_pattern def plot_raster(spike_mat, **kwargs): """ spike_mat[row, time] """ neuron_idx, spike_time = np.where(spike_mat != 0) # plt.figure() plt.plot(spike_time, neuron_idx, linestyle='None', marker='|', **kwargs) # print(**kwargs) if 'label' in kwargs: plt.legend(loc='upper right', fontsize='x-large') # plt.show() def plot_raster_dot(spike_mat, label=False): ''' another function to plot spikes :param spike_mat: [row, length/time] :return: ''' h,w = spike_mat.shape plt.figure() point_coordinate = np.where(spike_mat != 0) plt.scatter(point_coordinate[1], point_coordinate[0], s=1.5) plt.gca().invert_yaxis() plt.gca().set_xlim([0, w]) plt.gca().set_ylim([0, h]) if label is True: plt.xlabel('time') plt.ylabel('input spike train index') def gaussian_filter_spike_train(spike_train, sigma): """ create a spike probability over time :param spike_train: 1d array[time] :param sigma: :return: spike probability, 1d array[time] """ spike_probability = filters.gaussian_filter(spike_train, sigma, mode='constant', cval=0) return spike_probability.astype(np.float32) def gaussian_filter_spike_train_batch(spike_train_batch, sigma): """ :param spike_trains: 3d array [pattern_id, spike_train_id, time] :param sigma: :return: """ batch_size, spike_train_num, time = spike_train_batch.shape filtered_spike_batch = np.zeros(spike_train_batch.shape, dtype=np.float32) for i in range(batch_size): for j in range(spike_train_num): filtered_spike_batch[i, j] = gaussian_filter_spike_train(spike_train_batch[i, j], sigma) return filtered_spike_batch class RandPatternDataset(Dataset): """random pattern dataser""" def __init__(self, dataset_path, label_path, transform=None): self.dataset = np.load(dataset_path) self.dataset = self.dataset.astype(np.float32) self.label = np.load(label_path) self.transform = transform def __len__(self): return self.dataset.shape[0] def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() return self.dataset[idx],self.label[idx] class monitor(): def __init__(self, snn_model, batch_size, length): ''' :param snn_model: :param batch_size: :param length: ''' self.v = torch.zeros([batch_size, snn_model.neuron_number, length]) self.spike = torch.zeros([batch_size, snn_model.neuron_number, length]) self.filtered_spike = torch.zeros([batch_size, snn_model.neuron_number, length]) self.reset_v = torch.zeros([batch_size, snn_model.neuron_number, length]) self.v_0 = snn_model.v_0 self.step_counter = 0 def record_dict(self, spike, states): self.spike[:, :, self.step_counter] = spike self.filtered_spike[:, :, self.step_counter] = (states["filter_m"] - states["filter_s"]) * self.v_0 self.v[:, :, self.step_counter] = states["v"] self.reset_v[:, :, self.step_counter] = states["reset_v"] self.step_counter += 1 def record(self, spike, v, reset_v, filter_m, filter_s): self.spike[:, :, self.step_counter] = spike self.filtered_spike[:, :, self.step_counter] = (filter_m-filter_s) * self.v_0 self.v[:, :, self.step_counter] = v self.reset_v[:, :, self.step_counter] = reset_v self.step_counter += 1 def float_to_spike_train(value, spike_train_length): ''' convert a floating value to a spike train :param value: a floating value in [0,1.0] :param spike_train_length: length of spike train :return: spike_train: [spike_train_length] ''' spike_train = np.zeros(spike_train_length) spike_number = int(value*spike_train_length) ticks = np.linspace(0,spike_train_length,num = spike_number, endpoint=False, dtype=np.int) spike_train[ticks] = 1 return spike_train if __name__ == '__main__': random.seed(0) np.random.seed(0) template_num = 10 synapse_num = 40 length = 200 # test generate_rand_pattern spike_train_template, labels_onehot, labels_cat = generate_rand_pattern(10, 40, 200, 5, 10) # mutate spike pattern new_patterns = mutate_spike_pattern(spike_train_template[0], 0, 0.5) #plot new pattern and template pattern to see if they are similar plot_raster(new_patterns) plot_raster(spike_train_template[0]) # for each spike train template, mutate it to create 100 spike trains mutate_num = 100 # test_cases = np.zeros(mutate_num*template_num, synapse_num, length) # test_cases_label_onehot = np.zeros([mutate_num*template_num,template_num]) # test_cases_label_cat = np.zeros(mutate_num * template_num) test_cases = [] test_cases_label_onehot = [] test_cases_label_cat = [] filtered_target = [] for template_idx, template in enumerate(spike_train_template): for j in range(mutate_num): test_cases.append(mutate_spike_pattern(template, 0, 0.5)) test_cases_label_onehot.append(labels_onehot[template_idx]) test_cases_label_cat.append(labels_cat[template_idx]) target = np.zeros([template_num, length]) target[template_idx, 10+template_idx*18] = 1 filtered_target.append(filter_spike_multiple(target, filter_type='dual_exp', tau_m=10, tau_s=2.5)) test_cases = np.stack(test_cases) test_cases_label_cat = np.stack(test_cases_label_cat) test_cases_label_onehot = np.stack(test_cases_label_onehot) filtered_target = np.stack(filtered_target) np.save("test_cases.npy", test_cases) np.save("test_case_label_onehot", test_cases_label_onehot) np.save("test_case_label_cat", test_cases_label_cat) np.save("filtered_target", filtered_target) for i in range(10): plt.plot(filtered_target[mutate_num,i]) plt.show()
33.29653
110
0.672383
58a33dea0320154d39784a61316ecc953e1a009c
1,682
py
Python
data-science-onramp/data-ingestion/noxfile_config.py
InstantDomain/python-docs-samples
f8e293c722998b269da38b7fe11b98aae8932b8f
[ "Apache-2.0" ]
null
null
null
data-science-onramp/data-ingestion/noxfile_config.py
InstantDomain/python-docs-samples
f8e293c722998b269da38b7fe11b98aae8932b8f
[ "Apache-2.0" ]
null
null
null
data-science-onramp/data-ingestion/noxfile_config.py
InstantDomain/python-docs-samples
f8e293c722998b269da38b7fe11b98aae8932b8f
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Default TEST_CONFIG_OVERRIDE for python repos. # You can copy this file into your directory, then it will be imported from # the noxfile.py. # The source of truth: # https://github.com/GoogleCloudPlatform/python-docs-samples/blob/main/noxfile_config.py TEST_CONFIG_OVERRIDE = { # You can opt out from the test for specific Python versions. # There's no google-cloud-bigquery package for Python 3.9. "ignored_versions": ["2.7", "3.6", "3.9"], # Old samples are opted out of enforcing Python type hints # All new samples should feature them "enforce_type_hints": False, # An envvar key for determining the project id to use. Change it # to 'BUILD_SPECIFIC_GCLOUD_PROJECT' if you want to opt in using a # build specific Cloud project. You can also use your own string # to use your own Cloud project. "gcloud_project_env": "GOOGLE_CLOUD_PROJECT", # 'gcloud_project_env': 'BUILD_SPECIFIC_GCLOUD_PROJECT', # A dictionary you want to inject into your test. Don't put any # secrets here. These values will override predefined values. "envs": {}, }
42.05
88
0.737218
28dde302535868dd71d4a15da8a260061482dccd
1,474
py
Python
tests/sentry/api/endpoints/test_group_tagkey_details.py
uandco/sentry
5b8d45cb71c6617dac8e64265848623fbfce9c99
[ "BSD-3-Clause" ]
2
2019-03-04T12:45:54.000Z
2019-03-04T12:45:55.000Z
tests/sentry/api/endpoints/test_group_tagkey_details.py
uandco/sentry
5b8d45cb71c6617dac8e64265848623fbfce9c99
[ "BSD-3-Clause" ]
196
2019-06-10T08:34:10.000Z
2022-02-22T01:26:13.000Z
tests/sentry/api/endpoints/test_group_tagkey_details.py
uandco/sentry
5b8d45cb71c6617dac8e64265848623fbfce9c99
[ "BSD-3-Clause" ]
1
2017-02-09T06:36:57.000Z
2017-02-09T06:36:57.000Z
from __future__ import absolute_import import six from sentry import tagstore from sentry.testutils import APITestCase class GroupTagDetailsTest(APITestCase): def test_simple(self): group = self.create_group() group.data['tags'] = (['foo', 'bar'], ) group.save() key, value = group.data['tags'][0] tagkey = tagstore.create_tag_key( project_id=group.project_id, environment_id=None, key=key, values_seen=2 ) tagstore.create_tag_value( project_id=group.project_id, environment_id=None, key=key, value=value, times_seen=4 ) tagstore.create_group_tag_key( project_id=group.project_id, group_id=group.id, environment_id=None, key=key, values_seen=1, ) tagstore.create_group_tag_value( project_id=group.project_id, group_id=group.id, environment_id=None, key=key, value=value, times_seen=3, ) self.login_as(user=self.user) url = u'/api/0/issues/{}/tags/{}/'.format(group.id, tagkey.key) response = self.client.get(url, format='json') assert response.status_code == 200, response.content assert response.data['key'] == six.text_type(tagkey.key) assert response.data['totalValues'] == 3
28.346154
71
0.571913
2130df02db838b0b8a27714d23b0f5d3a79e5cd2
38,850
py
Python
src/optopus/_old.py
hindman/optopus
daaba31c6b1bd4f56e442326e36f7b3ea0b74b15
[ "MIT" ]
2
2021-05-04T23:44:42.000Z
2021-07-25T20:45:33.000Z
src/optopus/_old.py
hindman/optopus
daaba31c6b1bd4f56e442326e36f7b3ea0b74b15
[ "MIT" ]
null
null
null
src/optopus/_old.py
hindman/optopus
daaba31c6b1bd4f56e442326e36f7b3ea0b74b15
[ "MIT" ]
null
null
null
import json import re import sys import textwrap from collections import defaultdict, OrderedDict from six.moves.collections_abc import Iterable from copy import deepcopy from itertools import product ################ # Constants. ################ PATTERNS = dict( simple = dict( long_opt = r'--(\w[\w\-]*)', short_opts = r'-(\w+)', short_opt = r'-(\w)', opt_arg = r'([A-Z][A-Z\d]*)', pos_arg = r'\<([\w]+)\>', ), ) PATTERNS['anchored'] = { k : r'\A' + v + r'\Z' for k, v in PATTERNS['simple'].items() } N_ZERO = 0 N_ONE = 1 N_MAX = 999999 ZERO_TUPLE = (N_ZERO, N_ZERO) ONE_TUPLE = (N_ONE, N_ONE) ZERO_OR_ONE_TUPLE = (N_ZERO, N_ONE) ANY_TUPLE = (N_ZERO, N_MAX) OPT_PREFIX = '-' UNDERSCORE = '_' WILDCARD_OPTION = '*' LONG_OPT_PREFIX = OPT_PREFIX + OPT_PREFIX SHORT_OPT_PREFIX = OPT_PREFIX OPT_SPEC_STRIP_CHARS = OPT_PREFIX + '<>' # Token types WHITESPACE = 'WHITESPACE' LONG_OPT = 'LONG_OPT' SHORT_OPT = 'SHORT_OPT' POS_OPT = 'POS_OPT' OPT_ARG = 'OPT_ARG' EOF = 'EOF' # Regex components. PATT_END = r'(?=\s|$)' PATT_OPT_CHAR = r'[\w\-]+' # Token types: # - The type. # - Whether the RegexLexer should emit the tokens of this type. # - The regex to match the token. # - TODO: should create a TokenType data object. SIMPLE_SPEC_TOKENS = ( (WHITESPACE, False, re.compile(r'\s+')), (LONG_OPT, True, re.compile(r'--' + PATT_OPT_CHAR + PATT_END)), (SHORT_OPT, True, re.compile(r'-' + PATT_OPT_CHAR + PATT_END)), (POS_OPT, True, re.compile(r'\<' + PATT_OPT_CHAR + r'\>' + PATT_END)), (OPT_ARG, True, re.compile(r'[A-Z\d_\-]+' + PATT_END)), ) ################ # Parser. ################ class Parser(object): ''' ''' VALID_KWARGS = { 'opts', 'simple_spec', 'wildcards', 'sections', 'formatter_config', 'program', 'add_help', } def __init__(self, *xs, **kws): # This signature is bad for documentation. for k in kws: if k not in self.VALID_KWARGS: fmt = 'Parser(): invalid keyword argument: {}' msg = fmt.format(k) raise OptoPyError(msg) self.simple_spec = kws.get('simple_spec', None) self.wildcards = kws.get('wildcards', None) self.sections = kws.get('sections', None) self.formatter_config = kws.get('formatter_config', FormatterConfig()) self.program = kws.get('program', None) self.add_help = kws.get('add_help', False) if self.simple_spec: ssp = SimpleSpecParser(self.simple_spec) self.opts = [] for otok in ssp.parse(): o = Opt(otok.option_spec) o.option = otok.option o.nargs = otok.nargs o.arg_names = otok.arg_names self.opts.append(o) else: opts = list(xs) + list(kws.get('opts', [])) self.opts = [] for x in opts: if isinstance(x, Opt): opt = x elif isinstance(x, dict): opt = Opt(**x) else: fmt = 'Parser(): invalid Opt: must be Opt or dict: {}' msg = fmt.format(x) raise OptoPyError(msg) self.opts.append(opt) if self.add_help: opt = Opt('-h --help', text = 'Print help and exit.', tolerant = True) self.opts.append(opt) seen = set() for o in self.opts: nm = o.option if nm in seen: fmt = 'Parser(): duplicate Opt: {}' msg = fmt.format(nm) raise OptoPyError(msg) else: seen.add(nm) def parse(self, args = None, should_exit = True, alt = False): # If given no args, get them from sys.argv. args = list(sys.argv[1:] if args is None else args) # Add the wildcard Opt instances. if self.wildcards: self._add_wildcard_opts() # Try to parse the args. HELP = ('HELP',) try: if alt: popts = self._do_alternative_parse(args) else: popts = self._do_parse(args) if self.add_help and popts['help'].value: raise OptoPyError(HELP) return popts except OptoPyError as e: if should_exit: if self.add_help and ('-h' in args or '--help' in args): error_msg = HELP else: error_msg = e.args[0] else: raise # If we did not return or raise above, it means an # error occurred while parsing, and the user wanted the # default behavior: print USAGE and exit. if error_msg == HELP: txt = self._get_help_text() print(txt, end = '') sys.exit(ExitCode.PARSE_HELP.code) else: txt = self._get_help_text(SectionName.USAGE, error_msg = error_msg) print(txt, end = '') sys.exit(ExitCode.PARSE_FAIL.code) def _do_parse(self, args): subphrases = [Phrase(opt = opt) for opt in self.opts] phrase = Phrase(subphrases = subphrases) self.parsed_options = ParsedOptions(opts = self.opts, args = args) return phrase.parse(args, parsed_options = self.parsed_options) def _do_alternative_parse(self, args): subphrases = [Phrase(opt = opt) for opt in self.opts] self.phrase = Phrase(subphrases = subphrases) self.parsed_options = ParsedOptions(opts = self.opts, args = args) return self.phrase.parse(args, parsed_options = self.parsed_options) def _add_wildcard_opts(self): self.opts.extend([ Opt('<positionals>', nargs = (N_ZERO, N_MAX)), Opt(WILDCARD_OPTION), ]) @property def wildcards(self): # If user has not set the wildcards-mode, we infer it via the presense # or absense of opts. Otherwise, we do what the user asked for. if self._wildcards is None: if self.simple_spec or self.opts: return False else: return True else: return self._wildcards @wildcards.setter def wildcards(self, val): if val is None: self._wildcards = None else: self._wildcards = bool(val) def help_text(self, *section_names): return self._get_help_text(*section_names) def _get_help_text(self, *section_names, **kws): #### # # Example usages: # # - All help-text sections, in order. # # p.help_text() # # - Specific help-text sections, in the requested order. # # p.help_text('usage') # p.help_text('section-foo') # p.help_text('section-foo', 'section-bar') # # Sections: # - Declared implicitly via Opt instances. # - Declared explicitly via FormatterConfig. # - Defaults via SectionName. # # Section ordering: # - SectionName.USAGE [unless declared in FormatterConfig] # - FormatterConfig sections, in order # - SectionName.POS [ditto] # - SectionName.OPT [ditto] # # Issues: # - Opt lacking sections: # - allocate to SectionName.OPT or SectionName.POS. # # - FormatterConfig section lacking matching Opt instances: # - prevent via validation # # Also see misc/examples/help-text.txt : API section. # #### #### # Setup the default sections. #### default_sections = { nm : Section(name = nm, label = nm.label) for nm in SectionName } #### # Setup all sections that are eligible for use. #### # A map of section names to Section instances. all_sections = OrderedDict() # First the USAGE section, unless the user explicitly # declared its position in the FormatterConfig. nm = SectionName.USAGE if nm not in set(s.name for s in self.formatter_config.sections): all_sections[nm] = default_sections[nm] # Then any sections declared in FormatterConfig. for s in self.formatter_config.sections: all_sections[s.name] = s # Then sections declared indirectly in Opt instances. for o in self.opts: for nm in o.sections: all_sections[nm] = Section(name = nm) # Then the default POS and OPT sections, if there are Opt instances lacking sections. homeless = [o for o in self.opts if not o.sections] needed = [ (SectionName.POS, any(o for o in homeless if o.is_positional_opt)), (SectionName.OPT, any(o for o in homeless if not o.is_positional_opt)), ] for nm, has_opts in needed: if has_opts and nm not in all_sections: all_sections[nm] = default_sections[nm] # Then an aliases section. if self.formatter_config.alias_style == AliasStyle.SEPARATE: if any(o.aliases for o in self.opts): nm = SectionName.ALIASES all_sections[nm] = default_sections[nm] #### # Validate the section names passed by the caller. #### invalid = [nm for nm in section_names if nm not in all_sections] if invalid: fmt = 'Parser.help_text(): invalid sections: {}' msg = fmt.format(' '.join(invalid)) raise OptoPyError(msg) #### # Setup the sections for which we will build help text. #### sections = OrderedDict( (nm, all_sections[nm]) for nm in (section_names or all_sections) ) #### # Add an errors section, if needed. #### error_msg = kws.get('error_msg', None) if error_msg: nm = SectionName.ERR s = default_sections[nm] s.text = error_msg sections[nm] = s #### # Attach Opt instances to those sections. #### for o in self.opts: if o.sections: for nm in o.sections: if nm in sections: sections[nm].opts.append(o) else: nm = SectionName.POS if o.is_positional_opt else SectionName.OPT if nm in sections: sections[nm].opts.append(o) #### # Assemble the lines of help text. #### MAX_WID = 80 lines = [] for nm, s in sections.items(): # Section label. lines.append('') lines.append(s.label + ':') # The usage section. if nm is SectionName.USAGE: parts = [] for o in self.opts: val = o.option_spec if ' ' in val: fmt = '({})' if o.required else '[{}]' parts.append(fmt.format(val)) else: parts.append(val) prog = self.program or 'cli' wid = MAX_WID - len(prog) - 1 txt = ' '.join(map(str, parts)) usage_lines = textwrap.wrap(txt, wid) fmt = ' {} {}' val = prog blank = ' ' * len(prog) for i, ln in enumerate(usage_lines): lines.append(fmt.format(val, ln)) if i == 0: val = blank # Aliases section. elif nm is SectionName.ALIASES: fmt = ' {} {}' for o in self.opts: if o.aliases: val = fmt.format(o.option, ' '.join(o.aliases)) lines.append(val) # A Section with literal text. elif s.text: fmt = ' {}' txt_lines = s.text.split('\n') for ln in txt_lines: lines.append(fmt.format(ln)) # Section with Opt instances. else: wid = MAX_WID - 23 fmt = ' {:<20} {}' for o in s.opts: opt_lines = textwrap.wrap(o.text or '', wid) or [''] if self.formatter_config.alias_style == AliasStyle.SEPARATE: val = o.option_spec else: # TODO: sloppy code; clean up. val = o.option_spec rest = ' '.join(val.split()[1:]) vals = [val] for a in o.aliases: vals.append('{} {}'.format(a, rest)) val = ', '.join(vals) if len(val) > 20: lines.append(' {}'.format(val)) val = '' for i, ln in enumerate(opt_lines): lines.append(fmt.format(val, ln)) if i == 0: val = '' #### # Return the help text. #### lines.append('') return '\n'.join(ln.rstrip() for ln in lines) ################ # Enum. ################ class Enum(object): def __init__(self, enum_name, *members): self._enum_name = enum_name self._members = OrderedDict() for value, d in enumerate(members): if not isinstance(d, dict): d = dict(name = d) em = EnumMember(enum_name, value = value, **d) self._members[d['name']] = em self._rmembers = OrderedDict( (em.value, em) for em in self._members.values() ) def __iter__(self): return iter(self._members.values()) def __getattr__(self, name): if name in self._members: return self._members[name] else: raise AttributeError(name) def __call__(self, value): if value in self._rmembers: return self._rmembers[value] else: raise ValueError(value) ################ # EnumMember. ################ class EnumMember(object): def __init__(self, enum_name, name, value, **kws): self.enum_name = enum_name self.name = name self.value = value for k, v in kws.items(): setattr(self, k, v) def __str__(self): fmt = '{}({}, {!r})' msg = fmt.format(self.enum_name, self.name, self.value) return msg def __repr__(self): return self.__str__() def __eq__(self, other): return self is other def __ne__(self, other): return not self == other def __hash__(self): return self.value ################ # Enum instances: user facing. ################ AliasStyle = Enum('AliasStyle', 'SEPARATE', 'MERGED') HelpTextStyle = Enum('HelpTextStyle', 'CLI', 'MAN') OptTextStyle = Enum('OptTextStyle', 'CLI', 'MAN') SectionName = Enum( 'SectionName', dict(name = 'USAGE', label = 'Usage'), dict(name = 'POS', label = 'Positional arguments'), dict(name = 'OPT', label = 'Options'), dict(name = 'ALIASES', label = 'Aliases'), dict(name = 'ERR', label = 'Errors'), ) ################ # Enum instances: not user facing. ################ OptType = Enum('OptType', 'LONG', 'SHORT', 'POS', 'WILD') PhraseLogicType = Enum('PhraseLogicType', 'AND', 'OR') PhraseType = Enum('PhraseType', 'OPT', 'POS', 'PHRASE', 'WILD', 'ZONE') ExitCode = Enum( 'ExitCode', dict(name = 'SUCCESS', code = 0), dict(name = 'PARSE_HELP', code = 0), dict(name = 'PARSE_FAIL', code = 2), ) ################ # Errors. ################ class RegexLexerError(Exception): pass class OptoPyError(Exception): ''' ''' pass ################ # FormatterConfig. ################ class FormatterConfig(object): ''' ''' DEFAULTS = dict( program_name = '', section_label_punct = ':', after_section_label = '', after_section = '\n', program_summary = '', style = HelpTextStyle.CLI, opt_style = OptTextStyle.CLI, alias_style = AliasStyle.SEPARATE, ) def __init__(self, *sections, **kws): self.sections = sections for k, v in self.DEFAULTS.items(): val = kws.get(k, v) setattr(self, k, val) ################ # Section. ################ class Section(object): ''' ''' def __init__(self, name, label = None, text = None, opts = None): self.name = name self.label = self._default_label if label is None else label self.text = text self.opts = opts or [] # TODO: validation: require either text or opts, and not both. def __repr__(self): return 'Section({})'.format(self.name) @property def _default_label(self): if isinstance(self.name, EnumMember): return self.name.label else: return ( self.name. replace('-', ' '). replace('_', ' '). capitalize() + ' options' ) ################ # GrammarSpecParser. ################ class GrammarSpecParser(object): pass ################ # Opt. ################ class Opt(object): ''' ''' def __init__(self, option_spec, nargs = None, ntimes = None, required = None, text = None, sections = None, aliases = None, tolerant = False): if option_spec == WILDCARD_OPTION: self.option_spec = option_spec self.option = option_spec self.nargs = nargs or ZERO_TUPLE self.destination = None self._opt_type = OptType.WILD else: # Try to parse the option_spec. try: # TODO: validation. The last OptToken is authoritative. # Elements 0..-1 are used only for aliases. opts = list(SimpleSpecParser(option_spec).parse()) assert opts otok = opts[-1] otok.aliases = [otok.option for otok in opts] otok.aliases.pop() except (RegexLexerError, AssertionError) as e: otok = None # Raise if we did not get an OptToken. if otok is None: fmt = 'Opt: invalid option_spec: {}' msg = fmt.format(option_spec) raise OptoPyError(msg) # Assign values from the OptToken to the Opt. self.option_spec = otok.option_spec self.option = otok.option self.nargs = nargs or otok.nargs self.arg_names = otok.arg_names self.aliases = otok.aliases + (aliases or []) # Determine the OptType. self.destination = self.option.strip(OPT_SPEC_STRIP_CHARS).replace(OPT_PREFIX, UNDERSCORE) self._opt_type = ( OptType.LONG if self.option.startswith(LONG_OPT_PREFIX) else OptType.SHORT if self.option.startswith(SHORT_OPT_PREFIX) else OptType.POS ) # Set self.ntimes. if required is not None and ntimes is not None: msg = 'Opt: do not set both required and ntimes' raise OptoPyError(msg) elif ntimes is not None: # If ntimes was given, just set it. self.ntimes = ntimes elif required is not None: # If required was given, use it to set ntimes. v0 = N_ONE if required else N_ZERO v1 = N_MAX if self.is_wildcard_opt else N_ONE self.ntimes = (v0, v1) else: # Neither was given, so use the defaults. self.ntimes = ( ONE_TUPLE if self.is_positional_opt else ANY_TUPLE if self.is_wildcard_opt else ZERO_OR_ONE_TUPLE ) self.text = text self.sections = list(sections or []) self.tolerant = tolerant def _concrete_opts(self): # TODO: this isn't correct. The cross-product does not make sense at # the Opt-level. Rather, it must be done from the top level -- the full # cross product of all possibilities (including those where an Opt # might appear ntimes=0, which isn't a valid Opt). xs = list(range(self.nargs[0], self.nargs[1] + 1)) ys = list(range(self.ntimes[0], self.ntimes[1] + 1)) zs = self.aliases or [self.option] for nargs, ntimes, option in product(xs, ys, zs): if ntimes: o = Opt( option, nargs = nargs, ntimes = ntimes, text = self.text, sections = self.sections, ) def __str__(self): fmt = 'Opt({})' return fmt.format(self.option) def __repr__(self): return self.__str__() @property def is_long_opt(self): return self._opt_type == OptType.LONG @property def is_short_opt(self): return self._opt_type == OptType.SHORT @property def is_positional_opt(self): return self._opt_type == OptType.POS @property def is_wildcard_opt(self): return self._opt_type == OptType.WILD @property def nargs(self): return self._nargs @nargs.setter def nargs(self, val): self._nargs = self._get_ntuple(val, 'nargs') @property def ntimes(self): return self._ntimes @ntimes.setter def ntimes(self, val): self._ntimes = self._get_ntuple(val, 'ntimes') @property def required(self): return self.ntimes[0] > N_ZERO def _get_ntuple(self, val, attr_name): # # Convert val to a tuple. For example, these are # valid inputs: (0, 1), (1, 1), 1, 2, etc. if isinstance(val, Iterable): tup = tuple(val) else: tup = (val, val) # # Get m, n values from the tuple. try: m, n = map(int, tup) except Exception: m, n = (None, None) # # Return the valid tuple or raise. invalids = [ m is None, n is None, m < N_ZERO, n < m, (n == N_ZERO and attr_name == 'ntimes'), ] if any(invalids): fmt = 'Invalid {}: {}' msg = fmt.format(attr_name, val) raise OptoPyError(msg) else: return tup ################ # ParsedOptions. ################ class ParsedOptions(object): ''' ''' def __init__(self, opts = None, args = None): self.parsed_opts = OrderedDict() self.args_index = -1 self.args = args for opt in (opts or []): po = ParsedOpt(opt, None) self.parsed_opts[opt.destination] = po def _add_opt(self, opt): po = ParsedOpt(opt, None) self.parsed_opts[opt.destination] = po def _del_opt(self, opt): del self.parsed_opts[opt.destination] def __getattr__(self, a): if a in self.parsed_opts: return self.parsed_opts[a].value else: raise AttributeError(a) def __getitem__(self, destination): return self.parsed_opts[destination] def __iter__(self): # User can iterate directory over the ParsedOpt instances. # In addition, because ParsedOpt also defines __iter__(), a # ParsedOptions instance can be converted directly to a dict. return iter(self.parsed_opts.values()) def _dump(self): return dict( args = self.args, args_index = self.args_index, parsed_opts = dict(self), parsed_opts_raw = { dest : po._values for dest, po in self.parsed_opts.items() }, ) ################ # ParsedOpt. ################ class ParsedOpt(object): ''' ''' def __init__(self, opt, value): self.destination = opt.destination self.opt = opt self._values = [] def __iter__(self): tup = (self.destination, self.value) return iter(tup) def _add_occurrence(self): self._values.append([]) def _add_value(self, val): try: assert self._values vs = self._values[-1] assert isinstance(vs, list) vs.append(val) except AssertionError: msg = 'ParsedOpt: cannot _add_value() without any occurrences' raise OptoPyError(msg) @property def value(self): # Setup. mt, nt = self.opt.ntimes ma, na = self.opt.nargs vs = self._values # Multiple ntimes and nargs: return a 2D list. if nt > 1 and na > 1: return vs or None # Multiple ntimes. Return a flat list. elif nt > 1: return [xs[0] for xs in vs] if vs else None # Multiple nargs. Return a flat list. elif nt > 1 or na > 1: return vs[0] if vs else None # Dual option (flag or take a single arg). Return flat list, so that the # user can distinguish option-not-given (None) from no-args (empty list). elif self.opt.nargs == ZERO_OR_ONE_TUPLE: return vs[0] if vs else None # Single ntimes and simple option (flag or single-arg). Just return a value. else: if vs: xs = vs[0] return xs[0] if xs else None else: return None @property def _requires_occurrences(self): vs = self._values mt, nt = self.opt.ntimes n = len(vs) return n < mt @property def _can_occur_again(self): vs = self._values mt, nt = self.opt.ntimes n = len(vs) return n < nt @property def _requires_args(self): vs = self._values if vs: xs = vs[-1] ma, na = self.opt.nargs n = len(xs) return ma > n else: msg = 'ParsedOpt: cannot _requires_args() without any occurrences' raise OptoPyError(msg) @property def _can_take_args(self): vs = self._values if vs: xs = vs[-1] ma, na = self.opt.nargs n = len(xs) return n < na else: msg = 'ParsedOpt: cannot _can_take_args() without any occurrences' raise OptoPyError(msg) def __str__(self): fmt = 'ParsedOpt({}, {!r})' msg = fmt.format(self.destination, self.value) return msg def __repr__(self): return self.__str__() ################ # Phrase. ################ class Phrase(object): def __init__(self, subphrases = None, opt = None): self.subphrases = subphrases or [] self.opt = opt def __str__(self): if self.opt: fmt = '{}' return fmt.format(self.opt) else: fmt = 'Phrase({})' return fmt.format(self.subphrases) def __repr__(self): return self.__str__() @property def phrase_type(self): if self.opt is None: return PhraseType.PHRASE elif self.opt.is_wildcard_opt: return PhraseType.WILD elif self.opt.is_positional_opt: return PhraseType.POS else: return PhraseType.OPT def parse(self, args, parsed_options = None): # Set up the ParsedOptions that we will return. if parsed_options is None: opts = [sph.opt for sph in self.subphrases] popts = ParsedOptions(opts = opts) else: popts = parsed_options # The expected positional Opt instances. pos_opts = [ sph.opt for sph in self.subphrases if sph.phrase_type == PhraseType.POS ] # Bookkeeping variables. # - Indexes to args and pos_opts. # - The most recently seen Opt (non-positional). # - A set of already seen Opt.destination values. pos_i = -1 prev_opt = None prev_pos = None seen = set() # Process the args. while True: popts.args_index += 1 try: arg = args[popts.args_index] except IndexError: break # The arg is an option. if arg.startswith('--') or arg.startswith('-'): # Make sure we are not expecting an option-arg. if prev_opt and popts[prev_opt]._requires_args: fmt = 'Found option, but expected option-argument: {}' msg = fmt.format(arg) raise OptoPyError(msg) # Try to find a matching Opt. prev_opt = None for sph in self.subphrases: if sph.phrase_type == PhraseType.OPT: if sph.opt.option == arg or arg in sph.opt.aliases: prev_opt = sph.opt.destination break elif sph.phrase_type == PhraseType.WILD: opt = Opt(arg) popts._add_opt(opt) prev_opt = opt.destination break # Failed to find a match. if prev_opt is None: fmt = 'Found unexpected option: {}' msg = fmt.format(arg) raise OptoPyError(msg) # Found a match, but we've already seen it. if prev_opt in seen: fmt = 'Found repeated option: {}' msg = fmt.format(arg) raise OptoPyError(msg) # Valid Opt. seen.add(prev_opt) po = popts[prev_opt] po._add_occurrence() if po.opt.nargs == ZERO_TUPLE: po._add_value(True) continue # The arg is not an option, but the previous option # can still take opt-args. elif prev_opt and popts[prev_opt]._can_take_args: po = popts[prev_opt] po._add_value(arg) continue # Otherwise, treat the arg as a positional. # - Either use the previous positional (if it can take more args). # - Or use the next positional (if there is one). if prev_pos and popts[prev_pos]._can_take_args: po = popts[prev_pos] else: pos_i += 1 try: prev_pos = pos_opts[pos_i].destination po = popts[prev_pos] po._add_occurrence() except IndexError: prev_pos = None # No more positional args are expected. if not prev_pos: fmt = 'Found unexpected positional argument: {}' msg = fmt.format(arg) raise OptoPyError(msg) # Valid positional. po._add_value(arg) # Delete the wildcard Opt from ParsedOptions. wild = None for po in popts: if po.opt.is_wildcard_opt: wild = po.opt break if wild: popts._del_opt(wild) # Check that all Opt instances occurred the required ntimes. problems = sorted(po.opt.option for po in popts if po._requires_occurrences) if problems: fmt = 'Did not get expected N of occurrences: {}' msg = fmt.format(', '.join(problems)) raise OptoPyError(msg) # Check that all Opt instances got the required nargs. problems = sorted(po.opt.option for po in popts if po._requires_args) if problems: fmt = 'Did not get expected N of arguments: {}' msg = fmt.format(', '.join(problems)) raise OptoPyError(msg) # Return the ParsedOptions. return popts ################ # RegexLexer. ################ class RegexLexer(object): def __init__(self, text, token_types): self.text = text self.token_types = token_types self.pos = 0 self.max_pos = len(self.text) - 1 self.is_eof = None def get_next_token(self): # Starting at self.pos, try to emit the next Token. # If we find a valid token, there are two possibilities: # # - A Token that we should emit: just return it. # # - A Token that we should suppress: break out of the for-loop, # but try the while-loop again. This will allow the Lexer # to be able to ignore any number of suppressed tokens. # tok = True while tok: for tt, emit, rgx in self.token_types: tok = self.match_token(rgx, tt) if tok: if emit: return tok else: break # If we did not return a Token above, we should be # at the end of the input text. if self.pos > self.max_pos: return Token(EOF, None) else: self.error() def match_token(self, rgx, token_type): m = rgx.match(self.text, pos = self.pos) if m: txt = m.group(0) self.pos += len(txt) return Token(token_type, txt) else: return None def error(self): fmt = 'RegexLexerError: pos={}' msg = fmt.format(self.pos) raise RegexLexerError(msg) def __iter__(self): self.is_eof = False return self def __next__(self): if self.is_eof: raise StopIteration else: tok = self.get_next_token() if tok.isa(EOF): self.is_eof = True return tok ################ # GenericParserMixin. ################ class GenericParserMixin(object): def parse(self): # Setup: have the lexer get the first token. self.current_token = self.lexer.get_next_token() elem = True # Consume and yield as many tokens as we can. while elem: for func in self.parser_functions: elem = func() if elem: yield elem break # We expect EOF as the final token. if not self.current_token.isa(EOF): self.error() def eat(self, token_type): # If the current Token is of the expected type, return it # after advancing the lexer. Otherwise, return None. tok = self.current_token if tok.isa(token_type): self.current_token = self.lexer.get_next_token() return tok else: return None def error(self): fmt = 'Invalid syntax: pos={}' msg = fmt.format(self.lexer.pos) raise Exception(msg) ################ # SimpleSpecParser. ################ class SimpleSpecParser(GenericParserMixin): #### # # To implement a parser: # # - Inherit from GenericParserMixin. # # - Define self.lexer and self.parser_functions. # # - Each of those functions should return some data element # appropriate for the grammar (if the current Token matches) # or None. # # Usage example: # # txt = '--foo FF GG -x --blort -z Z1 Z2 <q> <r> --debug' # ssp = SimpleSpecParser(txt) # tokens = list(ssp.parse()) # #### def __init__(self, text): self.lexer = RegexLexer(text, SIMPLE_SPEC_TOKENS) self.parser_functions = ( self.long_opt, self.short_opt, self.pos_opt, ) def long_opt(self): return self._opt(LONG_OPT) def short_opt(self): return self._opt(SHORT_OPT) def pos_opt(self): tok = self.eat(POS_OPT) if tok: otok = OptToken() otok.option = tok.value otok.option_spec = tok.value otok.nargs = ONE_TUPLE otok.opt_type = OptType.POS otok.arg_names = [] return otok else: return None def _opt(self, opt_type): # If the current Token is not the expected option type, bail out. # Otherwise, count the N of OPT_ARG that the OptToken takes. tok = self.eat(opt_type) if not tok: return None otok = OptToken() otok.option = tok.value otok.option_spec = tok.value otok.nargs = ZERO_TUPLE otok.opt_type = OptType.SHORT if opt_type == SHORT_OPT else OptType.LONG otok.arg_names = [] while tok: tok = self.eat(OPT_ARG) if tok: m, n = otok.nargs otok.nargs = (m + 1, n + 1) otok.arg_names.append(tok.value) otok.option_spec += ' {}'.format(tok.value) return otok ################ # Token. ################ class Token(object): def __init__(self, token_type, value): self.token_type = token_type self.value = value def isa(self, *types): return self.token_type in types def __str__(self): fmt = 'Token({}, {!r})' msg = fmt.format(self.token_type, self.value) return msg def __repr__(self): return self.__str__() class OptToken(object): def __repr__(self): fmt = 'OptToken({})' return fmt.format(self.option) ################ # Helpers. ################ ################ # Temporary stuff. ################ def dump_em(xs): print('\n') for x in xs: dump(*x, tight = True) print('\n') def dump(x, label = None, tight = False): if not tight: print('\n') if label: print(label, '=>', x) else: print(x) if not tight: print('\n') def jdump(d): print(json.dumps(d, indent = 4))
29.166667
102
0.512458
242baf05e2b4b56e61200bf5de764c6d0af73de2
70,674
py
Python
src/transformers/utils/dummy_pt_objects.py
ashirviskas/transformers
8a085169328b2be2bff6939199597c5515d997f5
[ "Apache-2.0" ]
null
null
null
src/transformers/utils/dummy_pt_objects.py
ashirviskas/transformers
8a085169328b2be2bff6939199597c5515d997f5
[ "Apache-2.0" ]
null
null
null
src/transformers/utils/dummy_pt_objects.py
ashirviskas/transformers
8a085169328b2be2bff6939199597c5515d997f5
[ "Apache-2.0" ]
null
null
null
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..file_utils import requires_backends class PyTorchBenchmark: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PyTorchBenchmarkArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollator: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForLanguageModeling: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForPermutationLanguageModeling: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForSeq2Seq: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForSOP: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorForWholeWordMask: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DataCollatorWithPadding: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def default_data_collator(*args, **kwargs): requires_backends(default_data_collator, ["torch"]) class GlueDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GlueDataTrainingArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineTextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithRefDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithSOPTextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataTrainingArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDataset: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDatasetForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamScorer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamSearchScorer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ForcedBOSTokenLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ForcedEOSTokenLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HammingDiversityLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class InfNanRemoveLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsProcessorList: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MinLengthLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NoBadWordsLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NoRepeatNGramLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PrefixConstrainedLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RepetitionPenaltyLogitsProcessor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TemperatureLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopKLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopPLogitsWarper: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxLengthCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxTimeCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteria: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteriaList: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def top_k_top_p_filtering(*args, **kwargs): requires_backends(top_k_top_p_filtering, ["torch"]) class Conv1D: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def apply_chunking_to_forward(*args, **kwargs): requires_backends(apply_chunking_to_forward, ["torch"]) def prune_layer(*args, **kwargs): requires_backends(prune_layer, ["torch"]) ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class AlbertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_albert(*args, **kwargs): requires_backends(load_tf_weights_in_albert, ["torch"]) MODEL_FOR_CAUSAL_LM_MAPPING = None MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None MODEL_FOR_MASKED_LM_MAPPING = None MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None MODEL_FOR_PRETRAINING_MAPPING = None MODEL_FOR_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None MODEL_MAPPING = None MODEL_WITH_LM_HEAD_MAPPING = None class AutoModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSeq2SeqLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForTableQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelWithLMHead: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) BART_PRETRAINED_MODEL_ARCHIVE_LIST = None class BartForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartPretrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class PretrainedBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_bert(*args, **kwargs): requires_backends(load_tf_weights_in_bert, ["torch"]) class BertGenerationDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertGenerationEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_bert_generation(*args, **kwargs): requires_backends(load_tf_weights_in_bert_generation, ["torch"]) BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None class BigBirdForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_big_bird(*args, **kwargs): requires_backends(load_tf_weights_in_big_bird, ["torch"]) BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotSmallForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotSmallForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotSmallModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class CamembertForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ConvBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_convbert(*args, **kwargs): requires_backends(load_tf_weights_in_convbert, ["torch"]) CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class CTRLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaV2ForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class DistilBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class DPRContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedReader: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRReader: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class ElectraForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_electra(*args, **kwargs): requires_backends(load_tf_weights_in_electra, ["torch"]) class EncoderDecoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class FlaubertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FSMTForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FSMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class PretrainedFSMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class FunnelBaseModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_funnel(*args, **kwargs): requires_backends(load_tf_weights_in_funnel, ["torch"]) GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPT2DoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2LMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_gpt2(*args, **kwargs): requires_backends(load_tf_weights_in_gpt2, ["torch"]) GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPTNeoForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTNeoModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTNeoPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_gpt_neo(*args, **kwargs): requires_backends(load_tf_weights_in_gpt_neo, ["torch"]) IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class IBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) LED_PRETRAINED_MODEL_ARCHIVE_LIST = None class LEDForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class LongformerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerSelfAttention: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertVisualFeatureEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertXLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None class M2M100ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class M2M100Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MMBTForClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MMBTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ModalEmbeddings: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class MobileBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_mobilebert(*args, **kwargs): requires_backends(load_tf_weights_in_mobilebert, ["torch"]) MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class MPNetForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class OpenAIGPTDoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_openai_gpt(*args, **kwargs): requires_backends(load_tf_weights_in_openai_gpt, ["torch"]) class PegasusForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class PegasusModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class ProphetNetDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagSequenceForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagTokenForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class ReformerAttention: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerModelWithLMHead: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class RetriBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RetriBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class RobertaForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None class Speech2TextForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class Speech2TextModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class SqueezeBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertModule: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class T5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_t5(*args, **kwargs): requires_backends(load_tf_weights_in_t5, ["torch"]) TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None class TapasForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TapasForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TapasForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TapasModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class AdaptiveEmbedding: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_transfo_xl(*args, **kwargs): requires_backends(load_tf_weights_in_transfo_xl, ["torch"]) VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ViTForImageClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None class Wav2Vec2ForCTC: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMProphetNetDecoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMRobertaForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_pretrained(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_xlnet(*args, **kwargs): requires_backends(load_tf_weights_in_xlnet, ["torch"]) class Adafactor: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AdamW: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def get_constant_schedule(*args, **kwargs): requires_backends(get_constant_schedule, ["torch"]) def get_constant_schedule_with_warmup(*args, **kwargs): requires_backends(get_constant_schedule_with_warmup, ["torch"]) def get_cosine_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_schedule_with_warmup, ["torch"]) def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) def get_linear_schedule_with_warmup(*args, **kwargs): requires_backends(get_linear_schedule_with_warmup, ["torch"]) def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) def get_scheduler(*args, **kwargs): requires_backends(get_scheduler, ["torch"]) class Trainer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def torch_distributed_zero_first(*args, **kwargs): requires_backends(torch_distributed_zero_first, ["torch"]) class Seq2SeqTrainer: def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
24.286598
84
0.669737
ae45d495c68a509c9e1fbdcdad7be1a0e9747a14
6,661
py
Python
rmgradient/test_rmgradient.py
drnc/rmgradient
2bc3253b54661bf546e7742b646b5da897182d23
[ "Apache-2.0" ]
null
null
null
rmgradient/test_rmgradient.py
drnc/rmgradient
2bc3253b54661bf546e7742b646b5da897182d23
[ "Apache-2.0" ]
null
null
null
rmgradient/test_rmgradient.py
drnc/rmgradient
2bc3253b54661bf546e7742b646b5da897182d23
[ "Apache-2.0" ]
null
null
null
import logging import numpy import rmgradient import unittest import os import tifffile def datafile(filename): return os.path.join('test_data', filename) def filereader(filename): return rmgradient.TiffReader(datafile(filename)) def filewriter(filename): return rmgradient.TiffWriter(datafile(filename)) image = rmgradient.TiffReader(datafile('image.tif')).load() image_points = [ [3, 3], [-3, 0], [7, 5], [13, 4], [5, 8], [15, 8], [8, 11], [12, 12], [9, 4], [10, 9], [9, 12], [9, 16], [3, 16], [-3, -19], [8, 15], [16, 16], [-16, -19], [-16, 0]] # Maximum difference between image.tif and its background in the 10x10 middle square def image_background_middle_max_diff(sigma, smooth): model = rmgradient.BackgroundModel(image, sigma, smooth) bg = model.run(image_points).astype(numpy.uint16) return abs(image.astype(float)[5:15, 5:15] - bg.astype(float)[5:15, 5:15]).max() class TestTiffReader(unittest.TestCase): def test_name(self): self.assertEqual(rmgradient.TiffReader(datafile('name')).name(), datafile('name')) def test_invalid(self): self.assertFalse(rmgradient.TiffReader(datafile('unexisting-file')).is_valid()) def test_load(self): self.assertEqual(rmgradient.TiffReader(datafile('1d.tif')).load().tolist(), [10, 100, 1000, 10000]) self.assertEqual(rmgradient.TiffReader(datafile('image.tif')).load()[5, 3].tolist(), [4162, 7908, 2037]) def test_is_2d(self): self.assertFalse(rmgradient.TiffReader(datafile('1d.tif')).is_2d()) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).is_2d()) def test_points_in_middle(self): # check single point self.assertFalse(rmgradient.TiffReader(datafile('1d.tif')).points_in_middle([[2, 2]], 1)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[0, 0]], 1)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[19, 19]], 2)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[0, 18]], 2)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[17, 18]], 3)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[16, 6]], 4)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[4, 3]], 4)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[17, 18]], 1)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[16, 16]], 3)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[19, 19]], 0)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[4, 3]], 3)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[10, 10]], 8)) # check multiple points self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[17, 18], [16, 16], [4, 3]], 3)) self.assertFalse(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[4, 3], [16, 16], [17, 18]], 3)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[4, 3], [16, 16], [17, 18]], 1)) self.assertTrue(rmgradient.TiffReader(datafile('image.tif')).points_in_middle([[4, 3], [16, 16]], 3)) class TestTiffWriter(unittest.TestCase): def test_invalid(self): self.assertFalse(rmgradient.TiffWriter(datafile('unexisting-dir/out.tif')).is_valid()) def test_write(self): out_filename = datafile('out.tif') out = rmgradient.TiffWriter(out_filename) out.write(image, numpy.uint16) out_read = rmgradient.TiffReader(out_filename).load() self.assertEqual(out_read.tolist(), image.tolist()) self.assertEqual(out_read.dtype, numpy.uint16) os.remove(out_filename) def test_write_compressed(self): out_filename = datafile('out.tif') out = rmgradient.TiffWriter(out_filename) out.write(image, numpy.uint16, 5) out_read = rmgradient.TiffReader(out_filename).load() self.assertEqual(out_read.tolist(), image.tolist()) self.assertEqual(out_read.dtype, numpy.uint16) os.remove(out_filename) class TestBlurImage(unittest.TestCase): def test_blur_points_sigma_1(self): blur = rmgradient.BlurImage(image, 1.0) self.assertEqual([int(i) for i in blur.run([5, 5])], [5970, 12054, 3034]) self.assertEqual([int(i) for i in blur.run([15, 15])], [16006, 32023, 8143]) self.assertEqual([int(i) for i in blur.run([10, 10])], [10996, 22022, 5516]) self.assertEqual([int(i) for i in blur.run([12, 4])], [12816, 25887, 6659]) self.assertEqual([int(i) for i in blur.run([11, 8])], [12040, 23925, 6106]) def test_blur_points_sigma_25(self): blur = rmgradient.BlurImage(image, 2.5) self.assertEqual([int(i) for i in blur.run([10, 10])], [10993, 22028, 5531]) self.assertEqual([int(i) for i in blur.run([11, 8])], [11999, 23990, 6065]) class TestBackgroundModel(unittest.TestCase): def test_bgmodel(self): self.assertTrue(image_background_middle_max_diff(sigma=1.0, smooth=0) < 1500) self.assertTrue(image_background_middle_max_diff(sigma=1.0, smooth=0.1) < 1500) self.assertTrue(image_background_middle_max_diff(sigma=1.0, smooth=1.0) < 1500) self.assertTrue(image_background_middle_max_diff(sigma=0.5, smooth=0) < 1500) self.assertTrue(image_background_middle_max_diff(sigma=0.5, smooth=0.1) < 1500) self.assertTrue(image_background_middle_max_diff(sigma=0.5, smooth=1.0) < 1500) def test_bgmodel_rows(self): models = [ rmgradient.BackgroundModel(image, 1.0, 0.1), rmgradient.BackgroundModel(image, 1.0, 0.1, rows=10), rmgradient.BackgroundModel(image, 1.0, 0.1, rows=2), rmgradient.BackgroundModel(image, 1.0, 0.1, rows=1)] bg = [model.run(image_points).tolist() for model in models] self.assertEqual(bg[0], bg[1]) self.assertEqual(bg[0], bg[2]) self.assertEqual(bg[0], bg[3]) class TestGradientRemove(unittest.TestCase): def test_rmgradient(self): model = rmgradient.BackgroundModel(image, 1.0) bg = model.run(image_points) res = rmgradient.GradientRemove(image, bg).run() self.assertTrue(res.min() > 0) # no clipped data # no real check on the output if __name__ == '__main__': logging.basicConfig(level=100) # deactivate logging unittest.main()
47.241135
120
0.67062
dc7b6bf696acd2a1fb5efabd7b446e7fbc6c30f5
617
py
Python
nova/storage/__init__.py
bopopescu/nova-master
58809056f3a219c6ea3667003f906eeaf581fa95
[ "Apache-2.0" ]
7
2017-06-19T19:37:00.000Z
2019-06-16T02:06:14.000Z
nova/storage/__init__.py
bopopescu/nova-master
58809056f3a219c6ea3667003f906eeaf581fa95
[ "Apache-2.0" ]
null
null
null
nova/storage/__init__.py
bopopescu/nova-master
58809056f3a219c6ea3667003f906eeaf581fa95
[ "Apache-2.0" ]
6
2015-06-20T16:07:28.000Z
2020-08-19T14:57:59.000Z
# Copyright (c) 2013 Hewlett-Packard, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.
44.071429
78
0.724473
9aa95555ae11852ac31b8c213593949da8d6f245
13,435
py
Python
thonny/plugins/replayer.py
webduino-cn/thonny
74da2278aa018eafec697c2b92e2355237669ecd
[ "MIT" ]
null
null
null
thonny/plugins/replayer.py
webduino-cn/thonny
74da2278aa018eafec697c2b92e2355237669ecd
[ "MIT" ]
13
2018-11-15T09:31:06.000Z
2019-11-22T18:16:54.000Z
thonny/plugins/replayer.py
webduino-cn/thonny
74da2278aa018eafec697c2b92e2355237669ecd
[ "MIT" ]
3
2018-11-24T14:00:30.000Z
2019-07-02T02:32:26.000Z
import ast import json import os.path import tkinter as tk from datetime import datetime from tkinter import ttk from thonny import codeview, get_workbench, ui_utils, THONNY_USER_DIR from thonny.base_file_browser import BaseLocalFileBrowser from thonny.plugins.coloring import SyntaxColorer from thonny.ui_utils import lookup_style_option, CommonDialog class ReplayWindow(CommonDialog): def __init__(self): super().__init__(get_workbench(), background=lookup_style_option("TFrame", "background")) ui_utils.set_zoomed(self, True) self.main_pw = ReplayerPanedWindow(self, orient=tk.HORIZONTAL, sashwidth=10) self.center_pw = ReplayerPanedWindow(self.main_pw, orient=tk.VERTICAL, sashwidth=10) self.right_frame = ttk.Frame(self.main_pw) self.right_pw = ReplayerPanedWindow(self.right_frame, orient=tk.VERTICAL, sashwidth=10) self.editor_notebook = ReplayerEditorNotebook(self.center_pw) shell_book = ttk.Notebook(self.main_pw) self.shell = ShellFrame(shell_book) self.details_frame = EventDetailsFrame(self.right_pw) self.log_frame = LogFrame( self.right_pw, self.editor_notebook, self.shell, self.details_frame ) self.browser = ReplayerFileBrowser(self.main_pw, self.log_frame) self.control_frame = ControlFrame(self.right_frame) self.main_pw.grid(padx=10, pady=10, sticky=tk.NSEW) self.main_pw.add(self.browser, width=200) self.main_pw.add(self.center_pw, width=1000) self.main_pw.add(self.right_frame, width=200) self.center_pw.add(self.editor_notebook, height=700) self.center_pw.add(shell_book, height=300) shell_book.add(self.shell, text="Shell") self.right_pw.grid(sticky=tk.NSEW) self.control_frame.grid(sticky=tk.NSEW) self.right_pw.add(self.log_frame, height=600) self.right_pw.add(self.details_frame, height=200) self.right_frame.columnconfigure(0, weight=1) self.right_frame.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) class ReplayerFileBrowser(BaseLocalFileBrowser): def __init__(self, master, log_frame): super().__init__(master, True) self.log_frame = log_frame self.configure(border=1, relief=tk.GROOVE) user_logs_path = os.path.join(THONNY_USER_DIR, "user_logs") if os.path.exists(user_logs_path): self.focus_into(user_logs_path) else: self.focus_into(os.path.expanduser("~")) def on_double_click(self, event): # self.save_current_folder() path = self.get_selected_path() if path: kind = self.get_selected_kind() if kind == "dir": self.focus_into(path) else: self.log_frame.load_log(path) return "break" # avoid default action of opening the node class ControlFrame(ttk.Frame): def __init__(self, master, **kw): ttk.Frame.__init__(self, master=master, **kw) self.toggle_button = ttk.Button(self, text="Play") self.speed_scale = ttk.Scale(self, from_=1, to=100, orient=tk.HORIZONTAL) self.toggle_button.grid(row=0, column=0, sticky=tk.NSEW, pady=(10, 0), padx=(0, 5)) self.speed_scale.grid(row=0, column=1, sticky=tk.NSEW, pady=(10, 0), padx=(5, 0)) self.columnconfigure(1, weight=1) class LogFrame(ui_utils.TreeFrame): def __init__(self, master, editor_book, shell, details_frame): ui_utils.TreeFrame.__init__(self, master, ("desc", "pause")) self.tree.heading("desc", text="Event", anchor=tk.W) self.tree.heading("pause", text="Pause (sec)", anchor=tk.W) self.configure(border=1, relief=tk.GROOVE) self.editor_notebook = editor_book self.shell = shell self.details_frame = details_frame self.all_events = [] self.last_event_index = -1 self.loading = False def load_log(self, filename): self._clear_tree() self.details_frame._clear_tree() self.all_events = [] self.last_event_index = -1 self.loading = True self.editor_notebook.reset() self.shell.reset() with open(filename, encoding="UTF-8") as f: events = json.load(f) last_event_time = None for event in events: node_id = self.tree.insert("", "end") self.tree.set(node_id, "desc", event["sequence"]) if len(event["time"]) == 19: # 0 fraction may have been skipped event["time"] += ".0" event_time = datetime.strptime(event["time"], "%Y-%m-%dT%H:%M:%S.%f") if last_event_time: delta = event_time - last_event_time pause = delta.seconds else: pause = 0 self.tree.set(node_id, "pause", str(pause if pause else "")) self.all_events.append(event) last_event_time = event_time self.loading = False def replay_event(self, event): "this should be called with events in correct order" # print("log replay", event) if "text_widget_id" in event: if ( event.get("text_widget_context", None) == "shell" or event.get("text_widget_class") == "ShellText" ): self.shell.replay_event(event) else: self.editor_notebook.replay_event(event) def reset(self): self.shell.reset() self.editor_notebook.reset() self.last_event_index = -1 def on_select(self, event): # parameter "event" is here tkinter event if self.loading: return iid = self.tree.focus() if iid != "": self.select_event(self.tree.index(iid)) def select_event(self, event_index): event = self.all_events[event_index] self.details_frame.load_event(event) # here event means logged event if event_index > self.last_event_index: # replay all events between last replayed event up to and including this event while self.last_event_index < event_index: self.replay_event(self.all_events[self.last_event_index + 1]) self.last_event_index += 1 elif event_index < self.last_event_index: # Undo by reseting and replaying again self.reset() self.select_event(event_index) class EventDetailsFrame(ui_utils.TreeFrame): def __init__(self, master): ui_utils.TreeFrame.__init__(self, master, columns=("attribute", "value")) self.tree.heading("attribute", text="Attribute", anchor=tk.W) self.tree.heading("value", text="Value", anchor=tk.W) self.configure(border=1, relief=tk.GROOVE) def load_event(self, event): self._clear_tree() for name in self.order_keys(event): node_id = self.tree.insert("", "end") self.tree.set(node_id, "attribute", name) self.tree.set(node_id, "value", event[name]) def order_keys(self, event): return event.keys() class ReplayerCodeView(ttk.Frame): def __init__(self, master): ttk.Frame.__init__(self, master) self.vbar = ttk.Scrollbar(self, orient=tk.VERTICAL) self.vbar.grid(row=0, column=2, sticky=tk.NSEW) self.hbar = ttk.Scrollbar(self, orient=tk.HORIZONTAL) self.hbar.grid(row=1, column=0, sticky=tk.NSEW, columnspan=2) self.text = codeview.SyntaxText( self, yscrollcommand=self.vbar.set, xscrollcommand=self.hbar.set, borderwidth=0, font="EditorFont", wrap=tk.NONE, insertwidth=2, # selectborderwidth=2, inactiveselectbackground="gray", # highlightthickness=0, # TODO: try different in Mac and Linux # highlightcolor="gray", padx=5, pady=5, undo=True, autoseparators=False, ) self.text.grid(row=0, column=1, sticky=tk.NSEW) self.hbar["command"] = self.text.xview self.vbar["command"] = self.text.yview self.columnconfigure(1, weight=1) self.rowconfigure(0, weight=1) class ReplayerEditor(ttk.Frame): def __init__(self, master): ttk.Frame.__init__(self, master) self.code_view = ReplayerCodeView(self) self.code_view.grid(sticky=tk.NSEW) self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) def replay_event(self, event): if event["sequence"] in ["TextInsert", "TextDelete"]: if event["sequence"] == "TextInsert": self.code_view.text.insert( event["index"], event["text"], ast.literal_eval(event["tags"]) ) elif event["sequence"] == "TextDelete": if event["index2"] and event["index2"] != "None": self.code_view.text.delete(event["index1"], event["index2"]) else: self.code_view.text.delete(event["index1"]) self.see_event(event) def see_event(self, event): for key in ["index", "index1", "index2"]: if key in event and event[key] and event[key] != "None": self.code_view.text.see(event[key]) def reset(self): self.code_view.text.delete("1.0", "end") class ReplayerEditorProper(ReplayerEditor): def __init__(self, master): ReplayerEditor.__init__(self, master) self.set_colorer() def set_colorer(self): self.colorer = SyntaxColorer(self.code_view.text) def replay_event(self, event): ReplayerEditor.replay_event(self, event) # TODO: some problem when doing fast rewind # self.colorer.notify_range("1.0", "end") def reset(self): ReplayerEditor.reset(self) self.set_colorer() class ReplayerEditorNotebook(ttk.Notebook): def __init__(self, master): ttk.Notebook.__init__(self, master, padding=0) self._editors_by_text_widget_id = {} def clear(self): for child in self.winfo_children(): child.destroy() self._editors_by_text_widget_id = {} def get_editor_by_text_widget_id(self, text_widget_id): if text_widget_id not in self._editors_by_text_widget_id: editor = ReplayerEditorProper(self) self.add(editor, text="<untitled>") self._editors_by_text_widget_id[text_widget_id] = editor return self._editors_by_text_widget_id[text_widget_id] def replay_event(self, event): if "text_widget_id" in event: editor = self.get_editor_by_text_widget_id(event["text_widget_id"]) # print(event.editor_id, id(editor), event) self.select(editor) editor.replay_event(event) if "filename" in event: self.tab(editor, text=os.path.basename(event["filename"])) def reset(self): for editor in self.winfo_children(): self.forget(editor) editor.destroy() self._editors_by_text_widget_id = {} class ShellFrame(ReplayerEditor): def __init__(self, master): ReplayerEditor.__init__(self, master) # TODO: use same source as shell vert_spacing = 10 io_indent = 16 self.code_view.text.tag_configure("toplevel", font="EditorFont") self.code_view.text.tag_configure("prompt", foreground="purple", font="BoldEditorFont") self.code_view.text.tag_configure("command", foreground="black") self.code_view.text.tag_configure("version", foreground="DarkGray") self.code_view.text.tag_configure("automagic", foreground="DarkGray") self.code_view.text.tag_configure( "value", foreground="DarkBlue" ) # TODO: see also _text_key_press and _text_key_release self.code_view.text.tag_configure("error", foreground="Red") self.code_view.text.tag_configure( "io", lmargin1=io_indent, lmargin2=io_indent, rmargin=io_indent, font="IOFont" ) self.code_view.text.tag_configure("stdin", foreground="Blue") self.code_view.text.tag_configure("stdout", foreground="Black") self.code_view.text.tag_configure("stderr", foreground="Red") self.code_view.text.tag_configure("hyperlink", foreground="#3A66DD", underline=True) self.code_view.text.tag_configure("vertically_spaced", spacing1=vert_spacing) self.code_view.text.tag_configure("inactive", foreground="#aaaaaa") class ReplayerPanedWindow(tk.PanedWindow): def __init__(self, master=None, cnf={}, **kw): cnf = cnf.copy() cnf.update(kw) cnf["background"] = lookup_style_option("TFrame", "background") super().__init__(master=master, cnf=cnf) def load_plugin() -> None: def open_replayer(): win = ReplayWindow() ui_utils.show_dialog(win) get_workbench().set_default("tools.replayer_last_browser_folder", None) if get_workbench().get_ui_mode() == "expert": get_workbench().add_command( "open_replayer", "tools", _("Open replayer..."), open_replayer, group=110 )
36.808219
97
0.627019
c0d9a88e13760e8cf59883c3a44871d1fe05b804
917
py
Python
api/app/models/Product.py
ValerianThomas/Titanic_kaggle_in_production
45cff05b32a0193f8e75f37a151c2a588c927a03
[ "MIT" ]
null
null
null
api/app/models/Product.py
ValerianThomas/Titanic_kaggle_in_production
45cff05b32a0193f8e75f37a151c2a588c927a03
[ "MIT" ]
null
null
null
api/app/models/Product.py
ValerianThomas/Titanic_kaggle_in_production
45cff05b32a0193f8e75f37a151c2a588c927a03
[ "MIT" ]
null
null
null
from marshmallow import fields, Schema from .. import db class Product (db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), unique=True) dscription = db.Column(db.String(200)) price = db.Column(db.Float) qty = db.Column(db.Integer) def __init__(self, name, description, price, qty): self.name = name self.description = description self.price = price self.qty = qty def save(self): db.session.add(self) db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def update(self, data): for key, item in data.items(): setattr(self, key, item) db.session.commit() class ProductSchema(Schema): id = fields.Int(dump_only=True) name = fields.Str(required=True) description = fields.Str(required=True) qty = fields.Int(required=True)
26.2
54
0.642312
e8469cd04bf7b012811f67e712a4d81b7745285b
578
py
Python
api/apps/users/migrations/0002_auto_20170216_1234.py
Bibliotecaio/biblioteca
584268b7615f2be5f011fad09b472ee8a06914e0
[ "MIT" ]
null
null
null
api/apps/users/migrations/0002_auto_20170216_1234.py
Bibliotecaio/biblioteca
584268b7615f2be5f011fad09b472ee8a06914e0
[ "MIT" ]
null
null
null
api/apps/users/migrations/0002_auto_20170216_1234.py
Bibliotecaio/biblioteca
584268b7615f2be5f011fad09b472ee8a06914e0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-02-16 12:34 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='user', name='role', field=models.CharField(choices=[('admin', 'Администратор'), ('editor', 'Редактор'), ('site_user', 'Обычный пользователь')], default='site_user', max_length=100, verbose_name='Роль'), ), ]
27.52381
194
0.624567
fd5944b095f1dde8522b8cedba321a5d8e4a3284
4,163
py
Python
quizzes/00.organize.me/Cracking the Coding Interview/B_quickSort_comp.py
JiniousChoi/encyclopedia-in-code
77bc551a03a2a3e3808e50016ece14adb5cfbd96
[ "MIT" ]
2
2018-07-20T10:15:49.000Z
2018-07-20T10:16:54.000Z
quizzes/00.organize.me/Cracking the Coding Interview/B_quickSort_comp.py
JiniousChoi/encyclopedia-in-code
77bc551a03a2a3e3808e50016ece14adb5cfbd96
[ "MIT" ]
2
2018-06-26T09:12:44.000Z
2019-12-18T00:09:14.000Z
quizzes/00.organize.me/Cracking the Coding Interview/B_quickSort_comp.py
JiniousChoi/encyclopedia-in-code
77bc551a03a2a3e3808e50016ece14adb5cfbd96
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- def quicksort_wrapper(arr, compare): quicksort ( arr, 0, len(arr)-1, compare) def quicksort(arr, start_idx, end_idx, compare): #arr has no element if end_idx - start_idx < 0: return #this part is not necessary. #it just prevent one more needless recursive in-step #arr has 1 element elif end_idx - start_idx == 0: #practically sorted return #From this part, arr has more than 2 elements #Initialize variables the_idx = start_idx the_val = arr[start_idx] p = start_idx + 1 q = end_idx ### ###part1: bi-parting the given arr against pivot value ### while p < q : #if arr[p] <= the_val <= arr[q]: if (compare(arr[p], the_val)<=0) and (compare(the_val,arr[q])<=0): p+=1 q-=1 #right p, wrong q #elif arr[p] <= the_val and the_val > arr[q] : elif (compare(arr[p], the_val)<=0) and (compare(the_val,arr[q])>0): p+=1 #wrong p, right q #elif arr[p] > the_val and the_val <= arr[q]: elif (compare(arr[p], the_val)>0) and (compare(the_val,arr[q])<=0): q-=1 #both wrong #elif arr[p] > the_val > arr[q]: elif (compare(arr[p], the_val)>0) and (compare(the_val,arr[q])>0): arr[p], arr[q] = arr[q], arr[p] p+=1 p-=1 #to minimize logical bug else: print the_val, arr[p], arr[q] assert(False) ### ###part2: put pivot value in between the bi-parts ### # case1: completely bi-parted if q + 1 == p: arr[the_idx], arr[q] = arr[q], arr[the_idx] the_idx = q #part1_start_idx = start_idx #part1_end_idx = q-1 ## pivot_dix == q #part2_start_idx = p #part2_end_idx = end_idx # case2: arr[p] element should be sorted elif p == q: #if the_val >= arr[p]: if compare(the_val, arr[p])>=0: arr[the_idx], arr[p] = arr[p], arr[the_idx] the_idx = p else: arr[the_idx], arr[p-1] = arr[p-1], arr[the_idx] the_idx = p-1 else: assert(False) quicksort( arr, start_idx, the_idx-1, compare ) quicksort( arr, the_idx+1, end_idx, compare ) from random import randint def int_testcases_generator(minCnt=10, maxCnt=150, minInt=-10, maxInt=10): print 'int_testcases_generator called' testcases = [] for i in range(5): testcases.append([]) for j in range(randint( minCnt, maxCnt )): testcases[i].append( randint( minInt, maxInt ) ) return testcases def str_testcases_generator(wordsMinCnt=10, wordsMaxCnt=10, charMinCnt=5, charMaxCnt=10): sample_str= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ!abcdefghijklmnopqrstuvwxyz' sample_str_len=len(sample_str) testcases=[] set_count = 5 for i in range(set_count): testcases.append([]) for testcase in testcases: for word_cnt in range(randint(wordsMinCnt, wordsMaxCnt)): temp_str='' for char_cnt in range(randint(charMinCnt, charMaxCnt)): sample_ch = sample_str[randint(0,sample_str_len-1)] temp_str += sample_ch testcase.append(temp_str) return testcases #callback functions definitions def compare_int_incr(a,b): return a-b def compare_int_decr(a,b): return compare_int_incr(b,a) def compare_strlen_incr(s1,s2): return len(s2)-len(s1) def compare_strlen_decr(s1,s2): return compare_strlen_incr(s1,s2) def compare_str_incr(s1,s2): if s1>s2: return 1 elif s1==s2: return 0 else: return -1 def compare_str_decr(s1,s2): return compare_str_incr(s2,s1) if __name__=='__main__': #testcases = int_testcases_generator(10, 10, -10, 10) testcases = str_testcases_generator(10, 10, 10, 10) for testcase in testcases: print testcase, '->', quicksort_wrapper(testcase, compare_str_decr) print testcase
27.753333
89
0.576027
230e696b17532fa772b1bfc645df4e0dce425242
1,157
py
Python
cffex/cffex/spiders/cffex.py
rahrahr/CrawlCffex
419a42c0fa70d9c04adcc19a01020011dc2acd56
[ "MIT" ]
null
null
null
cffex/cffex/spiders/cffex.py
rahrahr/CrawlCffex
419a42c0fa70d9c04adcc19a01020011dc2acd56
[ "MIT" ]
null
null
null
cffex/cffex/spiders/cffex.py
rahrahr/CrawlCffex
419a42c0fa70d9c04adcc19a01020011dc2acd56
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy from cffex.items import CffexItem import datetime class CffexSpider(scrapy.Spider): name = 'cffex' start_urls = ['http://www.cffex.com.cn/lssjxz/'] headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36', 'encoding': 'unicode' } endYear = datetime.datetime.now().year endMonth = datetime.datetime.now().month def parse(self, response): item = CffexItem() def f(x): return '0' + str(x) if x < 10 else str(x) start_urls = ['http://www.cffex.com.cn/sj/historysj/2010' + f(i) + '/zip/2010' + f(i) + '.zip' for i in range(4, 13)] for year in range(2011, self.endYear + 1): start_urls += ['http://www.cffex.com.cn/sj/historysj/' + str(year) + f(i) + '/zip/' + str(year) + f(i) + '.zip' for i in range(1, 13)] for url in start_urls: item['file_url'] = url yield item if url.split('/')[-1] == '{}{}.zip'.format(self.endYear,self.endMonth): break
38.566667
161
0.554019
57b31d6c3b21d5e2ab256afd9ab3fd595c4be4d8
1,612
py
Python
friend.py
sharyar/friend-dir
d6a5e77157b2e2d50ba23bd981a8e2c60efcb781
[ "MIT" ]
null
null
null
friend.py
sharyar/friend-dir
d6a5e77157b2e2d50ba23bd981a8e2c60efcb781
[ "MIT" ]
null
null
null
friend.py
sharyar/friend-dir
d6a5e77157b2e2d50ba23bd981a8e2c60efcb781
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from datetime import date @dataclass class Friend: fname : str = None lname : str = None phone : str = None birthdate: date = None def __post_init__(self): if self.birthdate != None: self.birthdate = date.fromisoformat(self.birthdate) self.last_contact = date.today() def __str__(self) -> str: return (f'{self.fname} {self.lname} - {self.phone}. ' f'Born on {self.birthdate.strftime("%B-%d-%Y")}. ' f'Last Contacted: {self.last_contact.strftime("%B-%d-%Y")}.') def set_last_contacted_date(self, date_contact = date.today()): self.last_contact = date_contact def __eq__(self, o: object) -> bool: if not isinstance(o, Friend): raise ValueError('Can not compare a non-friend object') return (self.fname == o.fname and self.lname == o.lname and self.birthdate == o.birthdate) class FriendList: def __init__(self, friends = []) -> None: super().__init__() self.friends = friends def add_friend_to_list(self, friend): if friend in self.friends: print('A duplicate may exist. Please check list first.') else: self.friends.append(friend) def delete_friend(self, friend): if friend in self.friends: self.friends.remove(friend) print('Deleted') def __str__(self) -> str: return str(list(friend.fname + ' ' + friend.lname for friend in self.friends))
31.607843
98
0.585608
d9978c23fabd0bf26a9cec7ead776bb8318494db
1,374
py
Python
ooobuild/dyn/xml/crypto/xxml_signature.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/dyn/xml/crypto/xxml_signature.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/dyn/xml/crypto/xxml_signature.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.xml.crypto from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME _DYNAMIC = False if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: _DYNAMIC = True if not TYPE_CHECKING and _DYNAMIC: from com.sun.star.xml.crypto import XXMLSignature as XXMLSignature setattr(XXMLSignature, '__ooo_ns__', 'com.sun.star.xml.crypto') setattr(XXMLSignature, '__ooo_full_ns__', 'com.sun.star.xml.crypto.XXMLSignature') setattr(XXMLSignature, '__ooo_type_name__', 'interface') else: from ....lo.xml.crypto.xxml_signature import XXMLSignature as XXMLSignature __all__ = ['XXMLSignature']
37.135135
86
0.766376
f89c280656480bd7b6c8defa2846a9ce6c8364cd
25
py
Python
cride/circles/views/__init__.py
mariogonzcardona/platzi-cride
40da9489de8339816dcb18db59f46daa851f6236
[ "MIT" ]
null
null
null
cride/circles/views/__init__.py
mariogonzcardona/platzi-cride
40da9489de8339816dcb18db59f46daa851f6236
[ "MIT" ]
1
2020-05-28T18:31:48.000Z
2020-05-28T18:31:48.000Z
cride/circles/views/__init__.py
mariogonzcardona/platzi-cride
40da9489de8339816dcb18db59f46daa851f6236
[ "MIT" ]
null
null
null
# from .circles import *
12.5
24
0.68
1124e5aa4e2cc0af4ca1a3903ad3056321e6d44e
1,898
py
Python
setup.py
renovate-tests/cs251-toolkit
fc1dbc85e04083116a985ab1bd5314a60125f038
[ "MIT" ]
null
null
null
setup.py
renovate-tests/cs251-toolkit
fc1dbc85e04083116a985ab1bd5314a60125f038
[ "MIT" ]
null
null
null
setup.py
renovate-tests/cs251-toolkit
fc1dbc85e04083116a985ab1bd5314a60125f038
[ "MIT" ]
null
null
null
import sys from setuptools import setup, find_packages if sys.version_info < (3, 5): sys.exit("The toolkit requires Python 3.5 or greater.\nYou have {}".format(sys.version_info)) setup( name='cs251tk', version='2.5.0', description='The CS251 (Software Design) Toolkit', author='Hawken Rives', author_email='[email protected]', url='https://github.com/stodevx/cs251-toolkit', license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], keywords='stolaf course-tooling', install_requires=[ 'PyYAML == 3.*', 'requests >= 2.20.*', 'termcolor == 1.*', 'natsort == 5.0.*', 'appdirs == 1.4.*', 'python-dateutil == 2.7.*' ], tests_require=['tox'], packages=find_packages(exclude=['tests', 'docs']), # see http://python-packaging.readthedocs.io/en/latest/command-line-scripts.html entry_points={ 'console_scripts': [ 'cs251tk=cs251tk.toolkit.__main__:main', 'referee=cs251tk.referee.__main__:main', ], }, )
33.892857
97
0.602213
6acc708d8f95a62cd3a468300bf2eab3d6c8a0db
816
py
Python
features/steps/mark.py
rvodden/minisculus
097f0be1e061c1e313d929e1d71c17c2a402d71c
[ "MIT" ]
null
null
null
features/steps/mark.py
rvodden/minisculus
097f0be1e061c1e313d929e1d71c17c2a402d71c
[ "MIT" ]
null
null
null
features/steps/mark.py
rvodden/minisculus
097f0be1e061c1e313d929e1d71c17c2a402d71c
[ "MIT" ]
null
null
null
from behave import given from behave.runner import Context from minisculus import MarkOne, MarkTwo @given("a mark one machine with its wheel set to {}") def a_mark_one_machine_with_its_wheel_set_to(context: Context, wheel_value: int): """ Args: context: The feature context. wheel_value: The value of the wheel. """ context.mark = MarkOne(wheel_value) @given("a mark two machine with its wheels set to {} and {}") def a_mark_two_machine_with_its_wheels_set_to_and( context: Context, wheel1_value: int, wheel2_value: int ): """ Args: context: The feature context. wheel1_value: The value the first wheel should be set to. wheel2_value: The value the second wheel should be set to. """ context.mark = MarkTwo(wheel1_value, wheel2_value)
29.142857
81
0.703431
890cc2af4dd286f050f998f73df0709ed4b1aa87
78
py
Python
server/cleanIpCore/consts.py
Rexarrior/NetworkUtility
37ebe95aa46462ab5fe2dfe83320c95fe404abd3
[ "Apache-2.0" ]
null
null
null
server/cleanIpCore/consts.py
Rexarrior/NetworkUtility
37ebe95aa46462ab5fe2dfe83320c95fe404abd3
[ "Apache-2.0" ]
3
2022-02-13T15:00:05.000Z
2022-02-27T05:56:34.000Z
server/cleanIpCore/consts.py
Rexarrior/NetworkUtility
37ebe95aa46462ab5fe2dfe83320c95fe404abd3
[ "Apache-2.0" ]
null
null
null
S_BASE_IP = '0.0.0.0' S_MIN_PORT = 8001 S_MAX_PORT = 9001 S_MAX_COUNT = 1000
13
21
0.717949
c6b835dcfb7fc8904c662a0272b4ffd6884e763b
2,850
py
Python
Lib/site-packages/chainer/functions/array/where.py
km-t/dcpython
c0fcd5557691004d7d9d22a662d90e52ecc5f34f
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Lib/site-packages/chainer/functions/array/where.py
km-t/dcpython
c0fcd5557691004d7d9d22a662d90e52ecc5f34f
[ "CNRI-Python-GPL-Compatible" ]
11
2020-01-28T22:49:05.000Z
2022-03-11T23:50:27.000Z
Lib/site-packages/chainer/functions/array/where.py
km-t/dcpython
c0fcd5557691004d7d9d22a662d90e52ecc5f34f
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
import numpy import chainer from chainer import backend from chainer import function_node from chainer.utils import type_check class Where(function_node.FunctionNode): """Choose elements depending on condition.""" def __init__(self, condition): self.condition = condition def check_type_forward(self, in_types): type_check.expect(in_types.size() == 2) x_type, y_type = in_types condition = self.condition type_check.expect( condition.dtype == numpy.bool_, x_type.dtype == y_type.dtype, ) type_check.expect_broadcast_shapes( condition.shape, x_type.shape, y_type.shape) def forward(self, inputs): # may broadcast xp = backend.get_array_module(*inputs) x, y = inputs condition = self.condition return xp.where(condition, x, y), def backward(self, indexes, grad_outputs): condition = self.condition xp = backend.get_array_module(condition) g, = grad_outputs zero = xp.zeros((), dtype=g.dtype) ret = [] if 0 in indexes: gx, = Where(condition).apply((g, zero)) ret.append(chainer.functions.sum_to(gx, self.inputs[0].shape)) if 1 in indexes: gy, = Where(condition).apply((zero, g)) ret.append(chainer.functions.sum_to(gy, self.inputs[1].shape)) return ret def where(condition, x, y): """Choose elements depending on condition. This function choose values depending on a given ``condition``. All ``condition``, ``x``, and ``y`` must have the same shape. Args: condition (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable containing the condition. A :math:`(s_1, s_2, ..., s_N)` -shaped boolean array. Only boolean array is permitted. x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable chosen when ``condition`` is ``True``. A :math:`(s_1, s_2, ..., s_N)` -shaped float array. y (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable chosen when ``condition`` is ``False``. A :math:`(s_1, s_2, ..., s_N)` -shaped float array. Returns: ~chainer.Variable: Variable containing chosen values. .. admonition:: Example >>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool) >>> cond array([[ True, False], [False, True]]) >>> x = np.array([[1, 2], [3, 4]], np.float32) >>> y = np.zeros((2, 2), np.float32) >>> F.where(cond, x, y).data array([[1., 0.], [0., 4.]], dtype=float32) """ if isinstance(condition, chainer.Variable): condition = condition.array z, = Where(condition).apply((x, y)) return z
32.022472
74
0.581404
5fd6b4fd3380ddf6d390e4a47ce8bebd32e17a4f
5,095
py
Python
algorithm/utils/img_utils.py
danromuald/sagemaker-pytorch-neural-style
19699d998b45c13f37820f76924bacc8ef6185a4
[ "MIT" ]
null
null
null
algorithm/utils/img_utils.py
danromuald/sagemaker-pytorch-neural-style
19699d998b45c13f37820f76924bacc8ef6185a4
[ "MIT" ]
null
null
null
algorithm/utils/img_utils.py
danromuald/sagemaker-pytorch-neural-style
19699d998b45c13f37820f76924bacc8ef6185a4
[ "MIT" ]
null
null
null
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: [email protected] ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import os import numpy as np import torch from PIL import Image from torch.autograd import Variable from io import BytesIO import base64 def tensor_load_rgbimage(filename, size=None, scale=None, keep_asp=False): img = Image.open(filename).convert('RGB') if size is not None: if keep_asp: size2 = int(size * 1.0 / img.size[0] * img.size[1]) img = img.resize((size, size2), Image.ANTIALIAS) else: img = img.resize((size, size), Image.ANTIALIAS) elif scale is not None: img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS) img = np.array(img).transpose(2, 0, 1) img = torch.from_numpy(img).float() return img def tensor_load_inference_img(img, size=None, scale=None, keep_asp=False): if size is not None: if keep_asp: size2 = int(size * 1.0 / img.size[0] * img.size[1]) img = img.resize((size, size2), Image.ANTIALIAS) else: img = img.resize((size, size), Image.ANTIALIAS) elif scale is not None: img = img.resize( (int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS) img = np.array(img).transpose(2, 0, 1) img = torch.from_numpy(img).float() return img def tensor_make_inference_img_str(tensor, cuda=True): if cuda: img = tensor.clone().cpu().clamp(0, 255).numpy() else: img = tensor.clone().clamp(0, 255).numpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) buff = BytesIO() img.save(buff, format='JPEG') img_str = base64.b64encode(buff.getvalue()) return "data:image/jpeg;base64," + img_str.decode('utf-8') def tensor_save_rgbimage(tensor, filename, cuda=False): if cuda: img = tensor.clone().cpu().clamp(0, 255).numpy() else: img = tensor.clone().clamp(0, 255).numpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) img.save(filename) def tensor_save_bgrimage(tensor, filename, cuda=False): (b, g, r) = torch.chunk(tensor, 3) tensor = torch.cat((r, g, b)) tensor_save_rgbimage(tensor, filename, cuda) def gram_matrix(y): (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram def subtract_imagenet_mean_batch(batch): """Subtract ImageNet mean pixel-wise from a BGR image.""" tensortype = type(batch.data) mean = tensortype(batch.data.size()) mean[:, 0, :, :] = 103.939 mean[:, 1, :, :] = 116.779 mean[:, 2, :, :] = 123.680 return batch - Variable(mean) def add_imagenet_mean_batch(batch): """Add ImageNet mean pixel-wise from a BGR image.""" tensortype = type(batch.data) mean = tensortype(batch.data.size()) mean[:, 0, :, :] = 103.939 mean[:, 1, :, :] = 116.779 mean[:, 2, :, :] = 123.680 return batch + Variable(mean) def imagenet_clamp_batch(batch, low, high): batch[:, 0, :, :].data.clamp_(low - 103.939, high - 103.939) batch[:, 1, :, :].data.clamp_(low - 116.779, high - 116.779) batch[:, 2, :, :].data.clamp_(low - 123.680, high - 123.680) def preprocess_batch(batch): batch = batch.transpose(0, 1) (r, g, b) = torch.chunk(batch, 3) batch = torch.cat((b, g, r)) batch = batch.transpose(0, 1) return batch class StyleLoader(): def __init__(self, style_folder, style_size, cuda=True): self.folder = style_folder self.style_size = style_size self.files = os.listdir(style_folder) self.cuda = cuda def get(self, i): idx = i % len(self.files) filepath = os.path.join(self.folder, self.files[idx]) style = tensor_load_rgbimage(filepath, self.style_size) style = style.unsqueeze(0) style = preprocess_batch(style) if self.cuda: style = style.cuda() style_v = Variable(style, requires_grad=False) return style_v def size(self): return len(self.files) class InferenceStyleLoader(): def __init__(self, style_folder, style_fname, style_size, cuda=True): self.folder = style_folder self.style_size = style_size self.style_fname = style_fname self.cuda = cuda def get(self): filepath = os.path.join(self.folder, self.style_fname) style = tensor_load_rgbimage(filepath, self.style_size) style = style.unsqueeze(0) style = preprocess_batch(style) if self.cuda: style = style.cuda() style_v = Variable(style, requires_grad=False) return style_v
31.067073
95
0.603337
55511ae80d3da305a2a40ae768ef99ea9e106a54
1,294
py
Python
fixture/session.py
daryarudi/python_training
a9b85bc33a21d1fc23c4a1701e0886cdb909d9b2
[ "Apache-2.0" ]
null
null
null
fixture/session.py
daryarudi/python_training
a9b85bc33a21d1fc23c4a1701e0886cdb909d9b2
[ "Apache-2.0" ]
null
null
null
fixture/session.py
daryarudi/python_training
a9b85bc33a21d1fc23c4a1701e0886cdb909d9b2
[ "Apache-2.0" ]
null
null
null
class SessionHelper: def __init__(self, app): self.app = app def login(self, username, password): wd = self.app.wd self.app.open_home_page() wd.find_element_by_name("user").clear() wd.find_element_by_name("user").send_keys(username) wd.find_element_by_name("pass").clear() wd.find_element_by_name("pass").send_keys(password) wd.find_element_by_xpath("//input[@value='Login']").click() def ensure_login(self, username, password): if self.is_logged_in(): if self.is_logged_in_as(username): return else: self.logout() self.login(username, password) def logout(self): wd = self.app.wd wd.find_element_by_link_text("Logout").click() wd.find_element_by_name("user") def ensure_logout(self): if self.is_logged_in(): self.logout() def is_logged_in(self): wd = self.app.wd return len(wd.find_elements_by_link_text("Logout")) > 0 def is_logged_in_as(self, username): wd = self.app.wd return self.get_logged_user() == username def get_logged_user(self): wd = self.app.wd return wd.find_element_by_xpath("//div/div[1]/form/b").text[1:-1]
30.093023
73
0.608964
146968526a84184862201a5d9f4788b6e828abb3
2,051
py
Python
library_collection/migrations/0002_add_note_fields.py
amywieliczka/avram
1956130fcde464acf3ed00432a597dd857647e91
[ "Unlicense" ]
null
null
null
library_collection/migrations/0002_add_note_fields.py
amywieliczka/avram
1956130fcde464acf3ed00432a597dd857647e91
[ "Unlicense" ]
5
2015-02-17T18:53:27.000Z
2020-12-09T22:36:41.000Z
library_collection/migrations/0002_add_note_fields.py
amywieliczka/avram
1956130fcde464acf3ed00432a597dd857647e91
[ "Unlicense" ]
1
2022-02-25T15:22:40.000Z
2022-02-25T15:22:40.000Z
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('library_collection', '0001_initial'), ] operations = [ migrations.AddField( model_name='collection', name='date_last_harvested', field=models.DateField(null=True, blank=True), ), migrations.AddField( model_name='collection', name='harvest_exception_notes', field=models.TextField(blank=True), ), migrations.AddField( model_name='collection', name='harvest_frequency', field=models.DurationField(null=True, blank=True), ), migrations.AlterField( model_name='collection', name='files_in_dams', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='collection', name='files_in_hand', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='collection', name='formats', field=models.ManyToManyField(help_text=b'File formats for DAMS ingest', to='library_collection.Format', blank=True), ), migrations.AlterField( model_name='collection', name='metadata_in_dams', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='collection', name='qa_completed', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='collection', name='repository', field=models.ManyToManyField(to='library_collection.Repository', verbose_name=b'Unit', blank=True), ), migrations.AlterField( model_name='repository', name='campus', field=models.ManyToManyField(to='library_collection.Campus', blank=True), ), ]
32.555556
128
0.577279
147e084f6badd2ef58552945d5d1824c34fa803a
2,749
py
Python
config/rfam_local_template.py
mb1069/rfam-production
10c76e249dc22d30862b3a873fd54f390e859ad8
[ "Apache-2.0" ]
1
2020-01-14T12:12:46.000Z
2020-01-14T12:12:46.000Z
config/rfam_local_template.py
mb1069/rfam-production
10c76e249dc22d30862b3a873fd54f390e859ad8
[ "Apache-2.0" ]
null
null
null
config/rfam_local_template.py
mb1069/rfam-production
10c76e249dc22d30862b3a873fd54f390e859ad8
[ "Apache-2.0" ]
null
null
null
""" Copyright [2009-2017] EMBL-European Bioinformatics Institute Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # ---------------------------------GEN_CONFIG---------------------------------- RFAM_GPFS_LOC = '' LOC_PATH = '' GEN_DWLD_EXEC = '' LSF_GROUPS_CMD = 'bgadd -L %s /rfam_gen/%s' LSF_GEN_GROUP = '/rfam_gen' USER_EMAIL = '' # ------------------------------DATABASES-------------------------------------- # Databases RFAMLIVEPUB = { 'user': '', 'pwd': '', 'host': '', 'db': '', 'port': '', } RFAMLIVE = { 'user': '', 'pwd': '', 'host': '', 'db': '', 'port': '', } RFAMLIVE_DJANGO = { 'USER': RFAMLIVE['user'], 'PASSWORD': RFAMLIVE['pwd'], 'HOST': RFAMLIVE['host'], 'NAME': RFAMLIVE['db'], 'PORT': RFAMLIVE['port'], 'ENGINE': 'django.db.backends.mysql', } RFAM12 = { 'user': '', 'pwd': '', 'host': '', 'db': '', 'port': '', } RFAMLIVELOC = { 'user': '', 'pwd': '', 'host': '', 'db': '', 'port': '', } # ----------------------------Django settings---------------------------------- # DATABASES RFAMDEV = { 'ENGINE': 'django.db.backends.mysql', 'NAME': '', 'HOST': '', 'PORT': '', 'USER': '', 'PASSWORD': '', } RFAMLOC = { 'ENGINE': 'django.db.backends.mysql', 'NAME': '', 'HOST': '', 'PORT': '', 'USER': '', 'PASSWORD': '', } # SETTINGS SECRET_KEY = 'change secret key in production' # ----------------------------RFAM CONFIG PATHS-------------------------------- ESL_PATH = '' FA_GEN = '' RFAMSEQ_PATH = '' FAM_VIEW_PL = '' TMP_PATH = '/tmp' ESL_FSEQ_PATH = '' FSR_PATH = '' FSR_LOCAL = '' ENA_URL = 'http://www.ebi.ac.uk/ena/data/view/%s&display=fasta&range=%s-%s' # Maybe delete these TAX_NODES_DUMP = '' TAX_NAMES_DUMP = '' RFAM_NCBI_IDS = '' VALID_NCBI_IDS = '' NCBI_RANKS = '' # -------------------------------LSF GROUPS------------------------------------ # rfamprod privileges required FA_EXPORT_GROUP = '/rfam_fa' RFAM_VIEW_GROUP = '/rfam_view' # ----------------------------------------------------------------------------- if __name__ == '__main__': pass
22.532787
80
0.484176
2db1b6c6816c58fe69da5d46f41860f5e7f3201b
1,444
py
Python
src/main/python/systemds/operator/algorithm/builtin/logSumExp.py
shiruke/systemds
cdd7b9ca15c3f17ec15045e85b107e26a4d7e7a7
[ "Apache-2.0" ]
null
null
null
src/main/python/systemds/operator/algorithm/builtin/logSumExp.py
shiruke/systemds
cdd7b9ca15c3f17ec15045e85b107e26a4d7e7a7
[ "Apache-2.0" ]
null
null
null
src/main/python/systemds/operator/algorithm/builtin/logSumExp.py
shiruke/systemds
cdd7b9ca15c3f17ec15045e85b107e26a4d7e7a7
[ "Apache-2.0" ]
null
null
null
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- # Autogenerated By : src/main/python/generator/generator.py # Autogenerated From : scripts/builtin/logSumExp.dml from typing import Dict, Iterable from systemds.operator import OperationNode, Matrix from systemds.script_building.dag import OutputType from systemds.utils.consts import VALID_INPUT_TYPES def logSumExp(M: OperationNode, **kwargs: Dict[str, VALID_INPUT_TYPES]): params_dict = {'M':M} params_dict.update(kwargs) return Matrix(M.sds_context, 'logSumExp', named_input_nodes=params_dict)
38
76
0.703601
6835c4124dadd2b3f1b93ac3f4c22d14eaf48465
412
py
Python
read_trace.py
SillyTin/erays
be8768f280de174400050afc267bb5f3987042d0
[ "MIT" ]
79
2018-08-17T19:02:09.000Z
2022-03-29T21:17:43.000Z
read_trace.py
catageek/erayscan
141e160879e79a752c8d321af0a43f707a1106e4
[ "MIT" ]
3
2018-08-29T16:40:07.000Z
2021-03-20T02:47:54.000Z
read_trace.py
catageek/erayscan
141e160879e79a752c8d321af0a43f707a1106e4
[ "MIT" ]
20
2018-08-20T21:05:20.000Z
2022-03-02T15:15:20.000Z
import sys, json line = open(sys.argv[1]).readline() info = json.loads(line) trace = info['result']['structLogs'] for step in trace: if step['depth'] != 1: continue for i, item in enumerate(step['stack']): print("$s%d:\t%s" % (i, hex(int(item, 16))[2:])) for i in step['memory']: print(i) # print("".join(step['memory'])) print("-" * 32) print(str(step['pc']) + "\t" + step['op']) print("-" * 32)
22.888889
50
0.582524
d3a26d77e09f4e0bef46cb5ce6d8351db5f3d673
4,891
py
Python
docs/conf.py
kwp-communications/jicket
f01325e4ac736c41962fe11c8ae5587a18c542ec
[ "MIT" ]
6
2018-10-10T08:42:37.000Z
2018-10-15T15:52:18.000Z
docs/conf.py
kwp-communications/jicket
f01325e4ac736c41962fe11c8ae5587a18c542ec
[ "MIT" ]
1
2018-10-01T08:39:11.000Z
2018-10-10T08:44:03.000Z
docs/conf.py
kwp-communications/jicket
f01325e4ac736c41962fe11c8ae5587a18c542ec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Jicket' copyright = '2018, KWP GmbH & Co. KG' author = 'KWP GmbH & Co. KG' # The full version, including alpha/beta/rc tags with open("../VERSION", "r") as f: release = f.read() # The short X.Y version version = release # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'Jicketdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Jicket.tex', 'Jicket Documentation', 'KWP GmbH \\& Co. KG', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'jicket', 'Jicket Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Jicket', 'Jicket Documentation', author, 'Jicket', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration -------------------------------------------------
30.56875
79
0.644245
15a6b941ba2b4647d7dc7f1dcf9a5dddfbefa70c
2,082
py
Python
mri_works/NodeEditor/python/classForProbe.py
montigno/mri_works
8ec6ff1500aa34d3540e44e4b0148023cf821f61
[ "CECILL-B" ]
2
2020-08-20T21:00:53.000Z
2021-08-16T15:28:51.000Z
mri_works/NodeEditor/python/classForProbe.py
montigno/mri_works
8ec6ff1500aa34d3540e44e4b0148023cf821f61
[ "CECILL-B" ]
3
2020-09-24T06:50:43.000Z
2020-12-15T11:02:04.000Z
mri_works/NodeEditor/python/classForProbe.py
montigno/mri_works
8ec6ff1500aa34d3540e44e4b0148023cf821f61
[ "CECILL-B" ]
1
2020-08-20T21:00:59.000Z
2020-08-20T21:00:59.000Z
from prompt_toolkit import print_formatted_text, ANSI class printProbe(): def __init__(self, unit, lab, format, label, val): if 'int' in format: col = '\x1b[94m' elif 'float' in format: col = '\x1b[33m' elif 'tuple' in format: col = '\x1b[98m' elif 'str' in format: col = '\x1b[35m' elif 'bool' in format: col = '\x1b[92m' elif 'path' in format: col = '\x1b[91m' elif 'dict' in format: col = '\x1b[93m' if label == 'Type': tmpval = val continued = True if isinstance(tmpval, list): if val: if isinstance(tmpval, list): while continued: if isinstance(tmpval, list): tmpval = tmpval[0] else: val = 'array of ' + type(tmpval).__name__ continued = False else: val = 'list of ' + type(tmpval).__name__ else: val = type(tmpval).__name__ elif label == 'Length': if isinstance(val, list): if val: tmptxt = '(' tmpval = val continued = True if isinstance(tmpval, list): while continued: if isinstance(tmpval, list): tmptxt += str(len(tmpval)) tmpval = tmpval[0] tmptxt += ', ' else: continued = False tmptxt = tmptxt[0:-2]+')' else: tmptxt = '1' val = tmptxt else: val = '1' print_formatted_text(ANSI(col+unit+'('+lab+')' + ' : ' + label+' = ' + str(val)))
34.131148
89
0.370797
7d8066edfe1ee7f7c81ac6e7a52838d7929dca84
1,510
py
Python
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/jdfusion/models/EipAddress.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
14
2018-04-19T09:53:56.000Z
2022-01-27T06:05:48.000Z
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/jdfusion/models/EipAddress.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
15
2018-09-11T05:39:54.000Z
2021-07-02T12:38:02.000Z
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/jdfusion/models/EipAddress.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
33
2018-04-20T05:29:16.000Z
2022-02-17T09:10:05.000Z
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class EipAddress(object): def __init__(self, cloudID=None, ipAddress=None, id=None, status=None, instanceType=None, instanceId=None, bandwidth=None, allocationTime=None): """ :param cloudID: (Optional) 云注册信息ID :param ipAddress: (Optional) 公网IP地址 :param id: (Optional) 公网IP ID :param status: (Optional) 状态 :param instanceType: (Optional) 当前绑定的实例类型 :param instanceId: (Optional) 当前绑定的实例ID :param bandwidth: (Optional) EIP的带宽峰值,单位为Mbps :param allocationTime: (Optional) EIP的创建时间 """ self.cloudID = cloudID self.ipAddress = ipAddress self.id = id self.status = status self.instanceType = instanceType self.instanceId = instanceId self.bandwidth = bandwidth self.allocationTime = allocationTime
35.952381
148
0.696026
9aee5367e305ec1e733f3ae8f04c07f50adde6e6
451
py
Python
contest/abc144/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
contest/abc144/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
contest/abc144/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
import math def main(): a, b, x = map(int, input().split()) # 水平時の高さを求める h = x / a ** 2 rad = 0 if h >= (b / 2): # 高さが半分以上 # 水のない三角形部分の高さを求める u = (a * a * b - x) * 2 / a ** 2 rad = math.atan(u / a) else: # 高さが半分以下 # 水部分の三角形の高さを求める u = x / (b * a) * 2 rad = math.atan(b / u) # ラジアンから度数へ変換 print(math.degrees(rad)) if __name__ == '__main__': main()
18.04
40
0.439024
2ebe31b33e9645d999f468b593f5b563639d5cfb
136
py
Python
schema/setup.py
dafarz/base-service
95791beac06c1ac58e0fa2050aa2cf3a3a22d8d7
[ "MIT" ]
null
null
null
schema/setup.py
dafarz/base-service
95791beac06c1ac58e0fa2050aa2cf3a3a22d8d7
[ "MIT" ]
null
null
null
schema/setup.py
dafarz/base-service
95791beac06c1ac58e0fa2050aa2cf3a3a22d8d7
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name='schema', packages=find_packages(), install_requires=['pydantic'] )
19.428571
43
0.720588
81d018b255615cd7b04c8c91410ae4765d2e3bc5
1,120
py
Python
Machine_Learning/Project/Bryan/scratch/1P/LR.py
bnonni/Python
9ebd18caa4e2d805028b557e8b77ea65a9ee1a3d
[ "Apache-2.0" ]
4
2019-10-05T03:41:20.000Z
2020-11-04T00:39:13.000Z
Machine_Learning/Project/Bryan/scratch/1P/LR.py
bnonni/Python
9ebd18caa4e2d805028b557e8b77ea65a9ee1a3d
[ "Apache-2.0" ]
null
null
null
Machine_Learning/Project/Bryan/scratch/1P/LR.py
bnonni/Python
9ebd18caa4e2d805028b557e8b77ea65a9ee1a3d
[ "Apache-2.0" ]
2
2019-10-02T14:08:51.000Z
2019-10-03T20:49:09.000Z
#!/usr/bin/env python3 import gc import warnings import gc, sys, re, os, math from time import strptime, mktime import numpy as np import pandas as pd import matplotlib.pyplot as plt gc.collect() warnings.filterwarnings('ignore') np.random.seed(1) # %matplotlib inline from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report, roc_curve, roc_auc_score, auc, accuracy_score import operator def runLogisticRegression(e, X_train, y_train, X_test, y_test): c = np.arange(1, e+1) cma = {} cra = {} acc = {} preds = {} for i in c: lr = LogisticRegression(C=i, multi_class='ovr', solver='lbfgs',random_state=0) lr.fit(X_train, y_train) y_pred = lr.predict(X_test) cma[i] = confusion_matrix(y_test, y_pred) cra[i] = classification_report(y_test, y_pred) acc[i] = (accuracy_score(y_test, y_pred)) preds[i] = y_pred ky = max(acc.items(), key=operator.itemgetter(1))[0] val = float(max(acc.items(), key=operator.itemgetter(1))[1]) return cma, cra, acc, preds, ky, val
33.939394
114
0.685714
59d0d39e3456700c34f0ffe28ace5f59fc3a0bb2
15,216
py
Python
capriqorn/postproc/filter/solvent_matching.py
bio-phys/capriqorn
8f514deaf301643a38a4d101e3ada1ae10a1abc6
[ "CC-BY-4.0" ]
8
2018-03-29T09:48:20.000Z
2021-04-14T10:12:49.000Z
capriqorn/postproc/filter/solvent_matching.py
bio-phys/capriqorn
8f514deaf301643a38a4d101e3ada1ae10a1abc6
[ "CC-BY-4.0" ]
5
2018-05-28T11:29:17.000Z
2018-06-15T04:54:10.000Z
capriqorn/postproc/filter/solvent_matching.py
bio-phys/capriqorn
8f514deaf301643a38a4d101e3ada1ae10a1abc6
[ "CC-BY-4.0" ]
1
2021-03-10T12:25:31.000Z
2021-03-10T12:25:31.000Z
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8 # # Capriqorn --- CAlculation of P(R) and I(Q) Of macRomolcules in solutioN # # Copyright (c) Juergen Koefinger, Klaus Reuter, and contributors. # See the file AUTHORS.rst for the full list of contributors. # # Released under the GNU Public Licence, v2 or any higher version, see the file LICENSE.txt. """Capriqorn self-consistent solvent matching filter. """ from __future__ import division from past.utils import old_div from six.moves import range import numpy as np import scipy.interpolate as sint from cadishi import base from cadishi.io import hdf5 from ...lib import selection from ...lib import rdf class Solvent(base.Filter): """A filter that performs self-consistent solvent matching.""" _depends = [] _conflicts = [] def __init__(self, source=-1, g_ascii_file="rdf.extended.dat", g_match='O,O', g_scaled_file=None, # optional: HDF5 file to read g_scaled from g_plateau_fraction=0.3, # fraction of the distance range of the rdfs, where the rdfs are flat # noise is reduced to g_noise_fraction at largest distance over a distance determined by g_plateau_fraction. g_noise_fraction=1., debug=False, verbose=False): self.src = source self.g_ascii_file = g_ascii_file self.g_match = g_match self.g_scaled_file = g_scaled_file self.g_plateau_fraction = g_plateau_fraction self.g_noise_fraction = g_noise_fraction # --- Note: The following two parameters are obtained from the pipeline log! self.geometry = None self.x_particle_method = None # --- self.debug = debug self.verb = verbose # --- self._depends.extend(super(base.Filter, self)._depends) self._conflicts.extend(super(base.Filter, self)._conflicts) def get_meta(self): """ Return information on the present filter, ready to be added to a frame object's list of pipeline meta information. """ meta = {} label = 'SolventMatching' param = {'g_ascii_file': self.g_ascii_file, 'g_match': self.g_match, 'g_scaled_file': self.g_scaled_file, 'g_plateau_fraction': self.g_plateau_fraction, 'g_noise_fraction': self.g_noise_fraction, # --- we keep the following two entries for log purposes 'geometry': self.geometry, 'x_particle_method': self.x_particle_method} meta[label] = param return meta def __iter__(self): return self def __next__(self): """ Self-consistent solvent matching, implemented as a Python generator. Implementation follows <lsz/shell-sc-solv-match.py>. """ for obj in next(self.src): if obj is not None: assert isinstance(obj, base.Container) if self.g_scaled_file is not None: # --- read g_scaled and rho from previous calculation --- reader = hdf5.H5Reader(filename=self.g_scaled_file) for frm in reader.next(): obj_g_scaled = frm break del reader g_dict = obj_g_scaled.get_data(base.loc_solv_match + '/g_scaled') rho_dict = obj_g_scaled.get_data(base.loc_solv_match + '/rho') else: # --- compute g_scaled and rho --- # obtain information from the pipeline log dr = obj.query_meta('histograms/histogram/dr') assert (dr is not None) # --- self.geometry = obj.get_geometry() assert (self.geometry is not None) geometry_param = obj.query_meta(self.geometry) assert (geometry_param is not None) # --- virtual_param = obj.query_meta('VirtualParticles') if (virtual_param is not None): self.x_particle_method = virtual_param['method'] xrho = virtual_param['x_density'] # --- obtain the shell volume from the pipeline log if (self.geometry in ['Sphere', 'Cuboid', 'Ellipsoid']): V_shell = geometry_param['shell_volume'] VSqr_shell = V_shell ** 2 elif (self.geometry == 'ReferenceStructure' or self.geometry == 'MultiReferenceStructure'): # V_shell is determined below V_shell = None else: raise NotImplementedError('Geometry ' + self.geometry + 'not implemented for self-consistent solvent matching') # --- read and prepare g-function for matching g_header = (rdf.readHeader(self.g_ascii_file)).rstrip('\n').split() assert (self.g_match in g_header) _g_el_set = set([]) for item in g_header: if (item == '#'): continue pair = item.split(',') _g_el_set.add(pair[0]) _g_el_set.add(pair[1]) # obsolete g_elements = sorted(list(_g_el_set)) # --- g_table_0 = np.loadtxt(self.g_ascii_file) # TODO: Assert that histograms and rdfs have same bin size. Else, generate new rdf by interpolation. g_dr = (g_table_0[1:, 0] - g_table_0[:-1, 0]).mean() # print g_dr # Tapers noise for self.g_noise_fraction<1. Determines and set ginfty in last bins. g_table_0_smooth = rdf.smooth(g_table_0, g_dr, self.g_plateau_fraction, self.g_noise_fraction, verb=False) # np.savetxt("g_table_0_smooth.dat", g_table_0_smooth) if (self.debug): obj.put_data(base.loc_solv_match + '/g_table_0_smooth', g_table_0_smooth) g_table_0 = g_table_0_smooth _radii = obj.get_data(base.loc_histograms + '/radii') # Extend rdf in distance AFTER noise tapering, where rdf values at largest distance are set to ginfty. if _radii.shape[0] > g_table_0.shape[0]: new_g_table = np.zeros((_radii.shape[0], g_table_0.shape[1])) new_g_table[:g_table_0.shape[0], :] = g_table_0 new_g_table[:, 0] = _radii tmp = g_table_0[-1, 1:] new_g_table[g_table_0.shape[0]:, 1:] = tmp[np.newaxis, :] g_table_0 = new_g_table # np.savetxt("g_table_0_smooth_extended.dat", new_g_table) if (self.debug): obj.put_data(base.loc_solv_match + '/g_table_0_smooth_extended', new_g_table) # if do_g_extension: # g_dr_0 = g_table_0[-1, 0] - g_table_0[-2, 0] # g_nr_0 = g_table_0.shape[0] # g_nrow = g_extension_factor * g_nr_0 # g_ncol = g_table_0.shape[1] # g_table = np.zeros((g_nrow, g_ncol)) # g_table[0:g_nr_0, :] = g_table_0[0:g_nr_0, :] # for idx in range(g_nr_0, g_nrow): # g_table[idx, 0] = g_table[idx - 1, 0] + g_dr_0 # g_table[idx, 1:] = g_table[idx - 1, 1:] # else: # g_table = g_table_0 g_table = g_table_0 # --- assert (len(g_header) == g_table.shape[1]) g_idx = g_header.index(self.g_match) g_org = g_table[:, [0, g_idx]] if (self.debug): obj.put_data(base.loc_solv_match + '/g_org', g_org) rho_g_org = g_org[0, 1] # rho value stored at [0,1] (code by JK) # --- split g_table into a dict holding individual arrays g_dict = {} g_dict['radii'] = g_table[:, 0] for i in range(1, len(g_header)): g_dict[g_header[i]] = g_table[:, i] # --- calculate particle and density of the matching solvent # get_shell also merges virtual particles X1 and X2 shell = selection.get_shell(obj) # --- multiref: set properly (volume-weighted) averaged shell H_{xx}(r) # if (virtual_param is not None): if (virtual_param is not None and self.geometry == 'MultiReferenceStructure'): shell.put_data(base.loc_histograms + "/X,X", obj.get_data(base.loc_shell_Hxx + "/X.s,X.s")) # --- determine V_shell and VSqr_shell for the reference and multiref structure case # JK: Can/should be moved to Average filter? if (self.geometry == 'ReferenceStructure' or self.geometry == 'MultiReferenceStructure'): nx = (shell.get_data(base.loc_nr_particles + '/X')).mean() V_shell = old_div(nx, xrho) VSqr_shell = V_shell ** 2 if self.geometry == 'MultiReferenceStructure': nxSqr = ((shell.get_data(base.loc_nr_particles + '/X')) ** 2).mean() VSqr_shell = old_div(nxSqr, xrho ** 2) # --- # print "###", self.g_match, shell.get_keys(base.loc_histograms) assert (self.g_match in shell.get_keys(base.loc_histograms)) pair = self.g_match.split(',') assert (pair[0] == pair[1]) assert (pair[0] in shell.get_keys(base.loc_nr_particles)) # print shell.particles[pair[0]] n_match_avg = (shell.get_data(base.loc_nr_particles + '/' + pair[0])).mean() rho_match = old_div(n_match_avg, V_shell) # JK: Should we instead use <n_i/V_i> averaged over frames for multiref?? # Use SciPy interpolator object to operate on the # reference g function. Warning: Linear interpolation! g_int = sint.interp1d(g_org[:, 0], g_org[:, 1]) # --- solvent-matching calculation _radii = obj.get_data(base.loc_histograms + '/radii') pShell = np.zeros_like(_radii) H = np.zeros_like(_radii) gAct = np.zeros_like(_radii) # --- if (self.geometry == 'Sphere') and (self.x_particle_method is None): R = geometry_param['radius'] sw = geometry_param['shell_width'] for i, r in enumerate(_radii): pShell[i] = rdf.PSh(R - sw, R, r) H[i] = pShell[i] * g_int(_radii[i]) else: histgrms = shell.get_data(base.loc_histograms) pShell = histgrms['X,X'].copy() pShell /= pShell.sum() pShell /= dr for i, r in enumerate(_radii): if (pShell[i] > 0.0): gAct[i] /= pShell[i] else: gAct[i] = 0.0 if (_radii[i] < g_dict['radii'][0]) or (_radii[i] >= g_dict['radii'][-1]): H[i] = 0.0 else: H[i] = pShell[i] * g_int(_radii[i]) # --- pre_factor = rho_match ** 2 * VSqr_shell * dr / 2. # print "### pre_factor =", pre_factor H[:] *= pre_factor histo = shell.get_data(base.loc_histograms + '/' + self.g_match) scale_factor = old_div(np.sum(histo[:] * H[:]), np.sum(H[:] ** 2)) # print "### scale_factor =", scale_factor obj.put_data(base.loc_solv_match + '/scale_factor', scale_factor) if (self.debug): obj.put_data(base.loc_solv_match + '/pre_factor', pre_factor) obj.put_data(base.loc_solv_match + '/scale_factor', scale_factor) obj.put_data(base.loc_solv_match + '/histo', histo) obj.put_data(base.loc_solv_match + '/pShell', pShell) obj.put_data(base.loc_solv_match + '/H', H) # --- H *= scale_factor gAct /= scale_factor if (self.debug): obj.put_data(base.loc_solv_match + '/H_scaled', H) obj.put_data(base.loc_solv_match + '/gAct', gAct) # --- rho_dict = {} for name in g_elements: avg = (shell.get_data(base.loc_nr_particles + '/' + name)).mean() rho_dict[name] = old_div(avg, V_shell) if (self.debug): obj.put_data(base.loc_solv_match + '/rho_g_org', rho_g_org) obj.put_data(base.loc_solv_match + '/rho_match', rho_match) # --- Patch zeroeth elements of g arrays with the density, # --> Do we really want to keep this convention? for key in rho_dict: pair = key + ',' + key assert (pair in g_dict) (g_dict[pair])[0] = rho_dict[key] if (self.debug): obj.put_data(base.loc_solv_match + '/g_original', g_dict) # --- final rescaled g functions used by delta_h for key in g_dict: if (key == 'radii'): continue else: (g_dict[key])[1:] *= scale_factor obj.put_data(base.loc_solv_match + '/g_scaled', g_dict) obj.put_data(base.loc_solv_match + '/rho', rho_dict) obj.put_meta(self.get_meta()) if self.verb: print("Solvent.next() :", obj.i) yield obj else: yield None
49.402597
125
0.492902
e59bc7b43765bd36683fc3a23743122a9018ec5c
17,375
py
Python
openshift/client/models/v1_build_status.py
TristanCacqueray/openshift-restclient-python
7758cde7a8094acb279904f15c29e5fe3e9f7d33
[ "Apache-2.0" ]
null
null
null
openshift/client/models/v1_build_status.py
TristanCacqueray/openshift-restclient-python
7758cde7a8094acb279904f15c29e5fe3e9f7d33
[ "Apache-2.0" ]
null
null
null
openshift/client/models/v1_build_status.py
TristanCacqueray/openshift-restclient-python
7758cde7a8094acb279904f15c29e5fe3e9f7d33
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ OpenShift API (with Kubernetes) OpenShift provides builds, application lifecycle, image content management, and administrative policy on top of Kubernetes. The API allows consistent management of those objects. All API operations are authenticated via an Authorization bearer token that is provided for service accounts as a generated secret (in JWT form) or via the native OAuth endpoint located at /oauth/authorize. Core infrastructure components may use client certificates that require no authentication. All API operations return a 'resourceVersion' string that represents the version of the object in the underlying storage. The standard LIST operation performs a snapshot read of the underlying objects, returning a resourceVersion representing a consistent version of the listed objects. The WATCH operation allows all updates to a set of objects after the provided resourceVersion to be observed by a client. By listing and beginning a watch from the returned resourceVersion, clients may observe a consistent view of the state of one or more objects. Note that WATCH always returns the update after the provided resourceVersion. Watch may be extended a limited time in the past - using etcd 2 the watch window is 1000 events (which on a large cluster may only be a few tens of seconds) so clients must explicitly handle the \"watch to old error\" by re-listing. Objects are divided into two rough categories - those that have a lifecycle and must reflect the state of the cluster, and those that have no state. Objects with lifecycle typically have three main sections: * 'metadata' common to all objects * a 'spec' that represents the desired state * a 'status' that represents how much of the desired state is reflected on the cluster at the current time Objects that have no state have 'metadata' but may lack a 'spec' or 'status' section. Objects are divided into those that are namespace scoped (only exist inside of a namespace) and those that are cluster scoped (exist outside of a namespace). A namespace scoped resource will be deleted when the namespace is deleted and cannot be created if the namespace has not yet been created or is in the process of deletion. Cluster scoped resources are typically only accessible to admins - resources like nodes, persistent volumes, and cluster policy. All objects have a schema that is a combination of the 'kind' and 'apiVersion' fields. This schema is additive only for any given version - no backwards incompatible changes are allowed without incrementing the apiVersion. The server will return and accept a number of standard responses that share a common schema - for instance, the common error type is 'metav1.Status' (described below) and will be returned on any error from the API server. The API is available in multiple serialization formats - the default is JSON (Accept: application/json and Content-Type: application/json) but clients may also use YAML (application/yaml) or the native Protobuf schema (application/vnd.kubernetes.protobuf). Note that the format of the WATCH API call is slightly different - for JSON it returns newline delimited objects while for Protobuf it returns length-delimited frames (4 bytes in network-order) that contain a 'versioned.Watch' Protobuf object. See the OpenShift documentation at https://docs.openshift.org for more information. OpenAPI spec version: latest Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1BuildStatus(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'cancelled': 'bool', 'completion_timestamp': 'datetime', 'config': 'V1ObjectReference', 'duration': 'int', 'log_snippet': 'str', 'message': 'str', 'output': 'V1BuildStatusOutput', 'output_docker_image_reference': 'str', 'phase': 'str', 'reason': 'str', 'stages': 'list[V1StageInfo]', 'start_timestamp': 'datetime' } attribute_map = { 'cancelled': 'cancelled', 'completion_timestamp': 'completionTimestamp', 'config': 'config', 'duration': 'duration', 'log_snippet': 'logSnippet', 'message': 'message', 'output': 'output', 'output_docker_image_reference': 'outputDockerImageReference', 'phase': 'phase', 'reason': 'reason', 'stages': 'stages', 'start_timestamp': 'startTimestamp' } def __init__(self, cancelled=None, completion_timestamp=None, config=None, duration=None, log_snippet=None, message=None, output=None, output_docker_image_reference=None, phase=None, reason=None, stages=None, start_timestamp=None): """ V1BuildStatus - a model defined in Swagger """ self._cancelled = None self._completion_timestamp = None self._config = None self._duration = None self._log_snippet = None self._message = None self._output = None self._output_docker_image_reference = None self._phase = None self._reason = None self._stages = None self._start_timestamp = None self.discriminator = None if cancelled is not None: self.cancelled = cancelled if completion_timestamp is not None: self.completion_timestamp = completion_timestamp if config is not None: self.config = config if duration is not None: self.duration = duration if log_snippet is not None: self.log_snippet = log_snippet if message is not None: self.message = message if output is not None: self.output = output if output_docker_image_reference is not None: self.output_docker_image_reference = output_docker_image_reference self.phase = phase if reason is not None: self.reason = reason if stages is not None: self.stages = stages if start_timestamp is not None: self.start_timestamp = start_timestamp @property def cancelled(self): """ Gets the cancelled of this V1BuildStatus. cancelled describes if a cancel event was triggered for the build. :return: The cancelled of this V1BuildStatus. :rtype: bool """ return self._cancelled @cancelled.setter def cancelled(self, cancelled): """ Sets the cancelled of this V1BuildStatus. cancelled describes if a cancel event was triggered for the build. :param cancelled: The cancelled of this V1BuildStatus. :type: bool """ self._cancelled = cancelled @property def completion_timestamp(self): """ Gets the completion_timestamp of this V1BuildStatus. completionTimestamp is a timestamp representing the server time when this Build was finished, whether that build failed or succeeded. It reflects the time at which the Pod running the Build terminated. It is represented in RFC3339 form and is in UTC. :return: The completion_timestamp of this V1BuildStatus. :rtype: datetime """ return self._completion_timestamp @completion_timestamp.setter def completion_timestamp(self, completion_timestamp): """ Sets the completion_timestamp of this V1BuildStatus. completionTimestamp is a timestamp representing the server time when this Build was finished, whether that build failed or succeeded. It reflects the time at which the Pod running the Build terminated. It is represented in RFC3339 form and is in UTC. :param completion_timestamp: The completion_timestamp of this V1BuildStatus. :type: datetime """ self._completion_timestamp = completion_timestamp @property def config(self): """ Gets the config of this V1BuildStatus. config is an ObjectReference to the BuildConfig this Build is based on. :return: The config of this V1BuildStatus. :rtype: V1ObjectReference """ return self._config @config.setter def config(self, config): """ Sets the config of this V1BuildStatus. config is an ObjectReference to the BuildConfig this Build is based on. :param config: The config of this V1BuildStatus. :type: V1ObjectReference """ self._config = config @property def duration(self): """ Gets the duration of this V1BuildStatus. duration contains time.Duration object describing build time. :return: The duration of this V1BuildStatus. :rtype: int """ return self._duration @duration.setter def duration(self, duration): """ Sets the duration of this V1BuildStatus. duration contains time.Duration object describing build time. :param duration: The duration of this V1BuildStatus. :type: int """ self._duration = duration @property def log_snippet(self): """ Gets the log_snippet of this V1BuildStatus. logSnippet is the last few lines of the build log. This value is only set for builds that failed. :return: The log_snippet of this V1BuildStatus. :rtype: str """ return self._log_snippet @log_snippet.setter def log_snippet(self, log_snippet): """ Sets the log_snippet of this V1BuildStatus. logSnippet is the last few lines of the build log. This value is only set for builds that failed. :param log_snippet: The log_snippet of this V1BuildStatus. :type: str """ self._log_snippet = log_snippet @property def message(self): """ Gets the message of this V1BuildStatus. message is a human-readable message indicating details about why the build has this status. :return: The message of this V1BuildStatus. :rtype: str """ return self._message @message.setter def message(self, message): """ Sets the message of this V1BuildStatus. message is a human-readable message indicating details about why the build has this status. :param message: The message of this V1BuildStatus. :type: str """ self._message = message @property def output(self): """ Gets the output of this V1BuildStatus. output describes the Docker image the build has produced. :return: The output of this V1BuildStatus. :rtype: V1BuildStatusOutput """ return self._output @output.setter def output(self, output): """ Sets the output of this V1BuildStatus. output describes the Docker image the build has produced. :param output: The output of this V1BuildStatus. :type: V1BuildStatusOutput """ self._output = output @property def output_docker_image_reference(self): """ Gets the output_docker_image_reference of this V1BuildStatus. outputDockerImageReference contains a reference to the Docker image that will be built by this build. Its value is computed from Build.Spec.Output.To, and should include the registry address, so that it can be used to push and pull the image. :return: The output_docker_image_reference of this V1BuildStatus. :rtype: str """ return self._output_docker_image_reference @output_docker_image_reference.setter def output_docker_image_reference(self, output_docker_image_reference): """ Sets the output_docker_image_reference of this V1BuildStatus. outputDockerImageReference contains a reference to the Docker image that will be built by this build. Its value is computed from Build.Spec.Output.To, and should include the registry address, so that it can be used to push and pull the image. :param output_docker_image_reference: The output_docker_image_reference of this V1BuildStatus. :type: str """ self._output_docker_image_reference = output_docker_image_reference @property def phase(self): """ Gets the phase of this V1BuildStatus. phase is the point in the build lifecycle. Possible values are \"New\", \"Pending\", \"Running\", \"Complete\", \"Failed\", \"Error\", and \"Cancelled\". :return: The phase of this V1BuildStatus. :rtype: str """ return self._phase @phase.setter def phase(self, phase): """ Sets the phase of this V1BuildStatus. phase is the point in the build lifecycle. Possible values are \"New\", \"Pending\", \"Running\", \"Complete\", \"Failed\", \"Error\", and \"Cancelled\". :param phase: The phase of this V1BuildStatus. :type: str """ if phase is None: raise ValueError("Invalid value for `phase`, must not be `None`") self._phase = phase @property def reason(self): """ Gets the reason of this V1BuildStatus. reason is a brief CamelCase string that describes any failure and is meant for machine parsing and tidy display in the CLI. :return: The reason of this V1BuildStatus. :rtype: str """ return self._reason @reason.setter def reason(self, reason): """ Sets the reason of this V1BuildStatus. reason is a brief CamelCase string that describes any failure and is meant for machine parsing and tidy display in the CLI. :param reason: The reason of this V1BuildStatus. :type: str """ self._reason = reason @property def stages(self): """ Gets the stages of this V1BuildStatus. stages contains details about each stage that occurs during the build including start time, duration (in milliseconds), and the steps that occured within each stage. :return: The stages of this V1BuildStatus. :rtype: list[V1StageInfo] """ return self._stages @stages.setter def stages(self, stages): """ Sets the stages of this V1BuildStatus. stages contains details about each stage that occurs during the build including start time, duration (in milliseconds), and the steps that occured within each stage. :param stages: The stages of this V1BuildStatus. :type: list[V1StageInfo] """ self._stages = stages @property def start_timestamp(self): """ Gets the start_timestamp of this V1BuildStatus. startTimestamp is a timestamp representing the server time when this Build started running in a Pod. It is represented in RFC3339 form and is in UTC. :return: The start_timestamp of this V1BuildStatus. :rtype: datetime """ return self._start_timestamp @start_timestamp.setter def start_timestamp(self, start_timestamp): """ Sets the start_timestamp of this V1BuildStatus. startTimestamp is a timestamp representing the server time when this Build started running in a Pod. It is represented in RFC3339 form and is in UTC. :param start_timestamp: The start_timestamp of this V1BuildStatus. :type: datetime """ self._start_timestamp = start_timestamp def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1BuildStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
39.850917
3,325
0.660317
6e93bd33a400727dc8b069619071b9edf9b24116
6,672
py
Python
interactive.py
edbltn/fairseq
e4d25fd96f1e38190400dbbdbc77eeda71ac50a0
[ "BSD-3-Clause" ]
1
2019-02-13T13:05:07.000Z
2019-02-13T13:05:07.000Z
interactive.py
edbltn/fairseq
e4d25fd96f1e38190400dbbdbc77eeda71ac50a0
[ "BSD-3-Clause" ]
null
null
null
interactive.py
edbltn/fairseq
e4d25fd96f1e38190400dbbdbc77eeda71ac50a0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 -u # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. """ Translate raw text with a trained model. Batches data on-the-fly. """ from collections import namedtuple import fileinput import sys import numpy as np import torch from fairseq import data, options, tasks, tokenizer, utils from fairseq.sequence_generator import SequenceGenerator from fairseq.utils import import_user_module Batch = namedtuple('Batch', 'srcs tokens lengths') Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments') def buffered_read(input, buffer_size): buffer = [] for src_str in fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")): buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer def make_batches(lines, args, task, max_positions): tokens = [ tokenizer.Tokenizer.tokenize(src_str, task.source_dictionary, add_if_not_exist=False).long() for src_str in lines ] lengths = np.array([t.numel() for t in tokens]) itr = task.get_batch_iterator( dataset=data.LanguagePairDataset(tokens, lengths, task.source_dictionary), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=max_positions, ).next_epoch_itr(shuffle=False) for batch in itr: yield Batch( srcs=[lines[i] for i in batch['id']], tokens=batch['net_input']['src_tokens'], lengths=batch['net_input']['src_lengths'], ), batch['id'] def main(args): import_user_module(args) if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = utils.load_ensemble_for_inference( args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides), ) # Set dictionaries tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() # Initialize generator translator = SequenceGenerator( models, tgt_dict, beam_size=args.beam, minlen=args.min_len, stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized), len_penalty=args.lenpen, unk_penalty=args.unkpen, sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.sampling_temperature, diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength, match_source_len=args.match_source_len, no_repeat_ngram_size=args.no_repeat_ngram_size, ) if use_cuda: translator.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) def make_result(src_str, hypos): result = Translation( src_str='O\t{}'.format(src_str), hypos=[], pos_scores=[], alignments=[], ) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str)) result.pos_scores.append('P\t{}'.format( ' '.join(map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )) )) result.alignments.append( 'A\t{}'.format(' '.join(map(lambda x: str(utils.item(x)), alignment))) if args.print_alignment else None ) return result def process_batch(batch): tokens = batch.tokens lengths = batch.lengths if use_cuda: tokens = tokens.cuda() lengths = lengths.cuda() encoder_input = {'src_tokens': tokens, 'src_lengths': lengths} translations = translator.generate( encoder_input, maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b), ) return [make_result(batch.srcs[i], t) for i, t in enumerate(translations)] max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) if args.buffer_size > 1: print('| Sentence buffer size:', args.buffer_size) print('| Type the input sentence and press return:') for inputs in buffered_read(args.input, args.buffer_size): indices = [] results = [] for batch, batch_indices in make_batches(inputs, args, task, max_positions): indices.extend(batch_indices) results.extend(process_batch(batch)) for i in np.argsort(indices): result = results[i] print(result.src_str) for hypo, pos_scores, align in zip(result.hypos, result.pos_scores, result.alignments): print(hypo) print(pos_scores) if align is not None: print(align) def cli_main(): parser = options.get_generation_parser(interactive=True) args = options.parse_args_and_arch(parser) main(args) if __name__ == '__main__': cli_main()
34.391753
113
0.639988
0fbb4dc16718d87f9c32bdded9af49206c3dceda
313
py
Python
001/two_sum.py
codeestX/re-zero-leetcode-life
30295074af018aa25fb69010e58273f934459a5a
[ "MIT" ]
null
null
null
001/two_sum.py
codeestX/re-zero-leetcode-life
30295074af018aa25fb69010e58273f934459a5a
[ "MIT" ]
null
null
null
001/two_sum.py
codeestX/re-zero-leetcode-life
30295074af018aa25fb69010e58273f934459a5a
[ "MIT" ]
null
null
null
class Solution: def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ d = {} for i, num in enumerate(nums): if target - num in d: return [d[target - num], i] d[num] = i
24.076923
43
0.43131
e549b61db56cd3537a7d3e1e5535d22957220fb3
2,352
py
Python
kornia/color/adjust.py
timaebi/kornia
4710234128d7d830cd020c45df8eb17870d4e939
[ "Apache-2.0" ]
10
2021-01-26T05:25:01.000Z
2022-02-08T06:10:41.000Z
kornia/color/adjust.py
sounakdey/kornia
6a0df6dee7b213572ff3441bb6eb0e07a23f0ef3
[ "Apache-2.0" ]
3
2021-05-03T10:34:15.000Z
2022-02-17T04:25:26.000Z
kornia/color/adjust.py
sounakdey/kornia
6a0df6dee7b213572ff3441bb6eb0e07a23f0ef3
[ "Apache-2.0" ]
4
2021-04-30T01:51:38.000Z
2022-01-27T05:06:04.000Z
import torch import torch.nn as nn class AdjustBrightness(nn.Module): r"""Adjust Brightness of an Image See :class:`~kornia.color.AdjustBrightness` for details. Args: image (torch.Tensor): Image to be adjusted. brightness_factor (torch.Tensor): Brightness adjust factor per element in the batch. 0 generates a compleatly black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Returns: torch.Tensor: Adjusted image. """ def __init__(self) -> None: super(AdjustBrightness, self).__init__() def forward(self, # type: ignore image: torch.Tensor, # type: ignore brightness_factor: torch.Tensor # type: ignore ) -> torch.Tensor: # type: ignore return adjust_brightness(image, brightness_factor) def adjust_brightness(image: torch.Tensor, brightness_factor: torch.Tensor) -> torch.Tensor: r"""Adjust Brightness of an Image See :class:`~kornia.color.AdjustBrightness` for details. Args: image (torch.Tensor): Image to be adjusted. brightness_factor (torch.Tensor): Brightness adjust factor per element in the batch. 0 generates a compleatly black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Returns: torch.Tensor: Adjusted image. """ if not torch.is_tensor(image): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(image))) if len(image.shape) < 3: raise ValueError("Input size must have a shape of (*, H, W). Got {}" .format(image.shape)) if (brightness_factor < torch.zeros(1)).any(): raise ValueError("Brightness factor must be non-negative. Got {}" .format(brightness_factor)) if torch.is_tensor(brightness_factor): for _ in image.shape[1:]: brightness_factor = brightness_factor.unsqueeze(-1) # Apply brightness factor to each channel adjust_image: torch.Tensor = image * brightness_factor # Truncate between pixel values out: torch.Tensor = torch.clamp(adjust_image, 0.0, 1.0) return out
33.126761
79
0.641156
3b9a2294f4c91a109787b4f3fba38779d4363459
6,618
py
Python
dojo/tools/zap/parser.py
christophe226/django-DefectDojo
0ea0a59526ee9169dce29777288cf9dba0c44263
[ "BSD-3-Clause" ]
null
null
null
dojo/tools/zap/parser.py
christophe226/django-DefectDojo
0ea0a59526ee9169dce29777288cf9dba0c44263
[ "BSD-3-Clause" ]
562
2019-06-21T18:44:38.000Z
2022-03-28T18:09:08.000Z
dojo/tools/zap/parser.py
christophe226/django-DefectDojo
0ea0a59526ee9169dce29777288cf9dba0c44263
[ "BSD-3-Clause" ]
null
null
null
import re import socket import hyperlink from defusedxml import ElementTree as ET from django.utils.html import escape, strip_tags from dojo.models import Endpoint, Finding class ZapParser(object): """Parser for xml file generated by the OWASP Zed Attacl Proxy (ZAP) tool https://www.zaproxy.org/.""" def get_scan_types(self): return ["ZAP Scan"] def get_label_for_scan_types(self, scan_type): return "ZAP Scan" def get_description_for_scan_types(self, scan_type): return "ZAP XML report format." def get_findings(self, xml_output, test): tree = ET.parse(xml_output) return self.get_items(tree, test) def get_items(self, tree, test): """ @return items A list of Host instances """ items = list() for node in tree.findall('site'): site = Site(node) main_host = Endpoint(host=site.host, port=site.port) for item in site.items: severity = item.riskdesc.split(' ', 1)[0] references = '' for ref in item.ref: references += ref + "\n" find = Finding(title=item.name, cwe=item.cwe, description=strip_tags(item.desc), test=test, severity=severity, mitigation=strip_tags(item.resolution), references=references, false_p=False, duplicate=False, out_of_scope=False, mitigated=None, impact="No impact provided", ) find.unsaved_endpoints = [main_host] for i in item.items: endpoint = Endpoint.from_uri(i['uri']) find.unsaved_endpoints.append(endpoint) items.append(find) return items def get_attrib_from_subnode(xml_node, subnode_xpath_expr, attrib_name): """ Finds a subnode in the item node and the retrieves a value from it @return An attribute value """ global ETREE_VERSION node = None if ETREE_VERSION[0] <= 1 and ETREE_VERSION[1] < 3: match_obj = re.search(r"([^\@]+?)\[\@([^=]*?)=\'([^\']*?)\'", subnode_xpath_expr) if match_obj is not None: node_to_find = match_obj.group(1) xpath_attrib = match_obj.group(2) xpath_value = match_obj.group(3) for node_found in xml_node.findall(node_to_find): if node_found.attrib[xpath_attrib] == xpath_value: node = node_found break else: node = xml_node.find(subnode_xpath_expr) else: node = xml_node.find(subnode_xpath_expr) if node is not None: return node.get(attrib_name) return None class Site(object): def __init__(self, item_node): self.node = item_node self.name = self.node.get('name') self.host = self.node.get('host') self.name = self.node.get('name') self.port = self.node.get('port') self.items = [] for alert in self.node.findall('alerts/alertitem'): self.items.append(Item(alert)) def get_text_from_subnode(self, subnode_xpath_expr): """ Finds a subnode in the host node and the retrieves a value from it. @return An attribute value """ sub_node = self.node.find(subnode_xpath_expr) if sub_node is not None: return sub_node.text return None def resolve(self, host): try: return socket.gethostbyname(host) except: pass return host class Item(object): """ An abstract representation of a Item @param item_node A item_node taken from an zap xml tree """ def __init__(self, item_node): self.node = item_node self.id = self.get_text_from_subnode('pluginid') self.name = self.get_text_from_subnode('alert') self.severity = self.get_text_from_subnode('riskcode') self.riskdesc = self.get_text_from_subnode('riskdesc') self.desc = self.get_text_from_subnode('desc') self.resolution = self.get_text_from_subnode('solution') if self.get_text_from_subnode('solution') else "" self.desc += "\n\nReference: " + self.get_text_from_subnode('reference') if self.get_text_from_subnode( 'reference') else "" self.ref = [] if self.get_text_from_subnode('cweid'): self.ref.append("CWE-" + self.get_text_from_subnode('cweid')) self.cwe = self.get_text_from_subnode('cweid') else: self.cwe = 0 description_detail = "\n" for instance in item_node.findall('instances/instance'): for node in instance.iter(): if node.tag == "uri": if node.text != "": description_detail += "URL: " + node.text if node.tag == "method": if node.text != "": description_detail += "Method: " + node.text if node.tag == "param": if node.text != "": description_detail += "Parameter: " + node.text if node.tag == "evidence": if node.text != "": description_detail += "Evidence: " + escape(node.text) description_detail += "\n" self.desc += description_detail if self.get_text_from_subnode('wascid'): self.ref.append("WASC-" + self.get_text_from_subnode('wascid')) self.items = [] for instance in item_node.findall('instances/instance'): n = instance.findtext("uri") n2 = instance.findtext("param") url = hyperlink.parse(n) item = {'uri': n, 'param': n2 if n2 else "", 'host': url.host, 'protocol': url.scheme, 'port': url.port} self.items.append(item) self.requests = "\n".join([i['uri'] for i in self.items]) def get_text_from_subnode(self, subnode_xpath_expr): """ Finds a subnode in the host node and the retrieves a value from it. @return An attribute value """ sub_node = self.node.find(subnode_xpath_expr) if sub_node is not None: return sub_node.text return None
33.424242
116
0.551526
d9fb4aa1b95166e7835358ecfff44a304633bcff
4,179
py
Python
model.py
lbilic/testrep
ad228b03ba9f9620d239ad446a173911b2486cbb
[ "MIT" ]
null
null
null
model.py
lbilic/testrep
ad228b03ba9f9620d239ad446a173911b2486cbb
[ "MIT" ]
null
null
null
model.py
lbilic/testrep
ad228b03ba9f9620d239ad446a173911b2486cbb
[ "MIT" ]
null
null
null
import numpy as np import os import skimage.io as io import skimage.transform as trans import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras import backend as keras smooth = 1. def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def dice_coef_loss(y_true, y_pred): return -dice_coef(y_true, y_pred) def unet(pretrained_weights = None,input_size = (256,256,1)): inputs = Input(input_size) conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(1024, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) conv5 = Conv2D(1024, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(512, (2, 2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4,up6], axis = 3) conv6 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) conv6 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) up7 = Conv2D(256, (2, 2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3,up7], axis = 3) conv7 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) conv7 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(128, (2, 2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(64, (2, 2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, (3, 3), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv10 = Conv2D(1, (1, 1), name='weight_output')(conv9) model = Model(inputs = [inputs], outputs = [conv10]) model.compile(optimizer = Adam(lr = 1e-5), loss = dice_coef_loss, metrics = [dice_coef]) #model.summary() if(pretrained_weights): model.load_weights(pretrained_weights) return model
54.272727
137
0.663795
8edfdfeb57d96b0b6c6bbc91dba12c28f12cbf27
14,634
py
Python
collagen/data/_splitter.py
MIPT-Oulu/Collagen
0cbc4285d60e5c9fcc89f629fcf4321e80b7452c
[ "MIT" ]
4
2019-05-14T14:44:51.000Z
2020-03-13T08:37:48.000Z
collagen/data/_splitter.py
MIPT-Oulu/Collagen
0cbc4285d60e5c9fcc89f629fcf4321e80b7452c
[ "MIT" ]
26
2019-04-21T20:35:22.000Z
2022-03-12T00:32:57.000Z
collagen/data/_splitter.py
MIPT-Oulu/Collagen
0cbc4285d60e5c9fcc89f629fcf4321e80b7452c
[ "MIT" ]
1
2019-05-14T14:53:28.000Z
2019-05-14T14:53:28.000Z
import dill as pickle import pandas as pd from sklearn import model_selection from sklearn.utils import resample __all__ = ["Splitter", "FoldSplit", "TrainValSplit", "SSFoldSplit"] class Splitter(object): def __init__(self): self.__ds_chunks = None self.__folds_iter = None pass def __next__(self): if self.__folds_iter is None: raise NotImplementedError else: next(self.__folds_iter) def __iter__(self): if self.__ds_chunks is None: raise NotImplementedError else: return self def dump(self, filename): with open(filename, "wb") as f: pickle.dump(self.__ds_chunks, f, pickle.HIGHEST_PROTOCOL) def load(self, filename): with open(filename, "rb") as f: self.__ds_chunks = pickle.load(f) self.__folds_iter = iter(self.__ds_chunks) class FoldSplit(Splitter): def __init__(self, ds: pd.DataFrame, n_folds: int = 5, target_col: str = 'target', group_col: str or None = None, random_state: int or None = None): super().__init__() if group_col is None: splitter = model_selection.StratifiedKFold(n_splits=n_folds, random_state=random_state) split_iter = splitter.split(ds, ds[target_col]) else: splitter = model_selection.GroupKFold(n_splits=n_folds) split_iter = splitter.split(ds, ds[target_col], groups=ds[group_col]) self.__cv_folds_idx = [(train_idx, val_idx) for (train_idx, val_idx) in split_iter] self.__ds_chunks = [(ds.iloc[split[0]], ds.iloc[split[1]]) for split in self.__cv_folds_idx] self.__folds_iter = iter(self.__ds_chunks) def __next__(self): return next(self.__folds_iter) def __iter__(self): return self def dump(self, filename): with open(filename, "wb") as f: pickle.dump(self.__ds_chunks, f, pickle.HIGHEST_PROTOCOL) def fold(self, i): return self.__ds_chunks[i] def n_folds(self): return len(self.__cv_folds_idx) def fold_idx(self, i): return self.__cv_folds_idx[i] class SSFoldSplit(Splitter): def __init__(self, ds: pd.DataFrame, n_ss_folds: int = 3, n_folds: int = 5, target_col: str = 'target', random_state: int or None = None, unlabeled_target_col: str = '5means_classes', test_ratio: int = 0.25, labeled_train_size_per_class: int = None, unlabeled_train_size_per_class: int = None, labeled_train_size: int = None, unlabeled_train_size: int = None, group_col: str or None = None, equal_target: bool = True, equal_unlabeled_target: bool = True, shuffle: bool = True): super().__init__() self._test_ratio = test_ratio if equal_target and labeled_train_size_per_class is None: raise ValueError("labeled_train_size_per_class must be determined when \ equal_target is True, but found None") if not equal_target and labeled_train_size is None: raise ValueError("labeled_train_size must be determined when \ equal_target is False, but found None") # Master split into Label/Unlabel if group_col is None: master_splitter = model_selection.StratifiedKFold(n_splits=n_ss_folds, random_state=random_state) unlabeled_idx, labeled_idx = next(master_splitter.split(ds, ds[target_col])) else: master_splitter = model_selection.GroupKFold(n_splits=n_ss_folds) unlabeled_idx, labeled_idx = next(master_splitter.split(ds, ds[target_col], groups=ds[group_col])) unlabeled_ds = ds.iloc[unlabeled_idx] # u_groups = ds[unlabeled_target_col].iloc[unlabeled_idx] labeled_ds = ds.iloc[labeled_idx] l_groups = ds[target_col].iloc[labeled_idx] if not equal_target and labeled_train_size is not None and labeled_train_size > len(labeled_idx): raise ValueError('Input labeled train size {} is larger than actual labeled train size {}'.format( labeled_train_size, len(labeled_idx))) if unlabeled_train_size is not None and unlabeled_train_size > len(unlabeled_idx): unlabeled_train_size = len(unlabeled_idx) # raise ValueError('Input unlabeled train size {} is larger than actual unlabeled train size {}'.format(unlabeled_train_size, len(unlabeled_idx))) # Split labeled data using GroupKFold # Split unlabeled data using GroupKFold self.__cv_folds_idx = [] self.__ds_chunks = [] # split of train/val data if group_col is None: unlabeled_splitter = model_selection.StratifiedKFold(n_splits=n_folds, random_state=random_state + 1) unlabeled_spl_iter = unlabeled_splitter.split(unlabeled_ds, unlabeled_ds[target_col]) else: unlabeled_splitter = model_selection.GroupKFold(n_splits=n_folds) unlabeled_spl_iter = unlabeled_splitter.split(unlabeled_ds, unlabeled_ds[target_col], groups=unlabeled_ds[group_col]) if group_col is None: labeled_splitter = model_selection.StratifiedKFold(n_splits=n_folds, random_state=random_state + 2) labeled_spl_iter = labeled_splitter.split(labeled_ds, labeled_ds[target_col]) else: labeled_splitter = model_selection.GroupKFold(n_splits=n_folds) labeled_spl_iter = labeled_splitter.split(labeled_ds, labeled_ds[target_col], groups=labeled_ds[group_col]) for i in range(n_folds): u_train, u_test = next(unlabeled_spl_iter) l_train, l_test = next(labeled_spl_iter) l_train_target = labeled_ds.iloc[l_train][target_col] l_train_data = labeled_ds.iloc[l_train] l_test_target = labeled_ds.iloc[l_test][target_col] l_test_data = labeled_ds.iloc[l_test] # Sample labeled_train_size of labeled data if equal_target: filtered_l_train_idx, chosen_l_train = self._sample_labeled_data(l_train_data, l_train_target, target_col, labeled_train_size_per_class, random_state) filtered_l_test_idx, chosen_l_test = self._sample_labeled_data(l_test_data, l_test_target, target_col, int( labeled_train_size_per_class * self._test_ratio), random_state) else: if labeled_train_size is not None: chosen_l_train, _ = model_selection.train_test_split(l_train, train_size=labeled_train_size, random_state=random_state, shuffle=shuffle, stratify=l_train_target) chosen_l_test, _ = model_selection.train_test_split(l_test, train_size=int( labeled_train_size * self._test_ratio), random_state=random_state, shuffle=shuffle, stratify=l_train_target) else: chosen_l_train = l_train chosen_l_test = l_test filtered_l_train_idx = labeled_ds.iloc[chosen_l_train] filtered_l_test_idx = labeled_ds.iloc[chosen_l_test] # Sample unlabeled_train_size of labeled data if equal_unlabeled_target: u_train_target = unlabeled_ds.iloc[u_train][unlabeled_target_col] u_test_target = unlabeled_ds.iloc[u_test][unlabeled_target_col] filtered_u_train_idx, chosen_u_train = self._sample_unlabeled_data(unlabeled_ds, u_train, unlabeled_target_col, u_train_target, unlabeled_train_size_per_class, random_state) filtered_u_test_idx, chosen_u_test = self._sample_unlabeled_data(unlabeled_ds, u_test, unlabeled_target_col, u_test_target, int( unlabeled_train_size_per_class * self._test_ratio), random_state) else: if unlabeled_train_size is not None: # chosen_u_train, _ = model_selection.train_test_split(u_train, train_size=unlabeled_train_size, # random_state=random_state, shuffle=shuffle) is_replace = unlabeled_train_size > len(u_train) chosen_u_train = resample(u_train, n_samples=unlabeled_train_size, replace=is_replace, random_state=random_state) unlabeled_test_size = int(unlabeled_train_size * self._test_ratio) is_replace = unlabeled_test_size > len(u_test) chosen_u_test = resample(u_test, n_samples=unlabeled_test_size, replace=is_replace, random_state=random_state) else: chosen_u_train = u_train chosen_u_test = u_test filtered_u_train_idx = unlabeled_ds.iloc[chosen_u_train] filtered_u_test_idx = unlabeled_ds.iloc[chosen_u_test] self.__cv_folds_idx.append((chosen_l_train, chosen_l_test, chosen_u_train, chosen_u_test)) self.__ds_chunks.append((filtered_l_train_idx, filtered_l_test_idx, filtered_u_train_idx, filtered_u_test_idx)) self.__folds_iter = iter(self.__ds_chunks) def _sample_labeled_data(self, data, targets, target_col, data_per_class, random_state): labeled_targets = list(set(targets.tolist())) chosen_data = [] for lt in labeled_targets: filtered_rows = data[data[target_col] == lt] filtered_rows_idx = filtered_rows.index replace = data_per_class > len(filtered_rows_idx) chosen_idx_by_target = resample(filtered_rows_idx, n_samples=data_per_class, replace=replace, random_state=random_state) chosen_data += chosen_idx_by_target.tolist() filtered_idx = data.loc[chosen_data] return filtered_idx, chosen_data def _sample_unlabeled_data(self, unlabeled_ds, u_train, unlabeled_target_col, u_train_target, data_per_class, random_state, replace=False): u_train_target = unlabeled_ds.iloc[u_train][unlabeled_target_col] u_train_data = unlabeled_ds.iloc[u_train] ideal_labeled_targets = list(set(u_train_target.tolist())) chosen_u_train = [] for lt in ideal_labeled_targets: filtered_rows = u_train_data[u_train_data[unlabeled_target_col] == lt] filtered_rows_idx = filtered_rows.index replace = data_per_class > len(filtered_rows_idx) chosen_u_train_by_target = resample(filtered_rows_idx, n_samples=data_per_class, replace=replace, random_state=random_state) chosen_u_train += chosen_u_train_by_target.tolist() filtered_u_train_idx = u_train_data.loc[chosen_u_train] return filtered_u_train_idx, chosen_u_train def _sampling(self, l_train_data, l_train_target, target_col, labeled_train_size_per_class, random_state): labeled_targets = list(set(l_train_target.tolist())) chosen_l_train = [] for lt in labeled_targets: filtered_rows = l_train_data[l_train_data[target_col] == lt] filtered_rows_idx = filtered_rows.index chosen_l_train_by_target = resample(filtered_rows_idx, n_samples=labeled_train_size_per_class, replace=True, random_state=random_state) chosen_l_train += chosen_l_train_by_target.tolist() filtered_l_train_idx = l_train_data.loc[chosen_l_train] return chosen_l_train, filtered_l_train_idx def dump(self, filename): with open(filename, "wb") as f: pickle.dump(self.__ds_chunks, f, pickle.HIGHEST_PROTOCOL) def __next__(self): return next(self.__folds_iter) def __iter__(self): return self def fold(self, i): return self.__ds_chunks[i] def n_folds(self): return len(self.__cv_folds_idx) def fold_idx(self, i): return self.__cv_folds_idx[i] class TrainValSplit(Splitter): def __init__(self, ds: pd.DataFrame, train_size: int or float, shuffle: bool, random_state: int or None = None): super().__init__() train_idx, val_idx = model_selection.train_test_split(self.__ds_chunks.index, train_size=train_size, shuffle=shuffle, random_state=random_state) self.__ds_chunks = [ds.iloc[train_idx], ds.iloc[val_idx]] self.__dataset_iter = iter(self.__ds_chunks) def __next__(self): return next(self.__dataset_iter) def __iter__(self): return self def train_set(self): return self.__ds_chunks[0] def val_set(self): return self.__ds_chunks[1]
50.116438
158
0.581522
1941665601464012f3615c914147755e3be12f17
164
py
Python
addons/Sprytile-6b68d00/rx/core/py3/observable.py
trisadmeslek/V-Sekai-Blender-tools
0d8747387c58584b50c69c61ba50a881319114f8
[ "MIT" ]
733
2017-08-22T09:47:54.000Z
2022-03-27T23:56:52.000Z
rx/core/py3/observable.py
asheraryam/Sprytile
c63be50d14b07192ff134ceab256f0d69b9c4c92
[ "MIT" ]
74
2017-08-16T09:13:05.000Z
2022-03-15T02:31:49.000Z
rx/core/py3/observable.py
asheraryam/Sprytile
c63be50d14b07192ff134ceab256f0d69b9c4c92
[ "MIT" ]
77
2017-09-14T16:56:11.000Z
2022-03-27T13:55:16.000Z
from abc import ABCMeta, abstractmethod class Observable(metaclass=ABCMeta): @abstractmethod def subscribe(self, observer): return NotImplemented
20.5
39
0.75
84fda62c5bca3716c062db0c002a6018068640e4
2,351
py
Python
chatterbox/api/instagram.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
8
2015-03-10T20:03:09.000Z
2018-06-14T23:03:58.000Z
chatterbox/api/instagram.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
3
2015-07-14T22:44:47.000Z
2020-06-05T23:43:05.000Z
chatterbox/api/instagram.py
blitzagency/django-chatterbox
7bf17444f8308aa12b6718bd62ee1344021c21aa
[ "MIT" ]
null
null
null
import logging from six.moves.urllib.parse import urlencode from . import OAuth2Api, SimpleProfile log = logging.getLogger(__name__) class Instagram(OAuth2Api): def verify_parsed_response(self, data): pass def whoami(self): log.debug("Invoking whoami") return self.get("https://api.instagram.com/v1/users/self") def simple_profile(self): log.debug("Invoking simple_profile") data = self.whoami() data = data.get('data', {}) link = "http://instagram.com/{}".format(data.get("username", None)) result = { "id": data.get("id", None), "name": data.get("username", None), "link": link, "picture": data.get("profile_picture", None) } profile = SimpleProfile(**result) return profile def search(self, query, **kwargs): """http://instagram.com/developer/endpoints/tags/ PARAMETERS count -- Count of tagged media to return. min_tag_id -- Return media before this min_tag_id. max_tag_id -- Return media after this max_tag_id. """ log.debug("Invoking search") # need to do a check on quality of query (spaces?) url = 'https://api.instagram.com/v1/tags/{}/media/recent'.format(query) if kwargs: additional = urlencode(kwargs) url = url + '?{}'.format(additional) return self.get(url) def user_media(self, user_id='self', **kwargs): """http://instagram.com/developer/endpoints/users/#get_users_feed PARAMETERS count -- Count of media to return. max_timestamp -- Return media before this UNIX timestamp. access_token -- A valid access token. min_timestamp -- Return media after this UNIX timestamp. min_id -- Return media later than this min_id. max_id -- Return media earlier than this max_id. """ log.debug("Invoking user_media") # user_id can be None if not user_id: user_id = 'self' # need to do a check on quality of query (spaces?) url = 'https://api.instagram.com/v1/users/{}/media/recent'.format(user_id) if kwargs: additional = urlencode(kwargs) url = url + '?{}'.format(additional) return self.get(url)
30.141026
82
0.598043
c6be5754043618abb850c65da3bed2c43529021d
3,034
py
Python
models/enconder_decoder.py
hitfee01/Yolo3D
e9a73f66b948311013b190ce1065e4abf595f206
[ "MIT" ]
9
2021-01-22T01:21:15.000Z
2022-03-23T06:06:08.000Z
models/enconder_decoder.py
hitfee01/Yolo3D
e9a73f66b948311013b190ce1065e4abf595f206
[ "MIT" ]
7
2021-01-07T05:33:58.000Z
2022-03-24T06:14:11.000Z
models/enconder_decoder.py
hitfee01/Yolo3D
e9a73f66b948311013b190ce1065e4abf595f206
[ "MIT" ]
5
2021-03-27T08:28:05.000Z
2022-02-13T14:10:41.000Z
import torch import torch.nn as nn import numpy as np from models.MultiBin import MultiBin class Coder(object): def __init__(self, dim_ref): super(Coder, self).__init__() self.multibin = MultiBin(2, 0.1) self.dim_ref = torch.tensor(dim_ref, dtype=torch.float32) @torch.no_grad() def encode_bbox(self, gt_bboxes, offsets): gt_ij = (gt_bboxes[:, :2] - offsets).long() gt_i, gt_j = gt_ij.T # grid xy indices gt_bboxes[:, :2] -= gt_ij return gt_bboxes, gt_i, gt_j @torch.no_grad() def decode_bbox(self, pred_bboxes): pass @torch.no_grad() def encode_orient(self, gt_alphas, device=torch.device('cpu')): self.multibin.to(device) num = list(gt_alphas.size())[0] # alpha is [-pi..pi], shift it to be [0..2pi] Orientation = torch.zeros((num, self.multibin.bin_num * 2), dtype=torch.float32, device=device) Confidence = torch.zeros((num, self.multibin.bin_num,), dtype=torch.long, device=device) alphas = gt_alphas + np.pi alphas = alphas.to(device) bin_idxs = self.multibin.get_bins(alphas) bin_ben_angles = self.multibin.get_bins_bench_angle(bin_idxs[1]) angle_diff = alphas[bin_idxs[0]] - bin_ben_angles Confidence[bin_idxs] = 1 Orientation[bin_idxs[0], bin_idxs[1]*self.multibin.bin_num] = torch.cos(angle_diff).to(torch.float32) Orientation[bin_idxs[0], bin_idxs[1]*self.multibin.bin_num + 1] = torch.sin(angle_diff).to(torch.float32) return Orientation, Confidence @torch.no_grad() def decode_orient(self, pred_alphas, pred_bin_confs): self.multibin.to(pred_alphas.device) batch_size, bins = pred_bin_confs.size() if batch_size <= 0: return torch.zeros_like(pred_alphas[:, :1]) argmax = torch.argmax(pred_bin_confs, dim=1) indexes_cos = (argmax * bins).long() indexes_sin = (argmax * bins + 1).long() batch_ids = torch.arange(batch_size).to(pred_bin_confs.device) # extract just the important bin alpha = torch.atan2(pred_alphas[batch_ids, indexes_sin], pred_alphas[batch_ids, indexes_cos]) alpha += self.multibin.get_bin_bench_angle(argmax) # alpha is [0..2pi], shift it to be [-pi..pi] alpha -= np.pi i_pos = alpha > np.pi i_neg = alpha < -np.pi alpha[i_pos] -= 2*np.pi alpha[i_neg] += 2*np.pi return alpha @torch.no_grad() def encode_dimension(self, gt_dimensions, gt_classes, device=torch.device('cpu')): self.dim_ref = self.dim_ref.to(device) gt_dimensions = gt_dimensions.to(device) dim_refs = self.dim_ref[gt_classes.long()] return gt_dimensions/dim_refs - 1 @torch.no_grad() def decode_dimension(self, pred_dimension_offsets, pred_classes): self.dim_ref = self.dim_ref.to(pred_classes.device) dim_refs = self.dim_ref[pred_classes.long()] return (pred_dimension_offsets + 1) * dim_refs
39.402597
113
0.648649
a7b449c2f9c52ebb4e8d47deb65bb51efcc9b241
1,761
py
Python
tapsdk/backends/dotnet/inputmodes.py
jnunez101/tap-python-sdk
a2481dd53db255f09d066db97c5582180ded0f6c
[ "MIT" ]
22
2020-03-01T04:41:48.000Z
2021-12-27T17:10:55.000Z
tapsdk/backends/dotnet/inputmodes.py
jnunez101/tap-python-sdk
a2481dd53db255f09d066db97c5582180ded0f6c
[ "MIT" ]
16
2020-02-25T05:10:45.000Z
2022-01-12T16:05:30.000Z
tapsdk/backends/dotnet/inputmodes.py
jnunez101/tap-python-sdk
a2481dd53db255f09d066db97c5582180ded0f6c
[ "MIT" ]
16
2020-02-22T20:35:30.000Z
2021-12-31T14:36:07.000Z
import logging import clr import System clr.AddReference(r"tapsdk/backends/dotnet/TAPWin") from TAPWin import TAPInputMode from TAPWin import RawSensorSensitivity class TapInputMode: def __init__(self, mode, sensitivity: list=[0, 0, 0]): self._modes = { "text" : {"name": "Text Mode", "code": TAPInputMode.Text()}, "controller" : {"name": "Controller Mode", "code": TAPInputMode.Controller()}, "controller_text" : {"name": "Controller and Text Mode", "code": TAPInputMode.ControllerWithMouseHID()}, "raw" : {"name": "Raw sensors Mode", "code": TAPInputMode.RawSensor(RawSensorSensitivity(System.Byte(0), System.Byte(0), System.Byte(0)))} } self.sensitivity = sensitivity if mode in self._modes.keys(): self.mode = mode if mode == "raw": self._register_sensitivity(sensitivity) else: logging.warning("Invalid mode \"%s\". Set to \"text\"" % mode) self.mode = "text" def _register_sensitivity(self, sensitivity): if isinstance(sensitivity, list) and len(sensitivity) == 3: sensitivity[0] = max(0, min(4,sensitivity[0])) # fingers accelerometers sensitivity[1] = max(0, min(5,sensitivity[1])) # imu gyro sensitivity[2] = max(0, min(4,sensitivity[2])) # imu accelerometer self.sensitivity = sensitivity self._modes["raw"]["code"] = TAPInputMode.RawSensor(RawSensorSensitivity(System.Byte(sensitivity[0]), System.Byte(sensitivity[1]), System.Byte(sensitivity[2]))) def get_object(self): return self._modes[self.mode]["code"] def get_name(self): return self._modes[self.mode]["name"]
44.025
172
0.62067
b93f87e5bc0586cd04ec367024e7c36594767618
858
py
Python
src/setup.py
mingrammer/pyshark
30923f08c347c7f63510b9c0db24ac2cd7e932ee
[ "MIT" ]
1
2021-01-06T21:22:35.000Z
2021-01-06T21:22:35.000Z
src/setup.py
mingrammer/pyshark
30923f08c347c7f63510b9c0db24ac2cd7e932ee
[ "MIT" ]
null
null
null
src/setup.py
mingrammer/pyshark
30923f08c347c7f63510b9c0db24ac2cd7e932ee
[ "MIT" ]
null
null
null
import os from setuptools import setup, find_packages with open(os.path.join(os.path.dirname(__file__), 'README.txt')) as f: long_description = f.read() setup( name="pyshark", version="0.4.2.3", packages=find_packages(), package_data={'': ['*.ini', '*.pcapng']}, install_requires=['lxml', 'py', 'logbook'], tests_require=['pytest'], url="https://github.com/KimiNewt/pyshark", long_description=long_description, author="KimiNewt", description="Python wrapper for tshark, allowing python packet parsing using wireshark dissectors", keywords="wireshark capture packets parsing packet", classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
31.777778
103
0.653846
7ffa50cb3374767d0d55680432bc803a9a2abd6c
693
py
Python
flask_center/app.py
iamjeerge/vision-platform
aac82798c392b4fc55592020fec59dd53a326d37
[ "MIT" ]
null
null
null
flask_center/app.py
iamjeerge/vision-platform
aac82798c392b4fc55592020fec59dd53a326d37
[ "MIT" ]
1
2021-04-04T12:59:24.000Z
2021-04-04T12:59:24.000Z
flask_center/app.py
iamjeerge/vision-platform
aac82798c392b4fc55592020fec59dd53a326d37
[ "MIT" ]
null
null
null
import os import sys from flask import Flask from flask_jwt_extended import JWTManager from flask_restful import Api from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) api = Api(app) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SECRET_KEY'] = 'some-secret-string' db = SQLAlchemy(app) @app.before_first_request def create_tables(): db.create_all() app.config['JWT_SECRET_KEY'] = 'jwt-secret-string' jwt = JWTManager(app) app.config['JWT_BLACKLIST_ENABLED'] = True app.config['JWT_BLACKLIST_TOKEN_CHECKS'] = ['access', 'refresh'] sys.path.append(os.path.dirname(os.path.abspath(__file__)))
22.354839
64
0.76912