hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a3c67e44f8f0cc9608424b5d8a9f9722cd23ab28
5,764
py
Python
rcnn/PY_OP/rpn_fpn_ohem.py
templeblock/mxnet-SSHA
4ef18f7ea7eca2178fffc70d6aaea4fd18a56de1
[ "MIT" ]
6
2018-12-06T09:39:31.000Z
2019-03-08T02:50:22.000Z
rcnn/PY_OP/rpn_fpn_ohem.py
templeblock/mxnet-SSHA
4ef18f7ea7eca2178fffc70d6aaea4fd18a56de1
[ "MIT" ]
null
null
null
rcnn/PY_OP/rpn_fpn_ohem.py
templeblock/mxnet-SSHA
4ef18f7ea7eca2178fffc70d6aaea4fd18a56de1
[ "MIT" ]
null
null
null
from __future__ import print_function import sys import mxnet as mx import numpy as np from distutils.util import strtobool from ..config import config CALLING_COUNT=0 COUNT_THRESH_FG=0 COUNT_THRESH_BG=0 STAT = {0:0, 8:0, 16:0, 32:0} ACC = {0:0, 8:0, 16:0, 32:0} class RPNFPNOHEMOperator(mx.operator.CustomOp): def __init__(self, stride=0): super(RPNFPNOHEMOperator, self).__init__() self.stride = int(stride) def forward(self, is_train, req, in_data, out_data, aux): global STAT global ACC cls_score = in_data[0].asnumpy() #BS, 2, ANCHORS bbox_weight = in_data[1].asnumpy() #BS, 4*SCALES, featuremapsize kpoint_weight = in_data[2].asnumpy() labels_raw = in_data[3].asnumpy() # BS, ANCHORS A = config.NUM_ANCHORS #assert labels.shape[0]==1 #assert cls_score.shape[0]==1 #assert bbox_weight.shape[0]==1 #print('shape', cls_score.shape, labels.shape, file=sys.stderr) #print('bbox_weight 0', bbox_weight.shape, file=sys.stderr) #bbox_weight = np.zeros( (labels_raw.shape[0], labels_raw.shape[1], 4), dtype=np.float32) for ibatch in xrange(labels_raw.shape[0]): _bbox_weight = np.zeros( (labels_raw.shape[1], 4), dtype=np.float32) _kpoint_weight = np.zeros( (labels_raw.shape[1], 10), dtype=np.float32) labels = labels_raw[ibatch] fg_score = cls_score[ibatch,1,:] - cls_score[ibatch,0,:] num_fg = int(config.TRAIN.RPN_FG_FRACTION * config.TRAIN.RPN_BATCH_SIZE) fg_inds = np.where(labels == 1)[0] origin_num_fg = len(fg_inds) if len(fg_inds) > num_fg: if CALLING_COUNT<COUNT_THRESH_FG: disable_inds = np.random.choice(fg_inds, size=(len(fg_inds) - num_fg), replace=False) labels[disable_inds] = -1 else: pos_ohem_scores = fg_score[fg_inds] order_pos_ohem_scores = pos_ohem_scores.ravel().argsort() sampled_inds = fg_inds[order_pos_ohem_scores[:num_fg]] labels[fg_inds] = -1 labels[sampled_inds] = 1 n_fg = np.sum(labels == 1) fg_inds = np.where(labels == 1)[0] STAT[0]+=1 STAT[self.stride] += n_fg ACC[self.stride] += np.sum(fg_score[fg_inds]>=0) if STAT[0]%9600==0: S = {0: STAT[0]} for k in STAT: if k==0: continue acc = float(ACC[k])/STAT[k] S[k] = (STAT[k], ACC[k], acc) print('STAT ', S, file=sys.stderr) for k in STAT: STAT[k]=0 ACC[k] = 0 #print('ohem_calling_count', CALLING_COUNT, STAT, file=sys.stderr) num_bg = config.TRAIN.RPN_BATCH_SIZE - n_fg bg_inds = np.where(labels == 0)[0] origin_num_bg = len(bg_inds) if num_bg==0: labels[bg_inds] = -1 elif len(bg_inds) > num_bg: # sort ohem scores if CALLING_COUNT<COUNT_THRESH_BG: disable_inds = np.random.choice(bg_inds, size=(len(bg_inds) - num_bg), replace=False) labels[disable_inds] = -1 else: neg_ohem_scores = fg_score[bg_inds] order_neg_ohem_scores = neg_ohem_scores.ravel().argsort()[::-1] sampled_inds = bg_inds[order_neg_ohem_scores[:num_bg]] #print('sampled_inds_bg', sampled_inds, file=sys.stderr) labels[bg_inds] = -1 labels[sampled_inds] = 0 if n_fg>0: order0_labels = labels.reshape( (1, A, -1) ).transpose( (0, 2, 1) ).reshape( (-1,) ) bbox_fg_inds = np.where(order0_labels == 1)[0] #print('bbox_fg_inds, order0 ', bbox_fg_inds, file=sys.stderr) _bbox_weight[bbox_fg_inds,:] = np.array(config.TRAIN.RPN_BBOX_WEIGHTS) _kpoint_weight[bbox_fg_inds,:] = np.array(config.TRAIN.RPN_KPOINT_WEIGHTS) #TODO _bbox_weight = _bbox_weight.reshape((1, -1, A * 4)).transpose((0,2,1)) _kpoint_weight = _kpoint_weight.reshape((1, -1, A*10)).transpose((0,2,1)) bbox_weight[ibatch] = _bbox_weight # kpoint_weight[ibatch] = _kpoint_weight # kpoint_weight[:] = 0 #labels = labels[np.newaxis,:] labels_ohem = mx.nd.array(labels_raw) bbox_weights_ohem = mx.nd.array(bbox_weight) kpoint_weights_ohem = mx.nd.array(kpoint_weight) for ind, val in enumerate([labels_ohem, kpoint_weights_ohem, bbox_weights_ohem]): self.assign(out_data[ind], req[ind], val) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): for i in range(len(in_grad)): self.assign(in_grad[i], req[i], 0) @mx.operator.register('rpn_fpn_ohem') class RPNFPNOHEMProp(mx.operator.CustomOpProp): def __init__(self, stride=0): super(RPNFPNOHEMProp, self).__init__(need_top_grad=False) self.stride = stride def list_arguments(self): return ['cls_score', 'bbox_weight', 'kpoint_weight', 'labels'] def list_outputs(self): return ['labels_ohem', 'kpoint_weights_ohem', 'bbox_weights_ohem'] def infer_shape(self, in_shape): labels_shape = in_shape[3] kpoint_weight_shape = in_shape[2] bbox_weights_shape = in_shape[1] #print('in_rpn_ohem', in_shape[0], in_shape[1], in_shape[2], file=sys.stderr) return in_shape, \ [labels_shape, kpoint_weight_shape, bbox_weights_shape] def create_operator(self, ctx, shapes, dtypes): return RPNFPNOHEMOperator(self.stride) def declare_backward_dependency(self, out_grad, in_data, out_data): return []
39.210884
99
0.606176
33322ed44e3ee11606ed245cc85b15e63e1686c3
1,952
py
Python
release/stubs.min/Rhino/DocObjects/__init___parts/MaterialRefCreateParams.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
182
2017-06-27T02:26:15.000Z
2022-03-30T18:53:43.000Z
release/stubs.min/Rhino/DocObjects/__init___parts/MaterialRefCreateParams.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
28
2017-06-27T13:38:23.000Z
2022-03-15T11:19:44.000Z
release/stubs.min/Rhino/DocObjects/__init___parts/MaterialRefCreateParams.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
67
2017-06-28T09:43:59.000Z
2022-03-20T21:17:10.000Z
class MaterialRefCreateParams(object): """ Options passed to MaterialRefs.Create MaterialRefCreateParams() """ BackFaceMaterialId=property(lambda self: object(),lambda self,v: None,lambda self: None) """The Id of the Material used to render the back of an object. Get: BackFaceMaterialId(self: MaterialRefCreateParams) -> Guid Set: BackFaceMaterialId(self: MaterialRefCreateParams)=value """ BackFaceMaterialIndex=property(lambda self: object(),lambda self,v: None,lambda self: None) """The index of the material used to render the back of an object Get: BackFaceMaterialIndex(self: MaterialRefCreateParams) -> int Set: BackFaceMaterialIndex(self: MaterialRefCreateParams)=value """ FrontFaceMaterialId=property(lambda self: object(),lambda self,v: None,lambda self: None) """The Id of the Material used to render the front of an object. Get: FrontFaceMaterialId(self: MaterialRefCreateParams) -> Guid Set: FrontFaceMaterialId(self: MaterialRefCreateParams)=value """ FrontFaceMaterialIndex=property(lambda self: object(),lambda self,v: None,lambda self: None) """The index of the material used to render the front of an object Get: FrontFaceMaterialIndex(self: MaterialRefCreateParams) -> int Set: FrontFaceMaterialIndex(self: MaterialRefCreateParams)=value """ MaterialSource=property(lambda self: object(),lambda self,v: None,lambda self: None) """Determines if the simple material should come from the object or from it's layer. Get: MaterialSource(self: MaterialRefCreateParams) -> ObjectMaterialSource Set: MaterialSource(self: MaterialRefCreateParams)=value """ PlugInId=property(lambda self: object(),lambda self,v: None,lambda self: None) """Identifies a rendering plug-in Get: PlugInId(self: MaterialRefCreateParams) -> Guid Set: PlugInId(self: MaterialRefCreateParams)=value """
21.688889
94
0.732582
e9478b42614d60f98360014f8a5888723ff4c145
23,254
py
Python
setup.py
paulboot/PythonMiniProbe
30b43096919c726116446fd9846d7d60038ef03f
[ "BSD-3-Clause" ]
null
null
null
setup.py
paulboot/PythonMiniProbe
30b43096919c726116446fd9846d7d60038ef03f
[ "BSD-3-Clause" ]
null
null
null
setup.py
paulboot/PythonMiniProbe
30b43096919c726116446fd9846d7d60038ef03f
[ "BSD-3-Clause" ]
null
null
null
default_sensors = "Ping,HTTP,Port,SNMPCustom,CPULoad,Memory,Diskspace,SNMPTraffic,CPUTemp,Probehealth,ExternalIP,ADNS,APT,NMAP,MDADM" #!/usr/bin/env python3 # Copyright (c) 2014, Paessler AG <[email protected]> # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions # and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse # or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import os import subprocess import uuid from setuptools import setup, find_packages from setuptools.command.install import install as _install raw_input = input def read(path): with open(path, 'r') as file: return file.read() class Bcolor: GREEN = '\033[92m' RED = '\033[91m' YELLOW = '\033[93m' CYAN = '\033[96m' END = '\033[0m' class Configure(_install): probe_conf = {} conf_avail = False config_init = { 'name': "Python MiniProbe", 'gid': str(uuid.uuid4()), 'server': "", 'port': "443", 'baseinterval': "60", 'key': "", 'cleanmem': "", 'announced': "0", 'protocol': "1", 'debug': "", 'subprocs': "10" } path = './miniprobe/probe.conf' def run(self): conf_avail = False if not os.getuid() == 0: print(Bcolor.RED + "You must run me as root user!" + Bcolor.END) print(Bcolor.RED + "Rerun me with sudo " + __file__ + Bcolor.END) sys.exit(2) _install.do_egg_install(self) print("") print(Bcolor.CYAN + "Welcome to the Miniprobe (Python) for PRTG installer" + Bcolor.END) if self.file_check(self.path): print("") probe_config_exists = "%s" % str(raw_input(Bcolor.YELLOW + "A config file was already found. " "Do you want to reconfigure [y/N]: " + Bcolor.END)).rstrip().lstrip() if probe_config_exists.lower() == "y": config_old = self.read_config(self.path) self.get_config(config_old) else: print("") uninstall = "%s" % str(raw_input(Bcolor.YELLOW + "Do you want to Uninstall or Restart the " "service [u/R]: " + Bcolor.END)).rstrip().lstrip() if uninstall.lower() == "u": self.remove_config() conf_avail = False else: conf_avail = True else: conf_avail = self.get_config(self.config_init) if conf_avail: print(subprocess.call("update-rc.d prtgprobe defaults", shell=True)) print(Bcolor.GREEN + "Starting Mini Probe" + Bcolor.END) print(subprocess.call("/etc/init.d/prtgprobe start", shell=True)) print(Bcolor.GREEN + "Done. You now can start/stop the Mini Probe using '/etc/init.d/prtgprobe start' " "or '/etc/init.d/prtgprobe stop'" + Bcolor.END) else: print("Exiting!") sys.exit() pass def file_check(self, check_path): # Check if a give file exists return os.path.exists(check_path) def file_create(self, create_path): # Creates a given file and writes some startup information to it with open(create_path, 'w') as file_create: file_create.write("###Mini Probe Config File\n") file_create.close() def write_config(self, config): conf = "" with open(self.path, 'a') as config_file: for key in config: conf += "%s:%s\n" % (key, config[key]) config_file.write(conf) config_file.close() print(Bcolor.GREEN + "Config file successfully written!" + Bcolor.END) def write_file(self, write_path, content): with open(write_path, 'w') as file_write: file_write.write(content) file_write.close() def logrotation(self, rotation_path): rotate_tpl = open("./miniprobe/scripts/rotate.tpl") return rotate_tpl.read() % rotation_path def read_config(self, path): """ read configuration file and write data to dict """ config = {} try: conf_file = open(path) for line in conf_file: if not (line == '\n'): if not (line.startswith('#')): config[line.split(':')[0]] = line.split(':')[1].rstrip() conf_file.close() return config except Exception as read_error: print(Bcolor.RED + "No config found! Error Message: %s Exiting!" + Bcolor.END % read_error) sys.exit() def init_script(self, script_path, user): init_script_tpl = open("./miniprobe/scripts/probe.tpl") return init_script_tpl.read() % (script_path, user) def write_load_list(self, ds18b20_sensors, other_sensors): default_sensors = "Ping,HTTP,Port,SNMPCustom,CPULoad,Memory,Diskspace,SNMPTraffic,CPUTemp,Probehealth,ExternalIP,ADNS,APT,NMAP,MDADM" if not (other_sensors == ""): default_sensors = default_sensors + "," + other_sensors file_sensor_init = open("./miniprobe/sensors/__init__.py", "a") file_sensor_init.write("# Copyright (c) 2014, Paessler AG <[email protected]>\n") file_sensor_init.write("# All rights reserved.\n") file_sensor_init.write("# Redistribution and use in source and binary forms, with or without modification," " are permitted provided that the\n") file_sensor_init.write("# following conditions are met:\n") file_sensor_init.write("# 1. Redistributions of source code must retain the above copyright notice, " "this list of conditions\n") file_sensor_init.write("# and the following disclaimer.\n") file_sensor_init.write("# 2. Redistributions in binary form must reproduce the above copyright notice, " "this list of conditions\n") file_sensor_init.write("# and the following disclaimer in the documentation and/or other materials provided " "with the distribution.\n") file_sensor_init.write("# 3. Neither the name of the copyright holder nor the names of its contributors may be" " used to endorse\n") file_sensor_init.write("# or promote products derived from this software without specific prior written " "permission.\n") file_sensor_init.write("\n") file_sensor_init.write("# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" " "AND ANY EXPRESS OR IMPLIED WARRANTIES,\n") file_sensor_init.write("# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND " "FITNESS FOR\n") file_sensor_init.write("# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR " "CONTRIBUTORS BE LIABLE FOR ANY DIRECT,\n") file_sensor_init.write("# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES " "(INCLUDING, BUT NOT LIMITED TO,\n") file_sensor_init.write("# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; " "OR BUSINESS INTERRUPTION)\n") file_sensor_init.write("# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, " "STRICT LIABILITY,\n") file_sensor_init.write("# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF " "THE USE OF THIS SOFTWARE,\n") file_sensor_init.write("# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n") file_sensor_init.write("\n") file_sensor_init.write("# Announce modules available in this package\n") file_sensor_init.write("# Just extend this list for your modules and they will be automatically imported " "during runtime and\n") file_sensor_init.write("# are announced to the PRTG Core\n") file_sensor_init.write("__all__ = " + str(default_sensors.split(",")) + "\n") print("__all__ = " + str(default_sensors.split(",")) + "\n") if not (ds18b20_sensors == ""): file_sensor_init.write("DS18B20_sensors = " + str(ds18b20_sensors.split(",")) + "\n") file_sensor_init.close() def install_w1_module(self): print(Bcolor.YELLOW + "Checking the hardware for Raspberry Pi." + Bcolor.END) if os.uname()[4][:3] == 'arm': print(Bcolor.GREEN + "Found hardware matching " + os.uname()[4][:3] + Bcolor.END) tmp_use_raspberry = "%s" % str(raw_input(Bcolor.GREEN + "Do you want to enable the Raspberry Pi " "temperature sensor [y/N]: " + Bcolor.END)).rstrip().lstrip() if tmp_use_raspberry.lower() == "y": try: self.install_kernel_module() return True except Exception as e: print("%s.Please install the same" % e) print("Exiting") sys.exit(1) else: return False else: print(Bcolor.RED + "Found hardware matching " + os.uname()[4][:3] + Bcolor.END) return False def install_kernel_module(self): print(Bcolor.GREEN + "Checking for w1-gpio line in /boot/config.txt" + Bcolor.END) found = False file_boot_config = open('/boot/config.txt', 'r') for line in file_boot_config.readlines(): if line.strip() == 'dtoverlay=w1-gpio': print(Bcolor.GREEN + "Found dtoverlay line. Skipping install of w1-gpio" + Bcolor.END) found = True file_boot_config.close() if not found: print(Bcolor.GREEN + "Line not found. Now adding the dtoverlay line to /boot/config.txt" + Bcolor.END) file_boot_config = open('/boot/config.txt', 'a') file_boot_config.write('\n#w1-gpio added by PRTG MiniProbe install script\n') file_boot_config.write('dtoverlay=w1-gpio') file_boot_config.close() print(Bcolor.GREEN + "Please restart the installscript after the Raspberry Pi has been rebooted!" + Bcolor.END) print(Bcolor.GREEN + "Now rebooting..." + Bcolor.END) print(subprocess.call("reboot", shell=True)) sys.exit(2) def get_w1_sensors(self): sensors = "" print(Bcolor.GREEN + "Finding all W1 sensors" + Bcolor.END) w1_file = open('/sys/devices/w1_bus_master1/w1_master_slaves', 'r') for line in w1_file.readlines(): print(Bcolor.GREEN + "Found: " + Bcolor.YELLOW + line[3:].strip() + Bcolor.END) sensors = sensors + "," + line[3:].strip() w1_file.close() sens = "%s" % str(raw_input(Bcolor.GREEN + "Please enter the id's of the temperature sensors you want to use " "from the list above, separated with a , [" + sensors[1:] + "]: " + Bcolor.END)).rstrip().lstrip() if not sens == "": return sens else: return sensors[1:] def get_config_user(self, default="root"): tmp_user = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the username the script should run under [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_user == "": return tmp_user else: return default def get_config_name(self, default): tmp_name = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the desired name of your Mini Probe [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_name == "": return tmp_name else: return default def get_config_gid(self, default): tmp_gid = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the Probe GID [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_gid == "": return tmp_gid else: return default def get_config_ip(self, default=None): tmp_ip = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the IP/DNS name of the PRTG Core Server [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not (tmp_ip == "") or not (default == ""): if (tmp_ip == "") and not (default == ""): tmp_ip = default response = os.system("ping -c 1 " + tmp_ip + " > /dev/null") if not response == 0: print(Bcolor.YELLOW + "PRTG Server can not be reached. Please make sure the server is reachable." + Bcolor.END) go_on = "%s" % str(raw_input(Bcolor.YELLOW + "Do you still want to continue using this server [y/N]: " + Bcolor.END)).rstrip().lstrip() if not go_on.lower() == "y": return self.get_config_ip() else: print(Bcolor.GREEN + "PRTG Server can be reached. Continuing..." + Bcolor.END) return tmp_ip else: print(Bcolor.YELLOW + "You have not provided an IP/DNS name of the PRTG Core Server." + Bcolor.END) return self.get_config_ip() def get_config_port(self, default): tmp_port = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the port the PRTG web server is listening to " "(IMPORTANT: Only SSL is supported)[" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_port == "": return tmp_port else: return default def get_config_base_interval(self, default): tmp_interval = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the base interval for your sensors [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_interval == "": return tmp_interval else: return default def get_config_access_key(self, default): tmp_accesskey = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the Probe Access Key as defined on the " "PRTG Core [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if (tmp_accesskey == "") and not (default == ""): tmp_accesskey = default else: if tmp_accesskey == "": print(Bcolor.YELLOW + "You have not provided the Probe Access Key as defined on the PRTG Core." + Bcolor.END) return self.get_config_access_key(default) else: return tmp_accesskey def get_config_path(self, default=os.path.dirname(os.path.abspath(__file__))): default += "/miniprobe" tmp_path = "%s" % str(raw_input(Bcolor.GREEN + "Please provide the path where the probe files are located [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_path == "": return tmp_path else: return default def get_config_clean_memory(self, default=None): tmp_cleanmem = "%s" % str(raw_input(Bcolor.GREEN + "Do you want the mini probe flushing buffered and cached " "memory [y/N]: " + Bcolor.END)).rstrip().lstrip() if tmp_cleanmem.lower() == "y": return "True" else: return "False" def get_config_subprocs(self, default="10"): tmp_subprocs = "%s" % str(raw_input(Bcolor.GREEN + "How much subprocesses should be spawned for scanning [" + default + "]: " + Bcolor.END)).rstrip().lstrip() if not tmp_subprocs == "": return tmp_subprocs else: return default # For future use def get_config_announced(self, default): return default # For future use def get_config_protocol(self, default): return default def get_config_debug(self, default): tmp_debug = "%s" % str(raw_input(Bcolor.GREEN + "Do you want to enable debug logging (" + Bcolor.YELLOW + "can create massive logfiles!" + Bcolor.GREEN + ") [y/N]: " + Bcolor.END)).rstrip().lstrip() if tmp_debug.lower() == "y": tmp_debug1 = "%s" % str(raw_input(Bcolor.YELLOW + "Are you sure you want to enable debug logging? " "This will create massive logfiles [y/N]: " + Bcolor.END)).rstrip().lstrip() if tmp_debug1.lower() == "y": return "True" else: return "False" else: return "False" def get_config(self, config_old): print("") print(Bcolor.YELLOW + "Checking for necessary modules and Python Version" + Bcolor.END) try: import hashlib import string import json import socket import importlib import requests import pyasn1 import pysnmp except Exception as e: print("%s.Please install the same" % e) print("Exiting") sys.exit(1) print(Bcolor.GREEN + "Successfully imported modules." + Bcolor.END) print("") if self.install_w1_module(): sensors = self.get_w1_sensors() if not sensors == "": print(Bcolor.GREEN + "Adding DS18B20.py and selected sensors to /miniprobe/sensors/__init__.py" + Bcolor.END) self.write_load_list(sensors, "DS18B20") else: self.write_load_list("", "") else: self.write_load_list("", "") print("") try: probe_user = self.get_config_user() self.probe_conf['name'] = self.get_config_name(config_old['name']) self.probe_conf['gid'] = self.get_config_gid(config_old['gid']) self.probe_conf['server'] = self.get_config_ip(config_old['server']) self.probe_conf['port'] = self.get_config_port(config_old['port']) self.probe_conf['baseinterval'] = self.get_config_base_interval(config_old['baseinterval']) self.probe_conf['key'] = self.get_config_access_key(config_old['key']) probe_path = self.get_config_path() self.probe_conf['cleanmem'] = self.get_config_clean_memory(config_old['cleanmem']) self.probe_conf['announced'] = self.get_config_announced(config_old['announced']) self.probe_conf['protocol'] = self.get_config_protocol(config_old['protocol']) self.probe_conf['debug'] = self.get_config_debug(config_old['debug']) self.probe_conf['subprocs'] = self.get_config_subprocs(config_old['subprocs']) print("") print(self.path) self.file_create(self.path) self.write_config(self.probe_conf) logpath = "%s/logs" % probe_path if not (self.file_check(logpath)): os.makedirs(logpath) path_rotate = "/etc/logrotate.d/prtgprobe" path_init = "/etc/init.d/prtgprobe" print(Bcolor.GREEN + "Creating Logrotation Config" + Bcolor.END) self.write_file(path_rotate, self.logrotation(probe_path)) print(Bcolor.GREEN + "Setting up runlevel" + Bcolor.END) self.write_file(path_init, self.init_script(probe_path, probe_user)) print(Bcolor.GREEN + "Changing File Permissions" + Bcolor.END) os.chmod('%s/probe.py' % probe_path, 0o0755) os.chmod(path_init, 0o0755) return True except Exception as e: print(Bcolor.RED + "%s. Exiting!" % e + Bcolor.END) return False def remove_config(self): try: print(subprocess.call("/etc/init.d/prtgprobe stop", shell=True)) os.remove('/etc/init.d/prtgprobe') os.remove('/etc/logrotate.d/prtgprobe') os.remove('./miniprobe/probe.conf') except Exception as e: print("%s. Exiting!" % e) return False py_requires = 'requirements3.txt' with open(py_requires) as f: requires = f.read().splitlines() packages = [ "miniprobe" ] setup( name='Python Mini Probe', version=read('VERSION.txt'), author='Paessler AG', author_email='[email protected]', license='BSD 3.0', description='Python MiniProbe for PRTG', long_description=read('README.md'), packages=find_packages(), install_requires=requires, url='https://github.com/PaesslerAG/PythonMiniProbe', classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "License :: OSI Approved :: BSD License", "Programming Language :: Python", ], cmdclass={'configure': Configure} )
48.045455
141
0.569321
fd9fac58a973c92571a71f0c49c21e2f5135f822
65,776
py
Python
pandas/tseries/index.py
olgabot/pandas
286811a2775c9b5ca1c30086b1950dd1060ecf68
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
2
2017-03-10T04:16:05.000Z
2019-04-19T23:02:48.000Z
pandas/tseries/index.py
Gwillink/pandas
ceec8bf305fbd0258edb66c648b87219a435bc32
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
pandas/tseries/index.py
Gwillink/pandas
ceec8bf305fbd0258edb66c648b87219a435bc32
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
# pylint: disable=E1101 import operator from datetime import time, datetime from datetime import timedelta import numpy as np from pandas.core.common import (isnull, _NS_DTYPE, _INT64_DTYPE, is_list_like,_values_from_object, _maybe_box, notnull) from pandas.core.index import Index, Int64Index, _Identity import pandas.compat as compat from pandas.compat import u from pandas.tseries.frequencies import ( infer_freq, to_offset, get_period_alias, Resolution, get_reso_string) from pandas.tseries.offsets import DateOffset, generate_range, Tick, CDay from pandas.tseries.tools import parse_time_string, normalize_date from pandas.util.decorators import cache_readonly import pandas.core.common as com import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools from pandas.lib import Timestamp import pandas.lib as lib import pandas.tslib as tslib import pandas.algos as _algos import pandas.index as _index def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = self._local_timestamps() return tslib.get_date_field(values, field) f.__name__ = name return property(f) def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if isinstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if isinstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): func = getattr(super(DatetimeIndex, self), opname) if isinstance(other, datetime): other = _to_m8(other, tz=self.tz) elif isinstance(other, list): other = DatetimeIndex(other) elif isinstance(other, compat.string_types): other = _to_m8(other, tz=self.tz) elif not isinstance(other, np.ndarray): other = _ensure_datetime64(other) result = func(other) return result.view(np.ndarray) return wrapper def _ensure_datetime64(other): if isinstance(other, np.datetime64): return other raise TypeError('%s type object %s' % (type(other), str(other))) _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_unique = _join_i8_wrapper( _algos.left_join_indexer_unique_int64, with_indexers=False) _arrmap = None __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = _index.DatetimeEngine offset = None _comparables = ['name','freqstr','tz'] def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, verify_integrity=True, normalize=False, closed=None, **kwds): dayfirst = kwds.pop('dayfirst', None) yearfirst = kwds.pop('yearfirst', None) infer_dst = kwds.pop('infer_dst', False) warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != 'infer': freq = to_offset(freq) else: freq_infer = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) offset = freq if periods is not None: if com.is_float(periods): periods = int(periods) elif not com.is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize, closed=closed, infer_dst=infer_dst) if not isinstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset, dayfirst=dayfirst, yearfirst=yearfirst) else: data = tools.to_datetime(data, errors='raise') data.offset = offset if isinstance(data, DatetimeIndex): if name is not None: data.name = name if tz is not None: return data.tz_localize(tz, infer_dst=infer_dst) return data if issubclass(data.dtype.type, compat.string_types): data = _str_to_dt_array(data, offset, dayfirst=dayfirst, yearfirst=yearfirst) if issubclass(data.dtype.type, np.datetime64): if isinstance(data, DatetimeIndex): if tz is None: tz = data.tz subarr = data.values if offset is None: offset = data.offset verify_integrity = False else: if data.dtype != _NS_DTYPE: subarr = tslib.cast_to_nanoseconds(data) else: subarr = data elif data.dtype == _INT64_DTYPE: if isinstance(data, Int64Index): raise TypeError('cannot convert Int64Index->DatetimeIndex') if copy: subarr = np.asarray(data, dtype=_NS_DTYPE) else: subarr = data.view(_NS_DTYPE) else: try: subarr = tools.to_datetime(data, box=False) except ValueError: # tz aware subarr = tools.to_datetime(data, box=False, utc=True) if not np.issubdtype(subarr.dtype, np.datetime64): raise ValueError('Unable to convert %s to datetime dtype' % str(data)) if isinstance(subarr, DatetimeIndex): if tz is None: tz = subarr.tz else: if tz is not None: tz = tools._maybe_get_tz(tz) if (not isinstance(data, DatetimeIndex) or getattr(data, 'tz', None) is None): # Convert tz-naive to UTC ints = subarr.view('i8') subarr = tslib.tz_localize_to_utc(ints, tz, infer_dst=infer_dst) subarr = subarr.view(_NS_DTYPE) subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and len(subarr) > 0: if offset is not None and not freq_infer: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if freq_infer: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False, infer_dst=False, closed=None): if com._count_not_none(start, end, periods) != 2: raise ValueError('Must specify two of start, end, or periods') _normalized = True if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) left_closed = False right_closed = False if start is None and end is None: if closed is not None: raise ValueError("Closed has to be None if not both of start" "and end are defined") if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") try: inferred_tz = tools._infer_tzinfo(start, end) except: raise ValueError('Start and end cannot both be tz-aware with ' 'different timezones') inferred_tz = tools._maybe_get_tz(inferred_tz) tz = tools._maybe_get_tz(tz) if tz is not None and inferred_tz is not None: if not inferred_tz == tz: raise AssertionError("Inferred time zone not equal to passed " "time zone") elif inferred_tz is not None: tz = inferred_tz if start is not None: if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight if hasattr(offset, 'delta') and offset != offsets.Day(): if inferred_tz is None and tz is not None: # naive dates if start is not None and start.tz is None: start = start.tz_localize(tz) if end is not None and end.tz is None: end = end.tz_localize(tz) if start and end: if start.tz is None and end.tz is not None: start = start.tz_localize(end.tz) if end.tz is None and start.tz is not None: end = end.tz_localize(start.tz) if _use_cached_range(offset, _normalized, start, end): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) else: if inferred_tz is None and tz is not None: # naive dates if start is not None and start.tz is not None: start = start.replace(tzinfo=None) if end is not None and end.tz is not None: end = end.replace(tzinfo=None) if start and end: if start.tz is None and end.tz is not None: end = end.replace(tzinfo=None) if end.tz is None and start.tz is not None: start = start.replace(tzinfo=None) if _use_cached_range(offset, _normalized, start, end): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None and getattr(index, 'tz', None) is None: index = tslib.tz_localize_to_utc(com._ensure_int64(index), tz, infer_dst=infer_dst) index = index.view(_NS_DTYPE) index = index.view(cls) index.name = name index.offset = offset index.tz = tz if not left_closed: index = index[1:] if not right_closed: index = index[:-1] return index def _box_values(self, values): return lib.map_infer(values, lib.Timestamp) def _local_timestamps(self): utc = _utc() if self.is_monotonic: return tslib.tz_convert(self.asi8, utc, self.tz) else: values = self.asi8 indexer = values.argsort() result = tslib.tz_convert(values.take(indexer), utc, self.tz) n = len(indexer) reverse = np.empty(n, dtype=np.int_) reverse.put(indexer, np.arange(n)) return result.take(reverse) @classmethod def _simple_new(cls, values, name, freq=None, tz=None): if values.dtype != _NS_DTYPE: values = com._ensure_int64(values).view(_NS_DTYPE) result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_get_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is None and end is None: # I somewhat believe this should never be raised externally and therefore # should be a `PandasError` but whatever... raise TypeError('Must specify either start or end.') if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if (start is None or end is None) and periods is None: raise TypeError('Must either specify period or provide both start and end.') if offset is None: # This can't happen with external-facing code, therefore PandasError raise TypeError('Must provide offset.') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = tools.to_datetime(list(xdr), box=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if not isinstance(end, Timestamp): raise AssertionError('end must be an instance of Timestamp') end = offset.rollback(end) endLoc = cachedRange.get_loc(end) + 1 startLoc = endLoc - periods elif end is None: if not isinstance(start, Timestamp): raise AssertionError('start must be an instance of Timestamp') start = offset.rollforward(start) startLoc = cachedRange.get_loc(start) endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.get_loc(start) endLoc = cachedRange.get_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return tslib.ints_to_pydatetime(self.asi8, self.tz) _na_value = tslib.NaT """The expected NA value to use with this index.""" def __unicode__(self): from pandas.core.format import _format_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr summary = str(self.__class__) if len(self) == 1: first = _format_datetime64(values[0], tz=self.tz) summary += '\n[%s]' % first elif len(self) == 2: first = _format_datetime64(values[0], tz=self.tz) last = _format_datetime64(values[-1], tz=self.tz) summary += '\n[%s, %s]' % (first, last) elif len(self) > 2: first = _format_datetime64(values[0], tz=self.tz) last = _format_datetime64(values[-1], tz=self.tz) summary += '\n[%s, ..., %s]' % (first, last) tagline = '\nLength: %d, Freq: %s, Timezone: %s' summary += tagline % (len(self), freq, self.tz) return summary def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if len(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) # provide numpy < 1.7 compat if nd_state[2] == 'M8[us]': new_state = np.ndarray.__reduce__(self.values.astype('M8[ns]')) np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if isinstance(other, Index): return self.union(other) elif isinstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif isinstance(other, np.timedelta64): return self._add_delta(other) elif com.is_integer(other): return self.shift(other) else: # pragma: no cover raise TypeError(other) def __sub__(self, other): if isinstance(other, Index): return self.diff(other) elif isinstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif isinstance(other, np.timedelta64): return self._add_delta(-other) elif com.is_integer(other): return self.shift(-other) else: # pragma: no cover raise TypeError(other) def _add_delta(self, delta): if isinstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view(_NS_DTYPE) tz = 'UTC' if self.tz is not None else None result = DatetimeIndex(new_values, tz=tz, freq='infer') utc = _utc() if self.tz is not None and self.tz is not utc: result = result.tz_convert(self.tz) elif isinstance(delta, np.timedelta64): new_values = self.to_series() + delta result = DatetimeIndex(new_values, tz=self.tz, freq='infer') else: new_values = self.astype('O') + delta result = DatetimeIndex(new_values, tz=self.tz, freq='infer') return result def __contains__(self, key): try: res = self.get_loc(key) return np.isscalar(res) or type(res) == slice except (KeyError, TypeError): return False def _format_with_header(self, header, **kwargs): return header + self._format_native_types(**kwargs) def _format_native_types(self, na_rep=u('NaT'), date_format=None, **kwargs): data = list(self) # tz formatter or time formatter zero_time = time(0, 0) if date_format is None: for d in data: if d.time() != zero_time or d.tzinfo is not None: return [u('%s') % x for x in data] values = np.array(data, dtype=object) mask = isnull(self.values) values[mask] = na_rep imask = -mask if date_format is None: date_formatter = lambda x: u('%d-%.2d-%.2d' % (x.year, x.month, x.day)) else: date_formatter = lambda x: u(x.strftime(date_format)) values[imask] = np.array([date_formatter(dt) for dt in values[imask]]) return values.tolist() def isin(self, values): """ Compute boolean array of whether each index value is found in the passed set of values Parameters ---------- values : set or sequence of values Returns ------- is_contained : ndarray (boolean dtype) """ if not isinstance(values, DatetimeIndex): try: values = DatetimeIndex(values) except ValueError: return self.asobject.isin(values) value_set = set(values.asi8) return lib.ismember(self.asi8, value_set) def to_datetime(self, dayfirst=False): return self.copy() def groupby(self, f): objs = self.asobject return _algos.groupby_object(objs, f) def summary(self, name=None): if len(self) > 0: index_summary = ', %s to %s' % (com.pprint_thing(self[0]), com.pprint_thing(self[-1])) else: index_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (com.pprint_thing(name), len(self), index_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def get_duplicates(self): values = Index.get_duplicates(self) return DatetimeIndex(values) def astype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject elif dtype == _INT64_DTYPE: return self.asi8.copy() else: # pragma: no cover raise ValueError('Cannot cast DatetimeIndex to dtype %s' % dtype) def _get_time_micros(self): utc = _utc() values = self.asi8 if self.tz is not None and self.tz is not utc: values = self._local_timestamps() return tslib.get_time_micros(values) @property def asobject(self): """ Convert to Index of datetime objects """ if isnull(self).any(): msg = 'DatetimeIndex with NaT cannot be converted to object' raise ValueError(msg) return self._get_object_index() def tolist(self): """ See ndarray.tolist """ return list(self.asobject) def _get_object_index(self): boxfunc = lambda x: Timestamp(x, offset=self.offset, tz=self.tz) boxed_values = lib.map_infer(self.asi8, boxfunc) return Index(boxed_values, dtype=object) def to_pydatetime(self): """ Return DatetimeIndex as object ndarray of datetime.datetime objects Returns ------- datetimes : ndarray """ return tslib.ints_to_pydatetime(self.asi8, tz=self.tz) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from pandas.tseries.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = get_period_alias(self.freqstr) return PeriodIndex(self.values, freq=freq, tz=self.tz) def order(self, return_indexer=False, ascending=True): """ Return sorted copy of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) if not ascending: sorted_values = sorted_values[::-1] return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occurring frequency """ # Superdumb, punting on any optimizing freq = to_offset(freq) snapped = np.empty(len(self), dtype=_NS_DTYPE) for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shift(self, n, freq=None): """ Specialized shift which produces a DatetimeIndex Parameters ---------- n : int Periods to shift by freq : DateOffset or timedelta-like, optional Returns ------- shifted : DatetimeIndex """ if freq is not None and freq != self.offset: if isinstance(freq, compat.string_types): freq = to_offset(freq) result = Index.shift(self, n, freq) result.tz = self.tz return result if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shift with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name, tz=self.tz) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if isinstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return self._simple_new(taken, self.name, None, self.tz) def unique(self): """ Index.unique with handling for DatetimeIndex metadata Returns ------- result : DatetimeIndex """ result = Int64Index.unique(self) return DatetimeIndex._simple_new(result, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if isinstance(result, DatetimeIndex): result.tz = this.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def union_many(self, others): """ A bit of a hack to accelerate unioning a collection of indexes """ this = self for other in others: if not isinstance(this, DatetimeIndex): this = Index.union(this, other) continue if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = this._maybe_utc_convert(other) if this._can_fast_union(other): this = this._fast_union(other) else: tz = this.tz this = Index.union(this, other) if isinstance(this, DatetimeIndex): this.tz = tz if this.freq is None: this.offset = to_offset(this.inferred_freq) return this def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ name = self.name to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if isinstance(obj, Index) and obj.name != name: name = None break to_concat = self._ensure_compat_concat(to_concat) to_concat, factory = _process_concat_data(to_concat, name) return factory(to_concat) def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if (not isinstance(other, DatetimeIndex) and len(other) > 0 and other.inferred_type not in ('floating', 'mixed-integer', 'mixed-integer-float', 'mixed')): try: other = DatetimeIndex(other) except (TypeError, ValueError): pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if isinstance(other, DatetimeIndex): if self.tz is not None: if other.tz is None: raise TypeError('Cannot join tz-naive with tz-aware ' 'DatetimeIndex') elif other.tz is not None: raise TypeError('Cannot join tz-naive with tz-aware ' 'DatetimeIndex') if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (isinstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: tz = getattr(other, 'tz', None) return self._simple_new(joined, name, tz=tz) def _can_fast_union(self, other): if not isinstance(other, DatetimeIndex): return False offset = self.offset if offset is None or offset != other.offset: return False if not self.is_monotonic or not other.is_monotonic: return False if len(self) == 0 or len(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self right_start = right[0] left_end = left[-1] # Only need to "adjoin", not overlap return (right_start == left_end + offset) or right_start in left def _fast_union(self, other): if len(other) == 0: return self.view(type(self)) if len(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = com._concat_compat((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = getattr(obj, 'offset', None) self.tz = getattr(obj, 'tz', None) self.name = getattr(obj, 'name', None) self._reset_identity() def intersection(self, other): """ Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except (TypeError, ValueError): pass result = Index.intersection(self, other) if isinstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result elif (other.offset is None or self.offset is None or other.offset != self.offset or not other.offset.isAnchored() or (not self.is_monotonic or not other.is_monotonic)): result = Index.intersection(self, other) if isinstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result if len(self) == 0: return self if len(other) == 0: return other # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self end = min(left[-1], right[-1]) start = right[0] if end < start: return type(self)(data=[]) else: lslice = slice(*left.slice_locs(start, end)) left_chunk = left.values[lslice] return self._view_like(left_chunk) def _partial_date_slice(self, reso, parsed, use_lhs=True, use_rhs=True): is_monotonic = self.is_monotonic if reso == 'year': t1 = Timestamp(datetime(parsed.year, 1, 1), tz=self.tz) t2 = Timestamp(datetime(parsed.year, 12, 31, 23, 59, 59, 999999), tz=self.tz) elif reso == 'month': d = tslib.monthrange(parsed.year, parsed.month)[1] t1 = Timestamp(datetime(parsed.year, parsed.month, 1), tz=self.tz) t2 = Timestamp(datetime(parsed.year, parsed.month, d, 23, 59, 59, 999999), tz=self.tz) elif reso == 'quarter': qe = (((parsed.month - 1) + 2) % 12) + 1 # two months ahead d = tslib.monthrange(parsed.year, qe)[1] # at end of month t1 = Timestamp(datetime(parsed.year, parsed.month, 1), tz=self.tz) t2 = Timestamp(datetime(parsed.year, qe, d, 23, 59, 59, 999999), tz=self.tz) elif (reso == 'day' and (self._resolution < Resolution.RESO_DAY or not is_monotonic)): st = datetime(parsed.year, parsed.month, parsed.day) t1 = Timestamp(st, tz=self.tz) t2 = st + offsets.Day() t2 = Timestamp(Timestamp(t2, tz=self.tz).value - 1) elif (reso == 'hour' and ( self._resolution < Resolution.RESO_HR or not is_monotonic)): st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour) t1 = Timestamp(st, tz=self.tz) t2 = Timestamp(Timestamp(st + offsets.Hour(), tz=self.tz).value - 1) elif (reso == 'minute' and ( self._resolution < Resolution.RESO_MIN or not is_monotonic)): st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour, minute=parsed.minute) t1 = Timestamp(st, tz=self.tz) t2 = Timestamp(Timestamp(st + offsets.Minute(), tz=self.tz).value - 1) elif (reso == 'second' and ( self._resolution == Resolution.RESO_SEC or not is_monotonic)): st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second) t1 = Timestamp(st, tz=self.tz) t2 = Timestamp(Timestamp(st + offsets.Second(), tz=self.tz).value - 1) else: raise KeyError stamps = self.asi8 if is_monotonic: # we are out of range if len(stamps) and ( (use_lhs and t1.value < stamps[0] and t2.value < stamps[0]) or ( (use_rhs and t1.value > stamps[-1] and t2.value > stamps[-1]))): raise KeyError # a monotonic (sorted) series can be sliced left = stamps.searchsorted(t1.value, side='left') if use_lhs else None right = stamps.searchsorted(t2.value, side='right') if use_rhs else None return slice(left, right) lhs_mask = (stamps >= t1.value) if use_lhs else True rhs_mask = (stamps <= t2.value) if use_rhs else True # try to find a the dates return (lhs_mask & rhs_mask).nonzero()[0] def _possibly_promote(self, other): if other.inferred_type == 'date': other = DatetimeIndex(other) return self, other def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ timestamp = None #if isinstance(key, Timestamp): # timestamp = key #el if isinstance(key, datetime): # needed to localize naive datetimes timestamp = Timestamp(key, tz=self.tz) if timestamp: return self.get_value_maybe_box(series, timestamp) try: return _maybe_box(self, Index.get_value(self, series, key), series, key) except KeyError: try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError, KeyError): pass if isinstance(key, time): locs = self.indexer_at_time(key) return series.take(locs) try: return self.get_value_maybe_box(series, key) except (TypeError, ValueError, KeyError): raise KeyError(key) def get_value_maybe_box(self, series, key): # needed to localize naive datetimes if self.tz is not None: key = Timestamp(key, tz=self.tz) elif not isinstance(key, Timestamp): key = Timestamp(key) values = self._engine.get_value(_values_from_object(series), key) return _maybe_box(self, values, series, key) def get_loc(self, key): """ Get integer location for requested label Returns ------- loc : int """ if isinstance(key, datetime): # needed to localize naive datetimes stamp = Timestamp(key, tz=self.tz) return self._engine.get_loc(stamp) try: return Index.get_loc(self, key) except (KeyError, ValueError): try: return self._get_string_slice(key) except (TypeError, KeyError, ValueError): pass if isinstance(key, time): return self.indexer_at_time(key) try: stamp = Timestamp(key, tz=self.tz) return self._engine.get_loc(stamp) except (KeyError, ValueError): raise KeyError(key) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): freq = getattr(self, 'freqstr', getattr(self, 'inferred_freq', None)) _, parsed, reso = parse_time_string(key, freq) loc = self._partial_date_slice(reso, parsed, use_lhs=use_lhs, use_rhs=use_rhs) return loc def slice_indexer(self, start=None, end=None, step=None): """ Index.slice_indexer, customized to handle time slicing """ if isinstance(start, time) and isinstance(end, time): if step is not None and step != 1: raise ValueError('Must have step size of 1 with time slices') return self.indexer_between_time(start, end) if isinstance(start, time) or isinstance(end, time): raise KeyError('Cannot mix time and non-time slice keys') if isinstance(start, float) or isinstance(end, float): raise TypeError('Cannot index datetime64 with float keys') return Index.slice_indexer(self, start, end, step) def slice_locs(self, start=None, end=None): """ Index.slice_locs, customized to handle partial ISO-8601 string slicing """ if isinstance(start, compat.string_types) or isinstance(end, compat.string_types): if self.is_monotonic: try: if start: start_loc = self._get_string_slice(start).start else: start_loc = 0 if end: end_loc = self._get_string_slice(end).stop else: end_loc = len(self) return start_loc, end_loc except KeyError: pass else: # can't use a slice indexer because we are not sorted! # so create an indexer directly try: if start: start_loc = self._get_string_slice(start, use_rhs=False) else: start_loc = np.arange(len(self)) if end: end_loc = self._get_string_slice(end, use_lhs=False) else: end_loc = np.arange(len(self)) return start_loc, end_loc except KeyError: pass if isinstance(start, time) or isinstance(end, time): raise KeyError('Cannot use slice_locs with time slice keys') return Index.slice_locs(self, start, end) def __getitem__(self, key): """Override numpy.ndarray's __getitem__ method to work as desired""" arr_idx = self.view(np.ndarray) if np.isscalar(key): val = arr_idx[key] return Timestamp(val, offset=self.offset, tz=self.tz) else: if com._is_bool_indexer(key): key = np.asarray(key) key = lib.maybe_booleans_to_slice(key.view(np.uint8)) new_offset = None if isinstance(key, slice): if self.offset is not None and key.step is not None: new_offset = key.step * self.offset else: new_offset = self.offset result = arr_idx[key] if result.ndim > 1: return result return self._simple_new(result, self.name, new_offset, self.tz) _getitem_slice = __getitem__ # Try to run function on index first, and then on elements of index # Especially important for group-by functionality def map(self, f): try: result = f(self) if not isinstance(result, np.ndarray): raise TypeError return result except Exception: return _algos.arrmap_object(self.asobject, f) # alias to offset @property def freq(self): return self.offset @cache_readonly def inferred_freq(self): try: return infer_freq(self) except ValueError: return None @property def freqstr(self): return self.offset.freqstr year = _field_accessor('year', 'Y') month = _field_accessor('month', 'M') day = _field_accessor('day', 'D') hour = _field_accessor('hour', 'h') minute = _field_accessor('minute', 'm') second = _field_accessor('second', 's') microsecond = _field_accessor('microsecond', 'us') nanosecond = _field_accessor('nanosecond', 'ns') weekofyear = _field_accessor('weekofyear', 'woy') week = weekofyear dayofweek = _field_accessor('dayofweek', 'dow') weekday = dayofweek dayofyear = _field_accessor('dayofyear', 'doy') quarter = _field_accessor('quarter', 'q') @property def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # can't call self.map() which tries to treat func as ufunc # and causes recursion warnings on python 2.6 return _algos.arrmap_object(self.asobject, lambda x: x.time()) @property def date(self): """ Returns numpy array of datetime.date. The date part of the Timestamps. """ return _algos.arrmap_object(self.asobject, lambda x: x.date()) def normalize(self): """ Return DatetimeIndex with times to midnight. Length is unaltered Returns ------- normalized : DatetimeIndex """ new_values = tslib.date_normalize(self.asi8, self.tz) return DatetimeIndex(new_values, freq='infer', name=self.name, tz=self.tz) def __iter__(self): return iter(self._get_object_index()) def searchsorted(self, key, side='left'): if isinstance(key, np.ndarray): key = np.array(key, dtype=_NS_DTYPE, copy=False) else: key = _to_m8(key, tz=self.tz) return self.values.searchsorted(key, side=side) def is_type_compatible(self, typ): return typ == self.inferred_type or typ == 'datetime' def argmin(self): # hack to workaround argmin failure try: return self.values.argmin() except Exception: # pragma: no cover return self.asi8.argmin() @property def inferred_type(self): # b/c datetime is represented as microseconds since the epoch, make # sure we can't have ambiguous indexing return 'datetime64' @property def dtype(self): return _NS_DTYPE @property def is_all_dates(self): return True @cache_readonly def is_normalized(self): """ Returns True if all of the dates are at midnight ("no time") """ return tslib.dates_normalized(self.asi8, self.tz) @cache_readonly def resolution(self): """ Returns day, hour, minute, second, or microsecond """ reso = self._resolution return get_reso_string(reso) @cache_readonly def _resolution(self): return tslib.resolution(self.asi8, self.tz) def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if (not hasattr(other, 'inferred_type') or other.inferred_type != 'datetime64'): if self.offset is not None: return False try: other = DatetimeIndex(other) except: return False if self.tz is not None: if other.tz is None: return False same_zone = tslib.get_timezone( self.tz) == tslib.get_timezone(other.tz) else: if other.tz is not None: return False same_zone = True return same_zone and np.array_equal(self.asi8, other.asi8) def insert(self, loc, item): """ Make new Index inserting new item at location Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if isinstance(item, datetime): item = _to_m8(item, tz=self.tz) new_index = np.concatenate((self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)) return DatetimeIndex(new_index, freq='infer') def delete(self, loc): """ Make new DatetimeIndex with passed location deleted Returns ------- new_index : DatetimeIndex """ arr = np.delete(self.values, loc) return DatetimeIndex(arr, tz=self.tz) def _view_like(self, ndarray): result = ndarray.view(type(self)) result.offset = self.offset result.tz = self.tz result.name = self.name return result def tz_convert(self, tz): """ Convert DatetimeIndex from one time zone to another (using pytz) Returns ------- normalized : DatetimeIndex """ tz = tools._maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError('Cannot convert tz-naive timestamps, use ' 'tz_localize to localize') # No conversion since timestamps are all UTC to begin with return self._simple_new(self.values, self.name, self.offset, tz) def tz_localize(self, tz, infer_dst=False): """ Localize tz-naive DatetimeIndex to given time zone (using pytz) Parameters ---------- tz : string or pytz.timezone Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries infer_dst : boolean, default False Attempt to infer fall dst-transition hours based on order Returns ------- localized : DatetimeIndex """ if self.tz is not None: raise TypeError("Already tz-aware, use tz_convert to convert.") tz = tools._maybe_get_tz(tz) # Convert to UTC new_dates = tslib.tz_localize_to_utc(self.asi8, tz, infer_dst=infer_dst) new_dates = new_dates.view(_NS_DTYPE) return self._simple_new(new_dates, self.name, self.offset, tz) def indexer_at_time(self, time, asof=False): """ Select values at particular time of day (e.g. 9:30AM) Parameters ---------- time : datetime.time or string tz : string or pytz.timezone Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries Returns ------- values_at_time : TimeSeries """ from dateutil.parser import parse if asof: raise NotImplementedError if isinstance(time, compat.string_types): time = parse(time).time() if time.tzinfo: # TODO raise NotImplementedError time_micros = self._get_time_micros() micros = _time_to_micros(time) return (micros == time_micros).nonzero()[0] def indexer_between_time(self, start_time, end_time, include_start=True, include_end=True): """ Select values between particular times of day (e.g., 9:00-9:30AM) Parameters ---------- start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True tz : string or pytz.timezone, default None Returns ------- values_between_time : TimeSeries """ from dateutil.parser import parse if isinstance(start_time, compat.string_types): start_time = parse(start_time).time() if isinstance(end_time, compat.string_types): end_time = parse(end_time).time() if start_time.tzinfo or end_time.tzinfo: raise NotImplementedError time_micros = self._get_time_micros() start_micros = _time_to_micros(start_time) end_micros = _time_to_micros(end_time) if include_start and include_end: lop = rop = operator.le elif include_start: lop = operator.le rop = operator.lt elif include_end: lop = operator.lt rop = operator.le else: lop = rop = operator.lt if start_time <= end_time: join_op = operator.and_ else: join_op = operator.or_ mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros)) return mask.nonzero()[0] def min(self, axis=None): """ Overridden ndarray.min to return a Timestamp """ if self.is_monotonic: return self[0] else: min_stamp = self.asi8.min() return Timestamp(min_stamp, tz=self.tz) def max(self, axis=None): """ Overridden ndarray.max to return a Timestamp """ if self.is_monotonic: return self[-1] else: max_stamp = self.asi8.max() return Timestamp(max_stamp, tz=self.tz) def _generate_regular_range(start, end, periods, offset): if isinstance(offset, Tick): stride = offset.nanos if periods is None: b = Timestamp(start).value e = Timestamp(end).value e += stride - e % stride # end.tz == start.tz by this point due to _generate implementation tz = start.tz elif start is not None: b = Timestamp(start).value e = b + periods * stride tz = start.tz elif end is not None: e = Timestamp(end).value + stride b = e - periods * stride tz = end.tz else: raise NotImplementedError data = np.arange(b, e, stride, dtype=np.int64) data = DatetimeIndex._simple_new(data, None, tz=tz) else: if isinstance(start, Timestamp): start = start.to_pydatetime() if isinstance(end, Timestamp): end = end.to_pydatetime() xdr = generate_range(start=start, end=end, periods=periods, offset=offset) dates = list(xdr) # utc = len(dates) > 0 and dates[0].tzinfo is not None data = tools.to_datetime(dates) return data def date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None): """ Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'D' (calendar daily) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Hong_Kong normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name of the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified Returns ------- rng : DatetimeIndex """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed) def bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None): """ Return a fixed frequency datetime index, with business day as the default frequency Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'B' (business daily) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name for the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified Returns ------- rng : DatetimeIndex """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed) def cdate_range(start=None, end=None, periods=None, freq='C', tz=None, normalize=True, name=None, closed=None, **kwargs): """ **EXPERIMENTAL** Return a fixed frequency datetime index, with CustomBusinessDay as the default frequency .. warning:: EXPERIMENTAL The CustomBusinessDay class is not officially supported and the API is likely to change in future versions. Use this at your own risk. Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'C' (CustomBusinessDay) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name for the resulting index weekmask : str, Default 'Mon Tue Wed Thu Fri' weekmask of valid business days, passed to ``numpy.busdaycalendar`` holidays : list list/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar`` closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified Returns ------- rng : DatetimeIndex """ if freq=='C': holidays = kwargs.pop('holidays', []) weekmask = kwargs.pop('weekmask', 'Mon Tue Wed Thu Fri') freq = CDay(holidays=holidays, weekmask=weekmask) return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs) def _to_m8(key, tz=None): ''' Timestamp-like => dt64 ''' if not isinstance(key, Timestamp): # this also converts strings key = Timestamp(key, tz=tz) return np.int64(tslib.pydt_to_i8(key)).view(_NS_DTYPE) def _str_to_dt_array(arr, offset=None, dayfirst=None, yearfirst=None): def parser(x): result = parse_time_string(x, offset, dayfirst=dayfirst, yearfirst=yearfirst) return result[0] arr = np.asarray(arr, dtype=object) data = _algos.arrmap_object(arr, parser) return tools.to_datetime(data) _CACHE_START = Timestamp(datetime(1950, 1, 1)) _CACHE_END = Timestamp(datetime(2030, 1, 1)) _daterange_cache = {} def _naive_in_cache_range(start, end): if start is None or end is None: return False else: if start.tzinfo is not None or end.tzinfo is not None: return False return _in_range(start, end, _CACHE_START, _CACHE_END) def _in_range(start, end, rng_start, rng_end): return start > rng_start and end < rng_end def _use_cached_range(offset, _normalized, start, end): return (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)) def _time_to_micros(time): seconds = time.hour * 60 * 60 + 60 * time.minute + time.second return 1000000 * seconds + time.microsecond def _process_concat_data(to_concat, name): klass = Index kwargs = {} concat = np.concatenate all_dti = True need_utc_convert = False has_naive = False tz = None for x in to_concat: if not isinstance(x, DatetimeIndex): all_dti = False else: if tz is None: tz = x.tz if x.tz is None: has_naive = True if x.tz != tz: need_utc_convert = True tz = 'UTC' if all_dti: need_obj_convert = False if has_naive and tz is not None: need_obj_convert = True if need_obj_convert: to_concat = [x.asobject.values for x in to_concat] else: if need_utc_convert: to_concat = [x.tz_convert('UTC').values for x in to_concat] else: to_concat = [x.values for x in to_concat] # well, technically not a "class" anymore...oh well klass = DatetimeIndex._simple_new kwargs = {'tz': tz} concat = com._concat_compat else: for i, x in enumerate(to_concat): if isinstance(x, DatetimeIndex): to_concat[i] = x.asobject.values elif isinstance(x, Index): to_concat[i] = x.values factory_func = lambda x: klass(concat(x), name=name, **kwargs) return to_concat, factory_func
33.086519
98
0.561816
a07aa1a8b655bc9788c5d9e1bc3bc21141f51962
4,311
py
Python
cookiecutter/config.py
PLSV/cookiecutter
2bd62c67ec3e52b8e537d5346fd96ebd82803efe
[ "BSD-3-Clause" ]
8
2020-06-15T18:49:24.000Z
2021-04-15T10:34:24.000Z
cookiecutter/config.py
PLSV/cookiecutter
2bd62c67ec3e52b8e537d5346fd96ebd82803efe
[ "BSD-3-Clause" ]
19
2020-06-28T16:03:56.000Z
2020-10-07T15:52:06.000Z
cookiecutter/config.py
PLSV/cookiecutter
2bd62c67ec3e52b8e537d5346fd96ebd82803efe
[ "BSD-3-Clause" ]
1
2020-12-17T13:08:23.000Z
2020-12-17T13:08:23.000Z
"""Global configuration handling.""" import collections import copy import logging import os import poyo from cookiecutter.exceptions import ConfigDoesNotExistException, InvalidConfiguration logger = logging.getLogger(__name__) USER_CONFIG_PATH = os.path.expanduser('~/.cookiecutterrc') BUILTIN_ABBREVIATIONS = { 'gh': 'https://github.com/{0}.git', 'gl': 'https://gitlab.com/{0}.git', 'bb': 'https://bitbucket.org/{0}', } DEFAULT_CONFIG = { 'cookiecutters_dir': os.path.expanduser('~/.cookiecutters/'), 'replay_dir': os.path.expanduser('~/.cookiecutter_replay/'), 'default_context': collections.OrderedDict([]), 'abbreviations': BUILTIN_ABBREVIATIONS, } def _expand_path(path): """Expand both environment variables and user home in the given path.""" path = os.path.expandvars(path) path = os.path.expanduser(path) return path def merge_configs(default, overwrite): """Recursively update a dict with the key/value pair of another. Dict values that are dictionaries themselves will be updated, whilst preserving existing keys. """ new_config = copy.deepcopy(default) for k, v in overwrite.items(): # Make sure to preserve existing items in # nested dicts, for example `abbreviations` if isinstance(v, dict): new_config[k] = merge_configs(default[k], v) else: new_config[k] = v return new_config def get_config(config_path): """Retrieve the config from the specified path, returning a config dict.""" if not os.path.exists(config_path): raise ConfigDoesNotExistException( 'Config file {} does not exist.'.format(config_path) ) logger.debug('config_path is %s', config_path) with open(config_path, encoding='utf-8') as file_handle: try: yaml_dict = poyo.parse_string(file_handle.read()) except poyo.exceptions.PoyoException as e: raise InvalidConfiguration( 'Unable to parse YAML file {}. Error: {}'.format(config_path, e) ) config_dict = merge_configs(DEFAULT_CONFIG, yaml_dict) raw_replay_dir = config_dict['replay_dir'] config_dict['replay_dir'] = _expand_path(raw_replay_dir) raw_cookies_dir = config_dict['cookiecutters_dir'] config_dict['cookiecutters_dir'] = _expand_path(raw_cookies_dir) return config_dict def get_user_config(config_file=None, default_config=False): """Return the user config as a dict. If ``default_config`` is True, ignore ``config_file`` and return default values for the config parameters. If a path to a ``config_file`` is given, that is different from the default location, load the user config from that. Otherwise look up the config file path in the ``COOKIECUTTER_CONFIG`` environment variable. If set, load the config from this path. This will raise an error if the specified path is not valid. If the environment variable is not set, try the default config file path before falling back to the default config values. """ # Do NOT load a config. Return defaults instead. if default_config: logger.debug("Force ignoring user config with default_config switch.") return copy.copy(DEFAULT_CONFIG) # Load the given config file if config_file and config_file is not USER_CONFIG_PATH: logger.debug("Loading custom config from %s.", config_file) return get_config(config_file) try: # Does the user set up a config environment variable? env_config_file = os.environ['COOKIECUTTER_CONFIG'] except KeyError: # Load an optional user config if it exists # otherwise return the defaults if os.path.exists(USER_CONFIG_PATH): logger.debug("Loading config from %s.", USER_CONFIG_PATH) return get_config(USER_CONFIG_PATH) else: logger.debug("User config not found. Loading default config.") return copy.copy(DEFAULT_CONFIG) else: # There is a config environment variable. Try to load it. # Do not check for existence, so invalid file paths raise an error. logger.debug("User config not found or not specified. Loading default config.") return get_config(env_config_file)
34.488
87
0.689399
273bafb3705a3c03dec9c86413fdbdbf9aacfa4e
1,556
py
Python
blog/admin.py
konerjonlar/codejam
a420c2e422366170e8217a0654d6b1254fac7442
[ "MIT" ]
null
null
null
blog/admin.py
konerjonlar/codejam
a420c2e422366170e8217a0654d6b1254fac7442
[ "MIT" ]
null
null
null
blog/admin.py
konerjonlar/codejam
a420c2e422366170e8217a0654d6b1254fac7442
[ "MIT" ]
1
2021-12-03T17:46:48.000Z
2021-12-03T17:46:48.000Z
from django.contrib import admin from blog.models import Post, Project @admin.register(Post) class PostAdmin(admin.ModelAdmin): list_display = ("title", "description", "get_tags", "is_active") search_fields = ("title", "tags") readonly_fields = ("created_at", "updated_at") fieldsets = ( ( "Post Information", { "fields": ( "author", "title", "description", "content", "tags", "image", "is_active", ), }, ), ( "Dates", { "fields": ( "created_at", "updated_at", ), }, ), ) @admin.register(Project) class ProjectAdmin(admin.ModelAdmin): list_display = ("title", "description", "tags", "is_active") search_fields = ("title", "tags") readonly_fields = ("created_at", "updated_at") fieldsets = ( ( "Post Information", { "fields": ( "title", "description", "site", "tags", "is_active", ), }, ), ( "Dates", { "fields": ( "created_at", "updated_at", ), }, ), )
22.882353
68
0.359254
ebcb529679dc379f570fed2f25c56939b3cdcf97
409
py
Python
conanfile.py
bincrafters/conan-boost_uuid
18c7dbe5cfa9d1954179e181a5b93bef0f4e8e53
[ "MIT" ]
null
null
null
conanfile.py
bincrafters/conan-boost_uuid
18c7dbe5cfa9d1954179e181a5b93bef0f4e8e53
[ "MIT" ]
1
2018-02-17T18:34:44.000Z
2018-02-20T18:31:31.000Z
conanfile.py
bincrafters/conan-boost_uuid
18c7dbe5cfa9d1954179e181a5b93bef0f4e8e53
[ "MIT" ]
2
2018-02-15T19:18:22.000Z
2019-10-12T16:22:57.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from conans import python_requires base = python_requires("boost_base/2.0.0@bincrafters/testing") class BoostUuidConan(base.BoostBaseConan): name = "boost_uuid" version = "1.70.0" def package_info(self): super(BoostUuidConan, self).package_info() if self.settings.os == "Windows": self.cpp_info.libs.append("Bcrypt")
22.722222
62
0.667482
aba8b3034601aaf3683086a85e7ae701a2275d7c
21,517
py
Python
trimesh/collision.py
dani2112/thesis-trimesh
99f67a7dc2e05b78e088152a9cafedaebe74de1b
[ "MIT" ]
null
null
null
trimesh/collision.py
dani2112/thesis-trimesh
99f67a7dc2e05b78e088152a9cafedaebe74de1b
[ "MIT" ]
null
null
null
trimesh/collision.py
dani2112/thesis-trimesh
99f67a7dc2e05b78e088152a9cafedaebe74de1b
[ "MIT" ]
null
null
null
import numpy as np import collections from .constants import log _fcl_exists = True try: import fcl # pip install python-fcl except BaseException: log.warning('No FCL -- collision checking will not work') _fcl_exists = False class ContactData(object): """ Data structure for holding information about a collision contact. """ def __init__(self, names, contact): """ Initialize a ContactData. Parameters ---------- names : list of str The names of the two objects in order. contact : fcl.Contact The contact in question. """ self.names = set(names) self._inds = { names[0]: contact.b1, names[1]: contact.b2 } self._point = contact.pos @property def point(self): """ The 3D point of intersection for this contact. Returns ------- point : (3,) float The intersection point. """ return self._point def index(self, name): """ Returns the index of the face in contact for the mesh with the given name. Parameters ---------- name : str The name of the target object. Returns ------- index : int The index of the face in collison """ return self._inds[name] class DistanceData(object): """ Data structure for holding information about a distance query. """ def __init__(self, names, result): """ Initialize a DistanceData. Parameters ---------- names : list of str The names of the two objects in order. contact : fcl.DistanceResult The distance query result. """ self.names = set(names) self._inds = { names[0]: result.b1, names[1]: result.b2 } self._points = { names[0]: result.nearest_points[0], names[1]: result.nearest_points[1] } self._distance = result.min_distance @property def distance(self): """ Returns the distance between the two objects. Returns ------- distance : float The euclidean distance between the objects. """ return self._distance def index(self, name): """ Returns the index of the closest face for the mesh with the given name. Parameters ---------- name : str The name of the target object. Returns ------- index : int The index of the face in collisoin. """ return self._inds[name] def point(self, name): """ The 3D point of closest distance on the mesh with the given name. Parameters ---------- name : str The name of the target object. Returns ------- point : (3,) float The closest point. """ return self._points[name] class CollisionManager(object): """ A mesh-mesh collision manager. """ def __init__(self): """ Initialize a mesh-mesh collision manager. """ if not _fcl_exists: raise ValueError('No FCL Available!') # {name: {geom:, obj}} self._objs = {} # {id(bvh) : str, name} # unpopulated values will return None self._names = collections.defaultdict(lambda: None) # cache BVH objects # {mesh.md5(): fcl.BVHModel object} self._bvh = {} self._manager = fcl.DynamicAABBTreeCollisionManager() self._manager.setup() def add_object(self, name, mesh, transform=None): """ Add an object to the collision manager. If an object with the given name is already in the manager, replace it. Parameters ---------- name : str An identifier for the object mesh : Trimesh object The geometry of the collision object transform : (4,4) float Homogenous transform matrix for the object """ # if no transform passed, assume identity transform if transform is None: transform = np.eye(4) transform = np.asanyarray(transform, dtype=np.float32) if transform.shape != (4, 4): raise ValueError('transform must be (4,4)!') # create or recall from cache BVH bvh = self._get_BVH(mesh) # create the FCL transform from (4,4) matrix t = fcl.Transform(transform[:3, :3], transform[:3, 3]) o = fcl.CollisionObject(bvh, t) # Add collision object to set if name in self._objs: self._manager.unregisterObject(self._objs[name]) self._objs[name] = {'obj': o, 'geom': bvh} # store the name of the geometry self._names[id(bvh)] = name self._manager.registerObject(o) self._manager.update() return o def remove_object(self, name): """ Delete an object from the collision manager. Parameters ---------- name : str The identifier for the object """ if name in self._objs: self._manager.unregisterObject(self._objs[name]['obj']) self._manager.update(self._objs[name]['obj']) # remove objects from _objs geom_id = id(self._objs.pop(name)['geom']) # remove names self._names.pop(geom_id) else: raise ValueError('{} not in collision manager!'.format(name)) def set_transform(self, name, transform): """ Set the transform for one of the manager's objects. This replaces the prior transform. Parameters ---------- name : str An identifier for the object already in the manager transform : (4,4) float A new homogenous transform matrix for the object """ if name in self._objs: o = self._objs[name]['obj'] o.setRotation(transform[:3, :3]) o.setTranslation(transform[:3, 3]) self._manager.update(o) else: raise ValueError('{} not in collision manager!'.format(name)) def in_collision_single(self, mesh, transform=None, return_names=False, return_data=False): """ Check a single object for collisions against all objects in the manager. Parameters ---------- mesh : Trimesh object The geometry of the collision object transform : (4,4) float Homogenous transform matrix return_names : bool If true, a set is returned containing the names of all objects in collision with the object return_data : bool If true, a list of ContactData is returned as well Returns ------------ is_collision : bool True if a collision occurs and False otherwise names : set of str The set of names of objects that collided with the provided one contacts : list of ContactData All contacts detected """ if transform is None: transform = np.eye(4) # Create FCL data b = self._get_BVH(mesh) t = fcl.Transform(transform[:3, :3], transform[:3, 3]) o = fcl.CollisionObject(b, t) # Collide with manager's objects cdata = fcl.CollisionData() if return_names or return_data: cdata = fcl.CollisionData(request=fcl.CollisionRequest( num_max_contacts=100000, enable_contact=True)) self._manager.collide(o, cdata, fcl.defaultCollisionCallback) result = cdata.result.is_collision # If we want to return the objects that were collision, collect them. objs_in_collision = set() contact_data = [] if return_names or return_data: for contact in cdata.result.contacts: cg = contact.o1 if cg == b: cg = contact.o2 name = self._extract_name(cg) names = (name, '__external') if cg == contact.o2: names = reversed(names) if return_names: objs_in_collision.add(name) if return_data: contact_data.append(ContactData(names, contact)) if return_names and return_data: return result, objs_in_collision, contact_data elif return_names: return result, objs_in_collision elif return_data: return result, contact_data else: return result def in_collision_internal(self, return_names=False, return_data=False): """ Check if any pair of objects in the manager collide with one another. Parameters ---------- return_names : bool If true, a set is returned containing the names of all pairs of objects in collision. return_data : bool If true, a list of ContactData is returned as well Returns ------- is_collision : bool True if a collision occurred between any pair of objects and False otherwise names : set of 2-tup The set of pairwise collisions. Each tuple contains two names in alphabetical order indicating that the two corresponding objects are in collision. contacts : list of ContactData All contacts detected """ cdata = fcl.CollisionData() if return_names or return_data: cdata = fcl.CollisionData(request=fcl.CollisionRequest( num_max_contacts=100000, enable_contact=True)) self._manager.collide(cdata, fcl.defaultCollisionCallback) result = cdata.result.is_collision objs_in_collision = set() contact_data = [] if return_names or return_data: for contact in cdata.result.contacts: names = (self._extract_name(contact.o1), self._extract_name(contact.o2)) if return_names: objs_in_collision.add(tuple(sorted(names))) if return_data: contact_data.append(ContactData(names, contact)) if return_names and return_data: return result, objs_in_collision, contact_data elif return_names: return result, objs_in_collision elif return_data: return result, contact_data else: return result def in_collision_other(self, other_manager, return_names=False, return_data=False): """ Check if any object from this manager collides with any object from another manager. Parameters ------------------- other_manager : CollisionManager Another collision manager object return_names : bool If true, a set is returned containing the names of all pairs of objects in collision. return_data : bool If true, a list of ContactData is returned as well Returns ------------- is_collision : bool True if a collision occurred between any pair of objects and False otherwise names : set of 2-tup The set of pairwise collisions. Each tuple contains two names (first from this manager, second from the other_manager) indicating that the two corresponding objects are in collision. contacts : list of ContactData All contacts detected """ cdata = fcl.CollisionData() if return_names or return_data: cdata = fcl.CollisionData( request=fcl.CollisionRequest( num_max_contacts=100000, enable_contact=True)) self._manager.collide(other_manager._manager, cdata, fcl.defaultCollisionCallback) result = cdata.result.is_collision objs_in_collision = set() contact_data = [] if return_names or return_data: for contact in cdata.result.contacts: reverse = False names = (self._extract_name(contact.o1), other_manager._extract_name(contact.o2)) if names[0] is None: names = (self._extract_name(contact.o2), other_manager._extract_name(contact.o1)) reverse = True if return_names: objs_in_collision.add(names) if return_data: if reverse: names = reversed(names) contact_data.append(ContactData(names, contact)) if return_names and return_data: return result, objs_in_collision, contact_data elif return_names: return result, objs_in_collision elif return_data: return result, contact_data else: return result def min_distance_single(self, mesh, transform=None, return_name=False, return_data=False): """ Get the minimum distance between a single object and any object in the manager. Parameters --------------- mesh : Trimesh object The geometry of the collision object transform : (4,4) float Homogenous transform matrix for the object return_names : bool If true, return name of the closest object return_data : bool If true, a DistanceData object is returned as well Returns ------------- distance : float Min distance between mesh and any object in the manager name : str The name of the object in the manager that was closest data : DistanceData Extra data about the distance query """ if transform is None: transform = np.eye(4) # Create FCL data b = self._get_BVH(mesh) t = fcl.Transform(transform[:3, :3], transform[:3, 3]) o = fcl.CollisionObject(b, t) # Collide with manager's objects ddata = fcl.DistanceData() if return_data: ddata = fcl.DistanceData( fcl.DistanceRequest(enable_nearest_points=True), fcl.DistanceResult() ) self._manager.distance(o, ddata, fcl.defaultDistanceCallback) distance = ddata.result.min_distance # If we want to return the objects that were collision, collect them. name, data = None, None if return_name or return_data: cg = ddata.result.o1 if cg == b: cg = ddata.result.o2 name = self._extract_name(cg) names = (name, '__external') if cg == ddata.result.o2: names = reversed(names) data = DistanceData(names, ddata.result) if return_name and return_data: return distance, name, data elif return_name: return distance, name elif return_data: return distance, data else: return distance def min_distance_internal(self, return_names=False, return_data=False): """ Get the minimum distance between any pair of objects in the manager. Parameters ------------- return_names : bool If true, a 2-tuple is returned containing the names of the closest objects. return_data : bool If true, a DistanceData object is returned as well Returns ----------- distance : float Min distance between any two managed objects names : (2,) str The names of the closest objects data : DistanceData Extra data about the distance query """ ddata = fcl.DistanceData() if return_data: ddata = fcl.DistanceData( fcl.DistanceRequest(enable_nearest_points=True), fcl.DistanceResult() ) self._manager.distance(ddata, fcl.defaultDistanceCallback) distance = ddata.result.min_distance names, data = None, None if return_names or return_data: names = (self._extract_name(ddata.result.o1), self._extract_name(ddata.result.o2)) data = DistanceData(names, ddata.result) names = tuple(sorted(names)) if return_names and return_data: return distance, names, data elif return_names: return distance, names elif return_data: return distance, data else: return distance def min_distance_other(self, other_manager, return_names=False, return_data=False): """ Get the minimum distance between any pair of objects, one in each manager. Parameters ---------- other_manager : CollisionManager Another collision manager object return_names : bool If true, a 2-tuple is returned containing the names of the closest objects. return_data : bool If true, a DistanceData object is returned as well Returns ----------- distance : float The min distance between a pair of objects, one from each manager. names : 2-tup of str A 2-tuple containing two names (first from this manager, second from the other_manager) indicating the two closest objects. data : DistanceData Extra data about the distance query """ ddata = fcl.DistanceData() if return_data: ddata = fcl.DistanceData( fcl.DistanceRequest(enable_nearest_points=True), fcl.DistanceResult() ) self._manager.distance(other_manager._manager, ddata, fcl.defaultDistanceCallback) distance = ddata.result.min_distance names, data = None, None if return_names or return_data: reverse = False names = (self._extract_name(ddata.result.o1), other_manager._extract_name(ddata.result.o2)) if names[0] is None: reverse = True names = (self._extract_name(ddata.result.o2), other_manager._extract_name(ddata.result.o1)) dnames = tuple(names) if reverse: dnames = reversed(dnames) data = DistanceData(dnames, ddata.result) if return_names and return_data: return distance, names, data elif return_names: return distance, names elif return_data: return distance, data else: return distance def _get_BVH(self, mesh): """ Get a BVH for a mesh. Parameters ------------- mesh : Trimesh Mesh to create BVH for Returns -------------- bvh : fcl.BVHModel BVH object of souce mesh """ bvh = mesh_to_BVH(mesh) return bvh def _extract_name(self, geom): """ Retrieve the name of an object from the manager by its CollisionObject, or return None if not found. Parameters ----------- geom : CollisionObject or BVHModel Input model Returns ------------ names : hashable Name of input geometry """ return self._names[id(geom)] def mesh_to_BVH(mesh): """ Create a BVHModel object from a Trimesh object Parameters ----------- mesh : Trimesh Input geometry Returns ------------ bvh : fcl.BVHModel BVH of input geometry """ bvh = fcl.BVHModel() bvh.beginModel(num_tris_=len(mesh.faces), num_vertices_=len(mesh.vertices)) bvh.addSubModel(verts=mesh.vertices, triangles=mesh.faces) bvh.endModel() return bvh def scene_to_collision(scene): """ Create collision objects from a trimesh.Scene object. Parameters ------------ scene : trimesh.Scene Scene to create collision objects for Returns ------------ manager : CollisionManager CollisionManager for objects in scene objects: {node name: CollisionObject} Collision objects for nodes in scene """ manager = CollisionManager() objects = {} for node in scene.graph.nodes_geometry: T, geometry = scene.graph[node] objects[node] = manager.add_object(name=node, mesh=scene.geometry[geometry], transform=T) return manager, objects
30.220506
77
0.551936
ff0e465a023ae21485d8f8630f5a9b2bf4de0ed6
175
py
Python
tests/example/reflexes/example_reflex.py
jefftriplett/django-sockpuppet
eedc7f0d4b95646991d8db569e5fca61d56149e2
[ "MIT" ]
null
null
null
tests/example/reflexes/example_reflex.py
jefftriplett/django-sockpuppet
eedc7f0d4b95646991d8db569e5fca61d56149e2
[ "MIT" ]
null
null
null
tests/example/reflexes/example_reflex.py
jefftriplett/django-sockpuppet
eedc7f0d4b95646991d8db569e5fca61d56149e2
[ "MIT" ]
null
null
null
from sockpuppet.reflex import Reflex class ExampleReflex(Reflex): def increment(self, step=1): self.session['count'] = int(self.element.dataset['count']) + step
25
73
0.702857
b40ecf2b9ecbf85e04341d9bc16eb50500aa55bd
27,642
py
Python
suncasa/pygsfit/gsutils.py
binchensolar/suncasa
55339715e791be9fc2fc555c4f4f6adf1b350b37
[ "BSD-2-Clause" ]
2
2018-02-12T09:34:23.000Z
2019-07-16T18:25:12.000Z
suncasa/pygsfit/gsutils.py
wulinhui1/suncasa-src
1f94aaabaf6a3911fa532648ec6676a221553436
[ "BSD-2-Clause" ]
26
2016-11-09T17:11:45.000Z
2021-08-20T13:41:50.000Z
suncasa/pygsfit/gsutils.py
wulinhui1/suncasa-src
1f94aaabaf6a3911fa532648ec6676a221553436
[ "BSD-2-Clause" ]
17
2016-10-27T18:35:46.000Z
2021-08-03T05:33:57.000Z
import numpy as np # import sys import math import os, sys, platform import astropy.units as u from sunpy import map as smap from astropy.coordinates import SkyCoord from suncasa.io import ndfits from . import gstools # initialization library - located either in the current directory or in the system path from suncasa.utils import mstools import lmfit from astropy.time import Time import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.colorbar as colorbar from suncasa.utils import mstools from suncasa.utils import qlookplot as ql from mpl_toolkits.axes_grid1 import make_axes_locatable from tqdm import tqdm from astropy.io import fits import numpy.ma as ma # name of the fast gyrosynchrotron codes shared library if platform.system() == 'Linux' or platform.system() == 'Darwin': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr.so') if platform.system() == 'Windows': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr64.dll') def kev2k(eng): return 11604525.00617 * eng def ff_emission(em, T=1.e7, Z=1., mu=1.e10): from astropy import constants as const import astropy.units as u T = T * u.k mu = mu * u.Hz esu = const.e.esu k_B = const.k_B.cgs m_e = const.m_e.cgs c = const.c.cgs bmax = (3 * k_B * T * u.k / m_e) ** 0.5 / 2.0 / np.pi / (mu * u.Hz) bmin = Z * esu ** 2 / 3. / k_B / T lnbb = np.log((bmax / bmin).value) ka_mu = 1. / mu ** 2 / T ** 1.5 * ( Z ** 2 * esu ** 6 / c / np.sqrt(2. * np.pi * (m_e * k_B) ** 3)) * np.pi ** 2 / 4.0 * lnbb # print(ka_mu, em) opc = ka_mu * em return T.value * (1 - np.exp(-opc.value)) def sfu2tb(freq, flux, area): # frequency in Hz # flux in sfu # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 Tb = flux * sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr) return Tb def tb2sfu(freq, tb, area): # frequency in Hz # brightness temperature in K # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 flux = tb / (sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr)) return flux def initspecplot(axes, cplts): errobjs = [] for cpltidx, cplt in enumerate(cplts): errobjs.append(axes.errorbar([], [], yerr=[], linestyle='', marker='o', mfc='none', mec=cplt, alpha=1.0)) axes.set_yscale("log") axes.set_xscale("log") axes.set_xlim([1, 20]) axes.set_ylim([0.1, 1000]) axes.set_xticks([1, 5, 10, 20]) axes.set_xticklabels([1, 5, 10, 20]) axes.set_xticks([1, 5, 10, 20]) axes.set_yticks([]) axes.set_yticks([0.01, 0.1, 1, 10, 100, 1000]) axes.set_ylabel('T$_b$ [MK]') axes.set_xlabel('Frequency [GHz]') x = np.linspace(1, 20, 10) for ll in [-1, 0, 1, 2, 3, 4]: y = 10. ** (-2 * np.log10(x) + ll) axes.plot(x, y, 'k--', alpha=0.1) # y2 = 10. ** (-4 * np.log10(x) + ll) # y3 = 10. ** (-8 * np.log10(x) + ll) # ax_eospec.plot(x, y, 'k--', x, y2, 'k:', x, y3, 'k-.', alpha=0.1) return errobjs def set_errorobj(xout, yout, errobj, yerr=None): eospec, dummy, (errbar_eospec,) = errobj eospec.set_data(xout, yout) if yerr is not None: yerr_top = yout + yerr yerr_bot = yout - yerr new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] errbar_eospec.set_segments(new_segments_y) def mwspec2min_1src(params, freqghz, tb=None, tb_err=None, arcsec2cm=0.725e8, showplt=False): # params are defined by lmfit.Paramters() ''' params: parameters defined by lmfit.Paramters() freqghz: frequencies in GHz ssz: pixel size in arcsec tb: reference brightness temperature in K tb_err: uncertainties of reference brightness temperature in K ''' from scipy import interpolate GET_MW = gstools.initGET_MW(libname) # load the library ssz = float(params['ssz'].value) # # source area in arcsec^2 depth = float(params['depth'].value) # total source depth in arcsec Bmag = float(params['Bmag'].value) # magnetic field strength in G Tth = float(params['Tth'].value) # thermal temperature in MK nth = float(params['nth'].value) # thermal density in 1e10 cm^{-3} nrlh = 10. ** float(params['lognrlh'].value) # total nonthermal density above 0.1 MeV delta = float(params['delta'].value) # powerlaw index theta = float(params['theta'].value) # viewing angle in degrees Emin = float(params['Emin'].value) # low energy cutoff of nonthermal electrons in MeV Emax = float(params['Emax'].value) # high energy cutoff of nonthermal electrons in MeV E_hi = 0.1 nrl = nrlh * (Emin ** (1. - delta) - Emax * (1. - delta)) / (E_hi ** (1. - delta) - Emax ** (1. - delta)) Nf = 100 # number of frequencies NSteps = 1 # number of nodes along the line-of-sight N_E = 15 # number of energy nodes N_mu = 15 # number of pitch-angle nodes Lparms = np.zeros(11, dtype='int32') # array of dimensions etc. Lparms[0] = NSteps Lparms[1] = Nf Lparms[2] = N_E Lparms[3] = N_mu Rparms = np.zeros(5, dtype='double') # array of global floating-point parameters Rparms[0] = ssz * arcsec2cm ** 2 # Area, cm^2 # Rparms[0] = 1e20 # area, cm^2 Rparms[1] = 1e9 # starting frequency to calculate spectrum, Hz Rparms[2] = 0.02 # logarithmic step in frequency Rparms[3] = 12 # f^C Rparms[4] = 12 # f^WH ParmLocal = np.zeros(24, dtype='double') # array of voxel parameters - for a single voxel ParmLocal[0] = depth * arcsec2cm / NSteps # voxel depth, cm ParmLocal[1] = Tth * 1e6 # T_0, K ParmLocal[2] = nth * 1e10 # n_0 - thermal electron density, cm^{-3} ParmLocal[3] = Bmag # B - magnetic field, G Parms = np.zeros((24, NSteps), dtype='double', order='F') # 2D array of input parameters - for multiple voxels for i in range(NSteps): Parms[:, i] = ParmLocal # most of the parameters are the same in all voxels # if NSteps > 1: # Parms[4, i] = 50.0 + 30.0 * i / (NSteps - 1) # the viewing angle varies from 50 to 80 degrees along the LOS # else: # Parms[4, i] = 50.0 # the viewing angle varies from 50 to 80 degrees along the LOS Parms[4, i] = theta # parameters of the electron distribution function n_b = nrl # n_b - nonthermal electron density, cm^{-3} mu_c = np.cos(np.pi * 70 / 180) # loss-cone boundary dmu_c = 0.2 # Delta_mu E_arr = np.logspace(np.log10(Emin), np.log10(Emax), N_E, dtype='double') # energy grid (logarithmically spaced) mu_arr = np.linspace(-1.0, 1.0, N_mu, dtype='double') # pitch-angle grid f0 = np.zeros((N_E, N_mu), dtype='double') # 2D distribution function array - for a single voxel # computing the distribution function (equivalent to PLW & GLC) A = n_b / (2.0 * np.pi) * (delta - 1.0) / (Emin ** (1.0 - delta) - Emax ** (1.0 - delta)) B = 0.5 / (mu_c + dmu_c * np.sqrt(np.pi) / 2 * math.erf((1.0 - mu_c) / dmu_c)) for i in range(N_E): for j in range(N_mu): amu = abs(mu_arr[j]) f0[i, j] = A * B * E_arr[i] ** (-delta) * (1.0 if amu < mu_c else np.exp(-((amu - mu_c) / dmu_c) ** 2)) f_arr = np.zeros((N_E, N_mu, NSteps), dtype='double', order='F') # 3D distribution function array - for multiple voxels for k in range(NSteps): f_arr[:, :, k] = f0 # electron distribution function is the same in all voxels RL = np.zeros((7, Nf), dtype='double', order='F') # input/output array # calculating the emission for array distribution (array -> on) res = GET_MW(Lparms, Rparms, Parms, E_arr, mu_arr, f_arr, RL) if res: # retrieving the results f = RL[0] I_L = RL[5] I_R = RL[6] if showplt: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.plot(f, I_L + I_R) ax.set_xscale('log') ax.set_yscale('log') ax.set_title('Total intensity (array)') ax.set_xlabel('Frequency, GHz') ax.set_ylabel('Intensity, sfu') flx_model = I_L + I_R flx_model = np.nan_to_num(flx_model) + 1e-11 logf = np.log10(f) logflx_model = np.log10(flx_model) logfreqghz = np.log10(freqghz) interpfunc = interpolate.interp1d(logf, logflx_model, kind='linear') logmflx = interpfunc(logfreqghz) mflx = 10. ** logmflx mtb = sfu2tb(np.array(freqghz) * 1.e9, mflx, ssz) else: print("Calculation error!") if tb is None: return mtb if tb_err is None: # return mTb - Tb return mtb - tb # wt = 1./flx_err # wt = 1./(Tb_err/Tb/np.log(10.)) # residual = np.abs((logmTb - np.log10(Tb))) * wt # residual = np.abs((mflx - flx)) * wt residual = (mtb - tb) / tb_err return residual class RegionSelector: # def set_errorobj(self, xout, yout, errobj, yerr): # eospec, dummy, (errbar_eospec,) = errobj # eospec.set_data(xout, yout) # if yerr is not None: # yerr_top = yout + yerr # yerr_bot = yout - yerr # new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] # errbar_eospec.set_segments(new_segments_y) # return 1 def subdata(self, xs, ys, rfile): rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(rfile) ny, nx = rmap.data.shape tr_coord = rmap.top_right_coord bl_coord = rmap.bottom_left_coord x0 = bl_coord.Tx.to(u.arcsec).value y0 = bl_coord.Ty.to(u.arcsec).value x1 = tr_coord.Tx.to(u.arcsec).value y1 = tr_coord.Ty.to(u.arcsec).value dx = rmap.scale.axis1.to(u.arcsec / u.pix).value dy = rmap.scale.axis2.to(u.arcsec / u.pix).value mapx, mapy = np.linspace(x0, x1, nx) - dx / 2.0, np.linspace(y0, y1, ny) - dy / 2.0 xsmin = np.nanmin(xs) xsmax = np.nanmax(xs) ysmin = np.nanmin(ys) ysmax = np.nanmax(ys) if np.abs(xsmax - xsmin) < dx: xsmax = xsmin + dx if np.abs(ysmax - ysmin) < dy: ysmax = ysmin + dy xmask = np.logical_and(mapx >= xsmin, mapx <= xsmax) nxnew = np.count_nonzero(xmask) ymask = np.logical_and(mapy >= ysmin, mapy <= ysmax) nynew = np.count_nonzero(ymask) xmask = np.tile(xmask, ny).reshape(ny, nx) ymask = np.tile(ymask, nx).reshape(nx, ny).transpose() mask = xmask & ymask # print(np.count_nonzero(mask)) self.npix = np.count_nonzero(mask) self.area = self.npix * dx * dy data = rdata[:, mask] # print(rdata[:, :, mask]) # print(mask.shape, rdata.shape, data.shape) data = np.squeeze(data) # print(data.shape) return data def __init__(self, clkpnts, boxlines, eofiles, errobjs, cfreqs=None, rms=None, eofile_ref=None, errobj_ref=None, wTmap=None, outspec_ff=None, scatter_gsfit=None, get_peak=False, get_sum=False): self.boxline = [] self.clkpnt = [] self.xs = list(clkpnts[0].get_xdata()) self.ys = list(clkpnts[0].get_ydata()) self.npix = None self.area = None self.xout = [] self.yout = [] self.xouterr = [] self.youterr = [] for errobj in errobjs: eospec, dummy, (errbar_eospec,) = errobj self.xout.append(eospec.get_xdata()) self.yout.append(eospec.get_ydata()) self.errobjs = errobjs self.errobj_ref = errobj_ref self.outspec_ff = outspec_ff self.scatter_gsfit = scatter_gsfit self.cfreqs = cfreqs self.rms = rms self.eofiles = eofiles self.eofile_ref = eofile_ref self.wTmap = wTmap self.wT = None self.em = None self.get_peak = get_peak self.get_sum = get_sum self.tps = [] self.params = None for idx, s in enumerate(clkpnts): self.boxline.append(boxlines[idx]) self.clkpnt.append(s) self.cid = s.figure.canvas.mpl_connect('button_press_event', self) def __call__(self, event): axes = [clkpnt.axes for clkpnt in self.clkpnt] if self.clkpnt[0].figure.canvas.toolbar.mode == '': if event.inaxes not in axes: return nxs = len(self.xs) if event.button == 1: if nxs < 2: self.xs.append(event.xdata) self.ys.append(event.ydata) else: self.xs = [event.xdata] self.ys = [event.ydata] elif event.button == 3: if len(self.xs) > 0: self.xs.pop() self.ys.pop() self.get_flux() def get_flux(self): if len(self.xs) > 0: xs = np.array(self.xs, dtype=np.float64) ys = np.array(self.ys, dtype=np.float64) for clkpnt in self.clkpnt: clkpnt.set_data(xs, ys) else: for clkpnt in self.clkpnt: clkpnt.set_data([], []) nxs = len(self.xs) if nxs <= 1: for line in self.boxline: line.set_data([], []) elif nxs == 2: datas = [] # eofile = self.eofiles[0] # rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofile) # data = self.subdata(xs, ys, eofile) # datas.append(data) for tidx, eofile in enumerate(self.eofiles): data = self.subdata(xs, ys, eofile) datas.append(data) if self.eofile_ref is not None: data_ref = self.subdata(xs, ys, self.eofile_ref) if self.wTmap is not None: datawT = self.subdata(xs, ys, self.wTmap) if self.get_peak: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmax(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: youts_outspec_ref = np.nanmax(data_ref[0, dd, :, :]) / 1e6 else: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmean(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: if data.ndim > 1: youts_outspec_ref = np.nanmean(data_ref, axis=-1) / 1e6 else: youts_outspec_ref = data_ref / 1e6 self.tps = [] for data in datas: if data.ndim > 1: self.tps.append(np.nansum(data, axis=-1) / 1e6) else: self.tps.append(data / 1e6) xout = self.cfreqs for tidx, errobj in enumerate(self.errobjs): set_errorobj(xout, youts_outspec[tidx], errobj, self.rms) if self.eofile_ref is not None: set_errorobj(xout, youts_outspec_ref, self.errobj_ref, self.rms) if self.wTmap is not None: print(datawT.shape) wT = np.nanmean(datawT[..., 1]) * 1e6 em = np.nanmean(datawT[..., 0]) arcsec2cm = (self.wTmap[0].rsun_meters / self.wTmap[0].rsun_obs).to(u.cm / u.arcsec).value # nele = 4.0e10 # depth = em / nele ** 2 / arcsec2cm # print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, depth: {:.1f} arcsec if nele is {:.2e} cm-3'.format(wT / 1e6, em, depth, nele)) depth = 20. ## arcsec nele = np.sqrt(em / (depth * arcsec2cm)) print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, nele: {:.2e} cm-3 if depth is {:.1f} arcsec'.format( wT / 1e6, em, nele, depth)) self.wT = wT self.em = em yout_ff = np.array([ff_emission(em, T=wT, Z=1., mu=ll) for ll in xout * 1e9]) / 1.e6 self.outspec_ff.set_data(xout, yout_ff) self.errobjs[0][0].figure.canvas.draw_idle() for line in self.boxline: line.set_data([xs[0], xs[1], xs[1], xs[0], xs[0]], [ys[0], ys[0], ys[1], ys[1], ys[0]]) clkpnt.figure.canvas.draw_idle() class GStool: # def get_showaia(self): # return self._showaia # # def set_showaia(self, value): # self._showaia = value # # showaia = property(fget=get_showaia, fset=set_showaia, doc="`Boolean`-like: Display AIA image or not") def __init__(self, eofiles, aiafile=None, xycen=None, fov=None, freqghz_bound=[-1, 100], calpha=0.5, clevels=np.array([0.3, 1.0]), opencontour=None): self.aiafile = aiafile self.eofiles = eofiles self.xycen = xycen self.fov = fov self.calpha = calpha self.clevels = clevels self.freqghz_bound = freqghz_bound self.opencontour = opencontour self._showaia = False rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofiles[0]) self.bdinfo = bdinfo = ndfits.get_bdinfo(rfreqs, rdelts) self.cfreqs = cfreqs = bdinfo['cfreqs'] self.cfreqs_all = cfreqs_all = bdinfo['cfreqs_all'] self.freq_dist = lambda fq: (fq - cfreqs_all[0]) / (cfreqs_all[-1] - cfreqs_all[0]) self.ntim = ntim = len(eofiles) self.xlim = xlim = xycen[0] + np.array([-1, 1]) * 0.5 * fov[0] self.ylim = ylim = xycen[1] + np.array([-1, 1]) * 0.5 * fov[1] nspw = len(rfreqs) eodate = Time(rmap.date.mjd + rmap.exposure_time.value / 2. / 24 / 3600, format='mjd') ny, nx = rmap.data.shape x0, x1 = (np.array([1, rmap.meta['NAXIS1']]) - rmap.meta['CRPIX1']) * rmap.meta['CDELT1'] + \ rmap.meta['CRVAL1'] y0, y1 = (np.array([1, rmap.meta['NAXIS2']]) - rmap.meta['CRPIX2']) * rmap.meta['CDELT2'] + \ rmap.meta['CRVAL2'] dx = rmap.meta['CDELT1'] dy = rmap.meta['CDELT2'] mapx, mapy = np.linspace(x0, x1, nx), np.linspace(y0, y1, ny) fig = plt.figure(figsize=(15, 6)) self.fig = fig grids = fig.add_gridspec(ncols=3, nrows=1, width_ratios=[1, 1, 0.6]) self.grids = grids axs = [] axs.append(fig.add_subplot(grids[0, 0])) axs.append(fig.add_subplot(grids[0, 1], sharex=axs[-1], sharey=axs[-1])) axs.append(fig.add_subplot(grids[0, 2])) if aiafile: if os.path.exists(aiafile): try: aiacmap = plt.get_cmap('gray_r') aiamap = smap.Map(aiafile) ax = axs[0] aiamap.plot(axes=ax, cmap=aiacmap) ax = axs[1] aiamap.plot(axes=ax, cmap=aiacmap) self._showaia = True except: self._showaia = False if self._showaia: if self.opencontour is None: self.opencontour = False else: if self.opencontour is None: self.opencontour = True ## Plot EOVSA images as filled contour on top of the AIA image icmap = plt.get_cmap('RdYlBu') cts = [] ## color map for spectra from the image series tcmap = plt.get_cmap('turbo') for s, sp in enumerate(rfreqs): data = rdata[s, ...] clvls = clevels * np.nanmax(data) rcmap = [icmap(self.freq_dist(self.cfreqs[s]))] * len(clvls) if self.opencontour: cts.append(ax.contour(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) else: cts.append(ax.contourf(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) for ax in axs[:2]: ax.set_xlabel('Solar-X [arcsec]') ax.set_ylabel('Solar-y [arcsec]') ax.set_title('') ax.text(0.02, 0.01, ' '.join(['AIA {:.0f} Å'.format(aiamap.wavelength.value), aiamap.date.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) ax.text(0.02, 0.05, ' '.join(['EOVSA ', eodate.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) divider = make_axes_locatable(axs[0]) cax = divider.append_axes("right", size="8%", pad=0.08) cax.set_visible(False) divider = make_axes_locatable(axs[1]) cax = divider.append_axes("right", size="8%", pad=0.08) ticks, bounds, vmax, vmin, freqmask = ql.get_colorbar_params(bdinfo) cb = colorbar.ColorbarBase(cax, norm=colors.Normalize(vmin=vmin, vmax=vmax), cmap=icmap, orientation='vertical', boundaries=bounds, spacing='proportional', ticks=ticks, format='%4.1f', alpha=calpha) for fbd_lo, fbd_hi in freqmask: if fbd_hi is not None: cax.axhspan(fbd_lo, fbd_hi, hatch='//', edgecolor='k', facecolor='#BBBBBB') plt.text(0.5, 1.05, 'MW', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') plt.text(0.5, 1.01, '[GHz]', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') cax.xaxis.set_visible(False) cax.tick_params(axis="y", pad=-20., length=0, colors='k', labelsize=7) cax.axhline(vmin, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.axhline(vmax, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.text(1.25, 0.0, '{:.1f}'.format(vmin), fontsize=9, transform=cax.transAxes, va='center', ha='left') cax.text(1.25, 1.0, '{:.1f}'.format(vmax), fontsize=9, transform=cax.transAxes, va='center', ha='left') boxlines = [] clkpnts = [] for idx, ax in enumerate(axs[:2]): if idx == 0: c = 'g' elif idx == 1: c = 'b' else: c = 'k' line, = ax.plot([], [], '-', c=c, alpha=1.0) # empty line boxlines.append(line) clkpnt, = ax.plot([], [], '+', c='white', alpha=0.7) # empty line clkpnts.append(clkpnt) if ntim < 2: cplts = ['k'] else: cplts = tcmap(np.linspace(0, 1, ntim)) self.cplts = cplts self.ax_eospec = axs[-1] errobjs = initspecplot(self.ax_eospec, cplts) grids.tight_layout(fig) self.region = RegionSelector(clkpnts, boxlines, eofiles, errobjs, cfreqs=cfreqs, rms=None, wTmap=None) self.scatter_eospecs_fit = [] self.scatter_eospecs = [] def set_params(self, params): ssz = self.region.area # source area in arcsec^2 params.add('ssz', value=ssz, vary=False) # pixel size in arcsec^2 self.params = params def plot_components(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.0 tb_err[:] = 1.e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) def fit(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.1 # tb_err[:] = 0.2e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) mini = lmfit.Minimizer(mwspec2min_1src, self.params, fcn_args=(freqghz_ma.compressed(),), fcn_kws={'tb': tb_ma.compressed(), 'tb_err': tb_err_ma.compressed()}, nan_policy='omit') method = 'nelder' # # method = 'differential_evolution' mi = mini.minimize(method=method) print(method + ' minimization results') print(lmfit.fit_report(mi.params)) tb_fit = mwspec2min_1src(mi.params, freqghz) if len(self.scatter_eospecs) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs.append(self.ax_eospec.plot(freqghz, tb_fit / 1.e6, linestyle='-', c=cplt)) else: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs[ti][0].set_data(freqghz, tb_fit / 1.e6)
40.769912
145
0.552529
66eed3078e25f4e55856ae2168ea3116d3ba6fee
937
py
Python
stu_mgt/urls.py
lennon624/stu_mgt
c0118f9adede46db23b6a9b5329004343023f1a3
[ "MIT" ]
null
null
null
stu_mgt/urls.py
lennon624/stu_mgt
c0118f9adede46db23b6a9b5329004343023f1a3
[ "MIT" ]
null
null
null
stu_mgt/urls.py
lennon624/stu_mgt
c0118f9adede46db23b6a9b5329004343023f1a3
[ "MIT" ]
null
null
null
"""stu_mgt URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include import xadmin xadmin.autodiscover() urlpatterns = [ # path('admin/', admin.site.urls), path('xadmin/', xadmin.site.urls), path('account/', include('account.urls')), path('acheve_mgt/', include('acheve_mgt.urls')), ]
32.310345
77
0.700107
b0540c94140ab0594e675572743463d8f1547fad
3,672
py
Python
video_game_geek/middlewares.py
albert-marrero/video-game-web-scraper
144ae2a4ff70d892ca6bada7d4550ad0f7ae1210
[ "MIT" ]
1
2022-01-12T21:33:25.000Z
2022-01-12T21:33:25.000Z
video_game_geek/middlewares.py
albert-marrero/video-game-web-scraper
144ae2a4ff70d892ca6bada7d4550ad0f7ae1210
[ "MIT" ]
null
null
null
video_game_geek/middlewares.py
albert-marrero/video-game-web-scraper
144ae2a4ff70d892ca6bada7d4550ad0f7ae1210
[ "MIT" ]
1
2022-01-30T04:22:53.000Z
2022-01-30T04:22:53.000Z
# Define here the models for your spider middleware # # See documentation in: # https://docs.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals # useful for handling different item types with a single interface from itemadapter import is_item, ItemAdapter class VideoGameWebScraperSpiderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, or item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Request or item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class VideoGameWebScraperDownloaderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
35.307692
78
0.676471
fbc45345b6d842c680f57f72f6da6d79305c1f2b
268
py
Python
src/api/pdi/application/connection/DeleteConnection/DeleteConnectionCommand.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
1
2020-12-18T21:37:28.000Z
2020-12-18T21:37:28.000Z
src/api/pdi/application/connection/DeleteConnection/DeleteConnectionCommand.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
null
null
null
src/api/pdi/application/connection/DeleteConnection/DeleteConnectionCommand.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
1
2020-12-18T21:37:31.000Z
2020-12-18T21:37:31.000Z
from dataclasses import dataclass from pdip.cqrs import ICommand from pdi.application.connection.DeleteConnection.DeleteConnectionRequest import DeleteConnectionRequest @dataclass class DeleteConnectionCommand(ICommand): request: DeleteConnectionRequest = None
26.8
103
0.86194
f57d0970e3fc31a0a346740afba057b17cbf5748
610
py
Python
AutotestFramework/core/tools/MemcacheTool.py
yangjourney/sosotest
2e88099a829749910ca325253c9b1a2e368d21a0
[ "MIT" ]
422
2019-08-18T05:04:20.000Z
2022-03-31T06:49:19.000Z
AutotestFramework/core/tools/MemcacheTool.py
LinSongJian1985/sosotest
091863dee531b5726650bb63efd6f169267cbeb4
[ "MIT" ]
10
2019-10-24T09:55:38.000Z
2021-09-29T17:28:43.000Z
AutotestFramework/core/tools/MemcacheTool.py
LinSongJian1985/sosotest
091863dee531b5726650bb63efd6f169267cbeb4
[ "MIT" ]
202
2019-08-18T05:04:27.000Z
2022-03-30T05:57:18.000Z
from pymemcache.client.base import Client class MemcacheTool(object): def __init__(self,host,port): self.client = Client((host, port)) def set(self,key,value): self.client.set(key, value) def get(self,key): return self.client.get(key) if __name__ == '__main__': rt = MemcacheTool("192.168.0.75",11211) rt.set("testabc","abc") print(rt.get("testabc")) rt = MemcacheTool("192.168.0.75",11212) rt.set("testabc","abc2") print(rt.get("testabc")) rt = MemcacheTool("192.168.0.75",11213) rt.set("testabc","abc3") print(rt.get("testabc"))
23.461538
43
0.622951
bbc48cdde7037c4d9a2966c475a43331c1206ea5
9,988
py
Python
mlp.py
AliMakiGmail/SFD-CNN-TL
96890a086cb170334f761a825a5fdcdc51444696
[ "MIT" ]
27
2018-09-12T12:00:44.000Z
2022-03-20T07:33:01.000Z
mlp.py
AliMakiGmail/SFD-CNN-TL
96890a086cb170334f761a825a5fdcdc51444696
[ "MIT" ]
2
2020-01-13T16:35:50.000Z
2020-09-07T07:10:12.000Z
mlp.py
AliMakiGmail/SFD-CNN-TL
96890a086cb170334f761a825a5fdcdc51444696
[ "MIT" ]
16
2018-08-11T14:41:09.000Z
2021-10-31T13:24:32.000Z
#!/usr/bin/env python # Copyright 2019 Augusto Cunha and Axelle Pochet # # Permission is hereby granted, free of charge, to any person obtaining a copy of this code and # associated documentation files, to deal in the code without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the code, and to permit persons to whom the code is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the code. # # THE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE CODE OR THE USE OR OTHER DEALINGS IN THE CODE. __license__ = "MIT" __author__ = "Augusto Cunha, Axelle Pochet" __email__ = "[email protected], [email protected]" __credits__ = ["Augusto Cunha", "Axelle Pochet", "Helio Lopes", "Marcelo Gattass"] ################# all imports ################# from __future__ import print_function import numpy, os, time import pandas as pd from tensorflow import set_random_seed numpy.random.seed(1337) set_random_seed(1337) from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.models import model_from_json from keras.utils import np_utils from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split import metrics def save_model(model, filename): model_json = model.to_json() with open("output/" + filename + ".json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("output/" + filename + "_weights.h5") def load_model(modelJsonPath, modelWeightsPath) : ################# load base model ################# jsonFile = open(modelJsonPath, 'r') loadedModelJson = jsonFile.read() jsonFile.close() base_model = model_from_json(loadedModelJson) base_model.load_weights(modelWeightsPath) # remove last layers for i in range (8): base_model.layers.pop() base_model.outputs = [base_model.layers[-1].output] # freeze layers for layer in base_model.layers[:7]: layer.trainable = False return base_model def data(X_train, Y_train, numberOfClasses = 2): Y_train = np_utils.to_categorical(Y_train, numberOfClasses) x_train, x_test, y_train, y_test = train_test_split(X_train, Y_train, test_size=0.2, shuffle=True, random_state=1337) return x_train, y_train, x_test, y_test def dataCV(trainFaultDirectory='dataset/fault/',trainNonFaultDirectory='dataset/nonfault/', modelJsonPath = 'base_model/model.json', modelWeightsPath = 'base_model/model.h5'): trainFaultURLList = os.listdir(trainFaultDirectory) trainNonFaultURLList = os.listdir(trainNonFaultDirectory) # read and save trainImageDataList = [] trainClassesList = [] for imageURL in trainFaultURLList: csv_file = trainFaultDirectory + imageURL df = pd.read_csv(csv_file, delimiter=' ', header = None) trainImageDataList.append(df.values) trainClassesList.append(1) for imageURL in trainNonFaultURLList: csv_file = trainNonFaultDirectory + imageURL df = pd.read_csv(csv_file, delimiter=' ', header = None) trainImageDataList.append(df.values) trainClassesList.append(0) # sparsify labels Y = trainClassesList # pass input as numpy arrays imageRows = 45 imageCollumns = 45 imageChannels = 1 trainSamplesList = numpy.array( trainImageDataList) trainSamplesList = trainSamplesList.reshape( trainSamplesList.shape[0], imageRows, imageCollumns, imageChannels ) trainSamplesList = trainSamplesList.astype( 'float32' ) X = trainSamplesList ## extract features as new input X = load_model(modelJsonPath, modelWeightsPath).predict(X) x_train = X y_train = Y x_test = [] y_test = [] return x_train, y_train, x_test, y_test def create_model(x_train, y_train, x_test, y_test, numberOfClasses=2, MLP1=100, MLP2=200, numberOfEpochs = 20, batchSize = 30, save=True, baseName='femlpModel'): """ Model providing function: Create Keras model with MLP as classifier, compile test and generate metrics. """ ################# define MLP ################# # create my MLP top_model = Sequential() top_model.add(Flatten(input_shape=(8, 8, 50))) # shape of last layer or my_model. Couldn´t get it automatically properly using my_model.output_shape top_model.add(Dense(MLP1)) top_model.add(Activation('relu', name = 'act_1')) # set name, otherwise duplicate names appear top_model.add(Dropout(0.5)) top_model.add(Dense(MLP2)) top_model.add(Activation('relu', name = 'act_2')) top_model.add(Dense(numberOfClasses)) top_model.add(Activation('softmax', name = 'softmax')) # Compile top_model.compile( loss='binary_crossentropy', optimizer= 'sgd', metrics=['accuracy'] ) # Train top_model.fit(x_train, y_train, batch_size = batchSize, epochs = numberOfEpochs, verbose = 0, validation_data=(x_test, y_test)) # Classify classesPredictionList = top_model.predict_classes(x_test, verbose=0) # 0 or 1 classesProbaPredictionList = top_model.predict_proba(x_test) # probability sensitivity, specificity, accuracy, precision, recall, F1_score, auc = metrics.generate_metrics(classesPredictionList,classesProbaPredictionList,y_test,verbose=False) # Save Model if(save): save_model(top_model, baseName) print("Accuracy: {:.4f}".format(accuracy)) print("Sensitivity: {:.4f}".format(sensitivity)) print("Specificity: {:.4f}".format(specificity)) print("F1 Score: {:.4f}".format(F1_score)) print("AUC: {:.4f}".format(auc)) def create_modelCV(x_train, y_train, x_test, y_test, numFolds= 5, numberOfClasses=2, MLP1=100, MLP2=200, numberOfEpochs = 20, batchSize = 30): """ Model providing function: Create Keras model with SVM as classifier, compile test and generate metrics. """ ### Cross-validation skf = StratifiedKFold(n_splits=numFolds, shuffle=True, random_state=1337) X = x_train Y = y_train sensitivitys, specificitys, accuracys, precisions, recalls, F1_scores, aucs = [[],[],[],[],[],[],[]] #kpbar = tqdm(total=numFolds, desc="Kfold", leave=False) y = np_utils.to_categorical(Y, 2) Y = numpy.array(Y) for train_index, test_index in skf.split(X, Y): ################ define MLP ################# # create my MLP top_model = Sequential() top_model.add(Flatten(input_shape=(8, 8, 50))) # shape of last layer or my_model. Couldn´t get it automatically properly using my_model.output_shape top_model.add(Dense(MLP1)) top_model.add(Activation('relu', name = 'act_1')) # set name, otherwise duplicate names appear top_model.add(Dropout(0.5)) top_model.add(Dense(MLP2)) top_model.add(Activation('relu', name = 'act_2')) top_model.add(Dense(numberOfClasses)) top_model.add(Activation('softmax', name = 'softmax')) # Compile top_model.compile( loss='binary_crossentropy', optimizer= 'sgd', metrics=['accuracy'] ) # Train top_model.fit(X[train_index], y[train_index], batch_size = batchSize, epochs = numberOfEpochs, verbose = 0, validation_data=(X[test_index], y[test_index])) # Classify classesPredictionList = top_model.predict_classes(X[test_index], verbose=0) # 0 or 1 classesProbaPredictionList = top_model.predict_proba(X[test_index]) # probability sensitivity, specificity, accuracy, precision, recall, F1_score, auc = metrics.generate_metrics(classesPredictionList,classesProbaPredictionList,y[test_index],verbose=False) sensitivitys.append(sensitivity) specificitys.append(specificity) accuracys.append(accuracy) precisions.append(precision) recalls.append(recall) F1_scores.append(F1_score) aucs.append(auc) sensitivitys = numpy.array(sensitivitys) specificitys = numpy.array(specificitys) accuracys = numpy.array(accuracys) precisions = numpy.array(precisions) recalls = numpy.array(recalls) F1_scores = numpy.array(F1_scores) aucs = numpy.array(aucs) print("Mean Accuracy: {:.4f} (+/- {:.4f})".format(accuracys.mean(), accuracys.std())) print("Mean Sensitivity: {:.4f} (+/- {:.4f})".format(sensitivitys.mean(), sensitivitys.std())) print("Mean Specificity: {:.4f} (+/- {:.4f})".format(specificitys.mean(), specificitys.std())) print("Mean F1 Score: {:.4f} (+/- {:.4f})".format(F1_scores.mean(), F1_scores.std())) print("Mean AUC: {:.4f} (+/- {:.4f})".format(aucs.mean(), aucs.std())) if __name__ == '__main__': start_time = time.time() print("Loading dataset...") X_train, Y_train, X_test, Y_test = dataCV() x_train, y_train, x_test, y_test = data(X_train, Y_train) print("Training...") create_model(x_train, y_train, x_test, y_test, MLP1=100, MLP2=200, numberOfEpochs = 20, save=True, baseName='femlpModel') print("Training with cross validation...") create_modelCV(X_train, Y_train, X_test, Y_test, numFolds=5, MLP1=100, MLP2=200, numberOfEpochs = 20) print("--- {:.1f} seconds ---".format(time.time() - start_time))
43.426087
181
0.680817
6a3c5c42a8619e69dc51d333098ea316d8a51da3
1,635
py
Python
FlowerClassification.py
Akuma47/Iris-Classification
659cc52bc04dc0cd7088e37d7d1e7fa057e3f603
[ "MIT" ]
null
null
null
FlowerClassification.py
Akuma47/Iris-Classification
659cc52bc04dc0cd7088e37d7d1e7fa057e3f603
[ "MIT" ]
null
null
null
FlowerClassification.py
Akuma47/Iris-Classification
659cc52bc04dc0cd7088e37d7d1e7fa057e3f603
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import math dataset = pd.read_csv('iris.data') irisData = [] labels = [] for i in range(100): x1 = [dataset['x1'][i],dataset['x2'][i],dataset['x3'][i],dataset['x4'][i]] irisData.append(x1) if dataset['class'][i] == 'Iris-setosa': labels.append(0) if dataset['class'][i] == 'Iris-versicolor': labels.append(0.5) # if dataset['class'][i] == 'Iris-virginica': # labels.append(1) epochs = 50 lr = 0.01 w1 = 0.1 w2 = 0.1 w3 = 0.1 w4 = 0.1 loss = 0 for h in range(epochs): for i in range(len(irisData)): x1 = irisData[i][0] x2 = irisData[i][1] x3 = irisData[i][2] x4 = irisData[i][3] y = labels[i] y_hat = (x1* w1) + (x2 * w2) + (x3 * w3) + (x4 * w4) sig = 1 / (1+np.exp(-y_hat)) loss += - (y*math.log10(sig) + (1-y)*math.log10(1-sig)) loss = loss/len(irisData) # Update weights w1 = w1 - (loss * lr * y_hat) w2 = w2 - (loss * lr) w3 = w3 - (loss * lr * y_hat) w4 = w4 - (loss * lr * y_hat) while True: print('') x1 = float(input('x1> ')) x2 = float(input('x2> ')) x3 = float(input('x3> ')) x4 = float(input('x4> ')) res = (x1 * w1) + (x2 * w2) + (x3 * w3) + (x4 * w4) sig = 1 / (1+np.exp(-res)) if sig < 0.5: print('Iris Setosa') if sig > 0.5: print('Versicolar') # if sig > 0.6: # print('Virginica') print(sig)
15.721154
79
0.448318
7a58f8304e5be686b7b945a4784c4a2db50efdf2
2,809
py
Python
test/20200920_fungar_cut_volume.py
CITA-cph/deep-sight
9c60183a5bd1f3b6b930cdba8632c33f38769c0b
[ "Apache-2.0" ]
null
null
null
test/20200920_fungar_cut_volume.py
CITA-cph/deep-sight
9c60183a5bd1f3b6b930cdba8632c33f38769c0b
[ "Apache-2.0" ]
null
null
null
test/20200920_fungar_cut_volume.py
CITA-cph/deep-sight
9c60183a5bd1f3b6b930cdba8632c33f38769c0b
[ "Apache-2.0" ]
1
2021-12-05T21:59:49.000Z
2021-12-05T21:59:49.000Z
''' Copyright 2020 CITA Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. 20200920_fungar_cut_volume.py This script shows how to load a volume from images and how to cut it with a cutter. It also shows how to implement a button. Author: Sebastian Gatz ''' import numpy as np from vedo import * from vedo.pyplot import histogram import os import glob import cv2 import pyvista as pv DEEPSIGHT_DIR = os.getenv('DEEPSIGHT_DIR') def main(): all_loaded_images = [] x_scale = 2 y_scale = 1 z_scale = 1 res = 2 #read every nth pixel in x,y,z #set path all_images = "C:/Users/sgat/OneDrive - KADK/03_CITA/59_DataViz/03_data/all/" os.chdir(all_images) #load all images types = ('*.gif', '*.png', '*.jpg', "*bmp", "*tif") files = [] for f in types: files.extend(glob.glob(f)) print (len(files)) #create image stack img_stack = 0 for i in range(0,len(files),res): print ("img loaded: ", i) img = cv2.imread(files[i],0) img = cv2.resize(img, (0,0), fx=1/res, fy=1/res) if i == 0: img.fill(0) img_stack = img else: img_stack = np.dstack((img_stack,img)) img = cv2.imread(files[0],0) img = cv2.resize(img, (0,0), fx=1/res, fy=1/res) img.fill(0) img_stack = np.dstack((img_stack,img)) print ("image stack created") #create volume vol = Volume(img_stack, spacing=(x_scale,y_scale,z_scale), mapper="smart", mode=1, alpha= [0.0, 0.0, 0.5, 0.7, 1], c= "jet") vp = Plotter(N=2, axes=True, bg="black", size="fullscreen") #(1000,1000)) vp.show("Voxel Crop", axes=0, at=0, viewup="y") def buttonfunc(): vp.close() bu.switch() bu = vp.addButton( buttonfunc, pos=(0.5, 0.05), # x,y fraction from bottom left corner states=["done"], c=["black"], bc=["w"], # colors of states font="courier", # arial, courier, times size=25, bold=False, italic=False, ) vp.show(vol, "Voxel Render", axes=1, at=1) vp.addCutterTool(vol) vp.show(interactive=True) """ print ("nice") vp = Plotter(N=1, axes=True, bg="black", size="fullscreen") vp.show("Voxel Crop", axes=0, at=0) """ if __name__ == "__main__": main()
24.215517
128
0.617658
23d69c71d80abb4b94fa9d383696e979417fa391
5,364
py
Python
docker/pythonpath_dev/superset_config.py
ayuanty/superset
132a8ef2cb55fa6692ea31d5c278f102d6c2886b
[ "Apache-2.0" ]
null
null
null
docker/pythonpath_dev/superset_config.py
ayuanty/superset
132a8ef2cb55fa6692ea31d5c278f102d6c2886b
[ "Apache-2.0" ]
null
null
null
docker/pythonpath_dev/superset_config.py
ayuanty/superset
132a8ef2cb55fa6692ea31d5c278f102d6c2886b
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # This file is included in the final Docker image and SHOULD be overridden when # deploying the image to prod. Settings configured here are intended for use in local # development environments. Also note that superset_config_docker.py is imported # as a final step as a means to override "defaults" configured here # import logging import os from datetime import timedelta from cachelib.file import FileSystemCache from celery.schedules import crontab from superset.typing import CacheConfig logger = logging.getLogger() def get_env_variable(var_name, default=None): """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = "The environment variable {} was missing, abort...".format( var_name ) raise EnvironmentError(error_msg) DATABASE_DIALECT = get_env_variable("DATABASE_DIALECT") DATABASE_USER = get_env_variable("DATABASE_USER") DATABASE_PASSWORD = get_env_variable("DATABASE_PASSWORD") DATABASE_HOST = get_env_variable("DATABASE_HOST") DATABASE_PORT = get_env_variable("DATABASE_PORT") DATABASE_DB = get_env_variable("DATABASE_DB") # The SQLAlchemy connection string. SQLALCHEMY_DATABASE_URI = "%s://%s:%s@%s:%s/%s" % ( DATABASE_DIALECT, DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST, DATABASE_PORT, DATABASE_DB, ) REDIS_HOST = get_env_variable("REDIS_HOST") REDIS_PORT = get_env_variable("REDIS_PORT") REDIS_CELERY_DB = get_env_variable("REDIS_CELERY_DB", 0) REDIS_RESULTS_DB = get_env_variable("REDIS_RESULTS_DB", 1) RESULTS_BACKEND = FileSystemCache("/app/superset_home/sqllab") class CeleryConfig(object): BROKER_URL = f"redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_CELERY_DB}" CELERY_IMPORTS = ("superset.sql_lab", "superset.tasks", "superset.tasks.thumbnails") CELERY_RESULT_BACKEND = f"redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_RESULTS_DB}" CELERYD_PREFETCH_MULTIPLIER = 10 CELERY_ACKS_LATE = True CELERYBEAT_SCHEDULE = { "reports.scheduler": { "task": "reports.scheduler", "schedule": crontab(minute="*", hour="*"), }, "reports.prune_log": { "task": "reports.prune_log", "schedule": crontab(minute=10, hour=0), }, } CELERY_CONFIG = CeleryConfig SUPERSET_HOST = get_env_variable("SUPERSET_HOST") SUPERSET_PORT = get_env_variable("SUPERSET_PORT") ENABLE_PROXY_FIX = (get_env_variable("ENABLE_PROXY_FIX","False") == "True") FEATURE_FLAGS = {"ALERT_REPORTS": True, "THUMBNAILS":True, "DASHBOARD_NATIVE_FILTERS":True, "DYNAMIC_PLUGINS":True} ALERT_REPORTS_NOTIFICATION_DRY_RUN = False WEBDRIVER_BASEURL = f"http://{SUPERSET_HOST}:{SUPERSET_PORT}/" # The base URL for the email report hyperlinks. WEBDRIVER_BASEURL_USER_FRIENDLY = get_env_variable("WEBDRIVER_BASEURL_USER_FRIENDLY",WEBDRIVER_BASEURL) SQLLAB_CTAS_NO_LIMIT = True APP_NAME = "養殖漁業管理決策系統" APP_ICON = "/static/custom/[email protected]" APP_ICON_WIDTH = 200 BABEL_DEFAULT_LOCALE = "zh_TW" RECAPTCHA_PUBLIC_KEY = "6LencLYZAAAAAC9Vzg2fKqJoAMmyb2X0C7DwzOQQ" RECAPTCHA_PRIVATE_KEY = "6LencLYZAAAAAAWrudM1hJA5MsSkm2AajFYOFPXA" MAPBOX_API_KEY = "pk.eyJ1IjoiYXl1YW50eSIsImEiOiJjazZqNm9pamkwOGx2M2ZudXF1b2xyN20wIn0.tkuQOdU3lMbwqLeh58Z66A" ENABLE_JAVASCRIPT_CONTROLS = True SCREENSHOT_LOCATE_WAIT = 100 SCREENSHOT_LOAD_WAIT = 600 THUMBNAIL_CACHE_CONFIG: CacheConfig = { "CACHE_TYPE": "redis", "CACHE_DEFAULT_TIMEOUT": 24*60*60*7, "CACHE_KEY_PREFIX": "thumbnail_", "CACHE_REDIS_URL": f"redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_RESULTS_DB}" } EMAIL_NOTIFICATIONS = True SMTP_HOST = get_env_variable("SMTP_HOST") SMTP_STARTTLS = False SMTP_SSL = False SMTP_USER = get_env_variable("SMTP_USER") SMTP_PORT = 25 SMTP_PASSWORD = get_env_variable("SMTP_PASSWORD") SMTP_MAIL_FROM = get_env_variable("SMTP_MAIL_FROM") SUPERSET_WEBSERVER_TIMEOUT = 120 #PERMANENT_SESSION_LIFETIME = 120 ENABLE_TIME_ROTATE = True from superset.custom_security import CustomSecurityManager CUSTOM_SECURITY_MANAGER = CustomSecurityManager # # Optionally import superset_config_docker.py (which will have been included on # the PYTHONPATH) in order to allow for local settings to be overridden # try: import superset_config_docker from superset_config_docker import * # noqa logger.info( f"Loaded your Docker configuration at " f"[{superset_config_docker.__file__}]" ) except ImportError: logger.info("Using default Docker config...")
33.735849
115
0.75783
cb87c98dfbf34eed261e716e602f8a3abad998f3
303
py
Python
data/multilingual/Latn.AST/Sans_16/pdf_to_json_test_Latn.AST_Sans_16.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.AST/Sans_16/pdf_to_json_test_Latn.AST_Sans_16.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.AST/Sans_16/pdf_to_json_test_Latn.AST_Sans_16.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.AST/Sans_16/udhr_Latn.AST_Sans_16.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.3
73
0.811881
29a261e4cbabbcf991abfb59fc230e1daeea06ba
13,489
py
Python
lib/portal/docpreprocessor/DocParser.py
Jumpscale/jumpscale_portal8
3a4d56a1ba985b68fe9b525aed2486a54808332f
[ "Apache-2.0" ]
null
null
null
lib/portal/docpreprocessor/DocParser.py
Jumpscale/jumpscale_portal8
3a4d56a1ba985b68fe9b525aed2486a54808332f
[ "Apache-2.0" ]
74
2015-12-28T16:17:20.000Z
2021-09-08T12:28:59.000Z
lib/portal/docpreprocessor/DocParser.py
Jumpscale/jumpscale_portal8
3a4d56a1ba985b68fe9b525aed2486a54808332f
[ "Apache-2.0" ]
null
null
null
from JumpScale import j import re class DocParser(): def __init__(self): self.__jslocation__ = "j.portal.tools.docpreprocessor" def parseDoc(self, doc): content = doc.content # TODO: this is badly written can be done by some easy regex, is not performing like this content, doc.name = self._findItem(content, "@@name") content, aliasstr = self._findItem(content, "@@alias") doc.alias = [item.lower().strip() for item in aliasstr.split(",")] content, authorstr = self._findItem(content, "@@author") doc.author = [item.lower().strip() for item in authorstr.split(",")] content, doc.type = self._findItem(content, "@@type") content, doc.pagename = self._findItem(content, "@@pagename") content, doc.title = self._findItem(content, "@@title", removecolon=False) content, requiredargs = self._findItem(content, "@@requiredargs") doc.requiredargs = requiredargs.split() if doc.title == "": doc.title = j.sal.fs.getBaseName(doc.path).replace(".wiki", "") content, order = self._findItem(content, "@@order") if order != "": doc.order = int(order) content, prodstr = self._findItem(content, "@@product") doc.products = [item.lower().strip() for item in prodstr.split(",")] content, visibility = self._findItem(content, "@@visibility") if visibility != "": doc.visibility = [item.lower().strip() for item in visibility.split(",")] doc.name = doc.name.lower() if doc.name == "": doc.name = j.sal.fs.getBaseName(doc.shortpath).replace(".wiki", "").lower().strip() if doc.pagename == "": doc.pagename = doc.name content, parent = self._findItem(content, "@@parent") if parent.strip() != "": doc.parent = parent content, generate = self._findItem(content, "@@generate") if generate == "0": doc.generate = False content, tags = self._findItem(content, item="@@", maxitems=100, removecolon=False) tags2 = "" for tag in tags: if tag.find(":") != -1: items = tag.split(":") tags2 += " %s:%s" % (items[0].strip(), items[1].strip()) doc.tags = tags2.strip() def _findItem(self, text, item="@owner", maxitems=1, removecolon=True, lower=True): result = [] def process(arg, line): line = re.sub(item.lower(), "", line, flags=re.IGNORECASE) if line.find("##") == 0: line = "" if line.find("##") != -1: line = line.split("##")[0] if removecolon: line = line.replace(":", "").strip() else: line = line.strip() result.append(line) return False text2 = j.tools.code.regex.replaceLines(process, arg="", text=text, includes=["%s.*" % item], excludes='') if len(result) > maxitems: self.errorTrap("Error in text to parse, found more entities:%s than %s" % (item, maxitems)) if maxitems == 1: if len(result) > 0: result = result[0] else: result = "" return text2, result, def _findLine(self, text, item="@owner"): for line in text.split("\n"): if line.strip().lower().find(item) == 0: return line return "" def _findId(self, text, path): result = j.tools.code.regex.findAll("\(\(.*: *\d* *\)\)", text) if len(result) > 1: raise RuntimeError("Found 2 id's in %s" % path) if len(result) == 1: result = result[0].split(":")[1] result = result.split(")")[0] else: result = "" if result.strip() == "": result = 0 else: try: result = int(result) except Exception as e: raise RuntimeError("Could not parse if, error:%s. \nPath = %s" % (e, path)) return text, result def _parseTimeInfo(self, timestring, modelobj, defaults=[8, 16, 8, 4, 8]): # print "timestring: %s" % timestring timeItems = timestring.split("/") modelobj.time_architecture = defaults[0] modelobj.time_coding = defaults[1] modelobj.time_integration = defaults[2] modelobj.time_doc = defaults[3] modelobj.time_testing = defaults[4] modelobj.timestr = timestring modelobj.time = 0 for item in timeItems: if item != "": if item.lower()[0] == "a": modelobj.time_architecture = int(item.lower().replace("a", "")) modelobj.time += modelobj.time_architecture if item.lower()[0] == "c": modelobj.time_coding = int(item.lower().replace("c", "")) modelobj.time += modelobj.time_coding if item.lower()[0] == "i": modelobj.time_integration = int(item.lower().replace("i", "")) modelobj.time += modelobj.time_integration if item.lower()[0] == "d": modelobj.time_doc = int(item.lower().replace("d", "")) modelobj.time += modelobj.time_doc if item.lower()[0] == "t": modelobj.time_testing = int(item.lower().replace("t", "")) modelobj.time += modelobj.time_testing def _parseTaskInfo(self, storyTaskModelObject, info): for item in info.split(" "): if item != "": if item.lower()[0] == "s": # story storyTaskModelObject.storyid = int(item.lower().replace("s", "")) elif item.lower()[0] == "p": # priority storyTaskModelObject.priority = int(item.lower().replace("p", "")) elif item.lower()[0] == "m": # sprint storyTaskModelObject.sprintid = int(item.lower().replace("m", "")) def _parseStoryInfo(self, storyTaskModelObject, info): for item in info.split(" "): if item != "": if item.lower()[0] == "s": # story storyTaskModelObject.id = int(item.lower().replace("s", "")) elif item.lower()[0] == "p": # priority storyTaskModelObject.priority = int(item.lower().replace("p", "")) elif item.lower()[0] == "m": # sprint storyTaskModelObject.sprintid = int(item.lower().replace("m", "")) def _parseTaskQuestionRemark(self, text): """ @return [infotext,timetext,user,group,descr] """ keys = ["P", "p", "S", "s", "M", "m"] timeitem = "" infoitems = "" descr = "" state = "start" user = "" group = "" # print "parse task: %s" % text text = text.replace(" ", " ") text = text.replace(" ", " ") if text.strip() == "": return ["", "", "", "", ""] for item in text.strip().split(" "): # print "item: %s" % item if state == "endofmeta": descr += item + " " if state == "start": if item[0] in keys: try: int(item[1:]) infoitems += item + " " except: descr += item + " " state = "endofmeta" elif item[0:2].lower() == "t:": timeitem = item[2:] if not re.match(r"[aAcCiIdDtT/\d:]*\Z", timeitem): descr += item + " " state = "endofmeta" timeitem = "" #raise RuntimeError("Time item match failed for text %s" % text) elif item.find(":") != -1: # found user or group if not j.tools.code.regex.match("\w*:\w*", item): descr += item + " " state = "endofmeta" elif user == "": splitted = item.split(":") user = splitted[0] group = splitted[1] # TODO: P2 user & group can be comma separated build support for it in below coFde if self.getUserMainId(group) != False: # probably user & group reversed group2 = user user = group group = group2 if self.getUserMainId(user) != False: user = self.getUserMainId(user) # to get aliasesin order else: descr += item + " " state = "endofmeta" return [infoitems, timeitem, user, group, descr] def _getStoryName(self, info): out = "" for item in info.split(" "): if not(item.lower()[0] == "s" or item.lower()[0] == "p" or item.lower()[0] == "m"): out += " %s" % item return out.strip() def _strToArrayInt(self, items): if items == "": return [] result = "" for item in items.split(","): try: result.append(int(item)) except: raise RuntimeError("Cannot convert str to array, item was %s" % item) return result def _strToInt(self, item): if item == "": return 0 try: result = int(item) except: raise RuntimeError("Cannot convert str to int, item was %s" % item) return result def _normalizeDescr(self, text): text = text.lower() splitat = ["{", "(", "[", "#", "%", "$", "'"] for tosplit in splitat: if len(text.split(tosplit)) > 0: text = text.split(tosplit)[0] text = text.replace(",", "") text = text.replace(":", "") text = text.replace(";", "") text = text.replace(" ", " ") if text != "" and text[-1] == " ": text = text[:-1] text = text.replace("-", "") text = text.replace("_", "") return text def shortenDescr(self, text, maxnrchars=60): return j.tools.code.textToTitle(text, maxnrchars) def _getLinesAround(self, path, tofind, nrabove, nrbelow): text = j.sal.fs.fileGetContents(path) nr = 0 lines = text.split("\n") for line in lines: if line.find(tofind) != -1: if nr - nrabove < 0: nrstart = 0 else: nrstart = nr - nrabove if nr + nrabove > len(lines): nrstop = len(lines) else: nrstop = nr + nrabove return "\n".join(lines[nrstart:nrstop]) nr += 1 return "" def addUniqueId(self, line, fullPath, ttype="sprint"): line, id1 = self._findId(line, fullPath) if id1 == 0: # create unique id and put it in the file id1 = j.base.idpreprocessor.generateIncrID("%sid" % ttype, self.service) # tfe=j.tools.code.getTextFileEditor(fullPath) #tfe.addItemToFoundLineOnlyOnce(line," ((%s:%s))"%(ttype,id1),"\(id *: *\d* *\)",reset=True) tfe = j.tools.code.getTextFileEditor(fullPath) tfe.addItemToFoundLineOnlyOnce(line, " ((%s:%s))" % (ttype, id1), "\(+.*: *\d* *\)+", reset=self.reset) return id1 def _findTasks(self, text, path, fullPath): # TODO: S2 do same for remarks & questions def findTodoVariants(line): variants = ["@todo:", "@todo :", "@todo"] for variant in variants: if line.strip().find(variant) == 0: return variant if text.lower().find("@todo") != -1: lines = j.tools.code.regex.findAll("@todo.*", text) for line in lines: self.addUniqueId(line, fullPath, ttype="todo") line, id1 = self._findId(line, fullPath) todostatement = findTodoVariants(line) line1 = line.replace(todostatement, "") infotext, timetext, user, group, descr = self._parseTaskQuestionRemark(line1) obj = self.projectInfoObject.tasks.addTask(id=id1, descr=descr.strip()) obj.model.storyid = 0 obj.model.users = user obj.model.group = group obj.model.path = fullPath obj.model.context = self._getLinesAround(fullPath, line, 10, 20) obj.model.descrshort = self.shortenDescr(descr) # print "infotext:%s" % infotext self._parseTaskInfo(obj.model, infotext) self._parseTimeInfo(timetext, obj.model, defaults=[0, 1, 0, 1, 0]) if obj.model.storyid == 0: obj.model.storyid = 999 # 999 is the unsorted story card def errorTrap(self, msg): if msg not in self._errors: self._errors.append(msg) j.tools.console.echo("ERROR: %s" % msg)
41.632716
115
0.485952
2a3d5097d8809d9989db0a2bf45a4663eb471b1d
9,437
py
Python
src/sage/quadratic_forms/special_values.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
2
2018-06-30T01:37:35.000Z
2018-06-30T01:37:39.000Z
src/sage/quadratic_forms/special_values.py
boothby/sage
1b1e6f608d1ef8ee664bb19e991efbbc68cbd51f
[ "BSL-1.0" ]
null
null
null
src/sage/quadratic_forms/special_values.py
boothby/sage
1b1e6f608d1ef8ee664bb19e991efbbc68cbd51f
[ "BSL-1.0" ]
null
null
null
""" Routines for computing special values of L-functions - :func:`gamma__exact` -- Exact values of the `\Gamma` function at integers and half-integers - :func:`zeta__exact` -- Exact values of the Riemann `\zeta` function at critical values - :func:`quadratic_L_function__exact` -- Exact values of the Dirichlet L-functions of quadratic characters at critical values - :func:`quadratic_L_function__numerical` -- Numerical values of the Dirichlet L-functions of quadratic characters in the domain of convergence """ # python3 from __future__ import division, print_function from sage.combinat.combinat import bernoulli_polynomial from sage.misc.functional import denominator from sage.rings.all import RealField from sage.arith.all import kronecker_symbol, bernoulli, factorial, fundamental_discriminant from sage.rings.infinity import infinity from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ from sage.rings.real_mpfr import is_RealField from sage.symbolic.constants import pi from sage.symbolic.pynac import I # ---------------- The Gamma Function ------------------ def gamma__exact(n): """ Evaluates the exact value of the `\Gamma` function at an integer or half-integer argument. EXAMPLES:: sage: gamma__exact(4) 6 sage: gamma__exact(3) 2 sage: gamma__exact(2) 1 sage: gamma__exact(1) 1 sage: gamma__exact(1/2) sqrt(pi) sage: gamma__exact(3/2) 1/2*sqrt(pi) sage: gamma__exact(5/2) 3/4*sqrt(pi) sage: gamma__exact(7/2) 15/8*sqrt(pi) sage: gamma__exact(-1/2) -2*sqrt(pi) sage: gamma__exact(-3/2) 4/3*sqrt(pi) sage: gamma__exact(-5/2) -8/15*sqrt(pi) sage: gamma__exact(-7/2) 16/105*sqrt(pi) TESTS:: sage: gamma__exact(1/3) Traceback (most recent call last): ... TypeError: you must give an integer or half-integer argument """ from sage.all import sqrt n = QQ(n) if denominator(n) == 1: if n <= 0: return infinity if n > 0: return factorial(n-1) elif denominator(n) == 2: ans = QQ.one() while n != QQ((1, 2)): if n < 0: ans /= n n += 1 elif n > 0: n += -1 ans *= n ans *= sqrt(pi) return ans else: raise TypeError("you must give an integer or half-integer argument") # ------------- The Riemann Zeta Function -------------- def zeta__exact(n): r""" Returns the exact value of the Riemann Zeta function The argument must be a critical value, namely either positive even or negative odd. See for example [Iwasawa]_, p13, Special value of `\zeta(2k)` EXAMPLES: Let us test the accuracy for negative special values:: sage: RR = RealField(100) sage: for i in range(1,10): ....: print("zeta({}): {}".format(1-2*i, RR(zeta__exact(1-2*i)) - zeta(RR(1-2*i)))) zeta(-1): 0.00000000000000000000000000000 zeta(-3): 0.00000000000000000000000000000 zeta(-5): 0.00000000000000000000000000000 zeta(-7): 0.00000000000000000000000000000 zeta(-9): 0.00000000000000000000000000000 zeta(-11): 0.00000000000000000000000000000 zeta(-13): 0.00000000000000000000000000000 zeta(-15): 0.00000000000000000000000000000 zeta(-17): 0.00000000000000000000000000000 Let us test the accuracy for positive special values:: sage: all(abs(RR(zeta__exact(2*i))-zeta(RR(2*i))) < 10**(-28) for i in range(1,10)) True TESTS:: sage: zeta__exact(4) 1/90*pi^4 sage: zeta__exact(-3) 1/120 sage: zeta__exact(0) -1/2 sage: zeta__exact(5) Traceback (most recent call last): ... TypeError: n must be a critical value (i.e. even > 0 or odd < 0) REFERENCES: .. [Iwasawa] Iwasawa, *Lectures on p-adic L-functions* .. [IreRos] Ireland and Rosen, *A Classical Introduction to Modern Number Theory* .. [WashCyc] Washington, *Cyclotomic Fields* """ if n < 0: return bernoulli(1-n)/(n-1) elif n > 1: if (n % 2 == 0): return ZZ(-1)**(n//2 + 1) * ZZ(2)**(n-1) * pi**n * bernoulli(n) / factorial(n) else: raise TypeError("n must be a critical value (i.e. even > 0 or odd < 0)") elif n == 1: return infinity elif n == 0: return QQ((-1, 2)) # ---------- Dirichlet L-functions with quadratic characters ---------- def QuadraticBernoulliNumber(k, d): r""" Compute `k`-th Bernoulli number for the primitive quadratic character associated to `\chi(x) = \left(\frac{d}{x}\right)`. EXAMPLES: Let us create a list of some odd negative fundamental discriminants:: sage: test_set = [d for d in range(-163, -3, 4) if is_fundamental_discriminant(d)] In general, we have `B_{1, \chi_d} = -2 h/w` for odd negative fundamental discriminants:: sage: all(QuadraticBernoulliNumber(1, d) == -len(BinaryQF_reduced_representatives(d)) for d in test_set) True REFERENCES: - [Iwasawa]_, pp 7-16. """ # Ensure the character is primitive d1 = fundamental_discriminant(d) f = abs(d1) # Make the (usual) k-th Bernoulli polynomial x = PolynomialRing(QQ, 'x').gen() bp = bernoulli_polynomial(x, k) # Make the k-th quadratic Bernoulli number total = sum([kronecker_symbol(d1, i) * bp(i/f) for i in range(f)]) total *= (f ** (k-1)) return total def quadratic_L_function__exact(n, d): r""" Returns the exact value of a quadratic twist of the Riemann Zeta function by `\chi_d(x) = \left(\frac{d}{x}\right)`. The input `n` must be a critical value. EXAMPLES:: sage: quadratic_L_function__exact(1, -4) 1/4*pi sage: quadratic_L_function__exact(-4, -4) 5/2 sage: quadratic_L_function__exact(2, 1) 1/6*pi^2 TESTS:: sage: quadratic_L_function__exact(2, -4) Traceback (most recent call last): ... TypeError: n must be a critical value (i.e. odd > 0 or even <= 0) REFERENCES: - [Iwasawa]_, pp 16-17, Special values of `L(1-n, \chi)` and `L(n, \chi)` - [IreRos]_ - [WashCyc]_ """ from sage.all import SR, sqrt if n <= 0: return QuadraticBernoulliNumber(1-n,d)/(n-1) elif n >= 1: # Compute the kind of critical values (p10) if kronecker_symbol(fundamental_discriminant(d), -1) == 1: delta = 0 else: delta = 1 # Compute the positive special values (p17) if ((n - delta) % 2 == 0): f = abs(fundamental_discriminant(d)) if delta == 0: GS = sqrt(f) else: GS = I * sqrt(f) ans = SR(ZZ(-1)**(1+(n-delta)/2)) ans *= (2*pi/f)**n ans *= GS # Evaluate the Gauss sum here! =0 ans *= QQ.one()/(2 * I**delta) ans *= QuadraticBernoulliNumber(n,d)/factorial(n) return ans else: if delta == 0: raise TypeError("n must be a critical value (i.e. even > 0 or odd < 0)") if delta == 1: raise TypeError("n must be a critical value (i.e. odd > 0 or even <= 0)") def quadratic_L_function__numerical(n, d, num_terms=1000): """ Evaluate the Dirichlet L-function (for quadratic character) numerically (in a very naive way). EXAMPLES: First, let us test several values for a given character:: sage: RR = RealField(100) sage: for i in range(5): ....: print("L({}, (-4/.)): {}".format(1+2*i, RR(quadratic_L_function__exact(1+2*i, -4)) - quadratic_L_function__numerical(RR(1+2*i),-4, 10000))) L(1, (-4/.)): 0.000049999999500000024999996962707 L(3, (-4/.)): 4.99999970000003...e-13 L(5, (-4/.)): 4.99999922759382...e-21 L(7, (-4/.)): ...e-29 L(9, (-4/.)): ...e-29 This procedure fails for negative special values, as the Dirichlet series does not converge here:: sage: quadratic_L_function__numerical(-3,-4, 10000) Traceback (most recent call last): ... ValueError: the Dirichlet series does not converge here Test for several characters that the result agrees with the exact value, to a given accuracy :: sage: for d in range(-20,0): # long time (2s on sage.math 2014) ....: if abs(RR(quadratic_L_function__numerical(1, d, 10000) - quadratic_L_function__exact(1, d))) > 0.001: ....: print("Oops! We have a problem at d = {}: exact = {}, numerical = {}".format(d, RR(quadratic_L_function__exact(1, d)), RR(quadratic_L_function__numerical(1, d)))) """ # Set the correct precision if it is given (for n). if is_RealField(n.parent()): R = n.parent() else: R = RealField() if n < 0: raise ValueError('the Dirichlet series does not converge here') d1 = fundamental_discriminant(d) ans = R.zero() for i in range(1,num_terms): ans += R(kronecker_symbol(d1,i) / R(i)**n) return ans
31.881757
184
0.592455
a74421df746d53832f4dad4571574a94ae973ce6
36,667
py
Python
propertyestimator/protocols/groups.py
MSchauperl/propertyestimator
9a67cb61498024c511f9bbe55536ac8e1a3c93be
[ "MIT" ]
null
null
null
propertyestimator/protocols/groups.py
MSchauperl/propertyestimator
9a67cb61498024c511f9bbe55536ac8e1a3c93be
[ "MIT" ]
null
null
null
propertyestimator/protocols/groups.py
MSchauperl/propertyestimator
9a67cb61498024c511f9bbe55536ac8e1a3c93be
[ "MIT" ]
null
null
null
""" A collection of specialized workflow protocols, which serve to group together multiple individual protocol building blocks, and apply special behaviours when executing them. Such behaviours may include for example running the grouped together protocols until certain conditions have been met. """ import copy import json import logging from enum import Enum, unique from os import path, makedirs from propertyestimator import unit from propertyestimator.utils import graph from propertyestimator.utils.exceptions import PropertyEstimatorException from propertyestimator.workflow.decorators import InequalityMergeBehaviour, protocol_input, protocol_output from propertyestimator.workflow.plugins import register_calculation_protocol, available_protocols from propertyestimator.workflow.protocols import BaseProtocol, ProtocolPath from propertyestimator.workflow.schemas import ProtocolGroupSchema @register_calculation_protocol() class ProtocolGroup(BaseProtocol): """A collection of protocols to be executed in one batch. This may be used for example to cluster together multiple protocols that will execute in a linear chain so that multiple scheduler execution calls are reduced into a single one. Additionally, a group may provide enhanced behaviour, for example running all protocols within the group self consistently until a given condition is met (e.g run a simulation until a given observable has converged). """ @property def root_protocols(self): """List[str]: The ids of the protocols in the group which do not take input from the other grouped protocols.""" return self._root_protocols @property def execution_order(self): """List[str]: The ids of the protocols in the group, in the order in which they will be internally executed.""" return self._execution_order @property def dependants_graph(self): """Dict[str, str]: A dictionary of which stores which grouped protocols are dependant on other grouped protocols. Each key in the dictionary is the id of a grouped protocol, and each value is the id of a protocol which depends on the protocol by the key.""" return self._dependants_graph @property def protocols(self): """Dict[str, BaseProtocol]: A dictionary of the protocols in this groups, where the dictionary key is the protocol id, and the value the protocol itself.""" return self._protocols def __init__(self, protocol_id): """Constructs a new ProtocolGroup. """ self._dependants_graph = {} self._root_protocols = [] self._execution_order = [] self._protocols = {} super().__init__(protocol_id) def _initialize(self): """Initialize the protocol.""" super(ProtocolGroup, self)._initialize() self._dependants_graph = {} self._root_protocols = [] self._execution_order = [] self._protocols = {} def _get_schema(self): base_schema = super(ProtocolGroup, self)._get_schema() # Convert the base schema to a group one. schema = ProtocolGroupSchema() schema_dict = schema.__getstate__() schema_dict.update(base_schema.__getstate__()) schema.__setstate__(schema_dict) for protocol_id in self._protocols: schema.grouped_protocol_schemas.append(self._protocols[protocol_id].schema) return schema def _set_schema(self, schema_value): """ Parameters ---------- schema_value: ProtocolGroupSchema The schema from which this group should take its properties. """ super(ProtocolGroup, self)._set_schema(schema_value) protocols_to_create = [] for protocol_schema in schema_value.grouped_protocol_schemas: if protocol_schema.id in self._protocols: self._protocols[protocol_schema.id].schema = protocol_schema continue # Recreate the protocol from scratch. protocol = available_protocols[protocol_schema.type](protocol_schema.id) protocol.schema = protocol_schema protocols_to_create.append(protocol) if len(protocols_to_create) > 0: self.add_protocols(*protocols_to_create) def add_protocols(self, *protocols): for protocol in protocols: if protocol.id in self._protocols: raise ValueError('The {} group already contains a protocol ' 'with id {}.'.format(self.id, protocol.id)) self._protocols[protocol.id] = protocol self._dependants_graph[protocol.id] = [] # Pull each of an individual protocols inputs up so that they # become a required input of the group. for protocol_id in self._protocols: protocol = self._protocols[protocol_id] for input_path in protocol.required_inputs: grouped_path = ProtocolPath.from_string(input_path.full_path) if grouped_path.start_protocol != protocol.id: grouped_path.prepend_protocol_id(protocol.id) grouped_path.prepend_protocol_id(self.id) if grouped_path in self.required_inputs: continue reference_values = protocol.get_value_references(input_path) if len(reference_values) == 0: self.required_inputs.append(grouped_path) for source_path, reference_value in reference_values.items(): if reference_value.start_protocol not in self._protocols: self.required_inputs.append(grouped_path) continue if protocol_id in self._dependants_graph[reference_value.start_protocol]: continue self._dependants_graph[reference_value.start_protocol].append(protocol_id) # Figure out the order in which grouped protocols should be executed. self._root_protocols = graph.find_root_nodes(self._dependants_graph) self._execution_order = graph.topological_sort(self._dependants_graph) def set_uuid(self, value): """Store the uuid of the calculation this protocol belongs to Parameters ---------- value : str The uuid of the parent calculation. """ for index in range(len(self._root_protocols)): self._root_protocols[index] = graph.append_uuid(self._root_protocols[index], value) for index in range(len(self._execution_order)): self._execution_order[index] = graph.append_uuid(self._execution_order[index], value) new_dependants_graph = {} for protocol_id in self._dependants_graph: new_protocol_id = graph.append_uuid(protocol_id, value) new_dependants_graph[new_protocol_id] = [] for dependant in self._dependants_graph[protocol_id]: new_dependant_id = graph.append_uuid(dependant, value) new_dependants_graph[new_protocol_id].append(new_dependant_id) self._dependants_graph = new_dependants_graph new_protocols = {} for protocol_id in self._protocols: protocol = self._protocols[protocol_id] protocol.set_uuid(value) new_protocols[protocol.id] = protocol self._protocols = new_protocols super(ProtocolGroup, self).set_uuid(value) def replace_protocol(self, old_id, new_id): """Finds each input which came from a given protocol and redirects it to instead take input from a different one. Parameters ---------- old_id : str The id of the old input protocol. new_id : str The id of the new input protocol. """ super(ProtocolGroup, self).replace_protocol(old_id, new_id) for index in range(len(self._root_protocols)): self._root_protocols[index] = self._root_protocols[index].replace(old_id, new_id) for index in range(len(self._execution_order)): self._execution_order[index] = self._execution_order[index].replace(old_id, new_id) new_dependants_graph = {} for protocol_id in self._dependants_graph: new_protocol_id = protocol_id.replace(old_id, new_id) new_dependants_graph[new_protocol_id] = [] for dependant in self._dependants_graph[protocol_id]: new_dependant_id = dependant.replace(old_id, new_id) new_dependants_graph[new_protocol_id].append(new_dependant_id) self._dependants_graph = new_dependants_graph new_protocols = {} for protocol_id in self._protocols: protocol = self._protocols[protocol_id] protocol.replace_protocol(old_id, new_id) new_protocols[protocol_id.replace(old_id, new_id)] = protocol self._protocols = new_protocols def execute(self, directory, available_resources): """Executes the protocols within this groups Parameters ---------- directory : str The root directory in which to run the protocols available_resources: ComputeResources The resources available to execute on. Returns ------- bool True if all the protocols execute correctly. """ output_dictionary = {} for protocol_id_to_execute in self._execution_order: protocol_to_execute = self._protocols[protocol_id_to_execute] protocol_to_execute_schema = protocol_to_execute.schema working_directory = path.join(directory, protocol_to_execute.id) if not path.isdir(working_directory): makedirs(working_directory) for input_path in protocol_to_execute.required_inputs: value_references = protocol_to_execute.get_value_references(input_path) for source_path, value_reference in value_references.items(): if (value_reference.start_protocol == input_path.start_protocol or value_reference.start_protocol == protocol_to_execute.id): continue if value_reference.start_protocol == self._id: value = self.get_value(value_reference) else: value = self._protocols[value_reference.start_protocol].get_value(value_reference) protocol_to_execute.set_value(source_path, value) return_value = protocol_to_execute.execute(working_directory, available_resources) if isinstance(return_value, PropertyEstimatorException): return return_value for output_path in return_value: output_path_prepended = ProtocolPath.from_string(output_path) if (output_path_prepended.start_protocol != self.id and output_path_prepended.start_protocol != protocol_id_to_execute): output_path_prepended.prepend_protocol_id(protocol_id_to_execute) if output_path_prepended.start_protocol != self.id: output_path_prepended.prepend_protocol_id(self.id) output_path_prepended.prepend_protocol_id(self.id) output_dictionary[output_path_prepended.full_path] = return_value[output_path] protocol_to_execute.schema = protocol_to_execute_schema return output_dictionary def can_merge(self, other, path_replacements=None): """Determines whether this protocol group can be merged with another. Parameters ---------- other : ProtocolGroup The protocol group to compare against. path_replacements: list of tuple of str, optional Replacements to make in any value reference protocol paths before comparing for equality. Returns ---------- bool True if the two protocols are safe to merge. """ if path_replacements is None: path_replacements = [] path_replacements.append((other.id, self.id)) if not super(ProtocolGroup, self).can_merge(other, path_replacements): return False # if len(self._root_protocols) != len(other.root_protocols): # # Only allow groups with the same number of root protocols # # to merge. # return False # Ensure that the starting points in each group can be # merged. for self_root_id in self._root_protocols: self_protocol = self._protocols[self_root_id] can_merge_with_root = False for other_root_id in other.root_protocols: other_protocol = other.protocols[other_root_id] if not self_protocol.can_merge(other_protocol, path_replacements): continue can_merge_with_root = True break if not can_merge_with_root: return False return True def _try_merge_protocol(self, other_protocol_id, other_group, parent_ids, merged_ids, path_replacements=None): """Recursively inserts a protocol node into the group. Parameters ---------- other_protocol_id : str The name of the other protocol to attempt to merge. other_group : ProtocolGroup The other protocol group which the protocol to merge belongs to. parent_ids : List[str] The ids of the new parents of the node to be inserted. If None, the protocol will be added as a new parent node. merged_ids : Dict[str, str] A map between any original protocol ids and their new merged values. path_replacements: list of tuple of str, optional Replacements to make in any value reference protocol paths before comparing for equality. """ if other_protocol_id in self._dependants_graph: raise RuntimeError('A protocol with id {} has already been merged ' 'into the group.'.format(other_protocol_id)) protocol_ids = self._root_protocols if len(parent_ids) == 0 else [] for parent_id in parent_ids: protocol_ids.extend(x for x in self._dependants_graph[parent_id] if x not in protocol_ids) protocol_to_merge = other_group.protocols[other_protocol_id] existing_protocol = None # Start by checking to see if the starting node of the calculation graph is # already present in the full graph. for protocol_id in protocol_ids: protocol = self._protocols[protocol_id] if not protocol.can_merge(protocol_to_merge, path_replacements): continue existing_protocol = protocol break if existing_protocol is not None: # Make a note that the existing node should be used in place # of this calculations version. other_group.protocols[other_protocol_id] = existing_protocol merged_ids[other_protocol_id] = existing_protocol.id for protocol_to_update in other_group.protocols: other_group.protocols[protocol_to_update].replace_protocol(other_protocol_id, existing_protocol.id) else: # Add the protocol as a new node in the graph. self._protocols[other_protocol_id] = protocol_to_merge existing_protocol = self._protocols[other_protocol_id] self._dependants_graph[other_protocol_id] = [] if len(parent_ids) == 0: self._root_protocols.append(other_protocol_id) for parent_id in parent_ids: self._dependants_graph[parent_id].append(other_protocol_id) return existing_protocol.id def merge(self, other): """Merges another ProtocolGroup with this one. The id of this protocol will remain unchanged. It is assumed that can_merge has already returned that these protocol groups are compatible to be merged together. Parameters ---------- other: ProtocolGroup The protocol to merge into this one. Returns ------- Dict[str, str] A map between any original protocol ids and their new merged values. """ merged_ids = super(ProtocolGroup, self).merge(other) other_execution_order = graph.topological_sort(other.dependants_graph) other_reduced_protocol_dependants = copy.deepcopy(other.dependants_graph) graph.apply_transitive_reduction(other_reduced_protocol_dependants) other_parent_protocol_ids = {} for protocol_id in other_execution_order: parent_ids = other_parent_protocol_ids.get(protocol_id) or [] inserted_id = self._try_merge_protocol(protocol_id, other, parent_ids, merged_ids, [(other.id, self.id)]) for dependant in other_reduced_protocol_dependants[protocol_id]: if dependant not in other_parent_protocol_ids: other_parent_protocol_ids[dependant] = [] other_parent_protocol_ids[dependant].append(inserted_id) self._execution_order = graph.topological_sort(self._dependants_graph) return merged_ids def _get_next_in_path(self, reference_path): """Returns the id of the next protocol in a protocol path, making sure that the targeted protocol is within this group. Parameters ---------- reference_path: ProtocolPath The path being traversed. Returns ------- str The id of the next protocol in the path. ProtocolPath The remainder of the path to be traversed. """ # Make a copy of the path so we can alter it safely. reference_path_clone = copy.deepcopy(reference_path) if reference_path.start_protocol == self.id: reference_path_clone.pop_next_in_path() target_protocol_id = reference_path_clone.pop_next_in_path() if target_protocol_id not in self._protocols: raise ValueError('The reference path does not target this protocol' 'or any of its children.') return target_protocol_id, reference_path_clone def get_class_attribute(self, reference_path): reference_property, reference_ids = ProtocolPath.to_components(reference_path.full_path) if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and len(reference_ids) == 1): return super(ProtocolGroup, self).get_class_attribute(reference_path) target_protocol_id, truncated_path = self._get_next_in_path(reference_path) return self._protocols[target_protocol_id].get_class_attribute(truncated_path) def get_value(self, reference_path): """Returns the value of one of this protocols parameters / inputs. Parameters ---------- reference_path: ProtocolPath The path pointing to the value to return. Returns ---------- object: The value of the input """ reference_property, reference_ids = ProtocolPath.to_components(reference_path.full_path) if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and len(reference_ids) == 1): return super(ProtocolGroup, self).get_value(reference_path) target_protocol_id, truncated_path = self._get_next_in_path(reference_path) return self._protocols[target_protocol_id].get_value(truncated_path) def set_value(self, reference_path, value): """Sets the value of one of this protocols parameters / inputs. Parameters ---------- reference_path: ProtocolPath The path pointing to the value to return. value: Any The value to set. """ reference_property, reference_ids = ProtocolPath.to_components(reference_path.full_path) if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and len(reference_ids) == 1): return super(ProtocolGroup, self).set_value(reference_path, value) # Make a copy of the path so we can alter it safely. reference_path_clone = copy.deepcopy(reference_path) if reference_path.start_protocol == self.id: reference_path_clone.pop_next_in_path() target_protocol_id = reference_path_clone.pop_next_in_path() if target_protocol_id not in self._protocols: raise ValueError('The reference path does not target this protocol' 'or any of its children.') return self._protocols[target_protocol_id].set_value(reference_path_clone, value) def apply_replicator(self, replicator, template_values, template_index=-1, template_value=None, update_input_references=False): protocols, replication_map = replicator.apply(self.protocols, template_values, template_index, template_value) if (template_index >= 0 or template_value is not None) and update_input_references is True: raise ValueError('Specific template indices and values cannot be passed ' 'when `update_input_references` is True') if update_input_references: replicator.update_references(protocols, replication_map, template_values) # Re-initialize the group using the replicated protocols. self._initialize() self.add_protocols(*protocols.values()) return replication_map @register_calculation_protocol() class ConditionalGroup(ProtocolGroup): """A collection of protocols which are to execute until a given condition is met. """ @unique class ConditionType(Enum): """The acceptable conditions to place on the group""" LessThan = 'lessthan' GreaterThan = 'greaterthan' @classmethod def has_value(cls, value): """Checks whether an of the enum items matches a given value. Parameters ---------- value: str The value to check for. Returns --------- bool True if the enum contains the value. """ return any(value == item.value for item in cls) class Condition: def __init__(self): self.type = ConditionalGroup.ConditionType.LessThan self.left_hand_value = None self.right_hand_value = None def __getstate__(self): return { 'type': self.type.value, 'left_hand_value': self.left_hand_value, 'right_hand_value': self.right_hand_value } def __setstate__(self, state): self.type = ConditionalGroup.ConditionType(state['type']) self.left_hand_value = state['left_hand_value'] self.right_hand_value = state['right_hand_value'] def __eq__(self, other): return (self.left_hand_value == other.left_hand_value and self.right_hand_value == other.right_hand_value and self.type == other.type) def __ne__(self, other): return not self.__eq__(other) def __str__(self): return f'{self.left_hand_value} {self.type} {self.right_hand_value}' @property def conditions(self): return self._conditions max_iterations = protocol_input( docstring='The maximum number of iterations to run for to try and satisfy the ' 'groups conditions.', type_hint=int, default_value=100, merge_behavior=InequalityMergeBehaviour.LargestValue ) current_iteration = protocol_output( docstring='The current number of iterations this group has performed while ' 'attempting to satisfy the specified conditions. This value starts ' 'from one.', type_hint=int ) def __init__(self, protocol_id): """Constructs a new ConditionalGroup """ self._conditions = [] super().__init__(protocol_id) def _initialize(self): """Initialize the protocol.""" super(ConditionalGroup, self)._initialize() self.required_inputs.append(ProtocolPath('conditions')) def _set_schema(self, schema_value): conditions = None if '.conditions' in schema_value.inputs: conditions = schema_value.inputs.pop('.conditions') for condition in conditions: self.add_condition(copy.deepcopy(condition)) super(ConditionalGroup, self)._set_schema(schema_value) if conditions is not None: schema_value.inputs['.conditions'] = conditions def _evaluate_condition(self, condition): """Evaluates whether a condition has been successfully met. Parameters ---------- condition: ConditionalGroup.Condition The condition to evaluate. Returns ------- bool True if the condition has been met. """ if not isinstance(condition.left_hand_value, ProtocolPath): left_hand_value = condition.left_hand_value else: left_hand_value = self.get_value(condition.left_hand_value) if not isinstance(condition.right_hand_value, ProtocolPath): right_hand_value = condition.right_hand_value else: right_hand_value = self.get_value(condition.right_hand_value) if left_hand_value is None or right_hand_value is None: return False right_hand_value_correct_units = right_hand_value if isinstance(right_hand_value, unit.Quantity) and isinstance(left_hand_value, unit.Quantity): right_hand_value_correct_units = right_hand_value.to(left_hand_value.units) logging.info(f'Evaluating condition for protocol {self.id}: ' f'{left_hand_value} {condition.type} {right_hand_value_correct_units}') if condition.type == self.ConditionType.LessThan: return left_hand_value < right_hand_value elif condition.type == self.ConditionType.GreaterThan: return left_hand_value > right_hand_value raise NotImplementedError() @staticmethod def _write_checkpoint(directory, current_iteration): """Creates a checkpoint file for this group so that it can continue executing where it left off if it was killed for some reason (e.g the worker it was running on was killed). Parameters ---------- directory: str The path to the working directory of this protocol current_iteration: int The number of iterations this group has performed so far. """ checkpoint_path = path.join(directory, 'checkpoint.json') with open(checkpoint_path, 'w') as file: json.dump({'current_iteration': current_iteration}, file) @staticmethod def _read_checkpoint(directory): """Creates a checkpoint file for this group so that it can continue executing where it left off if it was killed for some reason (e.g the worker it was running on was killed). Parameters ---------- directory: str The path to the working directory of this protocol Returns ------- int The number of iterations this group has performed so far. """ current_iteration = 0 checkpoint_path = path.join(directory, 'checkpoint.json') if not path.isfile(checkpoint_path): return current_iteration with open(checkpoint_path, 'r') as file: checkpoint_dictionary = json.load(file) current_iteration = checkpoint_dictionary['current_iteration'] return current_iteration def execute(self, directory, available_resources): """Executes the protocols within this groups Parameters ---------- directory : str The root directory in which to run the protocols available_resources: ComputeResources The resources available to execute on. Returns ------- bool True if all the protocols execute correctly. """ logging.info('Starting conditional while loop: {}'.format(self.id)) should_continue = True self.current_iteration = self._read_checkpoint(directory) while should_continue: # Create a checkpoint file so we can pick off where # we left off if this execution fails due to time # constraints for e.g. self._write_checkpoint(directory, self.current_iteration) self.current_iteration += 1 return_value = super(ConditionalGroup, self).execute(directory, available_resources) if isinstance(return_value, PropertyEstimatorException): # Exit on exceptions. return return_value conditions_met = True for condition in self._conditions: # Check to see if we have reached our goal. if not self._evaluate_condition(condition): conditions_met = False if conditions_met: logging.info(f'Conditional while loop finished after {self.current_iteration} iterations: {self.id}') return return_value if self.current_iteration >= self.max_iterations: return PropertyEstimatorException(directory=directory, message=f'Conditional while loop failed to converge: {self.id}') logging.info(f'Conditional criteria not yet met after {self.current_iteration} iterations') def can_merge(self, other, path_replacements=None): return super(ConditionalGroup, self).can_merge(other, path_replacements) def merge(self, other): """Merges another ProtocolGroup with this one. The id of this protocol will remain unchanged. It is assumed that can_merge has already returned that these protocol groups are compatible to be merged together. Parameters ---------- other: ConditionalGroup The protocol to merge into this one. """ merged_ids = super(ConditionalGroup, self).merge(other) for condition in other.conditions: if isinstance(condition.left_hand_value, ProtocolPath): condition.left_hand_value.replace_protocol(other.id, self.id) if isinstance(condition.right_hand_value, ProtocolPath): condition.right_hand_value.replace_protocol(other.id, self.id) for merged_id in merged_ids: if isinstance(condition.left_hand_value, ProtocolPath): condition.left_hand_value.replace_protocol(merged_id, merged_ids[merged_id]) if isinstance(condition.right_hand_value, ProtocolPath): condition.right_hand_value.replace_protocol(merged_id, merged_ids[merged_id]) self.add_condition(condition) return merged_ids def add_condition(self, condition_to_add): """Adds a condition to this groups list of conditions if it not already in the condition list. Parameters ---------- condition_to_add: :obj:`ConditionalGroup.Condition` The condition to add. """ for condition in self._conditions: if condition == condition_to_add: return self._conditions.append(condition_to_add) def set_uuid(self, value): """Store the uuid of the calculation this protocol belongs to Parameters ---------- value : str The uuid of the parent calculation. """ super(ConditionalGroup, self).set_uuid(value) for condition in self._conditions: if isinstance(condition.left_hand_value, ProtocolPath): condition.left_hand_value.append_uuid(value) if isinstance(condition.right_hand_value, ProtocolPath): condition.right_hand_value.append_uuid(value) def replace_protocol(self, old_id, new_id): """Finds each input which came from a given protocol and redirects it to instead take input from a different one. Parameters ---------- old_id : str The id of the old input protocol. new_id : str The id of the new input protocol. """ super(ConditionalGroup, self).replace_protocol(old_id, new_id) for condition in self._conditions: if isinstance(condition.left_hand_value, ProtocolPath): condition.left_hand_value.replace_protocol(old_id, new_id) if isinstance(condition.right_hand_value, ProtocolPath): condition.right_hand_value.replace_protocol(old_id, new_id) def get_class_attribute(self, reference_path): if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and reference_path.last_protocol == self.id): if reference_path.property_name == 'conditions' or reference_path.property_name.find('condition_') >= 0: return None return super(ConditionalGroup, self).get_class_attribute(reference_path) def get_value(self, reference_path): """Returns the value of one of this protocols parameters / inputs. Parameters ---------- reference_path: ProtocolPath The path pointing to the value to return. Returns ---------- object: The value of the input """ if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and reference_path.last_protocol == self.id): if reference_path.property_name == 'conditions': return self._conditions return super(ConditionalGroup, self).get_value(reference_path) def set_value(self, reference_path, value): """Sets the value of one of this protocols parameters / inputs. Parameters ---------- reference_path: ProtocolPath The path pointing to the value to return. value: Any The value to set. """ if reference_path.start_protocol is None or (reference_path.start_protocol == self.id and reference_path.last_protocol == self.id): if reference_path.property_name == 'conditions': self._conditions = value return super(ConditionalGroup, self).set_value(reference_path, value) def get_value_references(self, input_path): if input_path.property_name != 'conditions': return super(ConditionalGroup, self).get_value_references(input_path) value_references = {} for index, condition in enumerate(self.conditions): if isinstance(condition.left_hand_value, ProtocolPath): source_path = ProtocolPath('conditions[{}].left_hand_value'.format(index)) value_references[source_path] = condition.left_hand_value if isinstance(condition.right_hand_value, ProtocolPath): source_path = ProtocolPath('conditions[{}].right_hand_value'.format(index)) value_references[source_path] = condition.right_hand_value return value_references
34.954242
117
0.63804
c2c02fee1deb405b1da2699f487c8eb0b8d0ad5d
44
py
Python
aiofcm/exceptions.py
shop-loyalty/aiofcm
a15f7144389392be84ebeeaf9ba30b46055d554d
[ "Apache-2.0" ]
2
2022-03-13T09:12:44.000Z
2022-03-28T10:53:06.000Z
src/graia/amnesia/transport/exceptions.py
GraiaProject/Amnesia
d48d3084f776f788767939d73774146086358887
[ "MIT" ]
null
null
null
src/graia/amnesia/transport/exceptions.py
GraiaProject/Amnesia
d48d3084f776f788767939d73774146086358887
[ "MIT" ]
null
null
null
class ConnectionClosed(Exception): pass
14.666667
34
0.772727
d840f95dcf5fd2ca5e579d84aab66dadc77648d8
227
py
Python
01 List/Problems/01_average.py
kmanadkat/leetcode-101
8a9db22d98692d634a497ba76c7e9f792bb1f1bc
[ "MIT" ]
null
null
null
01 List/Problems/01_average.py
kmanadkat/leetcode-101
8a9db22d98692d634a497ba76c7e9f792bb1f1bc
[ "MIT" ]
null
null
null
01 List/Problems/01_average.py
kmanadkat/leetcode-101
8a9db22d98692d634a497ba76c7e9f792bb1f1bc
[ "MIT" ]
1
2021-09-15T11:17:36.000Z
2021-09-15T11:17:36.000Z
from typing import List def findListAverage(inputList: List) -> int: sizeOfList = len(inputList) sumOfList = sum(inputList) return sumOfList / sizeOfList print(findListAverage(inputList=[0, 1, 2, 3, 4, 5, 6]))
18.916667
55
0.696035
a27121361b74b0fa7394d7fbab854bb11217e284
4,797
py
Python
Utils/get_cvc_vulnerabilities.py
devarajug/CVC-TechStack
fa4e44711640335f09a5160b6f8bd10bdd0fc78f
[ "MIT" ]
null
null
null
Utils/get_cvc_vulnerabilities.py
devarajug/CVC-TechStack
fa4e44711640335f09a5160b6f8bd10bdd0fc78f
[ "MIT" ]
null
null
null
Utils/get_cvc_vulnerabilities.py
devarajug/CVC-TechStack
fa4e44711640335f09a5160b6f8bd10bdd0fc78f
[ "MIT" ]
null
null
null
from os.path import isfile from re import search from re import compile from re import sub from json import loads import pandas as pd class FetchCvcVulnerabilities: def __init__(self, cvc_json_file_path, comments={}, escaped_path=[]): self.json_file_path = cvc_json_file_path self.comments = comments self.remove_error = compile(''',"analysisExceptions":\[\{<exception>.*</exception>\}\]''') self.escaped_path = escaped_path def readCVCDataFromJsonFile(self): if isfile(self.json_file_path): try: with open(self.json_file_path, 'r', encoding='utf8') as f: data = f.read() if search(self.remove_error, data): data = sub(self.remove_error, '', data) cvcJsonData = loads(data) except Exception as e: cvcJsonData = {} print("[Error] unable read dependency check json file....", str(e)) else: cvcJsonData = {} print("[Error] unable read dependency check json file....") return cvcJsonData def cvcJsonDataToDataFrame(self): vuldependency, cve_id, severity, filePath, description, status, developer_comment = [[] for i in range(7)] try: cvcJsonData = self.readCVCDataFromJsonFile() for dependency in cvcJsonData.get("dependencies", {}): if 'vulnerabilities' in dependency.keys(): for vulnerability in dependency.get('vulnerabilities', {}): if 'relatedDependencies' in dependency.keys(): vuldependency.append(dependency.get('fileName').strip()) cve_id.append(vulnerability.get('name').strip()) severity.append(vulnerability.get('severity').upper().strip()) filePath.append('/'.join([x for x in dependency.get('filePath').split("\\") if x not in self.escaped_path])) description.append(str(vulnerability.get('description')).replace('\n', ' ')) status.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Status", "Open")) developer_comment.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Comment", "need add in JsonFile")) for relatedDependency in dependency.get('relatedDependencies', {}): filename = relatedDependency.get('filePath').split('\\')[-1].strip() filePath.append('/'.join([x for x in relatedDependency.get('filePath').split('\\') if x not in self.escaped_path])) vuldependency.append(filename) cve_id.append(vulnerability.get('name').strip()) description.append(str(vulnerability.get('description')).replace('\n', ' ')) severity.append(vulnerability.get('severity').upper().strip()) status.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Status", "Open")) developer_comment.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Comment", "need add in JsonFile")) else: vuldependency.append(dependency.get('fileName').strip()) cve_id.append(vulnerability.get('name').strip()) severity.append(vulnerability.get('severity').upper()) filePath.append('/'.join([x for x in dependency.get('filePath').split('\\') if x not in self.escaped_path])) description.append(str(vulnerability.get('description')).replace('\n', ' ')) status.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Status", "Open")) developer_comment.append(self.comments.get(vuldependency[-1], {}).get(cve_id[-1], {}).get("Comment", "need add in JsonFile")) result_data = zip(vuldependency, description, cve_id, severity,filePath, status, developer_comment) df_cvc = pd.DataFrame(list(result_data), columns = [ "DependencyName", "Description", "CVE", "Severity", "FilePath", "Status", "Developer Comment" ] ) except Exception as e: print("[Error] unable to convert cvc data to data frame....", str(e)) return df_cvc
59.222222
157
0.535752
c5db84742c4b627a7fdceb6c920589a6b7773d99
778
py
Python
Week2/13. F1 driver Standing.py
HawkingLaugh/Data-Processing-Using-Python
6c4d7e09317aee41684731d5611f2f0dab217b2b
[ "MIT" ]
null
null
null
Week2/13. F1 driver Standing.py
HawkingLaugh/Data-Processing-Using-Python
6c4d7e09317aee41684731d5611f2f0dab217b2b
[ "MIT" ]
null
null
null
Week2/13. F1 driver Standing.py
HawkingLaugh/Data-Processing-Using-Python
6c4d7e09317aee41684731d5611f2f0dab217b2b
[ "MIT" ]
null
null
null
import re import requests from bs4 import BeautifulSoup r = requests.get('https://www.formula1.com/en/results.html/2020/drivers.html') soup = BeautifulSoup(r.text, 'lxml') """ 2. Retrieve the data of the athletes from the website of https://www.volleyball.world/en/vnl/2019/women/resultsandranking/round1(include TEAMS and TOTAL, WON, LOST of MATCHES) Note: Although we can get the every item just like 'USA' or '15' using the way we have learned, but it will ccut off the link between the data. It is better to parse the data in groups. Because the source codes including the athletes' data are located in some lines and there are many spaces in the front of the lines, we can use the '\s+' representing the whitespaces(spaces and \n) to match the multiple lines. """
51.866667
177
0.760925
c183107730ad2c96dd7988f0265f0f9091842ecb
514
gyp
Python
test/win/lib-flags/ltcg.gyp
chlorm-forks/gyp
a8921fcaab1a18c8cf7e4ab09ceb940e336918ec
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
test/win/lib-flags/ltcg.gyp
chlorm-forks/gyp
a8921fcaab1a18c8cf7e4ab09ceb940e336918ec
[ "BSD-3-Clause" ]
1,432
2017-06-21T04:08:48.000Z
2020-08-25T16:21:15.000Z
test/win/lib-flags/ltcg.gyp
chlorm-forks/gyp
a8921fcaab1a18c8cf7e4ab09ceb940e336918ec
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
# Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'lib_answer', 'type': 'static_library', 'msvs_settings': { 'VCCLCompilerTool': { 'WholeProgramOptimization': 'true', # /GL }, 'VCLibrarianTool': { 'LinkTimeCodeGeneration': 'true', # /LTCG }, }, 'sources': ['answer.cc'], }, ] }
23.363636
72
0.548638
7bba663aa4996a77180fff91cac5dfef967eec1d
1,649
py
Python
segment.py
JanusTan/segment_compute
2fe5659262183435ec338cf7c09597949de6f338
[ "Apache-2.0" ]
null
null
null
segment.py
JanusTan/segment_compute
2fe5659262183435ec338cf7c09597949de6f338
[ "Apache-2.0" ]
null
null
null
segment.py
JanusTan/segment_compute
2fe5659262183435ec338cf7c09597949de6f338
[ "Apache-2.0" ]
null
null
null
''' programmer:Ryan Tan requirement of homework: 1、segment 2、compute the width of the block 3、calculate the area of the block ''' import numpy as np import cv2 #function for verify if the points is in the left edge def checkall(img2,x1,y1): a=0 for p in img2[y1,x1+1:x1+122]: if p == 255: a=1 break if p== 0: a=3 if a==1: return False else : return True #function for verify if the points is in the right edge def checkall2(img2,x3,y3): a=0 for p in img2[y3,x3-122:x3-1]: if p == 255: a=1 break if p== 0: a=3 if a==1: return False else : return True img = cv2.imread('source.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) canny=cv2.Canny(gray,10,300) #selct the region of two egde img2=canny[0:1200,540:860] y=0 x=0 p=0 x2=161 #build a black mask to draw the segement edge mask = np.zeros((1200,320),np.uint8) #the list follow is to store the points we need T=[] J=[] T1=[] J1=[] #the loop can compute the left edge points and right edge points for q in range(0,1200): for i in img2[y,0:160]: if i==255 and checkall(img2,x,y): mask[y,x]=255 T.append(y) J.append(x) break x=x+1 for i in img2[y,161:320]: if i==255 and checkall2(img2,x2,y): mask[y,x2]=255 T1.append(y) J1.append(x2) break x2=x2+1 x2=161 x=0 y=y+1 #using numpy discrete integral algorithm to compute area of the block area=((np.trapz(J1,T1))-(np.trapz(J,T))) print('the block area is:',area) X=np.ravel(x2) Y=np.ravel(x) maxWidth=np.max(X-Y) print('the max width:',maxWidth) cv2.imshow('segment',canny) cv2.imshow('segment2',mask) cv2.waitKey(0)
16.326733
70
0.649485
cee97b7ad500a634abb0bd7bbcadd0f558d2b7d5
3,075
py
Python
data/p2DJ/New/program/qiskit/noisy/startQiskit_noisy142.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/qiskit/noisy/startQiskit_noisy142.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p2DJ/New/program/qiskit/noisy/startQiskit_noisy142.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=2 # total number=10 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.cx(input_qubit[0],input_qubit[1]) # number=2 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[0],input_qubit[1]) # number=8 prog.h(input_qubit[1]) # number=9 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure #for i in range(n): # prog.measure(input_qubit[i], classicals[i]) prog.x(input_qubit[0]) # number=3 prog.y(input_qubit[1]) # number=6 prog.x(input_qubit[0]) # number=4 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = FakeVigo() circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) circuit1.measure_all() prog = circuit1 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() writefile = open("../data/startQiskit_noisy142.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
27.954545
82
0.626667
e2568704269d9bd0aa4e53c7671085de29350477
1,054
py
Python
app/geolocation/services.py
raszidzie/geolocation-api
c79ddda6770004624fcb5722e2c04dedfd79e449
[ "MIT" ]
1
2021-05-22T18:13:29.000Z
2021-05-22T18:13:29.000Z
app/geolocation/services.py
raszidzie/geolocation-api
c79ddda6770004624fcb5722e2c04dedfd79e449
[ "MIT" ]
null
null
null
app/geolocation/services.py
raszidzie/geolocation-api
c79ddda6770004624fcb5722e2c04dedfd79e449
[ "MIT" ]
null
null
null
import os import requests from .exceptions import ExternalApiException def get_location(ip): url = f'http://api.ipstack.com/{ip}' params = {'access_key': os.environ.get('ACCESS_KEY')} try: res = requests.get(url, params=params) data = res.json() return { 'ip':data['ip'], 'country_name':data['country_name'], 'region_code':data['region_code'], 'city':data['city'], 'latitude':data['latitude'], 'longitude':data['longitude'], 'zip_code':data['zip'] } except requests.exceptions.ConnectionError: raise ExternalApiException('Connection error occured during the fetch process') except requests.exceptions.Timeout: raise ExternalApiException("Connection timeout. Please check your internet connection and try again later") except requests.exceptions.TooManyRedirects: raise ExternalApiException("Too many redirects") except requests.exceptions.RequestException: raise SystemExit(e)
39.037037
115
0.650854
d3a684632cecf055075c89bab9fec5e30165edf9
4,076
py
Python
rotation_scripts/decade_scripts/analysis_by_decade.py
greenelab/biovectors
cf298a1f581754851e69defedc4770069edd7750
[ "BSD-2-Clause-Patent" ]
3
2021-04-13T15:30:27.000Z
2022-03-09T01:46:27.000Z
rotation_scripts/decade_scripts/analysis_by_decade.py
greenelab/biovectors
cf298a1f581754851e69defedc4770069edd7750
[ "BSD-2-Clause-Patent" ]
6
2020-10-30T11:35:18.000Z
2021-11-12T18:17:25.000Z
rotation_scripts/decade_scripts/analysis_by_decade.py
greenelab/biovectors
cf298a1f581754851e69defedc4770069edd7750
[ "BSD-2-Clause-Patent" ]
2
2020-11-18T15:06:13.000Z
2020-11-19T07:31:50.000Z
""" This module evaluates each decades's word2vec performance using AUROC and precision-recall. Very similar to `analysis` module. """ from sklearn.metrics import ( roc_curve, auc, precision_recall_curve, average_precision_score, ) import pandas as pd import numpy as np import os import matplotlib.pyplot as plt def plot_roc(labels, predictions, dummy_predictions, year): """ Plots ROC curve. @param labels: numpy array of classes @param predictions: numpy array of corresponding word2vec similarity scores @param dummy_predictions: numpy array of corresponding dummy classifications """ fp, tp, _ = roc_curve(labels, predictions) roc_auc = auc(fp, tp) fp_d, tp_d, _ = roc_curve(labels, dummy_predictions) roc_auc_d = auc(fp_d, tp_d) plt.figure() plt.plot(fp, tp, color="darkorange", lw=2, label="Word2vec, AUC = %0.2f" % roc_auc) plt.plot( fp_d, tp_d, color="navy", lw=2, label="Dummy Classifier, AUC = %0.2f" % roc_auc_d, ) plt.plot([0, 1], [0, 1], color="black", lw=2, linestyle="--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title(f"ROC Curve Analysis ({str(year)}-{str(year+9)})") plt.legend(loc="lower right") plt.savefig(f"figures/analysis/roc_curves_{str(year)}-{str(year+9)}.jpg") def plot_precision_recall(labels, predictions, year): """ Plots precision-recall curve. @param labels: numpy array of classes @param predictions: numpy array of corresponding similarity scores """ precision, recall, threshold = precision_recall_curve(labels, predictions) avg_precision = average_precision_score(labels, predictions) plt.figure() plt.plot( recall, precision, label="Avg precision-recall score: %0.2f" % avg_precision ) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("Recall") plt.ylabel("Precision") plt.title(f"Word2vec: Precision-Recall curve ({str(year)}-{str(year+9)})") plt.legend(loc="lower left") plt.savefig( f"figures/analysis/precision_recall_curve_{str(year)}-{str(year+9)}.jpg" ) def sort_similarity_scores(scores_df, year): """ Sorts similarity scores in descending order to differentiate TPs and FPs. @param scores_df: panda dataframe containing scores (see similarity_scores.tsv) """ sorted_df = ( scores_df.sort_values(by=["score"], ascending=False) # .drop(scores_df.columns[:1], 0) ) sorted_df.to_csv( f"outputs/decades/sorted/sorted_similarity_scores_{str(year)}-{str(year+9)}.tsv", sep="\t", index=False, ) if __name__ == "__main__": base = os.path.abspath(os.getcwd()) # iterate through results from 1971-2020 by decade years = [1971, 1981, 1991, 2001, 2011] for filename in os.listdir(os.path.join(base, "outputs/decades/")): for year in years: if f"similarity_scores_{str(year)}-{str(year+9)}" in filename: print(os.path.join(base, filename)) # word2vec scores_df = pd.read_csv( os.path.join(base, "outputs/decades/", filename), sep="\t" ) labels = np.array(scores_df[["class"]].values.tolist()) predictions = np.array(scores_df[["score"]].values.tolist()) # dummy dummy_df = pd.read_csv( os.path.join( base, f"outputs/decades/dummy_scores_{str(year)}-{str(year+9)}.tsv", ), sep="\t", ) dummy_predictions = np.array(dummy_df[["dummy_score"]].values.tolist()) # analysis plot_roc(labels, predictions, dummy_predictions, year) plot_precision_recall(labels, predictions, year) sort_similarity_scores(scores_df, year) else: continue
33.68595
91
0.610648
2036be9c14e5c125f29726e3c1bf1347ca7905f3
37,658
py
Python
dcnn_train.py
Rohitmaan2012/Twitter_Sentiment_Analysis
15a6497cdde0079a9bc6d852b42eb49f4960c3bf
[ "MIT" ]
null
null
null
dcnn_train.py
Rohitmaan2012/Twitter_Sentiment_Analysis
15a6497cdde0079a9bc6d852b42eb49f4960c3bf
[ "MIT" ]
null
null
null
dcnn_train.py
Rohitmaan2012/Twitter_Sentiment_Analysis
15a6497cdde0079a9bc6d852b42eb49f4960c3bf
[ "MIT" ]
null
null
null
""" CNN for sentence modeling described in paper: A Convolutional Neural Network for Modeling Sentence """ import sys, os, time import pdb import math, random import numpy as np import theano import theano.tensor as T from util import (load_data, dump_params) from logreg import LogisticRegression class WordEmbeddingLayer(object): """ Layer that takes input vectors, output the sentence matrix """ def __init__(self, rng, input, vocab_size, embed_dm, embeddings = None, ): """ input: theano.tensor.dmatrix, (number of instances, sentence word number) vocab_size: integer, the size of vocabulary, embed_dm: integer, the dimension of word vector representation embeddings: theano.tensor.TensorType pretrained embeddings """ if embeddings: print "Use pretrained embeddings: ON" assert embeddings.get_value().shape == (vocab_size, embed_dm), "%r != %r" %( embeddings.get_value().shape, (vocab_size, embed_dm) ) self.embeddings = embeddings else: print "Use pretrained embeddings: OFF" embedding_val = np.asarray( rng.normal(0, 0.05, size = (vocab_size, embed_dm)), dtype = theano.config.floatX ) embedding_val[vocab_size-1,:] = 0 # the <PADDING> character is intialized to 0 self.embeddings = theano.shared( np.asarray(embedding_val, dtype = theano.config.floatX), borrow = True, name = 'embeddings' ) self.params = [self.embeddings] self.param_shapes = [(vocab_size, embed_dm)] # Return: # :type, theano.tensor.tensor4 # :param, dimension(1, 1, word embedding dimension, number of words in sentence) # made to be 4D to fit into the dimension of convolution operation sent_embedding_list, updates = theano.map(lambda sent: self.embeddings[sent], input) sent_embedding_tensor = T.stacklists(sent_embedding_list) # make it into a 3D tensor self.output = sent_embedding_tensor.dimshuffle(0, 'x', 2, 1) # make it a 4D tensor class ConvFoldingPoolLayer(object): """ Convolution, folding and k-max pooling layer """ def __init__(self, rng, input, filter_shape, k, activation = "tanh", norm_w = True, fold = 0, W = None, b = None): """ rng: numpy random number generator input: theano.tensor.tensor4 the sentence matrix, (number of instances, number of input feature maps, embedding dimension, number of words) filter_shape: tuple of length 4, dimension: (number of filters, num input feature maps, filter height, filter width) k: int or theano.tensor.iscalar, the k value in the max-pooling layer activation: str the activation unit type, `tanh` or `relu` or 'sigmoid' norm_w: bool whether use fan-in fan-out initialization or not. Default, True If not True, use `normal(0, 0.05, size)` fold: int, 0 or 1 fold or not W: theano.tensor.tensor4, the filter weight matrices, dimension: (number of filters, num input feature maps, filter height, filter width) b: theano.tensor.vector, the filter bias, dimension: (filter number, ) """ self.input = input self.k = k self.filter_shape = filter_shape self.fold_flag = fold assert activation in ('tanh', 'relu', 'sigmoid') self.activation = activation if W is not None: self.W = W else: if norm_w: # use fan-in fan-out init fan_in = np.prod(filter_shape[1:]) fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / k) # it's W_bound = np.sqrt(6. / (fan_in + fan_out)) W_val = np.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ) else: # normal initialization W_val = np.asarray( rng.normal(0, 0.05, size = filter_shape), dtype=theano.config.floatX ) self.W = theano.shared( value = np.asarray(W_val, dtype = theano.config.floatX), name = "W", borrow=True ) # make b if b is not None: b_val = b b_size = b.shape self.b = b else: b_size = (filter_shape[0], ) b_val = np.zeros(b_size) self.b = theano.shared( value = np.asarray( b_val, dtype = theano.config.floatX ), name = "b", borrow = True ) self.params = [self.W, self.b] self.param_shapes = [filter_shape, b_size ] def fold(self, x): """ :type x: theano.tensor.tensor4 """ return (x[:, :, T.arange(0, x.shape[2], 2)] + x[:, :, T.arange(1, x.shape[2], 2)]) / 2 def k_max_pool(self, x, k): """ perform k-max pool on the input along the rows input: theano.tensor.tensor4 k: theano.tensor.iscalar the k parameter Returns: 4D tensor """ ind = T.argsort(x, axis = 3) sorted_ind = T.sort(ind[:,:,:, -k:], axis = 3) dim0, dim1, dim2, dim3 = sorted_ind.shape indices_dim0 = T.arange(dim0).repeat(dim1 * dim2 * dim3) indices_dim1 = T.arange(dim1).repeat(dim2 * dim3).reshape((dim1*dim2*dim3, 1)).repeat(dim0, axis=1).T.flatten() indices_dim2 = T.arange(dim2).repeat(dim3).reshape((dim2*dim3, 1)).repeat(dim0 * dim1, axis = 1).T.flatten() return x[indices_dim0, indices_dim1, indices_dim2, sorted_ind.flatten()].reshape(sorted_ind.shape) @property def output(self): # non-linear transform of the convolution output conv_out = T.nnet.conv.conv2d(self.input, self.W, border_mode = "full") if self.fold_flag: # fold fold_out = self.fold(conv_out) else: fold_out = conv_out # k-max pool pool_out = (self.k_max_pool(fold_out, self.k) + self.b.dimshuffle('x', 0, 'x', 'x')) # around 0. # why tanh becomes extreme? if self.activation == "tanh": # return theano.printing.Print("tanh(pool_out)")(T.tanh(pool_out)) return T.tanh(pool_out) elif self.activation == "sigmoid": return T.nnet.sigmoid(pool_out) else: return T.switch(pool_out > 0, pool_out, 0) class DropoutLayer(object): """ As the name suggests Refer to here: https://github.com/mdenil/dropout/blob/master/mlp.py """ def __init__(self, input, rng, dropout_rate): srng = theano.tensor.shared_randomstreams.RandomStreams( rng.randint(999999)) # p=1-p because 1's indicate keep and p is prob of dropping mask = srng.binomial(n=1, p=1-dropout_rate, size=input.shape) self.output = input * T.cast(mask, theano.config.floatX) def train_and_test(args, print_config): assert args.conv_layer_n == len(args.filter_widths) == len(args.nkerns) == (len(args.L2_regs) - 2) == len(args.fold_flags) == len(args.ks) # \mod{dim, 2^{\sum fold_flags}} == 0 assert args.embed_dm % (2 ** sum(args.fold_flags)) == 0 ################### # get the data # ################### datasets = load_data(args.corpus_path) train_set_x, train_set_y = datasets[0] dev_set_x, dev_set_y = datasets[1] test_set_x, test_set_y = datasets[2] word2index = datasets[3] index2word = datasets[4] pretrained_embeddings = datasets[5] n_train_batches = train_set_x.get_value(borrow=True).shape[0] / args.batch_size n_dev_batches = dev_set_x.get_value(borrow=True).shape[0] / args.dev_test_batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / args.dev_test_batch_size train_sent_len = train_set_x.get_value(borrow=True).shape[1] possible_labels = set(train_set_y.get_value().tolist()) if args.use_pretrained_embedding: args.embed_dm = pretrained_embeddings.get_value().shape[1] ################################### # Symbolic variable definition # ################################### x = T.imatrix('x') # the word indices matrix y = T.ivector('y') # the sentiment labels batch_index = T.iscalar('batch_index') rng = np.random.RandomState(1234) ############################### # Construction of the network # ############################### # Layer 1, the embedding layer layer1 = WordEmbeddingLayer(rng, input = x, vocab_size = len(word2index), embed_dm = args.embed_dm, embeddings = ( pretrained_embeddings if args.use_pretrained_embedding else None ) ) dropout_layers = [layer1] layers = [layer1] for i in xrange(args.conv_layer_n): fold_flag = args.fold_flags[i] # for the dropout layer dpl = DropoutLayer( input = dropout_layers[-1].output, rng = rng, dropout_rate = args.dropout_rates[0] ) next_layer_dropout_input = dpl.output next_layer_input = layers[-1].output # for the conv layer filter_shape = ( args.nkerns[i], (1 if i == 0 else args.nkerns[i-1]), 1, args.filter_widths[i] ) k = args.ks[i] print "For conv layer(%s) %d, filter shape = %r, k = %d, dropout_rate = %f and normalized weight init: %r and fold: %d" %( args.conv_activation_unit, i+2, filter_shape, k, args.dropout_rates[i], args.norm_w, fold_flag ) # we have two layers adding to two paths repsectively, # one for training # the other for prediction(averaged model) dropout_conv_layer = ConvFoldingPoolLayer(rng, input = next_layer_dropout_input, filter_shape = filter_shape, k = k, norm_w = args.norm_w, fold = fold_flag, activation = args.conv_activation_unit) # for prediction # sharing weight with dropout layer conv_layer = ConvFoldingPoolLayer(rng, input = next_layer_input, filter_shape = filter_shape, k = k, activation = args.conv_activation_unit, fold = fold_flag, W = dropout_conv_layer.W * (1 - args.dropout_rates[i]), # model averaging b = dropout_conv_layer.b ) dropout_layers.append(dropout_conv_layer) layers.append(conv_layer) # last, the output layer # both dropout and without dropout if sum(args.fold_flags) > 0: n_in = args.nkerns[-1] * args.ks[-1] * args.embed_dm / (2**sum(args.fold_flags)) else: n_in = args.nkerns[-1] * args.ks[-1] * args.embed_dm print "For output layer, n_in = %d, dropout_rate = %f" %(n_in, args.dropout_rates[-1]) dropout_output_layer = LogisticRegression( rng, input = dropout_layers[-1].output.flatten(2), n_in = n_in, # divided by 2x(how many times are folded) n_out = len(possible_labels) # five sentiment level ) output_layer = LogisticRegression( rng, input = layers[-1].output.flatten(2), n_in = n_in, n_out = len(possible_labels), W = dropout_output_layer.W * (1 - args.dropout_rates[-1]), # sharing the parameters, don't forget b = dropout_output_layer.b ) dropout_layers.append(dropout_output_layer) layers.append(output_layer) ############################### # Error and cost # ############################### # cost and error come from different model! dropout_cost = dropout_output_layer.nnl(y) errors = output_layer.errors(y) def prepare_L2_sqr(param_layers, L2_regs): assert len(L2_regs) == len(param_layers) return T.sum([ L2_reg / 2 * ((layer.W if hasattr(layer, "W") else layer.embeddings) ** 2).sum() for L2_reg, layer in zip(L2_regs, param_layers) ]) L2_sqr = prepare_L2_sqr(dropout_layers, args.L2_regs) L2_sqr_no_ebd = prepare_L2_sqr(dropout_layers[1:], args.L2_regs[1:]) if args.use_L2_reg: cost = dropout_cost + L2_sqr cost_no_ebd = dropout_cost + L2_sqr_no_ebd else: cost = dropout_cost cost_no_ebd = dropout_cost ############################### # Parameters to be used # ############################### print "Delay embedding learning by %d epochs" %(args.embedding_learning_delay_epochs) print "param_layers: %r" %dropout_layers param_layers = dropout_layers ############################## # Parameter Update # ############################## print "Using AdaDelta with rho = %f and epsilon = %f" %(args.rho, args.epsilon) params = [param for layer in param_layers for param in layer.params] param_shapes= [param for layer in param_layers for param in layer.param_shapes] param_grads = [T.grad(cost, param) for param in params] # AdaDelta parameter update # E[g^2] # initialized to zero egs = [ theano.shared( value = np.zeros(param_shape, dtype = theano.config.floatX ), borrow = True, name = "Eg:" + param.name ) for param_shape, param in zip(param_shapes, params) ] # E[\delta x^2], initialized to zero exs = [ theano.shared( value = np.zeros(param_shape, dtype = theano.config.floatX ), borrow = True, name = "Ex:" + param.name ) for param_shape, param in zip(param_shapes, params) ] new_egs = [ args.rho * eg + (1 - args.rho) * g ** 2 for eg, g in zip(egs, param_grads) ] delta_x = [ -(T.sqrt(ex + args.epsilon) / T.sqrt(new_eg + args.epsilon)) * g for new_eg, ex, g in zip(new_egs, exs, param_grads) ] new_exs = [ args.rho * ex + (1 - args.rho) * (dx ** 2) for ex, dx in zip(exs, delta_x) ] egs_updates = zip(egs, new_egs) exs_updates = zip(exs, new_exs) param_updates = [ (p, p + dx) for dx, g, p in zip(delta_x, param_grads, params) ] updates = egs_updates + exs_updates + param_updates # updates WITHOUT embedding # exclude the embedding parameter egs_updates_no_ebd = zip(egs[1:], new_egs[1:]) exs_updates_no_ebd = zip(exs[1:], new_exs[1:]) param_updates_no_ebd = [ (p, p + dx) for dx, g, p in zip(delta_x, param_grads, params)[1:] ] updates_no_emb = egs_updates_no_ebd + exs_updates_no_ebd + param_updates_no_ebd def make_train_func(cost, updates): return theano.function(inputs = [batch_index], outputs = [cost], updates = updates, givens = { x: train_set_x[batch_index * args.batch_size: (batch_index + 1) * args.batch_size], y: train_set_y[batch_index * args.batch_size: (batch_index + 1) * args.batch_size] } ) train_model_no_ebd = make_train_func(cost_no_ebd, updates_no_emb) train_model = make_train_func(cost, updates) def make_error_func(x_val, y_val): return theano.function(inputs = [], outputs = errors, givens = { x: x_val, y: y_val }, ) dev_error = make_error_func(dev_set_x, dev_set_y) test_error = make_error_func(test_set_x, test_set_y) ############################# # Debugging purpose code # ############################# # : PARAMETER TUNING NOTE: # some demonstration of the gradient vanishing probelm train_data_at_index = { x: train_set_x[batch_index * args.batch_size: (batch_index + 1) * args.batch_size], } train_data_at_index_with_y = { x: train_set_x[batch_index * args.batch_size: (batch_index + 1) * args.batch_size], y: train_set_y[batch_index * args.batch_size: (batch_index + 1) * args.batch_size] } if print_config["nnl"]: get_nnl = theano.function( inputs = [batch_index], outputs = dropout_cost, givens = { x: train_set_x[batch_index * args.batch_size: (batch_index + 1) * args.batch_size], y: train_set_y[batch_index * args.batch_size: (batch_index + 1) * args.batch_size] } ) if print_config["L2_sqr"]: get_L2_sqr = theano.function( inputs = [], outputs = L2_sqr ) get_L2_sqr_no_ebd = theano.function( inputs = [], outputs = L2_sqr_no_ebd ) if print_config["grad_abs_mean"]: print_grads = theano.function( inputs = [], outputs = [theano.printing.Print(param.name)( T.mean(T.abs_(param_grad)) ) for param, param_grad in zip(params, param_grads) ], givens = { x: train_set_x, y: train_set_y } ) activations = [ l.output for l in dropout_layers[1:-1] ] weight_grads = [ T.grad(cost, l.W) for l in dropout_layers[1:-1] ] if print_config["activation_hist"]: # turn into 1D array get_activations = theano.function( inputs = [batch_index], outputs = [ val.flatten(1) for val in activations ], givens = train_data_at_index ) if print_config["weight_grad_hist"]: # turn into 1D array get_weight_grads = theano.function( inputs = [batch_index], outputs = [ val.flatten(1) for val in weight_grads ], givens = train_data_at_index_with_y ) if print_config["activation_tracking"]: # get the mean and variance of activations for each conv layer get_activation_mean = theano.function( inputs = [batch_index], outputs = [ T.mean(val) for val in activations ], givens = train_data_at_index ) get_activation_std = theano.function( inputs = [batch_index], outputs = [ T.std(val) for val in activations ], givens = train_data_at_index ) if print_config["weight_grad_tracking"]: # get the mean and variance of activations for each conv layer get_weight_grad_mean = theano.function( inputs = [batch_index], outputs = [ T.mean(g) for g in weight_grads ], givens = train_data_at_index_with_y ) get_weight_grad_std = theano.function( inputs = [batch_index], outputs = [ T.std(g) for g in weight_grads ], givens = train_data_at_index_with_y ) #the training loop patience = args.patience # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) best_validation_loss = np.inf best_iter = 0 start_time = time.clock() done_looping = False epoch = 0 nnls = [] L2_sqrs = [] activation_means = [[] for i in xrange(args.conv_layer_n)] activation_stds = [[] for i in xrange(args.conv_layer_n)] weight_grad_means = [[] for i in xrange(args.conv_layer_n)] weight_grad_stds = [[] for i in xrange(args.conv_layer_n)] activation_hist_data = [[] for i in xrange(args.conv_layer_n)] weight_grad_hist_data = [[] for i in xrange(args.conv_layer_n)] train_errors = [] dev_errors = [] try: print "validation_frequency = %d" %validation_frequency while (epoch < args.n_epochs): epoch += 1 print "At epoch {0}".format(epoch) if epoch == (args.embedding_learning_delay_epochs + 1): print "########################" print "Start training embedding" print "########################" # shuffle the training data train_set_x_data = train_set_x.get_value(borrow = True) train_set_y_data = train_set_y.get_value(borrow = True) permutation = np.random.permutation(train_set_x.get_value(borrow=True).shape[0]) train_set_x.set_value(train_set_x_data[permutation]) train_set_y.set_value(train_set_y_data[permutation]) for minibatch_index in xrange(n_train_batches): if epoch >= (args.embedding_learning_delay_epochs + 1): train_cost = train_model(minibatch_index) else: train_cost = train_model_no_ebd(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: # train_error_val = np.mean([train_error(i) # for i in xrange(n_train_batches)]) dev_error_val = dev_error() # print "At epoch %d and minibatch %d. \nTrain error %.2f%%\nDev error %.2f%%\n" %( # epoch, # minibatch_index, # train_error_val * 100, # dev_error_val * 100 # ) print "At epoch %d and minibatch %d. \nDev error %.2f%%\n" %( epoch, minibatch_index, dev_error_val * 100 ) # train_errors.append(train_error_val) dev_errors.append(dev_error_val) if dev_error_val < best_validation_loss: best_iter = iter #improve patience if loss improvement is good enough if dev_error_val < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) best_validation_loss = dev_error_val test_error_val = test_error() print( ( ' epoch %i, minibatch %i/%i, test error of' ' best dev error %f %%' ) % ( epoch, minibatch_index + 1, n_train_batches, test_error_val * 100. ) ) print "Dumping model to %s" %(args.model_path) dump_params(params, args.model_path) if (minibatch_index+1) % 50 == 0 or minibatch_index == n_train_batches - 1: print "%d / %d minibatches completed" %(minibatch_index + 1, n_train_batches) if print_config["nnl"]: print "`nnl` for the past 50 minibatches is %f" %(np.mean(np.array(nnls))) nnls = [] if print_config["L2_sqr"]: print "`L2_sqr`` for the past 50 minibatches is %f" %(np.mean(np.array(L2_sqrs))) L2_sqrs = [] ################## # Plotting stuff # ################## if print_config["nnl"]: nnl = get_nnl(minibatch_index) # print "nll for batch %d: %f" %(minibatch_index, nnl) nnls.append(nnl) if print_config["L2_sqr"]: if epoch >= (args.embedding_learning_delay_epochs + 1): L2_sqrs.append(get_L2_sqr()) else: L2_sqrs.append(get_L2_sqr_no_ebd()) if print_config["activation_tracking"]: layer_means = get_activation_mean(minibatch_index) layer_stds = get_activation_std(minibatch_index) for layer_ms, layer_ss, layer_m, layer_s in zip(activation_means, activation_stds, layer_means, layer_stds): layer_ms.append(layer_m) layer_ss.append(layer_s) if print_config["weight_grad_tracking"]: layer_means = get_weight_grad_mean(minibatch_index) layer_stds = get_weight_grad_std(minibatch_index) for layer_ms, layer_ss, layer_m, layer_s in zip(weight_grad_means, weight_grad_stds, layer_means, layer_stds): layer_ms.append(layer_m) layer_ss.append(layer_s) if print_config["activation_hist"]: for layer_hist, layer_data in zip(activation_hist_data , get_activations(minibatch_index)): layer_hist += layer_data.tolist() if print_config["weight_grad_hist"]: for layer_hist, layer_data in zip(weight_grad_hist_data , get_weight_grads(minibatch_index)): layer_hist += layer_data.tolist() except: import traceback traceback.print_exc(file = sys.stdout) finally: from plot_util import (plot_hist, plot_track, plot_error_vs_epoch, plt) if print_config["activation_tracking"]: plot_track(activation_means, activation_stds, "activation_tracking") if print_config["weight_grad_tracking"]: plot_track(weight_grad_means, weight_grad_stds, "weight_grad_tracking") if print_config["activation_hist"]: plot_hist(activation_hist_data, "activation_hist") if print_config["weight_grad_hist"]: plot_hist(weight_grad_hist_data, "weight_grad_hist") if print_config["error_vs_epoch"]: train_errors = [0] * len(dev_errors) ax = plot_error_vs_epoch(train_errors, dev_errors, title = ('Best dev score: %f %% ' ' at iter %i with test error %f %%') %( best_validation_loss * 100., best_iter + 1, test_error_val * 100. ) ) if not args.task_signature: plt.show() else: plt.savefig("plots/" + args.task_signature + ".png") end_time = time.clock() print(('Optimization complete. Best validation score of %f %% ' 'obtained at iteration %i, with test performance %f %%') % (best_validation_loss * 100., best_iter + 1, test_error_val * 100.)) # save the result with open(args.output, "a") as f: f.write("%s\t%f\t%f\n" %(args.task_signature, best_validation_loss, test_error_val)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == "__main__": print_config = { "adadelta_lr_mean": 0, "adagrad_lr_mean": 0, "embeddings": 0, "logreg_W": 0, "logreg_b": 0, "conv_layer1_W": 0, "conv_layer2_W": 0, "activation_tracking": 0, # the activation value, mean and variance "weight_grad_tracking": 0, # the weight gradient tracking "backprop_grad_tracking": 0, # the backpropagated gradient, mean and variance. In this case, grad propagated from layer 2 to layer 1 "activation_hist": 0, # the activation value, mean and variance "weight_grad_hist": 0, # the weight gradient tracking "backprop_grad_hist": 0, "error_vs_epoch": 1, "l1_output": 0, "dropout_l1_output": 0, "l2_output": 0, "dropout_l2_output": 0, "l3_output": 0, "p_y_given_x": 0, "grad_abs_mean": 0, "nnl": 1, "L2_sqr": 1, "param_weight_mean": 0, } import argparse, sys parser = argparse.ArgumentParser(description = "CNN with k-max pooling for sentence classification") parser.add_argument('--corpus_path', type=str, required = True, help = 'Path of preprocessed corpus' ) parser.add_argument('--model_path', type=str, required = True, help = 'Path of model parameters' ) parser.add_argument("--fold", type=int, default = [1,1], nargs="+", dest = "fold_flags", help = "Flags that turn on/off folding" ) parser.add_argument("--ext_ebd", action = "store_true", dest = "use_pretrained_embedding", help = "Use external/pretrained word embedding or not. For unkown reasons, type checking does not work for this argument" ) parser.add_argument("--l2", action = "store_true", dest = "use_L2_reg", help = "Use L2 regularization or not" ) parser.add_argument("--lr", type=float, default = 0.001, dest = "learning_rate", help = "Learning rate if constant learning rate is applied" ) parser.add_argument("--norm_w", action = "store_true", help = "Normalized initial weight as descripted in Glorot's paper" ) parser.add_argument("--ebd_delay_epoch", type=int, default = 4, dest = "embedding_learning_delay_epochs", help = "Embedding learning delay epochs" ) parser.add_argument("--au", type=str, default = "tanh", dest = "conv_activation_unit", help = "Activation unit type for the convolution layer" ) parser.add_argument("--eps", type=float, default =0.000001, dest = "epsilon", help = "Epsilon used by AdaDelta" ) parser.add_argument("--rho", type=float, default = 0.95, help = "Rho used by AdaDelta" ) parser.add_argument("--ebd_dm", type=int, default = 48, dest = "embed_dm", help = "Dimension for word embedding" ) parser.add_argument("--batch_size", type=int, default = 10, dest = "batch_size", help = "Batch size in the stochastic gradient descent" ) parser.add_argument("--dev_test_batch_size", type=int, default = 1000, help = "Batch size for dev/test data" ) parser.add_argument("--n_epochs", type=int, default =20, help = "Maximum number of epochs to perform during training" ) parser.add_argument("--dr", type=float, default = [0.2, 0.5, 0.5], nargs="+", dest = "dropout_rates", help = "Dropout rates at all layers except output layer" ) parser.add_argument("--l2_regs", type = float, default = [0.00001, 0.0003, 0.0003, 0.0001], nargs="+", dest = "L2_regs", help = "L2 regularization parameters at each layer. left/low->right/high" ) parser.add_argument("--ks", type = int, default = [15, 6], nargs="+", help = "The k values of the k-max pooling operation" ) parser.add_argument("--conv_layer_n", type=int, default = 2, help = "Number of convolution layers" ) parser.add_argument("--nkerns", type=int, default = [6,12], nargs="+", help = "Number of feature maps at each conv layer" ) parser.add_argument("--filter_widths", type=int, default = [10,7], nargs="+", help = "Filter width for each conv layer" ) parser.add_argument("--task_signature", type=str, help = "The prefix of the saved images." ) parser.add_argument("--output", type=str, required = True, help = "The output file path to save the result" ) parser.add_argument("--patience", type=int, default = 5000, help = "Patience parameter used for early stopping" ) args = parser.parse_args(sys.argv[1:]) print "Configs:\n-------------\n" for attr, value in vars(args).items(): print "%s: %r" %( attr.ljust(25), value ) train_and_test( args, print_config )
37.4334
146
0.48821
78e548379d89f168a5ba1a848314f6f14aac9264
15,526
py
Python
project/03-asvspoof-mega/spec2-lcnn-attention-oc/06/model.py
Nijta/project-NN-Pytorch-scripts
06a50ab072613fb60b8b8e1cea85c4aa8e75549d
[ "BSD-3-Clause" ]
null
null
null
project/03-asvspoof-mega/spec2-lcnn-attention-oc/06/model.py
Nijta/project-NN-Pytorch-scripts
06a50ab072613fb60b8b8e1cea85c4aa8e75549d
[ "BSD-3-Clause" ]
null
null
null
project/03-asvspoof-mega/spec2-lcnn-attention-oc/06/model.py
Nijta/project-NN-Pytorch-scripts
06a50ab072613fb60b8b8e1cea85c4aa8e75549d
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ model.py Self defined model definition. Usage: """ from __future__ import absolute_import from __future__ import print_function import sys import numpy as np import torch import torch.nn as torch_nn import torch.nn.functional as torch_nn_func import sandbox.block_nn as nii_nn import sandbox.util_frontend as nii_front_end import core_scripts.other_tools.debug as nii_debug import core_scripts.data_io.seq_info as nii_seq_tk import core_modules.oc_softmax as nii_ocsoftmax import config as prj_conf __author__ = "Xin Wang" __email__ = "[email protected]" __copyright__ = "Copyright 2020, Xin Wang" ############## ## util ############## def protocol_parse(protocol_filepath): """ Parse protocol of ASVspoof2019 and get bonafide/spoof for each trial input: ----- protocol_filepath: string, path to the protocol file for convenience, I put train/dev/eval trials into a single protocol file output: ------- data_buffer: dic, data_bufer[filename] -> 1 (bonafide), 0 (spoof) """ data_buffer = {} temp_buffer = np.loadtxt(protocol_filepath, dtype='str') for row in temp_buffer: if row[-1] == 'bonafide': data_buffer[row[1]] = 1 else: data_buffer[row[1]] = 0 return data_buffer ############## ## FOR MODEL ############## class TrainableLinearFb(nii_nn.LinearInitialized): """Linear layer initialized with linear filter bank """ def __init__(self, fn, sr, filter_num): super(TrainableLinearFb, self).__init__( nii_front_end.linear_fb(fn, sr, filter_num)) return def forward(self, x): return torch.log10( torch.pow(super(TrainableLinearFb, self).forward(x), 2) + torch.finfo(torch.float32).eps) class Model(torch_nn.Module): """ Model definition """ def __init__(self, in_dim, out_dim, args, mean_std=None): super(Model, self).__init__() ##### required part, no need to change ##### # mean std of input and output in_m, in_s, out_m, out_s = self.prepare_mean_std(in_dim,out_dim,\ args, mean_std) self.input_mean = torch_nn.Parameter(in_m, requires_grad=False) self.input_std = torch_nn.Parameter(in_s, requires_grad=False) self.output_mean = torch_nn.Parameter(out_m, requires_grad=False) self.output_std = torch_nn.Parameter(out_s, requires_grad=False) # a flag for debugging (by default False) # self.model_debug = False # self.flag_validation = False ##### #### # on input waveform and output target #### # Load protocol and prepare the target data for network training protocol_file = prj_conf.optional_argument[0] self.protocol_parser = protocol_parse(protocol_file) # Working sampling rate # torchaudio may be used to change sampling rate self.m_target_sr = 16000 #### # optional configs (not used) #### # re-sampling (optional) #self.m_resampler = torchaudio.transforms.Resample( # prj_conf.wav_samp_rate, self.m_target_sr) # vad (optional) #self.m_vad = torchaudio.transforms.Vad(sample_rate = self.m_target_sr) # flag for balanced class (temporary use) #self.v_flag = 1 #### # front-end configuration # multiple front-end configurations may be used # by default, use a single front-end #### # frame shift (number of waveform points) self.frame_hops = [160] # frame length self.frame_lens = [320] # FFT length self.fft_n = [512] # spectrogram dim (base component) self.spec_with_delta = False self.spec_fb_dim = 60 # window type self.win = torch.hann_window # floor in log-spectrum-amplitude calculating (not used) self.amp_floor = 0.00001 # number of frames to be kept for each trial # no truncation self.v_truncate_lens = [None for x in self.frame_hops] # number of sub-models (by default, a single model) self.v_submodels = len(self.frame_lens) # dimension of embedding vectors self.v_emd_dim = 64 # output classes self.v_out_class = 1 #### # create network #### # 1st part of the classifier self.m_transform = [] # pooling layer self.m_pooling = [] # 2nd part of the classifier self.m_output_act = [] # front-end self.m_frontend = [] # final part for output layer self.m_angle = [] # it can handle models with multiple front-end configuration # by default, only a single front-end for idx, (trunc_len, fft_n) in enumerate(zip( self.v_truncate_lens, self.fft_n)): fft_n_bins = fft_n // 2 + 1 self.m_transform.append( torch_nn.Sequential( TrainableLinearFb(fft_n,self.m_target_sr,self.spec_fb_dim), torch_nn.Conv2d(1, 64, [5, 5], 1, padding=[2, 2]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 96, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 96, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 128, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(64, 128, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(64, affine=False), torch_nn.Conv2d(64, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Dropout(0.7) ) ) self.m_pooling.append( nii_nn.SelfWeightedPooling((self.spec_fb_dim // 16) * 32) ) self.m_output_act.append( torch_nn.Linear((self.spec_fb_dim//16) * 32 * 2, self.v_emd_dim) ) self.m_angle.append( nii_ocsoftmax.OCAngleLayer(self.v_emd_dim) ) self.m_frontend.append( nii_front_end.Spectrogram(self.frame_lens[idx], self.frame_hops[idx], self.fft_n[idx], self.m_target_sr) ) self.m_frontend = torch_nn.ModuleList(self.m_frontend) self.m_transform = torch_nn.ModuleList(self.m_transform) self.m_output_act = torch_nn.ModuleList(self.m_output_act) self.m_pooling = torch_nn.ModuleList(self.m_pooling) self.m_angle = torch_nn.ModuleList(self.m_angle) # done return def prepare_mean_std(self, in_dim, out_dim, args, data_mean_std=None): """ prepare mean and std for data processing This is required for the Pytorch project, but not relevant to this code """ if data_mean_std is not None: in_m = torch.from_numpy(data_mean_std[0]) in_s = torch.from_numpy(data_mean_std[1]) out_m = torch.from_numpy(data_mean_std[2]) out_s = torch.from_numpy(data_mean_std[3]) if in_m.shape[0] != in_dim or in_s.shape[0] != in_dim: print("Input dim: {:d}".format(in_dim)) print("Mean dim: {:d}".format(in_m.shape[0])) print("Std dim: {:d}".format(in_s.shape[0])) print("Input dimension incompatible") sys.exit(1) if out_m.shape[0] != out_dim or out_s.shape[0] != out_dim: print("Output dim: {:d}".format(out_dim)) print("Mean dim: {:d}".format(out_m.shape[0])) print("Std dim: {:d}".format(out_s.shape[0])) print("Output dimension incompatible") sys.exit(1) else: in_m = torch.zeros([in_dim]) in_s = torch.ones([in_dim]) out_m = torch.zeros([out_dim]) out_s = torch.ones([out_dim]) return in_m, in_s, out_m, out_s def normalize_input(self, x): """ normalizing the input data This is required for the Pytorch project, but not relevant to this code """ return (x - self.input_mean) / self.input_std def normalize_target(self, y): """ normalizing the target data This is required for the Pytorch project, but not relevant to this code """ return (y - self.output_mean) / self.output_std def denormalize_output(self, y): """ denormalizing the generated output from network This is required for the Pytorch project, but not relevant to this code """ return y * self.output_std + self.output_mean def _front_end(self, wav, idx, trunc_len, datalength): """ simple fixed front-end to extract features input: ------ wav: waveform idx: idx of the trial in mini-batch trunc_len: number of frames to be kept after truncation datalength: list of data length in mini-batch output: ------- x_sp_amp: front-end featues, (batch, frame_num, frame_feat_dim) """ with torch.no_grad(): x_sp_amp = self.m_frontend[idx](wav.squeeze(-1)) # return return x_sp_amp def _compute_embedding(self, x, datalength): """ definition of forward method Assume x (batchsize, length, dim) Output x (batchsize * number_filter, output_dim) """ # resample if necessary #x = self.m_resampler(x.squeeze(-1)).unsqueeze(-1) # batch_size batch_size = x.shape[0] // self.v_submodels # buffer to store output scores from sub-models output_emb = torch.zeros([x.shape[0], self.v_emd_dim], device=x.device, dtype=x.dtype) # compute scores for each sub-models for idx, (fs, fl, fn, trunc_len, m_trans, m_pool, m_output) in \ enumerate( zip(self.frame_hops, self.frame_lens, self.fft_n, self.v_truncate_lens, self.m_transform, self.m_pooling, self.m_output_act)): # extract front-end feature x_sp_amp = self._front_end(x, idx, trunc_len, datalength) # compute scores # 1. unsqueeze to (batch, 1, frame_length, fft_bin) # 2. compute hidden features hidden_features = m_trans(x_sp_amp.unsqueeze(1)) # 3. (batch, channel, frame//N, feat_dim//N) -> # (batch, frame//N, channel * feat_dim//N) # where N is caused by conv with stride hidden_features = hidden_features.permute(0, 2, 1, 3).contiguous() frame_num = hidden_features.shape[1] hidden_features = hidden_features.view(batch_size, frame_num, -1) # 4. pooling hidden_features = m_pool(hidden_features) # 5. pass through the output layer tmp_emb = m_output(hidden_features) output_emb[idx * batch_size : (idx+1) * batch_size] = tmp_emb return output_emb def _compute_score(self, x, inference=False): """ """ # number of sub models * batch_size batch_size = x.shape[0] // self.v_submodels # buffer to save the scores # for non-target classes out_score_neg = torch.zeros( [x.shape[0], self.v_out_class], device=x.device, dtype=x.dtype) # for target classes out_score_pos = torch.zeros_like(out_score_neg) # compute scores for each sub-models for idx, m_score in enumerate(self.m_angle): s_idx = idx * batch_size e_idx = idx * batch_size + batch_size tmp_score = m_score(x[s_idx:e_idx], inference) out_score_neg[s_idx:e_idx] = tmp_score[0] out_score_pos[s_idx:e_idx] = tmp_score[1] if inference: return out_score_neg else: return out_score_neg, out_score_pos def _get_target(self, filenames): try: return [self.protocol_parser[x] for x in filenames] except KeyError: print("Cannot find target data for %s" % (str(filenames))) sys.exit(1) def forward(self, x, fileinfo): filenames = [nii_seq_tk.parse_filename(y) for y in fileinfo] datalength = [nii_seq_tk.parse_length(y) for y in fileinfo] if self.training: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec) # target target = self._get_target(filenames) target_vec = torch.tensor(target, device=x.device, dtype=torch.long) target_vec = target_vec.repeat(self.v_submodels) return [scores, target_vec] else: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec, True) target = self._get_target(filenames) print("Output, %s, %d, %f" % (filenames[0], target[0], scores.mean())) # don't write output score as a single file return None class Loss(): """ Wrapper to define loss function """ def __init__(self, args): """ """ self.m_loss = nii_ocsoftmax.OCSoftmaxWithLoss() def compute(self, input_data, target): """loss = compute(input_data, target_data) Note: 1. input_data will be the output from Model.forward() input_data will be a tuple of [scores, target_vec] 2. we will not use target given by the system script we will use the target_vec in input_data[1] """ loss = self.m_loss(input_data[0], input_data[1]) return loss if __name__ == "__main__": print("Definition of model")
34.502222
80
0.560415
806cc5d6465442ee3e8f7edfc8f6b1b903d79062
3,906
py
Python
src/webargs/fields.py
nhoening/webargs
bb77162e317dc8e853f1f6c44b9a0dccbbac2cd4
[ "MIT" ]
null
null
null
src/webargs/fields.py
nhoening/webargs
bb77162e317dc8e853f1f6c44b9a0dccbbac2cd4
[ "MIT" ]
null
null
null
src/webargs/fields.py
nhoening/webargs
bb77162e317dc8e853f1f6c44b9a0dccbbac2cd4
[ "MIT" ]
null
null
null
"""Field classes. Includes all fields from `marshmallow.fields` in addition to a custom `Nested` field and `DelimitedList`. All fields can optionally take a special `location` keyword argument, which tells webargs where to parse the request argument from. .. code-block:: python args = { "active": fields.Bool(location="query"), "content_type": fields.Str(data_key="Content-Type", location="headers"), } """ import typing import marshmallow as ma # Expose all fields from marshmallow.fields. from marshmallow.fields import * # noqa: F40 __all__ = ["DelimitedList"] + ma.fields.__all__ class Nested(ma.fields.Nested): # type: ignore[no-redef] """Same as `marshmallow.fields.Nested`, except can be passed a dictionary as the first argument, which will be converted to a `marshmallow.Schema`. .. note:: The schema class here will always be `marshmallow.Schema`, regardless of whether a custom schema class is set on the parser. Pass an explicit schema class if necessary. """ def __init__(self, nested, *args, **kwargs): if isinstance(nested, dict): nested = ma.Schema.from_dict(nested) super().__init__(nested, *args, **kwargs) class DelimitedFieldMixin: """ This is a mixin class for subclasses of ma.fields.List and ma.fields.Tuple which split on a pre-specified delimiter. By default, the delimiter will be "," Because we want the MRO to reach this class before the List or Tuple class, it must be listed first in the superclasses For example, a DelimitedList-like type can be defined like so: >>> class MyDelimitedList(DelimitedFieldMixin, ma.fields.List): >>> pass """ delimiter: str = "," def _serialize(self, value, attr, obj, **kwargs): # serializing will start with parent-class serialization, so that we correctly # output lists of non-primitive types, e.g. DelimitedList(DateTime) return self.delimiter.join( format(each) for each in super()._serialize(value, attr, obj, **kwargs) ) def _deserialize(self, value, attr, data, **kwargs): # attempting to deserialize from a non-string source is an error if not isinstance(value, (str, bytes)): raise self.make_error("invalid") return super()._deserialize(value.split(self.delimiter), attr, data, **kwargs) class DelimitedList(DelimitedFieldMixin, ma.fields.List): """A field which is similar to a List, but takes its input as a delimited string (e.g. "foo,bar,baz"). Like List, it can be given a nested field type which it will use to de/serialize each element of the list. :param Field cls_or_instance: A field class or instance. :param str delimiter: Delimiter between values. """ default_error_messages = {"invalid": "Not a valid delimited list."} def __init__( self, cls_or_instance: typing.Union[ma.fields.Field, type], *, delimiter: typing.Optional[str] = None, **kwargs ): self.delimiter = delimiter or self.delimiter super().__init__(cls_or_instance, **kwargs) class DelimitedTuple(DelimitedFieldMixin, ma.fields.Tuple): """A field which is similar to a Tuple, but takes its input as a delimited string (e.g. "foo,bar,baz"). Like Tuple, it can be given a tuple of nested field types which it will use to de/serialize each element of the tuple. :param Iterable[Field] tuple_fields: An iterable of field classes or instances. :param str delimiter: Delimiter between values. """ default_error_messages = {"invalid": "Not a valid delimited tuple."} def __init__( self, tuple_fields, *, delimiter: typing.Optional[str] = None, **kwargs ): self.delimiter = delimiter or self.delimiter super().__init__(tuple_fields, **kwargs)
33.965217
86
0.678955
f1bcd25a7e17e483560742cb285b58f58525d590
97
py
Python
WD/Cwiczenia/zamianaZnakowImie.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
1
2020-02-29T14:38:33.000Z
2020-02-29T14:38:33.000Z
WD/Cwiczenia/zamianaZnakowImie.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
null
null
null
WD/Cwiczenia/zamianaZnakowImie.py
galursa/UWM
b7ab4a275662764a91af6c5bc79da0d98177d0ac
[ "MIT" ]
null
null
null
imie="URSZULA" nazwisko=u"GAŁĄZKA" print(imie.capitalize()) print(nazwisko.capitalize())
13.857143
29
0.71134
307d68771a1b7d284b37614eef69c8c5dad1796f
847
py
Python
graphene/utils/tests/test_str_converters.py
nazarepiedady/graphene
5475a7ad1ff982b973f4c8c2a4507020c8682e15
[ "MIT" ]
7,451
2015-10-07T07:17:19.000Z
2022-03-30T21:56:42.000Z
graphene/utils/tests/test_str_converters.py
nazarepiedady/graphene
5475a7ad1ff982b973f4c8c2a4507020c8682e15
[ "MIT" ]
1,218
2015-10-08T23:58:37.000Z
2022-03-27T20:47:58.000Z
graphene/utils/tests/test_str_converters.py
nazarepiedady/graphene
5475a7ad1ff982b973f4c8c2a4507020c8682e15
[ "MIT" ]
985
2015-10-13T03:15:30.000Z
2022-03-29T08:30:54.000Z
# coding: utf-8 from ..str_converters import to_camel_case, to_snake_case def test_snake_case(): assert to_snake_case("snakesOnAPlane") == "snakes_on_a_plane" assert to_snake_case("SnakesOnAPlane") == "snakes_on_a_plane" assert to_snake_case("SnakesOnA_Plane") == "snakes_on_a__plane" assert to_snake_case("snakes_on_a_plane") == "snakes_on_a_plane" assert to_snake_case("snakes_on_a__plane") == "snakes_on_a__plane" assert to_snake_case("IPhoneHysteria") == "i_phone_hysteria" assert to_snake_case("iPhoneHysteria") == "i_phone_hysteria" def test_camel_case(): assert to_camel_case("snakes_on_a_plane") == "snakesOnAPlane" assert to_camel_case("snakes_on_a__plane") == "snakesOnA_Plane" assert to_camel_case("i_phone_hysteria") == "iPhoneHysteria" assert to_camel_case("field_i18n") == "fieldI18n"
42.35
70
0.75915
73816cec707fd7bbaa014ca2c9bf3eed370d7f50
426
py
Python
singer_sdk/helpers/_classproperty.py
meltano/sdk
83dde4fe922f9f91bd3c57277849a2a2daa8f09a
[ "Apache-2.0" ]
13
2021-06-21T17:30:32.000Z
2021-12-06T18:45:34.000Z
singer_sdk/helpers/_classproperty.py
meltano/sdk
83dde4fe922f9f91bd3c57277849a2a2daa8f09a
[ "Apache-2.0" ]
null
null
null
singer_sdk/helpers/_classproperty.py
meltano/sdk
83dde4fe922f9f91bd3c57277849a2a2daa8f09a
[ "Apache-2.0" ]
null
null
null
# flake8: noqa """Defines the `classproperty` decorator.""" # noqa class classproperty(property): """Class property decorator.""" def __get__(self, obj, objtype=None): return super(classproperty, self).__get__(objtype) def __set__(self, obj, value): super(classproperty, self).__set__(type(obj), value) def __delete__(self, obj): super(classproperty, self).__delete__(type(obj))
22.421053
60
0.671362
36729353b534cb7fd230089d9fa2a3ccbfb36649
334
py
Python
src/Python/09_Listy_wprowadzenie/Zad13.py
djeada/Nauka-programowania
b1eb6840c15b830acf552f0a0fc5cc692759152f
[ "MIT" ]
3
2020-09-19T21:38:30.000Z
2022-03-30T11:02:26.000Z
src/Python/09_Listy_wprowadzenie/Zad13.py
djeada/Nauka-programowania
b1eb6840c15b830acf552f0a0fc5cc692759152f
[ "MIT" ]
null
null
null
src/Python/09_Listy_wprowadzenie/Zad13.py
djeada/Nauka-programowania
b1eb6840c15b830acf552f0a0fc5cc692759152f
[ "MIT" ]
1
2022-02-04T09:13:20.000Z
2022-02-04T09:13:20.000Z
""" Znajdz brakujacy element w liscie. Ciag arytmetyczny. """ # Wersja 1 def znajdz_brakujacy_element(lista): suma_przedzialu = (len(lista) + 1) * (min(lista) + max(lista)) // 2 return suma_przedzialu - sum(lista) # Testy poprawnosci lista = [6, 8, 4, 10, 14, 2] wynik = 12 assert znajdz_brakujacy_element(lista) == wynik
19.647059
71
0.688623
43e5c03f720c95b52709d28512dc41fcf853e240
408
wsgi
Python
kraken.wsgi
peterdemartini/KrakenMaster
2b3ed18f6dcc720e66e1ac397a3b5ee902914e58
[ "BSD-3-Clause" ]
1
2016-12-22T22:25:05.000Z
2016-12-22T22:25:05.000Z
kraken.wsgi
peterdemartini/KrakenMaster
2b3ed18f6dcc720e66e1ac397a3b5ee902914e58
[ "BSD-3-Clause" ]
null
null
null
kraken.wsgi
peterdemartini/KrakenMaster
2b3ed18f6dcc720e66e1ac397a3b5ee902914e58
[ "BSD-3-Clause" ]
1
2022-03-28T00:28:07.000Z
2022-03-28T00:28:07.000Z
#!/usr/bin/python import os import subprocess import sys import logging logging.basicConfig(stream=sys.stderr) sys.path.insert(0,"/var/www/vhosts/KrakenMaster") from kraken.app import create_app from kraken.settings import DevConfig, ProdConfig from kraken.database import db if os.environ.get("KRAKEN_ENV") == 'prod': application = create_app(ProdConfig) else: application = create_app(DevConfig)
24
49
0.784314
1019bb8db80cbd93fe89c2548591064bc3e95f34
3,748
py
Python
cli/engine/InitEngine.py
lambdastack/lambdastack
0898cf23b490aa520b75f1bcd85be56c74cf35cf
[ "Apache-2.0" ]
6
2021-11-29T13:14:14.000Z
2022-02-02T19:27:44.000Z
cli/engine/InitEngine.py
lambdastack/lambdastack
0898cf23b490aa520b75f1bcd85be56c74cf35cf
[ "Apache-2.0" ]
5
2021-11-17T13:21:58.000Z
2021-11-22T16:31:08.000Z
cli/engine/InitEngine.py
lambdastack/lambdastack
0898cf23b490aa520b75f1bcd85be56c74cf35cf
[ "Apache-2.0" ]
2
2021-10-21T17:31:36.000Z
2021-12-01T08:20:25.000Z
import os from cli.helpers.Step import Step from cli.helpers.build_io import get_build_sshkey_path, save_manifest, get_build_path from cli.helpers.data_loader import load_all_schema_objs, types from cli.engine.ApplyEngine import ApplyEngine from cli.helpers.objdict_helpers import remove_value from cli.version import VERSION from cli.helpers.doc_list_helpers import select_all, select_single class InitEngine(Step): def __init__(self, input_data): super().__init__(__name__) self.provider = input_data.provider self.full_config = input_data.full_config self.name = input_data.name self.is_full_config = input_data.full_config def __enter__(self): super().__enter__() return self def __exit__(self, exc_type, exc_value, traceback): pass def init(self): input = load_all_schema_objs(types.DEFAULT, self.provider, 'configuration/minimal-cluster-config') input[0].specification.name = self.name input[0].build_path = get_build_path(self.name) input[0].specification.admin_user.path = os.path.join(get_build_sshkey_path(self.name), input[0].specification.admin_user.key_path) if self.is_full_config: config = self.get_config_docs(input) config_only = select_all(config, lambda x: not(x.kind.startswith('lambdastack-cluster'))) # gcp - wip if self.provider == 'any' or self.provider == 'gcp': # for any provider we want to use the default config from minimal-cluster-config cluster_model = select_single(input, lambda x: x.kind == 'lambdastack-cluster') else: # for azure|aws provider we want to use the extended defaults cluster-config after dry run. # TODO: We probably wants this comming from seperate documents since Azure and AWS overlap now... cluster_model = select_single(config, lambda x: x.kind == 'lambdastack-cluster') infra = self.get_infra_docs(input) docs = [cluster_model, *config_only, *infra] else: docs = [*input] # set the provider and version for all docs for doc in docs: doc['provider'] = self.provider doc['version'] = VERSION # remove SET_BY_AUTOMATION fields remove_value(docs, 'SET_BY_AUTOMATION') # save document save_manifest(docs, self.name, self.name+'.yml') self.logger.info('Initialized new configuration and saved it to "' + os.path.join(get_build_path(self.name), self.name + '.yml') + '"') return 0 def get_config_docs(self, input_docs): cluster_config_path = save_manifest(input_docs, self.name, self.name + '.yml') args = type('obj', (object,), {'file': cluster_config_path})() args.ping_retries = 5 # generate the config documents with ApplyEngine(args) as build: config = build.dry_run() return config def get_infra_docs(self, input_docs): if self.provider == 'any': # For any we can include the machine documents from the minimal-cluster-config infra = select_all(input_docs, lambda x: x.kind.startswith('infrastructure/machine')) else: # VMs are curently the infrastructure documents the user might interact with for: # - type/size # - distro # - network security rules # ... # So we add the defaults here. # TODO: Check if we want to include possible other infrastructure documents. infra = load_all_schema_objs(types.DEFAULT, self.provider, 'infrastructure/virtual-machine') return infra
42.11236
143
0.654749
70bf27bdd44db7bf5b332b50ff769dde5aa58a75
8,384
py
Python
button_recognition.py
Jarvis-Geun/ocr-rcnn-v2
2762f71c0a430979378f1a10b71e33520f337fb9
[ "MIT" ]
null
null
null
button_recognition.py
Jarvis-Geun/ocr-rcnn-v2
2762f71c0a430979378f1a10b71e33520f337fb9
[ "MIT" ]
null
null
null
button_recognition.py
Jarvis-Geun/ocr-rcnn-v2
2762f71c0a430979378f1a10b71e33520f337fb9
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import imageio import numpy as np import tensorflow as tf from PIL import Image, ImageDraw, ImageFont from utils.ops import native_crop_and_resize from utils import visualization_utils as vis_util import tensorflow.contrib.tensorrt as trt charset = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'G': 16, 'H': 17, 'I': 18, 'J': 19, 'K': 20, 'L': 21, 'M': 22, 'N': 23, 'O': 24, 'P': 25, 'R': 26, 'S': 27, 'T': 28, 'U': 29, 'V': 30, 'X': 31, 'Z': 32, '<': 33, '>': 34, '(': 35, ')': 36, '$': 37, '#': 38, '^': 39, 's': 40, '-': 41, '*': 42, '%': 43, '?': 44, '!': 45, '+': 46} # <nul> = + class ButtonRecognizer: def __init__(self, rcnn_path= None, ocr_path=None, use_trt=False, precision='FP16', use_optimized=False, use_tx2=False): self.ocr_graph_path = ocr_path self.rcnn_graph_path = rcnn_path self.use_trt = use_trt self.precision=precision #'INT8, FP16, FP32' self.use_optimized = use_optimized self.use_tx2 = use_tx2 # if use tx2, gpu memory is limited to 3GB self.session = None self.ocr_input = None self.ocr_output = None self.rcnn_input = None self.rcnn_output = None self.class_num = 1 self.image_size = [480, 640] self.recognition_size = [180, 180] self.category_index = {1: {'id': 1, 'name': u'button'}} self.idx_lbl = {} for key in charset.keys(): self.idx_lbl[charset[key]] = key self.load_and_merge_graphs() print('Button recognizer initialized!') def __del__(self): self.clear_session() def optimize_rcnn(self, input_graph_def): trt_graph = trt.create_inference_graph( input_graph_def=input_graph_def, outputs=['detection_boxes', 'detection_scores', 'detection_classes', 'num_detections'], max_batch_size = 1, # max_workspace_size_bytes=(2 << 10) << 20, precision_mode = self.precision) return trt_graph def optimize_ocr(self, input_graph_def): output_graph_def = trt.create_inference_graph( input_graph_def = input_graph_def, outputs = ['predicted_chars', 'predicted_scores'], max_batch_size = 1, # max_workspace_size_bytes=(2 << 10) << 20, precision_mode = self.precision) return output_graph_def def load_and_merge_graphs(self): # check graph paths if self.ocr_graph_path is None: self.ocr_graph_path = './frozen_model/ocr_graph.pb' if self.rcnn_graph_path is None: self.rcnn_graph_path = './frozen_model/detection_graph_640x480.pb' if self.use_optimized: self.ocr_graph_path.replace('.pb', '_optimized.pb') self.rcnn_graph_path.replace('.pb', '_optimized.pb') assert os.path.exists(self.ocr_graph_path) and os.path.exists(self.rcnn_graph_path) # merge the frozen graphs ocr_rcnn_graph = tf.Graph() with ocr_rcnn_graph.as_default(): # load button detection graph definition with tf.gfile.GFile(self.rcnn_graph_path, 'rb') as fid: detection_graph_def = tf.GraphDef() serialized_graph = fid.read() detection_graph_def.ParseFromString(serialized_graph) # for node in detection_graph_def.node: # print node.name if self.use_trt: detection_graph_def = self.optimize_rcnn(detection_graph_def) tf.import_graph_def(detection_graph_def, name='detection') # load character recognition graph definition with tf.gfile.GFile(self.ocr_graph_path, 'rb') as fid: recognition_graph_def = tf.GraphDef() serialized_graph = fid.read() recognition_graph_def.ParseFromString(serialized_graph) if self.use_trt: recognition_graph_def = self.optimize_ocr(recognition_graph_def) tf.import_graph_def(recognition_graph_def, name='recognition') # retrive detection tensors rcnn_input = ocr_rcnn_graph.get_tensor_by_name('detection/image_tensor:0') rcnn_boxes = ocr_rcnn_graph.get_tensor_by_name('detection/detection_boxes:0') rcnn_scores = ocr_rcnn_graph.get_tensor_by_name('detection/detection_scores:0') rcnn_number = ocr_rcnn_graph.get_tensor_by_name('detection/num_detections:0') # crop and resize valida boxes (only valid when rcnn input has an known shape) rcnn_number = tf.to_int32(rcnn_number) valid_boxes = tf.slice(rcnn_boxes, [0, 0, 0], [1, rcnn_number[0], 4]) ocr_boxes = native_crop_and_resize(rcnn_input, valid_boxes, self.recognition_size) # retrive recognition tensors ocr_input = ocr_rcnn_graph.get_tensor_by_name('recognition/ocr_input:0') ocr_chars = ocr_rcnn_graph.get_tensor_by_name('recognition/predicted_chars:0') ocr_beliefs = ocr_rcnn_graph.get_tensor_by_name('recognition/predicted_scores:0') self.rcnn_input = rcnn_input self.rcnn_output = [rcnn_boxes, rcnn_scores, rcnn_number, ocr_boxes] self.ocr_input = ocr_input self.ocr_output = [ocr_chars, ocr_beliefs] if self.use_tx2: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=3.0/8.0) self.session = tf.Session(graph=ocr_rcnn_graph, config=tf.ConfigProto(gpu_options=gpu_options)) else: self.session = tf.Session(graph=ocr_rcnn_graph) def clear_session(self): if self.session is not None: self.session.close() def decode_text(self, codes, scores): score_ave = 0 text = '' for char, score in zip(codes, scores): if not self.idx_lbl[char] == '+': score_ave += score text += self.idx_lbl[char] score_ave /= len(text) return text, score_ave def predict(self, image_np, draw=False): # input data assert image_np.shape == (480, 640, 3) img_in = np.expand_dims(image_np, axis=0) # output data recognition_list = [] # perform detection and recognition boxes, scores, number, ocr_boxes = self.session.run(self.rcnn_output, feed_dict={self.rcnn_input:img_in}) boxes, scores, number = [np.squeeze(x) for x in [boxes, scores, number]] for i in range(number): if scores[i] < 0.5: continue chars, beliefs = self.session.run(self.ocr_output, feed_dict={self.ocr_input: ocr_boxes[:,i]}) chars, beliefs = [np.squeeze(x) for x in [chars, beliefs]] text, belief = self.decode_text(chars, beliefs) recognition_list.append([boxes[i], scores[i], text, belief]) if draw: classes = [1]*len(boxes) self.draw_detection_result(image_np, boxes, classes, scores, self.category_index) self.draw_recognition_result(image_np, recognition_list) return recognition_list @staticmethod def draw_detection_result(image_np, boxes, classes, scores, category, predict_chars=None): vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category, max_boxes_to_draw=100, use_normalized_coordinates=True, line_thickness=5, predict_chars=predict_chars ) def draw_recognition_result(self, image_np, recognitions): for item in recognitions: # crop button patches y_min = int(item[0][0] * self.image_size[0]) x_min = int(item[0][1] * self.image_size[1]) y_max = int(item[0][2] * self.image_size[0]) x_max = int(item[0][3] * self.image_size[1]) button_patch = image_np[y_min: y_max, x_min: x_max] # generate image layer for drawing img_pil = Image.fromarray(button_patch) img_show = ImageDraw.Draw(img_pil) # draw at a proper location x_center = (x_max-x_min) / 2.0 y_center = (y_max-y_min) / 2.0 font_size = min(x_center, y_center)*1.1 text_center = int(x_center-0.5*font_size), int(y_center-0.5*font_size) font = ImageFont.truetype('/Library/Fonts/Arial.ttf', int(font_size)) img_show.text(text_center, text=item[2], font=font, fill=(255, 0, 255)) # img_pil.show() image_np[y_min: y_max, x_min: x_max] = np.array(img_pil) if __name__ == '__main__': recognizer = ButtonRecognizer(use_optimized=True) image = imageio.imread('./test_panels/1.jpg') recognition_list =recognizer.predict(image,True) image = Image.fromarray(image) image.show() recognizer.clear_session()
39.734597
109
0.671994
c79b9b80eabea714b06f9a338246920acb2ad4e0
3,942
py
Python
services/dserver_service.py
lastick1/rexpert
cd5908f69cf54671ffe6bb2991c24d19e8f0036d
[ "MIT" ]
1
2020-07-07T09:58:57.000Z
2020-07-07T09:58:57.000Z
services/dserver_service.py
lastick1/rexpert
cd5908f69cf54671ffe6bb2991c24d19e8f0036d
[ "MIT" ]
42
2018-11-11T08:08:46.000Z
2020-01-10T11:15:47.000Z
services/dserver_service.py
lastick1/rexpert
cd5908f69cf54671ffe6bb2991c24d19e8f0036d
[ "MIT" ]
null
null
null
"Управление игровым сервером" from __future__ import annotations from typing import Dict, Any import logging from configs import Config from core import EventsEmitter from rcon import DServerRcon from model import Command, \ CommandType, \ MessageAll, \ MessageAllies, \ MessageAxis, \ MessagePrivate, \ PlayerKick, \ PlayerBanP15M, \ PlayerBanP7D, \ ServerInput from .base_event_service import BaseEventService class DServerService(BaseEventService): "Сервис управления DServer через Rcon" def __init__(self, emitter: EventsEmitter, config: Config): super().__init__(emitter) self._config: Config = config self._rcon: DServerRcon = DServerRcon( self._config.main.rcon_ip, self._config.main.rcon_port ) self._bindings: Dict[str, Any] = { str(CommandType.MessageAll): self.message_all, str(CommandType.MessageAllies): self.message_allies, str(CommandType.MessageAxis): self.message_axis, str(CommandType.MessagePrivate): self.message_private, str(CommandType.PlayerKick): self.kick, str(CommandType.PlayerBanP15M): self.ban_short, str(CommandType.PlayerBanP7D): self.ban_long, str(CommandType.ServerInput): self.server_input, } def init(self) -> None: self.register_subscription(self.emitter.commands_rcon.subscribe_(self.on_command)) def on_command(self, command: Command) -> None: "Обработать команду в RCon" if not self._config.main.offline_mode: if not self._rcon.connected: self._rcon.connect() if not self._rcon.authed: self._rcon.auth(self._config.main.rcon_login, self._config.main.rcon_password) self._bindings[str(command.type)](command) def message_all(self, command: MessageAll) -> None: "Отправить сообщение всем игрокам" self._rcon.info_message(command.message) if self._config.main.console_chat_output: logging.info(f'CHAT:ALL:{command.message}') def message_allies(self, command: MessageAllies) -> None: "Отправить сообщение союзникам" self._rcon.allies_message(command.message) if self._config.main.console_chat_output: logging.info(f'CHAT:ALLIES:{command.message}') def message_axis(self, command: MessageAxis) -> None: "Отправить сообщение люфтваффе" self._rcon.axis_message(command.message) if self._config.main.console_chat_output: logging.info(f'CHAT:AXIS:{command.message}') def message_private(self, command: MessagePrivate) -> None: "Отправить сообщение игроку" self._rcon.private_message(command.account_id, command.message) if self._config.main.console_chat_output: logging.info(f'CHAT:{command.account_id}:{command.message}') def kick(self, command: PlayerKick) -> None: "Выбросить игрока с сервера" self._rcon.kick(command.account_id) if self._config.main.console_cmd_output: logging.info(f'KICK:{command.account_id}') def ban_short(self, command: PlayerBanP15M) -> None: "Забанить игрока на 15 минут" self._rcon.banuser(command.account_id) if self._config.main.console_cmd_output: logging.info(f'BANUSER:{command.account_id}') def ban_long(self, command: PlayerBanP7D) -> None: "Забанить игрока на 7 дней" self._rcon.ban(command.account_id) if self._config.main.console_cmd_output: logging.info(f'BAN:{command.account_id}') def server_input(self, command: ServerInput) -> None: "Активировать MCU ServerInput" self._rcon.server_input(command.name) if self._config.main.console_cmd_output: logging.info(f'SERVER_INPUT:{command.name}')
37.542857
90
0.667935
1cd4f8f60609405f499e79ee04ace90bb0e0f7e8
5,722
py
Python
src/genie/libs/parser/iosxe/tests/ShowIsisNeighbors/cli/equal/golden_output2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/iosxe/tests/ShowIsisNeighbors/cli/equal/golden_output2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/iosxe/tests/ShowIsisNeighbors/cli/equal/golden_output2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
expected_output = { "isis": { "test_0": { "neighbors": { "R1_xe": { "type": { "L2": { "interfaces": { "GigabitEthernet1": { "ip_address": "172.16.10.1", "state": "UP", "holdtime": "21", "circuit_id": "C_ID.00" }, "GigabitEthernet2": { "ip_address": "172.16.20.1", "state": "DOWN", "holdtime": "25", "circuit_id": "C_ID.01" }, "GigabitEthernet3": { "ip_address": "172.16.30.1", "state": "INIT", "holdtime": "21", "circuit_id": "C_ID.02" } } } } }, "R2_xr": { "type": { "L1": { "interfaces": { "GigabitEthernet4": { "ip_address": "172.16.40.1", "state": "NONE", "holdtime": "25", "circuit_id": "C_ID.03" } } } } } } }, "test_1": { "neighbors": { "R3_xe": { "type": { "L1": { "interfaces": { "GigabitEthernet6": { "ip_address": "172.16.50.1", "state": "NONE", "holdtime": "21", "circuit_id": "C_ID.05" }, "GigabitEthernet5": { "ip_address": "172.16.60.1", "state": "UP", "holdtime": "25", "circuit_id": "C_ID.07" } } } } }, "R4_xr": { "type": { "L2": { "interfaces": { "GigabitEthernet8": { "ip_address": "172.16.70.1", "state": "INIT", "holdtime": "21", "circuit_id": "C_ID.06" }, "GigabitEthernet7": { "ip_address": "172.16.80.1", "state": "DOWN", "holdtime": "25", "circuit_id": "C_ID.04" } } } } } } }, "test_2": { "neighbors": { "R7_xe": { "type": { "L1": { "interfaces": { "GigabitEthernet10.104": { "ip_address": "172.17.10.1", "state": "NONE", "holdtime": "21", "circuit_id": "C_ID.10" } } } } }, "R8_xe": { "type": { "L1": { "interfaces": { "GigabitEthernet10.103": { "ip_address": "172.17.20.1", "state": "UP", "holdtime": "25", "circuit_id": "C_ID.08" } } } } }, "R9_xr": { "type": { "L2": { "interfaces": { "GigabitEthernet13.102": { "ip_address": "172.17.30.1", "state": "INIT", "holdtime": "21", "circuit_id": "C_ID.11" }, "GigabitEthernet13.101": { "ip_address": "172.17.40.1", "state": "DOWN", "holdtime": "25", "circuit_id": "C_ID.13" } } } } } } } } }
39.736111
64
0.183328
0f3ea7400e98f79182eb44ff4cb553e493c1a290
8,084
py
Python
wsgidav/dc/base_dc.py
jaredrunyon/wsgidav
2e375551f1961380d7afd2cbcf3bef32bb98b8d7
[ "MIT" ]
62
2015-02-05T08:16:33.000Z
2022-02-25T20:51:32.000Z
wsgidav/dc/base_dc.py
jaredrunyon/wsgidav
2e375551f1961380d7afd2cbcf3bef32bb98b8d7
[ "MIT" ]
32
2015-01-29T09:46:18.000Z
2022-02-15T03:27:29.000Z
wsgidav/dc/base_dc.py
jaredrunyon/wsgidav
2e375551f1961380d7afd2cbcf3bef32bb98b8d7
[ "MIT" ]
59
2015-02-02T02:36:16.000Z
2022-02-14T01:55:21.000Z
# -*- coding: utf-8 -*- # (c) 2009-2020 Martin Wendt and contributors; see WsgiDAV https://github.com/mar10/wsgidav # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php """ Abstract base class of a domain controller (used by HTTPAuthenticator). This ABC serves as base class for DomainControllers and provides some default implementations. Domain controllers are called by `HTTPAuthenticator` to handle these tasks: - Basic authentication: Check if user_name/password is allowed to perform a request - Digest authentication (optional): Check if user_name is allowed to perform a request and return the MD5 hash. - Define permissions and roles for a given user (optional). Note that there is no checking for `isinstance(BaseDomainController)` in the code, so WsgiDAV also accepts duck-typed domain controllers. Digest Authentication --------------------- See https://en.wikipedia.org/wiki/Digest_access_authentication Permissions and Roles --------------------- A domain controller MAY add entries to the `environment["wsgidav.auth. ..."]` namespace in order to define access permissions for the following middleware (e.g. dir_browser) and DAV providers. TODO: Work In Progress / Subject to change """ from __future__ import print_function from hashlib import md5 from wsgidav import compat, util import abc import six import sys __docformat__ = "reStructuredText" logger = util.get_module_logger(__name__) @six.add_metaclass(abc.ABCMeta) class BaseDomainController(object): #: A domain controller MAY list these values as #: `environ["wsgidav.auth.permissions"] = (<permission>, ...)` known_permissions = ("browse_dir", "delete_resource", "edit_resource") #: A DC may list these values as `environ["wsgidav.auth.roles"] = (<role>, ...)` known_roles = ("admin", "editor", "reader") def __init__(self, wsgidav_app, config): self.wsgidav_app = wsgidav_app self.config = config def __str__(self): return "{}()".format(self.__class__.__name__) def _calc_realm_from_path_provider(self, path_info, environ): """Internal helper for derived classes to implement get_domain_realm().""" if environ: # Called while in a request: # We don't get the share from the path_info here: it was already # resolved and stripped by the request_resolver dav_provider = environ["wsgidav.provider"] else: # Called on start-up with the share root URL _share, dav_provider = self.wsgidav_app.resolve_provider(path_info) if not dav_provider: logger.warn( "_calc_realm_from_path_provider('{}'): '{}'".format( util.safe_re_encode(path_info, sys.stdout.encoding), None ) ) return None realm = dav_provider.share_path if realm == "": realm = "/" return realm @abc.abstractmethod def get_domain_realm(self, path_info, environ): """Return the normalized realm name for a given URL. This method is called - On startup, to check if anonymous access is allowed for a given share. In this case, `environ` is None. - For every request, before basic or digest authentication is handled. A domain controller that uses the share path as realm name may use the `_calc_realm_from_path_provider()` helper. Args: path_info (str): environ (dict | None): Returns: str """ raise NotImplementedError @abc.abstractmethod def require_authentication(self, realm, environ): """Return False to disable authentication for this request. This method is called - On startup, to check if anonymous access is allowed for a given share. In this case, `environ` is None. - For every request, before basic or digest authentication is handled. If False is returned, we MAY also set environment variables for anonymous access:: environment["wsgidav.auth.roles"] = (<role>, ...) environment["wsgidav.auth.permissions"] = (<perm>, ...) return False Args: realm (str): environ (dict | None): Returns: False to allow anonymous access True to force subsequent digest or basic authentication """ raise NotImplementedError def is_share_anonymous(self, path_info): """Return true if anonymous access will be granted to the share path. This method is called on start-up to print out info and warnings. Returns: bool """ realm = self.get_domain_realm(path_info, None) return not self.require_authentication(realm, None) @abc.abstractmethod def basic_auth_user(self, realm, user_name, password, environ): """Check request access permissions for realm/user_name/password. Called by http_authenticator for basic authentication requests. Optionally set environment variables: environ["wsgidav.auth.roles"] = (<role>, ...) environ["wsgidav.auth.permissions"] = (<perm>, ...) Args: realm (str): user_name (str): password (str): environ (dict): Returns: False if user is not known or not authorized True if user is authorized """ raise NotImplementedError @abc.abstractmethod def supports_http_digest_auth(self): """Signal if this DC instance supports the HTTP digest authentication theme. If true, `HTTPAuthenticator` will call `dc.digest_auth_user()`, so this method must be implemented as well. Returns: bool """ raise NotImplementedError # def is_realm_user(self, realm, user_name, environ): # """Return true if the user is known and allowed for that realm. # This method is called as a pre-check for digest authentication. # A domain controller MAY implement this method if this pre-check is # more efficient than a hash calculation or in order to enforce a # permission policy. # If this method is not implemented, or None or True is returned, the # http_authenticator will proceed with calculating and comparing digest # hash with the current request. # Returns: # bool: False to reject authentication. # """ # return None def _compute_http_digest_a1(self, realm, user_name, password): """Internal helper for derived classes to compute a digest hash (A1 part).""" data = user_name + ":" + realm + ":" + password A1 = md5(compat.to_bytes(data)).hexdigest() return A1 def digest_auth_user(self, realm, user_name, environ): """Check access permissions for realm/user_name. Called by http_authenticator for basic authentication requests. Compute the HTTP digest hash A1 part. Any domain controller that returns true for `supports_http_digest_auth()` MUST implement this method. Optionally set environment variables: environ["wsgidav.auth.roles"] = (<role>, ...) environ["wsgidav.auth.permissions"] = (<perm>, ...) Note that in order to calculate A1, we need either - Access the plain text password of the user. In this case the method `self._compute_http_digest_a1()` can be used for convenience. Or - Return a stored hash value that is associated with the user name (for example from Apache's htdigest files). Args: realm (str): user_name (str): environ (dict): Returns: str: MD5("{usern_name}:{realm}:{password}") or false if user is unknown or rejected """ raise NotImplementedError
33.26749
91
0.64139
a793f46d0ce59440889ea637691349ecb7a79b0b
55,735
py
Python
mahjong/hand_calculating/tests/tests_yaku_calculation.py
wardenlym/mahjong
475da6360e24e70e6e0d1deada573c842a71f261
[ "MIT" ]
254
2017-09-20T15:02:20.000Z
2022-03-28T11:33:28.000Z
mahjong/hand_calculating/tests/tests_yaku_calculation.py
wardenlym/mahjong
475da6360e24e70e6e0d1deada573c842a71f261
[ "MIT" ]
39
2017-09-23T14:28:36.000Z
2022-01-06T08:41:57.000Z
mahjong/hand_calculating/tests/tests_yaku_calculation.py
wardenlym/mahjong
475da6360e24e70e6e0d1deada573c842a71f261
[ "MIT" ]
38
2017-10-19T09:06:53.000Z
2022-03-15T05:08:22.000Z
import unittest from mahjong.constants import EAST, FIVE_RED_SOU, NORTH, SOUTH, WEST from mahjong.hand_calculating.hand import HandCalculator from mahjong.hand_calculating.hand_config import HandConfig, OptionalRules from mahjong.hand_calculating.yaku_config import YakuConfig from mahjong.meld import Meld from mahjong.tests_mixin import TestMixin from mahjong.tile import TilesConverter class YakuCalculationTestCase(unittest.TestCase, TestMixin): def setUp(self): self.config = YakuConfig() def test_hands_calculation(self): """ Group of hands that were not properly calculated on tenhou replays I did fixes and leave hands in tests, to be sure that bugs were fixed. """ hand = HandCalculator() player_wind = EAST tiles = self._string_to_136_array(pin="112233999", honors="11177") win_tile = self._string_to_136_tile(pin="9") melds = [ self._make_meld(Meld.PON, honors="111"), self._make_meld(Meld.CHI, pin="123"), self._make_meld(Meld.CHI, pin="123"), ] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) # we had a bug with multiple dora indicators and honor sets # this test is working with this situation tiles = self._string_to_136_array(pin="22244456799", honors="4444") win_tile = self._string_to_136_tile(pin="2") dora_indicators = [self._string_to_136_tile(sou="3"), self._string_to_136_tile(honors="3")] melds = [self._make_meld(Meld.KAN, honors="4444")] result = hand.estimate_hand_value(tiles, win_tile, dora_indicators=dora_indicators, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 6) self.assertEqual(result.fu, 50) self.assertEqual(len(result.yaku), 2) # if we can't add pinfu to the hand # we can add 2 fu to make hand more expensive tiles = self._string_to_136_array(sou="678", man="11", pin="123345", honors="666") win_tile = self._string_to_136_tile(pin="3") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 40) tiles = self._string_to_136_array(man="234789", pin="12345666") win_tile = self._string_to_136_tile(pin="6") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.fu, 30) tiles = self._string_to_136_array(sou="678", pin="34555789", honors="555") win_tile = self._string_to_136_tile(pin="5") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 40) tiles = self._string_to_136_array(sou="123345678", man="678", pin="88") win_tile = self._string_to_136_tile(sou="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) tiles = self._string_to_136_array(sou="12399", man="123456", pin="456") win_tile = self._string_to_136_tile(sou="1") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) tiles = self._string_to_136_array(sou="111123666789", honors="11") win_tile = self._string_to_136_tile(sou="1") melds = [self._make_meld(Meld.PON, sou="666")] dora_indicators = [self._string_to_136_tile(honors="4")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, dora_indicators=dora_indicators, config=self._make_hand_config(player_wind=player_wind), ) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 4) tiles = self._string_to_136_array(pin="12333", sou="567", honors="666777") win_tile = self._string_to_136_tile(pin="3") melds = [self._make_meld(Meld.PON, honors="666"), self._make_meld(Meld.PON, honors="777")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(pin="12367778", sou="678", man="456") win_tile = self._string_to_136_tile(pin="7") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_riichi=True)) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 1) tiles = self._string_to_136_array(man="11156677899", honors="7777") win_tile = self._string_to_136_tile(man="7") melds = [ self._make_meld(Meld.KAN, honors="7777"), self._make_meld(Meld.PON, man="111"), self._make_meld(Meld.CHI, man="678"), ] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 3) tiles = self._string_to_136_array(man="122223777888", honors="66") win_tile = self._string_to_136_tile(man="2") melds = [self._make_meld(Meld.CHI, man="123"), self._make_meld(Meld.PON, man="777")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(pin="11144678888", honors="444") win_tile = self._string_to_136_tile(pin="8") melds = [ self._make_meld(Meld.PON, honors="444"), self._make_meld(Meld.PON, pin="111"), self._make_meld(Meld.PON, pin="888"), ] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(sou="67778", man="345", pin="999", honors="222") win_tile = self._string_to_136_tile(sou="7") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 1) tiles = self._string_to_136_array(sou="33445577789", man="345") win_tile = self._string_to_136_tile(sou="7") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(pin="112233667788", honors="22") win_tile = self._string_to_136_tile(pin="3") melds = [self._make_meld(Meld.CHI, pin="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(sou="345", man="12333456789") win_tile = self._string_to_136_tile(man="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(sou="11123456777888") melds = [ self._make_meld(Meld.CHI, sou="123"), self._make_meld(Meld.PON, sou="777"), self._make_meld(Meld.PON, sou="888"), ] win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value(tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 5) tiles = self._string_to_136_array(sou="112233789", honors="55777") melds = [self._make_meld(Meld.CHI, sou="123")] win_tile = self._string_to_136_tile(sou="2") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 4) tiles = self._string_to_136_array(pin="234777888999", honors="22") melds = [self._make_meld(Meld.CHI, pin="234"), self._make_meld(Meld.CHI, pin="789")] win_tile = self._string_to_136_tile(pin="9") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 2) tiles = self._string_to_136_array(pin="77888899", honors="777", man="444") melds = [self._make_meld(Meld.PON, honors="777"), self._make_meld(Meld.PON, man="444")] win_tile = self._string_to_136_tile(pin="8") result = hand.estimate_hand_value(tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 1) tiles = self._string_to_136_array(pin="12333345", honors="555", man="567") win_tile = self._string_to_136_tile(pin="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.fu, 40) self.assertEqual(result.han, 1) tiles = self._string_to_136_array(pin="34567777889", honors="555") win_tile = self._string_to_136_tile(pin="7") melds = [self._make_meld(Meld.CHI, pin="345")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.fu, 30) self.assertEqual(result.han, 3) tiles = self._string_to_136_array(pin="567", sou="3334444555", honors="77") win_tile = self._string_to_136_tile(sou="3") melds = [self._make_meld(Meld.KAN, is_open=False, sou="4444")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds, config=self._make_hand_config(is_riichi=True)) self.assertEqual(result.fu, 60) self.assertEqual(result.han, 1) def test_is_riichi(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_riichi=True)) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_tsumo(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) # with open hand tsumo not giving yaku melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True)) self.assertNotEqual(result.error, None) def test_is_ippatsu(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_riichi=True, is_ippatsu=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_is_rinshan(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="1234444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="1") # closed kan: rinshan & tsumo melds = [self._make_meld(Meld.KAN, is_open=False, sou="4444")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True, is_rinshan=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) # open kan: rinshan only melds = [self._make_meld(Meld.KAN, sou="4444")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True, is_rinshan=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_chankan(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="1") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_chankan=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_haitei(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") # menzen tsumo & haitei result = hand.estimate_hand_value(tiles, win_tile, config=self._make_hand_config(is_tsumo=True, is_haitei=True)) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 2) # haitei only melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True, is_haitei=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_houtei(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_houtei=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_renhou(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_renhou=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 5) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_daburu_riichi(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_daburu_riichi=True, is_riichi=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_open_riichi(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_riichi=True, is_open_riichi=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_daburu_open_riichi(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="123444", man="234456", pin="66") win_tile = self._string_to_136_tile(sou="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_daburu_riichi=True, is_riichi=True, is_open_riichi=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_nagashi_mangan(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="13579", man="234456", pin="66") result = hand.estimate_hand_value(tiles, None, config=self._make_hand_config(is_nagashi_mangan=True)) self.assertEqual(result.error, None) self.assertEqual(result.han, 5) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_chitoitsu_hand(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="113355", man="113355", pin="11") self.assertTrue(self.config.chiitoitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="2299", man="2299", pin="1199", honors="44") self.assertTrue(self.config.chiitoitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="113355", man="113355", pin="11") win_tile = self._string_to_136_tile(pin="1") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 25) self.assertEqual(len(result.yaku), 1) def test_is_chitoitsu_hand_and_identical_pairs(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="11335555", man="1133", pin="11") win_tile = self._string_to_136_tile(pin="1") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, HandCalculator.ERR_HAND_NOT_WINNING) def test_is_tanyao(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="234567", pin="22") self.assertTrue(self.config.tanyao.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="123456", man="234567", pin="22") self.assertFalse(self.config.tanyao.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="234567", man="234567", honors="22") self.assertFalse(self.config.tanyao.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="234567", man="234567", pin="22") win_tile = self._string_to_136_tile(man="7") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_riichi=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 3) tiles = self._string_to_136_array(sou="234567", man="234567", pin="22") win_tile = self._string_to_136_tile(man="7") melds = [self._make_meld(Meld.CHI, sou="234")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, config=self._make_hand_config(has_open_tanyao=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) tiles = self._string_to_136_array(sou="234567", man="234567", pin="22") win_tile = self._string_to_136_tile(man="7") melds = [self._make_meld(Meld.CHI, sou="234")] result = hand.estimate_hand_value( tiles, win_tile, melds=melds, config=self._make_hand_config(has_open_tanyao=False) ) self.assertNotEqual(result.error, None) def test_is_pinfu_hand(self): player_wind, round_wind = EAST, WEST hand = HandCalculator() tiles = self._string_to_136_array(sou="123456", man="123456", pin="55") win_tile = self._string_to_136_tile(man="6") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) # waiting in two pairs tiles = self._string_to_136_array(sou="123456", man="123555", pin="55") win_tile = self._string_to_136_tile(man="5") result = hand.estimate_hand_value(tiles, win_tile) self.assertNotEqual(result.error, None) # contains pon or kan tiles = self._string_to_136_array(sou="111456", man="123456", pin="55") win_tile = self._string_to_136_tile(man="6") result = hand.estimate_hand_value(tiles, win_tile) self.assertNotEqual(result.error, None) # penchan waiting tiles = self._string_to_136_array(sou="123456", man="123456", pin="55") win_tile = self._string_to_136_tile(sou="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertNotEqual(result.error, None) # kanchan waiting tiles = self._string_to_136_array(sou="123567", man="123456", pin="55") win_tile = self._string_to_136_tile(sou="6") result = hand.estimate_hand_value(tiles, win_tile) self.assertNotEqual(result.error, None) # tanki waiting tiles = self._string_to_136_array(man="22456678", pin="123678") win_tile = self._string_to_136_tile(man="2") result = hand.estimate_hand_value(tiles, win_tile) self.assertNotEqual(result.error, None) # valued pair tiles = self._string_to_136_array(sou="123678", man="123456", honors="11") win_tile = self._string_to_136_tile(sou="6") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(player_wind=player_wind, round_wind=round_wind) ) self.assertNotEqual(result.error, None) # not valued pair tiles = self._string_to_136_array(sou="123678", man="123456", honors="22") win_tile = self._string_to_136_tile(sou="6") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) # open hand tiles = self._string_to_136_array(sou="12399", man="123456", pin="456") win_tile = self._string_to_136_tile(man="1") melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertNotEqual(result.error, None) def test_is_iipeiko(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="112233", man="123", pin="23444") self.assertTrue(self.config.iipeiko.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="112233", man="333", pin="12344") win_tile = self._string_to_136_tile(man="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertNotEqual(result.error, None) def test_is_ryanpeiko(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="112233", man="22", pin="223344") self.assertTrue(self.config.ryanpeiko.is_condition_met(self._hand(tiles, 1))) tiles = self._string_to_34_array(sou="111122223333", man="22") self.assertTrue(self.config.ryanpeiko.is_condition_met(self._hand(tiles, 1))) tiles = self._string_to_34_array(sou="112233", man="123", pin="23444") self.assertFalse(self.config.ryanpeiko.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="112233", man="33", pin="223344") win_tile = self._string_to_136_tile(pin="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertNotEqual(result.error, None) def test_is_sanshoku(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="123", man="123", pin="12345677") self.assertTrue(self.config.sanshoku.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="123456", man="23455", pin="123") self.assertFalse(self.config.sanshoku.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="123456", man="12399", pin="123") win_tile = self._string_to_136_tile(man="2") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_sanshoku_douko(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="111", man="111", pin="11145677") self.assertTrue(self.config.sanshoku_douko.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="111", man="222", pin="33344455") self.assertFalse(self.config.sanshoku_douko.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="222", man="222", pin="22245699") melds = [self._make_meld(Meld.CHI, sou="222")] win_tile = self._string_to_136_tile(pin="9") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_sanshoku_douko_and_kan_in_hand(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="2222", man="222", pin="22245699") melds = [self._make_meld(Meld.KAN, sou="2222")] win_tile = self._string_to_136_tile(pin="9") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_toitoi(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="111333", man="333", pin="44555") self.assertTrue(self.config.toitoi.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="777", pin="777888999", honors="44") self.assertTrue(self.config.toitoi.is_condition_met(self._hand(tiles, 0))) tiles = self._string_to_136_array(sou="111333", man="333", pin="44555") melds = [self._make_meld(Meld.PON, sou="111"), self._make_meld(Meld.PON, sou="333")] win_tile = self._string_to_136_tile(pin="5") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) tiles = self._string_to_136_array(sou="777", pin="777888999", honors="44") melds = [self._make_meld(Meld.PON, sou="777")] win_tile = self._string_to_136_tile(pin="9") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_sankantsu(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="11113333", man="123", pin="446666") melds = [ self._make_meld(Meld.KAN, sou="1111"), self._make_meld(Meld.KAN, sou="3333"), self._make_meld(Meld.KAN, pin="6666"), ] self.assertTrue(self.config.sankantsu.is_condition_met(hand, melds)) melds = [ self._make_meld(Meld.SHOUMINKAN, sou="1111"), self._make_meld(Meld.KAN, sou="3333"), self._make_meld(Meld.KAN, pin="6666"), ] win_tile = self._string_to_136_tile(man="3") result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 60) self.assertEqual(len(result.yaku), 1) def test_is_honroto(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="111999", man="111", honors="11222") self.assertTrue(self.config.honroto.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(pin="11", honors="22334466", man="1199") self.assertTrue(self.config.honroto.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="111999", man="111", honors="11222") win_tile = self._string_to_136_tile(honors="2") melds = [self._make_meld(Meld.PON, sou="111")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 4) self.assertEqual(result.fu, 50) self.assertEqual(len(result.yaku), 2) tiles = self._string_to_136_array(pin="11", honors="22334466", man="1199") win_tile = self._string_to_136_tile(man="1") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.fu, 25) self.assertEqual(result.han, 4) def test_is_sanankou(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="111444", man="333", pin="44555") win_tile = self._string_to_136_tile(sou="4") melds = [self._make_meld(Meld.PON, sou="444"), self._make_meld(Meld.PON, sou="111")] self.assertFalse(self.config.sanankou.is_condition_met(self._hand(tiles), win_tile, melds, False)) melds = [self._make_meld(Meld.PON, sou="111")] self.assertFalse(self.config.sanankou.is_condition_met(self._hand(tiles), win_tile, melds, False)) self.assertTrue(self.config.sanankou.is_condition_met(self._hand(tiles), win_tile, melds, True)) tiles = self._string_to_34_array(pin="444789999", honors="22333") win_tile = self._string_to_136_tile(pin="9") self.assertTrue(self.config.sanankou.is_condition_met(self._hand(tiles), win_tile, [], False)) melds = [self._make_meld(Meld.CHI, pin="456")] tiles = self._string_to_34_array(pin="222456666777", honors="77") win_tile = self._string_to_136_tile(pin="6") self.assertFalse(self.config.sanankou.is_condition_met(self._hand(tiles), win_tile, melds, False)) tiles = self._string_to_136_array(sou="123444", man="333", pin="44555") melds = [self._make_meld(Meld.CHI, sou="123")] win_tile = self._string_to_136_tile(pin="5") result = hand.estimate_hand_value(tiles, win_tile, melds=melds, config=self._make_hand_config(is_tsumo=True)) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_shosangen(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="123", man="345", honors="55666777") self.assertTrue(self.config.shosangen.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="123", man="345", honors="55666777") win_tile = self._string_to_136_tile(honors="7") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 4) self.assertEqual(result.fu, 50) self.assertEqual(len(result.yaku), 3) def test_is_chanta(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="123", man="123789", honors="22333") self.assertTrue(self.config.chantai.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="111", man="111999", honors="22333") self.assertFalse(self.config.chantai.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="111999", man="111999", pin="11999") self.assertFalse(self.config.chantai.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="123", man="123789", honors="22333") win_tile = self._string_to_136_tile(honors="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, sou="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_junchan(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="789", man="123789", pin="12399") self.assertTrue(self.config.junchan.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="111", man="111999", honors="22333") self.assertFalse(self.config.junchan.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(sou="111999", man="111999", pin="11999") self.assertFalse(self.config.junchan.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="789", man="123789", pin="12399") win_tile = self._string_to_136_tile(man="2") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, sou="789")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_honitsu(self): hand = HandCalculator() tiles = self._string_to_34_array(man="123456789", honors="11122") self.assertTrue(self.config.honitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(man="123456789", pin="123", honors="22") self.assertFalse(self.config.honitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(man="12345666778899") self.assertFalse(self.config.honitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(man="123455667", honors="11122") win_tile = self._string_to_136_tile(honors="2") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, man="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_chinitsu(self): hand = HandCalculator() tiles = self._string_to_34_array(man="12345666778899") self.assertTrue(self.config.chinitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(man="123456778899", honors="22") self.assertFalse(self.config.chinitsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(man="11234567677889") win_tile = self._string_to_136_tile(man="1") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 6) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, man="678")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 5) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_ittsu(self): hand = HandCalculator() tiles = self._string_to_34_array(man="123456789", sou="123", honors="22") self.assertTrue(self.config.ittsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(man="112233456789", honors="22") self.assertTrue(self.config.ittsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_34_array(man="122334567789", honors="11") self.assertFalse(self.config.ittsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(man="123456789", sou="123", honors="22") win_tile = self._string_to_136_tile(sou="3") result = hand.estimate_hand_value(tiles, win_tile) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) melds = [self._make_meld(Meld.CHI, man="123")] result = hand.estimate_hand_value(tiles, win_tile, melds=melds) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 1) def test_is_haku(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="555") self.assertTrue(self.config.haku.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="234567", man="23422", honors="555") win_tile = self._string_to_136_tile(honors="5") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_riichi=False) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_hatsu(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="666") self.assertTrue(self.config.hatsu.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="234567", man="23422", honors="666") win_tile = self._string_to_136_tile(honors="6") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_riichi=False) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_chun(self): hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="777") self.assertTrue(self.config.chun.is_condition_met(self._hand(tiles))) tiles = self._string_to_136_array(sou="234567", man="23422", honors="777") win_tile = self._string_to_136_tile(honors="7") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config(is_tsumo=False, is_riichi=False) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) def test_is_east(self): player_wind, round_wind = EAST, WEST hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="111") self.assertTrue(self.config.east.is_condition_met(self._hand(tiles), player_wind, round_wind)) tiles = self._string_to_136_array(sou="234567", man="23422", honors="111") win_tile = self._string_to_136_tile(honors="1") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) round_wind = EAST result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_is_south(self): player_wind, round_wind = SOUTH, EAST hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="222") self.assertTrue(self.config.south.is_condition_met(self._hand(tiles), player_wind, round_wind)) tiles = self._string_to_136_array(sou="234567", man="23422", honors="222") win_tile = self._string_to_136_tile(honors="2") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) round_wind = SOUTH result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_is_west(self): player_wind, round_wind = WEST, EAST hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="333") self.assertTrue(self.config.west.is_condition_met(self._hand(tiles), player_wind, round_wind)) tiles = self._string_to_136_array(sou="234567", man="23422", honors="333") win_tile = self._string_to_136_tile(honors="3") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) round_wind = WEST result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_is_north(self): player_wind, round_wind = NORTH, EAST hand = HandCalculator() tiles = self._string_to_34_array(sou="234567", man="23422", honors="444") self.assertTrue(self.config.north.is_condition_met(self._hand(tiles), player_wind, round_wind)) tiles = self._string_to_136_array(sou="234567", man="23422", honors="444") win_tile = self._string_to_136_tile(honors="4") result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 1) round_wind = NORTH result = hand.estimate_hand_value( tiles, win_tile, config=self._make_hand_config( is_tsumo=False, is_riichi=False, player_wind=player_wind, round_wind=round_wind ), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_dora_in_hand(self): hand = HandCalculator() # hand without yaku, but with dora should be consider as invalid tiles = self._string_to_136_array(sou="345678", man="456789", honors="55") win_tile = self._string_to_136_tile(sou="5") dora_indicators = [self._string_to_136_tile(sou="5")] melds = [self._make_meld(Meld.CHI, sou="678")] result = hand.estimate_hand_value(tiles, win_tile, dora_indicators=dora_indicators, melds=melds) self.assertNotEqual(result.error, None) tiles = self._string_to_136_array(sou="123456", man="123456", pin="33") win_tile = self._string_to_136_tile(man="6") dora_indicators = [self._string_to_136_tile(pin="2")] result = hand.estimate_hand_value(tiles, win_tile, dora_indicators=dora_indicators) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 2) tiles = self._string_to_136_array(man="22456678", pin="123678") win_tile = self._string_to_136_tile(man="2") dora_indicators = [self._string_to_136_tile(man="1"), self._string_to_136_tile(pin="2")] result = hand.estimate_hand_value( tiles, win_tile, dora_indicators=dora_indicators, config=self._make_hand_config(is_tsumo=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 4) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 2) # double dora tiles = self._string_to_136_array(man="678", pin="34577", sou="123345") win_tile = self._string_to_136_tile(pin="7") dora_indicators = [self._string_to_136_tile(sou="4"), self._string_to_136_tile(sou="4")] result = hand.estimate_hand_value( tiles, win_tile, dora_indicators=dora_indicators, config=self._make_hand_config(is_tsumo=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 3) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 2) # double dora and honor tiles tiles = self._string_to_136_array(man="678", pin="345", sou="123345", honors="66") win_tile = self._string_to_136_tile(pin="5") dora_indicators = [self._string_to_136_tile(honors="5"), self._string_to_136_tile(honors="5")] result = hand.estimate_hand_value( tiles, win_tile, dora_indicators=dora_indicators, config=self._make_hand_config(is_riichi=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 5) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) # double dora indicators and red fives tiles = self._string_to_136_array(sou="12346", man="123678", pin="44") win_tile = self._string_to_136_tile(pin="4") tiles.append(FIVE_RED_SOU) dora_indicators = [self._string_to_136_tile(pin="2"), self._string_to_136_tile(pin="2")] result = hand.estimate_hand_value( tiles, win_tile, dora_indicators=dora_indicators, config=self._make_hand_config(is_tsumo=True, has_aka_dora=True), ) self.assertEqual(result.error, None) self.assertEqual(result.han, 2) self.assertEqual(result.fu, 30) self.assertEqual(len(result.yaku), 2) # dora in kan tiles = self._string_to_136_array(man="7777", pin="34577", sou="123345") win_tile = self._string_to_136_tile(pin="7") melds = [self._make_meld(Meld.KAN, is_open=False, man="7777")] dora_indicators = [self._string_to_136_tile(man="6")] result = hand.estimate_hand_value( tiles, win_tile, dora_indicators=dora_indicators, melds=melds, config=self._make_hand_config(is_tsumo=True) ) self.assertEqual(result.error, None) self.assertEqual(result.han, 5) self.assertEqual(result.fu, 40) self.assertEqual(len(result.yaku), 2) def test_is_agari_and_closed_kan(self): """ There were a bug when we don't count closed kan set for agari and calculator though that hand was agari (but it doesn't) :return: """ hand = HandCalculator() tiles = self._string_to_136_array(man="45666777", pin="111", honors="222") win_tile = self._string_to_136_tile(man="4") melds = [ self._make_meld(Meld.PON, pin="111"), self._make_meld(Meld.KAN, man="6666", is_open=False), self._make_meld(Meld.PON, man="777"), ] result = hand.estimate_hand_value(tiles, win_tile, melds) # error is correct answer self.assertNotEqual(result.error, None) def test_kazoe_settings(self): hand = HandCalculator() tiles = self._string_to_136_array(man="222244466677788") win_tile = self._string_to_136_tile(man="7") melds = [ self._make_meld(Meld.KAN, man="2222", is_open=False), ] dora_indicators = [ self._string_to_136_tile(man="1"), self._string_to_136_tile(man="1"), self._string_to_136_tile(man="1"), self._string_to_136_tile(man="1"), ] config = HandConfig(is_riichi=True, options=OptionalRules(kazoe_limit=HandConfig.KAZOE_LIMITED)) result = hand.estimate_hand_value(tiles, win_tile, melds, dora_indicators, config) self.assertEqual(result.han, 28) self.assertEqual(result.cost["main"], 32000) config = HandConfig(is_riichi=True, options=OptionalRules(kazoe_limit=HandConfig.KAZOE_SANBAIMAN)) result = hand.estimate_hand_value(tiles, win_tile, melds, dora_indicators, config) self.assertEqual(result.han, 28) self.assertEqual(result.cost["main"], 24000) config = HandConfig(is_riichi=True, options=OptionalRules(kazoe_limit=HandConfig.KAZOE_NO_LIMIT)) result = hand.estimate_hand_value(tiles, win_tile, melds, dora_indicators, config) self.assertEqual(result.han, 28) self.assertEqual(result.cost["main"], 64000) def test_open_hand_without_additional_fu(self): hand = HandCalculator() tiles = self._string_to_136_array(sou="234678", man="234567", pin="22") win_tile = self._string_to_136_tile(sou="6") melds = [self._make_meld(Meld.CHI, sou="234")] config = HandConfig(options=OptionalRules(has_open_tanyao=True, fu_for_open_pinfu=False)) result = hand.estimate_hand_value(tiles, win_tile, melds, config=config) self.assertEqual(result.han, 1) self.assertEqual(result.fu, 20) self.assertEqual(result.cost["main"], 700) def test_aka_dora(self): hand_calculator = HandCalculator() win_tile = TilesConverter.string_to_136_array(man="9")[0] hand_config = HandConfig(is_tsumo=True, options=OptionalRules(has_aka_dora=True)) # three red old style, but not that useful tiles = TilesConverter.string_to_136_array(sou="345", pin="456", man="12355599", has_aka_dora=False) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 4) # zero red tiles = TilesConverter.string_to_136_array(sou="345", pin="456", man="12355599", has_aka_dora=True) win_tile = TilesConverter.string_to_136_array(man="9")[0] hand_config = HandConfig(is_tsumo=True, options=OptionalRules(has_aka_dora=True)) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 1) # one red tiles = TilesConverter.string_to_136_array(sou="34r", pin="456", man="12355599", has_aka_dora=True) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 2) # two red tiles = TilesConverter.string_to_136_array(sou="34r", pin="4r6", man="12355599", has_aka_dora=True) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 3) # three red tiles = TilesConverter.string_to_136_array(sou="34r", pin="4r6", man="123r5599", has_aka_dora=True) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 4) # four red tiles = TilesConverter.string_to_136_array(sou="34r", pin="4r6", man="123rr599", has_aka_dora=True) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 5) # five+ red (technically not legal in mahjong but not the fault of evaluator, really) tiles = TilesConverter.string_to_136_array(sou="34r", pin="4r6", man="123rrr99", has_aka_dora=True) hand_calculation = hand_calculator.estimate_hand_value(tiles, win_tile, config=hand_config) self.assertIsNone(hand_calculation.error) self.assertEqual(hand_calculation.han, 6)
42.972244
120
0.660411
cb1d9cfba15fbe3abd6f326f4b1d820540d854c5
1,044
py
Python
modules/math-codes/modules/statistics-and-probability/src/nyc_average-v3.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
1
2020-09-06T22:17:19.000Z
2020-09-06T22:17:19.000Z
modules/math-codes/modules/statistics-and-probability/src/nyc_average-v3.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
null
null
null
modules/math-codes/modules/statistics-and-probability/src/nyc_average-v3.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
null
null
null
######################################################## # Rodrigo Leite - drigols # # Last update: 26/09/2021 # ######################################################## def create_plot(x, y): import matplotlib.pyplot as plt # Display to each "x" the temperature average "y". for year, average_temp in zip(x, y): print("In year {0} the average New York temperature was {1}°".format(year, average_temp)) plt.plot(x, y, marker='o') plt.savefig('../images/new-york-tem-03.png', format='png') plt.show() if __name__ =='__main__': # Create a list to represent New York temperatures from 2000 to 2021. nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8, 56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3] # Use range() function to create a predefined list (2000 to 2021). # NOTE: Remember that range() function never display the last element. That is from 2000 to 2013. years = range(2000, 2013) # Cria a plot with create_plot() function. create_plot(years, nyc_temp)
37.285714
99
0.564176
dc24632cbb400bc4b5153dc9f6469ef10327de7e
2,185
py
Python
sympy/tensor/array/expressions/array_expressions.py
suryam35/sympy
4aa3cd6c7c689fbe4e604082fb44e2136fa4224d
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/array/expressions/array_expressions.py
suryam35/sympy
4aa3cd6c7c689fbe4e604082fb44e2136fa4224d
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/array/expressions/array_expressions.py
suryam35/sympy
4aa3cd6c7c689fbe4e604082fb44e2136fa4224d
[ "BSD-3-Clause" ]
null
null
null
import itertools from sympy import Expr, ImmutableDenseNDimArray, S, Symbol from sympy.core.sympify import _sympify class _ArrayExpr(Expr): pass class ArraySymbol(_ArrayExpr): """ Symbol representing an array expression """ def __new__(cls, symbol, *shape): if isinstance(symbol, str): symbol = Symbol(symbol) # symbol = _sympify(symbol) shape = map(_sympify, shape) obj = Expr.__new__(cls, symbol, *shape) return obj @property def name(self): return self._args[0] @property def shape(self): return self._args[1:] def __getitem__(self, item): return ArrayElement(self, item) def as_explicit(self): data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])] return ImmutableDenseNDimArray(data).reshape(*self.shape) class ArrayElement(_ArrayExpr): """ An element of an array. """ def __new__(cls, name, indices): if isinstance(name, str): name = Symbol(name) name = _sympify(name) indices = _sympify(indices) if hasattr(name, "shape"): if any([(i >= s) == True for i, s in zip(indices, name.shape)]): raise ValueError("shape is out of bounds") if any([(i < 0) == True for i in indices]): raise ValueError("shape contains negative values") obj = Expr.__new__(cls, name, indices) return obj @property def name(self): return self._args[0] @property def indices(self): return self._args[1] class ZeroArray(Expr): """ Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices. """ def __new__(cls, *shape): if len(shape) == 0: return S.Zero shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if any(not i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray.zeros(*self.shape)
25.406977
84
0.600915
d7fe140392ce5481d85ab4c9813ad330feb45b70
1,050
py
Python
release/stubs.min/System/Windows/Controls/Primitives_parts/IRecyclingItemContainerGenerator.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Controls/Primitives_parts/IRecyclingItemContainerGenerator.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Controls/Primitives_parts/IRecyclingItemContainerGenerator.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
class IRecyclingItemContainerGenerator(IItemContainerGenerator): """ Extends the System.Windows.Controls.Primitives.IItemContainerGenerator interface to reuse the UI content it generates. Classes that are responsible for generating user interface (UI) content on behalf of a host implement this interface. """ def Recycle(self, position, count): """ Recycle(self: IRecyclingItemContainerGenerator,position: GeneratorPosition,count: int) Disassociates item containers from their data items and saves the containers so they can be reused later for other data items. position: The zero-based index of the first element to reuse. position must refer to a previously generated (realized) item. count: The number of elements to reuse,starting at position. """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
36.206897
249
0.714286
70ebd9a173c724563941391bc64081140eba65de
1,092
py
Python
tigercontrol/utils/optimizers/tests/test_adam.py
MinRegret/TigerControl
b1ca0617cbb2198f9d5cb37f725f3d7accbab08f
[ "Apache-2.0" ]
31
2019-11-08T06:01:54.000Z
2021-11-20T04:50:43.000Z
tigercontrol/utils/optimizers/tests/test_adam.py
johnhallman/ctsb
b1ca0617cbb2198f9d5cb37f725f3d7accbab08f
[ "Apache-2.0" ]
32
2019-06-27T15:05:04.000Z
2019-08-07T04:23:47.000Z
tigercontrol/utils/optimizers/tests/test_adam.py
MinRegret/tigercontrol
b1ca0617cbb2198f9d5cb37f725f3d7accbab08f
[ "Apache-2.0" ]
3
2020-09-30T17:06:50.000Z
2021-04-12T22:39:34.000Z
import tigercontrol from tigercontrol.utils.optimizers.adam import Adam from tigercontrol.utils.optimizers.losses import mse import matplotlib.pyplot as plt def test_adam(show=False): environment = tigercontrol.environment('LDS') x = environment.reset(p=2,q=0) controller = tigercontrol.controllers('LSTM') controller.initialize(n=1, m=1, l=3, h=10, optimizer=Adam) # initialize with class controller.predict(1.0) # call controllers to verify it works controller.update(1.0) optimizer = Adam(learning_rate=0.1) controller = tigercontrol.controllers('LSTM') controller.initialize(n=1, m=1, l=3, h=10, optimizer=optimizer) # reinitialize with instance loss = [] for t in range(1000): y_pred = controller.predict(x) y_true = environment.step() loss.append(mse(y_pred, y_true)) controller.update(y_true) x = y_true if show: plt.plot(loss) plt.show(block=False) plt.pause(3) plt.close() print("test_adam passed") if __name__ == "__main__": test_adam(show=True)
28.736842
96
0.677656
8300c0efef839deac1a813a2f856985648869a86
632
py
Python
DataAnalysis_FangSpider.py
Beolus/FangSpider
4fc130085e36f8338041fef075015c3786a9ccf4
[ "Apache-2.0" ]
1
2018-04-03T07:00:14.000Z
2018-04-03T07:00:14.000Z
DataAnalysis_FangSpider.py
Beolus/FangSpider
4fc130085e36f8338041fef075015c3786a9ccf4
[ "Apache-2.0" ]
null
null
null
DataAnalysis_FangSpider.py
Beolus/FangSpider
4fc130085e36f8338041fef075015c3786a9ccf4
[ "Apache-2.0" ]
null
null
null
#_*_coding:utf8_*_ import pymongo import pandas as pd import numpy as np import matplotlib.pylab as plt client = pymongo.MongoClient('192.168.1.123',27017) fangdb = client['fangdb'] newfanginfo = fangdb['20171121140104'] df = pd.DataFrame(list(newfanginfo.find())) df1 = df.loc[:,['EstateArea','RefPrice','AvePrice','HuXing']] areas = [u'北京',u'上海',u'深圳',u'广州',u'杭州',u'东莞',u'惠州',u'佛山',u'珠海'] areasmeans = [] for i in xrange(0,len(areas)): areasdf = df1.loc[df['EstateArea'].isin([areas[i]])] areasave = areasdf['RefPrice']*10000/areasdf['HuXing'] areasmean = areasave.mean() areasmeans.append(areasmean)
20.387097
63
0.678797
a393db40e46cb8ee364e3b222f7489e83760175a
1,287
py
Python
envoy/tests/common.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
2
2019-05-28T03:48:29.000Z
2019-07-05T07:05:58.000Z
envoy/tests/common.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
4
2019-07-03T02:53:19.000Z
2019-07-10T14:52:14.000Z
envoy/tests/common.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
1
2019-12-23T13:35:17.000Z
2019-12-23T13:35:17.000Z
import os from datadog_checks.utils.common import get_docker_hostname try: from functools import lru_cache except ImportError: from backports.functools_lru_cache import lru_cache HERE = os.path.dirname(os.path.abspath(__file__)) FIXTURE_DIR = os.path.join(HERE, 'fixtures') HOST = get_docker_hostname() PORT = '8001' INSTANCES = { 'main': {'stats_url': 'http://{}:{}/stats'.format(HOST, PORT)}, 'whitelist': {'stats_url': 'http://{}:{}/stats'.format(HOST, PORT), 'metric_whitelist': [r'envoy\.cluster\..*']}, 'blacklist': {'stats_url': 'http://{}:{}/stats'.format(HOST, PORT), 'metric_blacklist': [r'envoy\.cluster\..*']}, 'whitelist_blacklist': { 'stats_url': 'http://{}:{}/stats'.format(HOST, PORT), 'metric_whitelist': [r'envoy\.cluster\.'], 'metric_blacklist': [r'envoy\.cluster\.out'], }, } class MockResponse: def __init__(self, content, status_code): self.content = content self.status_code = status_code @lru_cache(maxsize=None) def response(kind): file_path = os.path.join(FIXTURE_DIR, kind) if os.path.isfile(file_path): with open(file_path, 'rb') as f: return MockResponse(f.read(), 200) else: raise IOError('File `{}` does not exist.'.format(file_path))
30.642857
117
0.65035
e114798ab808293d0633d2c2ec8c46e2d636881f
5,993
py
Python
remove.py
afnanhaq/political-data-builder
a79f62b31f11652c066882170d4392f86022f94b
[ "MIT" ]
null
null
null
remove.py
afnanhaq/political-data-builder
a79f62b31f11652c066882170d4392f86022f94b
[ "MIT" ]
null
null
null
remove.py
afnanhaq/political-data-builder
a79f62b31f11652c066882170d4392f86022f94b
[ "MIT" ]
3
2021-02-12T18:48:16.000Z
2021-02-13T18:47:23.000Z
# -*- coding: utf-8 -*- """ The class remove is used for data anonymization and dropping of columns with over 75% NaN values. It implements privacy protection by dropping columns containing personally identifiable information. """ # remove_null(df) reads in a dataset, drops columns that have # over 75% of their values as NaN, and then returns the modified # dataframe # df: dataset for a state, pandas.DataFrame # returns df, without columns that are primarily filled with nulls def remove_null(df): df.dropna(axis=1, inplace=True, how='all') return df # remove_null_all(place_dic) reads in all data from the global variable # 'place_dic' and drops columns that have over 75% of their # values as NaN, and then returns the modified dictionary # place_dic: dictionary, must be the global dictionary in 'main' # returns place_dic, without columns that are primarily filled with nulls def remove_null_all(place_dic): for key in place_dic.keys(): #finds 75% of columns threshold = int(place_dic[key].shape[1] * 0.75) place_dic[key].dropna(thresh=threshold) return place_dic # drop_private(df) reads in a dataset and drops columns # that have identifiable data. it then returns the modified dictionary # df: dataset for a state, pandas.DataFrame # returns df, without columns that have personally identifable info def drop_private(df): # list of all columns that contain private information private_cols = ['VoterTelephones_Landline7Digit' ,'VoterTelephones_LandlineUnformatted' ,'VoterTelephones_CellPhoneFormatted' ,'VoterTelephones_CellPhoneUnformatted' ,'Voters_FirstName' ,'Voters_MiddleName' ,'Voters_LastName' ,'Voters_NameSuffix' ,'Residence_Addresses_AddressLine' ,'Residence_Addresses_ExtraAddressLine' ,'Residence_Addresses_ZipPlus4' ,'Residence_Addresses_HouseNumber' ,'Residence_Addresses_PrefixDirection' ,'Residence_Addresses_StreetName' ,'Residence_Addresses_Designator' ,'Residence_Addresses_SuffixDirection' ,'Residence_Addresses_ApartmentNum' ,'Residence_Families_FamilyID' ,'Mailing_Addresses_AddressLine' ,'Mailing_Addresses_ExtraAddressLine' ,'Mailing_Addresses_HouseNumber' ,'Mailing_Addresses_PrefixDirection' ,'Mailing_Addresses_StreetName' ,'Mailing_Addresses_Designator' ,'Mailing_Addresses_SuffixDirection' ,'Mailing_Addresses_ApartmentNum' ,'Mailing_Families_FamilyID' ,'Voters_BirthDate' ,'Residence_Addresses_City' ,'DateConfidence_Description' ,'Precinct' ,'VoterTelephones_LandlineAreaCode' ,'Residence_Addresses_State' ,'Residence_Addresses_LatLongAccuracy' ,'Mailing_Addresses_ZipPlus4', 'Voters_StateVoterID', 'VoterTelephones_LandlineFormatted'] # getting the indices for columns containing private information df.drop(private_cols, axis = 1, inplace = True, errors='ignore') return df # drop_private_all(place_dic) reads in all data from the global variable # 'place_dic' and drops columns that have identifiable data. # it then returns the modified dictionary # place_dic: dictionary, must be the global dictionary in 'main' # returns place_dic, without columns that have personally identifable info def drop_private_all(place_dic): # list of all columns that contain private information private_cols = ['VoterTelephones_Landline7Digit' ,'VoterTelephones_LandlineUnformatted' ,'VoterTelephones_CellPhoneFormatted' ,'VoterTelephones_CellPhoneUnformatted' ,'Voters_FirstName' ,'Voters_MiddleName' ,'Voters_LastName' ,'Voters_NameSuffix' ,'Residence_Addresses_AddressLine' ,'Residence_Addresses_ExtraAddressLine' ,'Residence_Addresses_ZipPlus4' ,'Residence_Addresses_HouseNumber' ,'Residence_Addresses_PrefixDirection' ,'Residence_Addresses_StreetName' ,'Residence_Addresses_Designator' ,'Residence_Addresses_SuffixDirection' ,'Residence_Addresses_ApartmentNum' ,'Residence_Families_FamilyID' ,'Mailing_Addresses_AddressLine' ,'Mailing_Addresses_ExtraAddressLine' ,'Mailing_Addresses_HouseNumber' ,'Mailing_Addresses_PrefixDirection' ,'Mailing_Addresses_StreetName' ,'Mailing_Addresses_Designator' ,'Mailing_Addresses_SuffixDirection' ,'Mailing_Addresses_ApartmentNum' ,'Mailing_Families_FamilyID' ,'Voters_BirthDate' ,'Residence_Addresses_City' ,'DateConfidence_Description' ,'Precinct' ,'VoterTelephones_LandlineAreaCode' ,'Residence_Addresses_State' ,'Residence_Addresses_LatLongAccuracy' ,'Mailing_Addresses_ZipPlus4' ,'Voters_StateVoterID'] # dropping columns with the names listed in 'private_cols' for df in place_dic.values(): df.drop(private_cols, axis = 1, inplace = True) return place_dic
46.457364
74
0.615051
cb2de45b308eed70c30fec58294a7a89fb8f91a3
562
py
Python
fate/logReader.py
Huangxy-Minel/Flare
3c091567bfaedfdf0f0d41b00f3e3d501d572515
[ "Apache-2.0" ]
1
2021-11-04T10:28:09.000Z
2021-11-04T10:28:09.000Z
fate/logReader.py
Huangxy-Minel/flare
3c091567bfaedfdf0f0d41b00f3e3d501d572515
[ "Apache-2.0" ]
null
null
null
fate/logReader.py
Huangxy-Minel/flare
3c091567bfaedfdf0f0d41b00f3e3d501d572515
[ "Apache-2.0" ]
null
null
null
import numpy as np filepath = "/home/xinyang/fate_cluster_1.6.1/flare/fate/confs-10000/shared_dir/fate_flow_logs/202111241042473462280/guest/10000/INFO.log" match_str = "Encrypt half_d costs: " num_list = [] with open(filepath, 'r') as f: for line in f.readlines(): idx = line.find(match_str) if idx > -1: temp_str = line[idx + len(match_str) :] time = temp_str.split(' ')[0] try: num_list.append(float(time)) except ValueError: pass print(np.mean(num_list))
31.222222
137
0.606762
0844ae3b861d556ae03f04453ef61ff25e9ad5e0
1,781
py
Python
src/commercetools/ml/client/by_project_key_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
1
2021-04-07T20:01:30.000Z
2021-04-07T20:01:30.000Z
src/commercetools/ml/client/by_project_key_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
src/commercetools/ml/client/by_project_key_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
# Generated file, please do not change!!! import typing from .image_search.by_project_key_image_search_request_builder import ( ByProjectKeyImageSearchRequestBuilder, ) from .missing_data.by_project_key_missing_data_request_builder import ( ByProjectKeyMissingDataRequestBuilder, ) from .recommendations.by_project_key_recommendations_request_builder import ( ByProjectKeyRecommendationsRequestBuilder, ) from .similarities.by_project_key_similarities_request_builder import ( ByProjectKeySimilaritiesRequestBuilder, ) if typing.TYPE_CHECKING: from ..base_client import BaseClient class ByProjectKeyRequestBuilder: _client: "BaseClient" _project_key: str def __init__( self, project_key: str, client: "BaseClient", ): self._project_key = project_key self._client = client def image_search(self) -> ByProjectKeyImageSearchRequestBuilder: """Search for similar products using an image as search input.""" return ByProjectKeyImageSearchRequestBuilder( project_key=self._project_key, client=self._client, ) def recommendations(self) -> ByProjectKeyRecommendationsRequestBuilder: return ByProjectKeyRecommendationsRequestBuilder( project_key=self._project_key, client=self._client, ) def missing_data(self) -> ByProjectKeyMissingDataRequestBuilder: return ByProjectKeyMissingDataRequestBuilder( project_key=self._project_key, client=self._client, ) def similarities(self) -> ByProjectKeySimilaritiesRequestBuilder: return ByProjectKeySimilaritiesRequestBuilder( project_key=self._project_key, client=self._client, )
30.706897
77
0.729366
06570cdc7d959e09c31e847eb2270df7f6845782
635
py
Python
backend/wallet/api/v1/urls.py
crowdbotics-apps/ledger-wallet-29295
d96542a71685ce6d335882c10cf840355c8252f7
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/wallet/api/v1/urls.py
crowdbotics-apps/ledger-wallet-29295
d96542a71685ce6d335882c10cf840355c8252f7
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/wallet/api/v1/urls.py
crowdbotics-apps/ledger-wallet-29295
d96542a71685ce6d335882c10cf840355c8252f7
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.urls import path, include from rest_framework.routers import DefaultRouter from .viewsets import ( PaymentTransactionViewSet, TaskerPaymentAccountViewSet, TaskerWalletViewSet, PaymentMethodViewSet, CustomerWalletViewSet, ) router = DefaultRouter() router.register("customerwallet", CustomerWalletViewSet) router.register("taskerwallet", TaskerWalletViewSet) router.register("taskerpaymentaccount", TaskerPaymentAccountViewSet) router.register("paymenttransaction", PaymentTransactionViewSet) router.register("paymentmethod", PaymentMethodViewSet) urlpatterns = [ path("", include(router.urls)), ]
30.238095
68
0.811024
cb4bfdb19d3fafac29848032ad0f722b749b81df
2,090
py
Python
scripts/artifacts/accounts_de.py
deagler4n6/ALEAPP
c25692dac34e2382d1a8d51e5fbb2a39998dc638
[ "MIT" ]
187
2020-02-22T23:35:32.000Z
2022-03-31T13:46:24.000Z
scripts/artifacts/accounts_de.py
deagler4n6/ALEAPP
c25692dac34e2382d1a8d51e5fbb2a39998dc638
[ "MIT" ]
65
2020-02-25T18:22:47.000Z
2022-03-27T21:41:21.000Z
scripts/artifacts/accounts_de.py
deagler4n6/ALEAPP
c25692dac34e2382d1a8d51e5fbb2a39998dc638
[ "MIT" ]
47
2020-02-24T22:33:35.000Z
2022-03-11T05:19:42.000Z
import glob import json import os import shutil import sqlite3 from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, timeline, is_platform_windows, open_sqlite_db_readonly def get_accounts_de(files_found, report_folder, seeker, wrap_text): slash = '\\' if is_platform_windows() else '/' # Filter for path xxx/yyy/system_ce/0 for file_found in files_found: file_found = str(file_found) parts = file_found.split(slash) uid = parts[-2] try: uid_int = int(uid) # Skip sbin/.magisk/mirror/data/system_de/0 , it should be duplicate data?? if file_found.find('{0}mirror{0}'.format(slash)) >= 0: continue process_accounts_de(file_found, uid, report_folder) except ValueError: pass # uid was not a number def process_accounts_de(folder, uid, report_folder): #Query to create report db = open_sqlite_db_readonly(folder) cursor = db.cursor() #Query to create report cursor.execute(''' SELECT datetime(last_password_entry_time_millis_epoch / 1000, 'unixepoch') as 'last pass entry', name, type FROM accounts ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: report = ArtifactHtmlReport('Accounts_de') report.start_artifact_report(report_folder, f'accounts_de_{uid}') report.add_script() data_headers = ('Last password entry','Name','Type') data_list = [] for row in all_rows: data_list.append((row[0], row[1], row[2])) report.write_artifact_data_table(data_headers, data_list, folder) report.end_artifact_report() tsvname = f'accounts de {uid}' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = f'Accounts DE {uid}' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc(f'No accounts_de_{uid} data available') db.close()
33.174603
98
0.647847
d198456c6a97cb442b9f40e4c8995f805462d089
4,541
py
Python
example/algs.py
jessicagainesbmi203/example
94aac309e2e8f217edd1d45ffde10b586db0a6a7
[ "Apache-2.0" ]
null
null
null
example/algs.py
jessicagainesbmi203/example
94aac309e2e8f217edd1d45ffde10b586db0a6a7
[ "Apache-2.0" ]
null
null
null
example/algs.py
jessicagainesbmi203/example
94aac309e2e8f217edd1d45ffde10b586db0a6a7
[ "Apache-2.0" ]
null
null
null
import numpy as np import collections def is_sorted(x): for i in range(0,x.size-1,1): if x[i] > x[i+1]: return False return True def pointless_sort(x): """ This function always returns the same values to show how testing works, check out the `test/test_alg.py` file to see. """ return np.array([1,2,3]) def bubblesort(x): """ Make a copy of x. Iterate through the elements of x, comparing each element to the element ahead of it. If the first element is greater than the second, swap the elements. Repeat the iteration until no swaps occur in an iteration.` """ conditionals = 0 assignments = 0 copy = np.copy(x) sorted = False while not sorted: swap_this_round = False for i in range(0,len(copy)-1,1): assignments = assignments + 1 # assign counter conditionals = conditionals + 1 if (copy[i] > copy[i+1]): assignments = assignments + 1 temp = copy[i+1] assignments = assignments + 1 copy[i+1] = copy[i] assignments = assignments + 1 copy[i] = temp swap_this_round = True if not swap_this_round: sorted = True assert len(copy) == len(x) assert set(copy) == set(x) assert is_sorted(copy) return {'sorted':copy, 'c':conditionals, 'a':assignments} def quicksort(x): """ Pick a pivot element from the copy and move all elements less than the pivot element to a left partition, and all elements greater than the pivot element to a right partition. Recursively quicksort the left and right sub arrays. Then concatenate the left partition, pivot, and right partition in that order. """ conditionals = 0 assignments = 0 if x.size <= 1: return {'sorted' : x, 'c':0, 'a':0} copy = np.copy(x) pivot = copy[0] left = np.array([]) right = np.array([]) equal = np.array([]) for item in copy[1:]: conditionals = conditionals + 1 if item > pivot: assignments = assignments + 1 right = np.append(right,item) conditionals = conditionals + 1 if item < pivot: assignments = assignments + 1 left = np.append(left,item) conditionals = conditionals + 1 if item == pivot: assignments = assignments + 1 equal = np.append(equal,item) assignments = assignments + 1 equal = np.append(equal,pivot) assignments = assignments + x.size left_data = quicksort(left) conditionals = conditionals + left_data['c'] assignments = assignments + left_data['a'] temp = np.append(left_data['sorted'],pivot) right_data = quicksort(right) conditionals = conditionals + right_data['c'] assignments = assignments + right_data['a'] sorted = np.append(temp,right_data['sorted']) print(len(sorted)) print(len(x)) #assert len(sorted) == len(x) #assert set(sorted) == set(x) #assert is_sorted(sorted) return {'sorted' : sorted, 'c' : conditionals, 'a' : assignments} def insertionsort(x): """ Iterate through the elements of x. Add the first element to an empty array. Then add each subsequent element of x to its sorted place in the new array by iterating through the sorted array until reaching the first element greater than the x element. Place the x element just before this element in the new array. If an element greater than the x element is not found, place the x element at the end of the new array. Repeat for all elements of x. """ conditionals = 0 assignments = 0 if x.size <= 1: return {'sorted':x, 'c':0, 'a':0} copy = np.copy(x) sorted = np.array([]) assignments = assignments + 1 sorted = np.append(sorted,copy[0]) for item in copy[1:]: item_placed = False for j in range(0,len(sorted),1): conditionals = conditionals + 1 if sorted[j] > item: assignments = assignments + 1 sorted = np.insert(sorted,j,item) item_placed = True break if not item_placed: assignments = assignments + 1 sorted = np.insert(sorted,len(sorted),item) assert len(sorted) == len(x) assert set(sorted) == set(x) assert is_sorted(sorted) return {'sorted':sorted, 'c':conditionals, 'a':assignments}
34.664122
84
0.600749
930e111fb51336c0b115c993aa563cec891027b6
219
py
Python
src/lesson3/samples/keyInputBasic.py
saji-ryu/pyxel-study
b10ef781a86cfea4dad28efee89f851195189560
[ "MIT" ]
null
null
null
src/lesson3/samples/keyInputBasic.py
saji-ryu/pyxel-study
b10ef781a86cfea4dad28efee89f851195189560
[ "MIT" ]
null
null
null
src/lesson3/samples/keyInputBasic.py
saji-ryu/pyxel-study
b10ef781a86cfea4dad28efee89f851195189560
[ "MIT" ]
null
null
null
import pyxel pyxel.init(200, 200) a = 0 def update(): global a if pyxel.btn(pyxel.KEY_SPACE): a += 1 def draw(): global a pyxel.cls(7) pyxel.circ(a, a, 10, 0) pyxel.run(update, draw)
10.428571
34
0.570776
afeb2199b2290f87e1cab148227a5318b676c4a8
1,199
py
Python
test/test_html_ssrf_detection_result.py
Cloudmersive/Cloudmersive.APIClient.Python.Validate
894a3f578c3860db41b3eed179dcc52e02f565a0
[ "Apache-2.0" ]
3
2018-06-23T21:37:21.000Z
2020-04-20T23:07:36.000Z
test/test_html_ssrf_detection_result.py
Cloudmersive/Cloudmersive.APIClient.Python.Validate
894a3f578c3860db41b3eed179dcc52e02f565a0
[ "Apache-2.0" ]
1
2019-02-04T17:03:35.000Z
2019-03-02T20:16:52.000Z
test/test_html_ssrf_detection_result.py
Cloudmersive/Cloudmersive.APIClient.Python.Validate
894a3f578c3860db41b3eed179dcc52e02f565a0
[ "Apache-2.0" ]
2
2019-03-21T15:54:15.000Z
2020-05-27T17:30:43.000Z
# coding: utf-8 """ validateapi The validation APIs help you validate data. Check if an E-mail address is real. Check if a domain is real. Check up on an IP address, and even where it is located. All this and much more is available in the validation API. # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import cloudmersive_validate_api_client from cloudmersive_validate_api_client.models.html_ssrf_detection_result import HtmlSsrfDetectionResult # noqa: E501 from cloudmersive_validate_api_client.rest import ApiException class TestHtmlSsrfDetectionResult(unittest.TestCase): """HtmlSsrfDetectionResult unit test stubs""" def setUp(self): pass def tearDown(self): pass def testHtmlSsrfDetectionResult(self): """Test HtmlSsrfDetectionResult""" # FIXME: construct object with mandatory attributes with example values # model = cloudmersive_validate_api_client.models.html_ssrf_detection_result.HtmlSsrfDetectionResult() # noqa: E501 pass if __name__ == '__main__': unittest.main()
29.243902
240
0.748957
e062c94bad94c0d995da1a508a5a451bccbd0c25
2,086
py
Python
tests/tests/correctness/EPLAnalytics/Streaming_Calculations/FFT/fft_cor_010/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
3
2019-09-02T18:21:22.000Z
2020-04-17T16:34:57.000Z
tests/tests/correctness/EPLAnalytics/Streaming_Calculations/FFT/fft_cor_010/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
tests/tests/correctness/EPLAnalytics/Streaming_Calculations/FFT/fft_cor_010/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest() self.injectAnalytic(correlator) self.injectFFTAnalysis(correlator) self.ready(correlator) correlator.receive(filename='FFT.evt', channels=['Output1']) correlator.injectMonitorscript(['test.mon'], self.input) self.waitForSignal('correlator.out', expr='Analytic FFT started for inputDataNames', condition='==1', timeout=5) correlator.sendLiteral('com.industry.analytics.streaming_calculations.FFTAnalysis_cor_010.StartDataGenerator()') self.waitForSignal('FFT.evt', expr='com.industry.analytics\.Data', condition='==27', timeout=10) def validate(self): # Make sure there were no errors in the logs self.checkSanity() # Make sure that the we got the right number of Data events called self.assertLineCount('FFT.evt', expr='com.industry.analytics\.Data', condition='==27') self.assertLineCount('FFT.evt', expr='com.industry.analytics\.Data\("Output1","c","sourceId",0,230,"",.*,0,0,{}\)', condition='==9') self.assertLineCount('FFT.evt', expr='com.industry.analytics\.Data\("Output1","c","sourceId",0,120,"",.*,0,0,{}\)', condition='==9') self.assertLineCount('FFT.evt', expr='com.industry.analytics\.Data\("Output1","c","sourceId",0,50,"",.*,0,0,{}\)', condition='==9') # Make sure that the Data events were as expected self.assertDiff('FFT.evt', 'FFT.evt')
48.511628
343
0.704698
26d1e4e17ad7b065abe2a53d7352b9aff2efd025
10,590
py
Python
zero/common/train.py
Wesley-Jzy/ColossalAI-Benchmark
0b8b737297316c898c9b3ed6d7eaebaee4e3692c
[ "Apache-2.0" ]
21
2022-01-18T07:37:55.000Z
2022-03-27T12:54:13.000Z
zero/common/train.py
Wesley-Jzy/ColossalAI-Benchmark
0b8b737297316c898c9b3ed6d7eaebaee4e3692c
[ "Apache-2.0" ]
12
2022-01-18T06:09:57.000Z
2022-03-23T07:48:02.000Z
zero/common/train.py
Wesley-Jzy/ColossalAI-Benchmark
0b8b737297316c898c9b3ed6d7eaebaee4e3692c
[ "Apache-2.0" ]
21
2022-01-18T05:52:55.000Z
2022-03-25T06:05:57.000Z
import math import time import torch from torch.distributed import all_reduce, get_rank, get_world_size from tqdm import tqdm from zero.common.utils import CONFIG, AsyncMemoryMonitor, print_log, get_tflops def _train(epoch, rank, world_size, train_dataloader, model, criterion, optimizer, lr_scheduler, scaler, mem_monitor): use_optimizer_backward = CONFIG['method'] in ['colossalai'] use_integrated_backward = CONFIG['method'] in ['deepspeed', 'patrickstar'] use_integrated_step = CONFIG['method'] in ['deepspeed'] use_autocast = CONFIG['method'] in ['torch', 'colossalai'] and \ 'fp16' in CONFIG and CONFIG['fp16'].get('enabled', True) clip_grad_norm = CONFIG.get('gradient_clipping', 0.) use_integraded_clip_grad = CONFIG['method'] in ['fairscale'] use_colossalai_zero_v1 = CONFIG['method'] == 'colossalai' and CONFIG.get('sharded_model_version', 2) == 1 model.train() num_steps = len(train_dataloader) if 'steps_per_epoch' in CONFIG['hyperparameter'] and CONFIG['hyperparameter']['steps_per_epoch'] < num_steps: num_steps = CONFIG['hyperparameter']['steps_per_epoch'] progress = range(num_steps) if rank == 0: progress = tqdm(progress, desc=f"[Epoch {epoch} / Train]") train_loss = torch.zeros(()).to(torch.float).to(rank) used_time = 0. num_steps = 0 num_samples = torch.zeros(()).to(torch.int).to(rank) num_tokens = torch.zeros(()).to(torch.int).to(rank) data_iter = iter(train_dataloader) if mem_monitor is not None: mem_monitor.start() for _ in progress: fwd_start = time.time() optimizer.zero_grad() if use_colossalai_zero_v1: model.zero_grad(set_to_none=True) batch = next(data_iter) labels = batch.pop('labels') batch_size = None batch_tokens = None if isinstance(labels, torch.Tensor): labels = labels.to(rank) batch_size = labels.size(0) batch_tokens = labels.numel() else: for k, v in labels.items(): labels[k] = v.to(rank) if batch_size is None: batch_size = v.size(0) if batch_tokens is None: batch_tokens = v.numel() for k, v in batch.items(): batch[k] = v.to(rank) if use_autocast: with torch.cuda.amp.autocast(): outputs = model(**batch) else: outputs = model(**batch) loss = criterion(outputs, labels) train_loss += loss fwd_end = time.time() bwd_start = time.time() if use_colossalai_zero_v1: loss.backward() optimizer.step() lr_scheduler.step() elif use_integrated_backward: # deepspeed & patrickstar style model.backward(loss) if use_integrated_step: model.step() # deepspeed style else: optimizer.step() # patrickstar style lr_scheduler.step() elif use_optimizer_backward: # colossalai style optimizer.backward(loss) if clip_grad_norm > 0: optimizer.clip_grad_norm(model, clip_grad_norm) optimizer.step() lr_scheduler.step() elif scaler is not None: # torch & fairscale amp style scaler.scale(loss).backward() scaler.unscale_(optimizer) if clip_grad_norm > 0: if use_integraded_clip_grad: # fairscale style model.clip_grad_norm_(clip_grad_norm) else: # torch style torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad_norm) scaler.step(optimizer) scaler.update() lr_scheduler.step() else: # torch & fairscale normal style loss.backward() if clip_grad_norm > 0: if use_integraded_clip_grad: # fairscale style model.clip_grad_norm_(clip_grad_norm) else: # torch style torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad_norm) optimizer.step() lr_scheduler.step() bwd_end = time.time() num_steps += 1 num_samples += batch_size num_tokens += batch_tokens fwd_time = fwd_end - fwd_start bwd_time = bwd_end - bwd_start batch_time = fwd_time + bwd_time used_time += batch_time if rank == 0: progress.set_postfix(loss=loss.item(), lr=lr_scheduler.get_last_lr()[0], time_forward=fwd_time, time_backward=bwd_time, throughput=batch_size * world_size / (batch_time + 1e-12), tflops=get_tflops(batch_time, batch_tokens * world_size)) peak_mem = None if mem_monitor is not None: peak_mem = max(mem_monitor.finish()) all_reduce(train_loss) all_reduce(num_samples) all_reduce(num_tokens) msg = f'[Epoch {epoch} / Train]: Loss = {train_loss.item() / (world_size * num_steps):.3f}' msg += f' | Throughput = {num_samples.item() / (used_time + 1e-12):.3f} samples/sec' msg += f' | TFLOPS = {get_tflops(used_time, num_tokens.item()):.3f}' if peak_mem is not None: msg += f' | Peak memory = {peak_mem / 1024:.3f} GB.' print_log(msg) def _test(epoch, rank, world_size, test_dataloader, model, criterion, mem_monitor): use_autocast = CONFIG['method'] in ['torch', 'colossalai'] and \ 'fp16' in CONFIG and CONFIG['fp16'].get('enabled', True) evaluation = CONFIG['model']['evaluation'] model.eval() num_steps = len(test_dataloader) if 'steps_per_epoch' in CONFIG['hyperparameter'] and CONFIG['hyperparameter']['steps_per_epoch'] < num_steps: num_steps = CONFIG['hyperparameter']['steps_per_epoch'] progress = range(num_steps) if rank == 0: progress = tqdm(progress, desc=f"[Epoch {epoch} / Test]") test_loss = torch.zeros(()).to(torch.float).to(rank) used_time = 0. num_steps = 0 num_samples = torch.zeros(()).to(torch.int).to(rank) num_tokens = torch.zeros(()).to(torch.int).to(rank) correct = torch.zeros(()).to(torch.int).to(rank) data_iter = iter(test_dataloader) if mem_monitor is not None: mem_monitor.start() with torch.no_grad(): for _ in progress: batch_start = time.time() batch = next(data_iter) labels = batch.pop('labels') batch_size = None batch_tokens = None if isinstance(labels, torch.Tensor): labels = labels.to(rank) batch_size = labels.size(0) batch_tokens = labels.numel() else: for k, v in labels.items(): labels[k] = v.to(rank) if batch_size is None: batch_size = v.size(0) if batch_tokens is None: batch_tokens = v.numel() for k, v in batch.items(): batch[k] = v.to(rank) if use_autocast: with torch.cuda.amp.autocast(): outputs = model(**batch) else: outputs = model(**batch) loss = criterion(outputs, labels) test_loss += loss batch_end = time.time() num_steps += 1 num_samples += batch_size num_tokens += batch_tokens batch_time = batch_end - batch_start used_time += batch_time if rank == 0: metrics = dict(loss=loss.item(), step_time=batch_time, throughput=batch_size * world_size / (batch_time + 1e-12), tflops=get_tflops(batch_time, batch_tokens * world_size)) if evaluation == 'ppl': metrics['perplexity'] = math.exp(loss.item()) elif evaluation == 'acc': if not isinstance(labels, torch.Tensor): labels = labels['targets_a'] batch_correct = torch.sum(labels == torch.argmax(outputs, dim=-1)).item() metrics['accuracy'] = batch_correct / batch_size correct += batch_correct else: raise ValueError(f'Invalid evaluation method {evaluation}') progress.set_postfix(**metrics) peak_mem = None if mem_monitor is not None: peak_mem = max(mem_monitor.finish()) all_reduce(test_loss) reduced_loss = test_loss.item() / (world_size * num_steps) all_reduce(num_samples) all_reduce(num_tokens) if evaluation == 'acc': all_reduce(correct) msg = f'[Epoch {epoch} / Test]: Loss = {reduced_loss:.3f}' if evaluation == 'ppl': msg += f' | Perplexity = {math.exp(reduced_loss):.3f}' else: msg += f' | Accuracy = {correct.item() * 100 / num_samples.item():.3f} %' msg += f' | Throughput = {num_samples.item() / (used_time + 1e-12):.3f} samples/sec' msg += f' | TFLOPS = {get_tflops(used_time, num_tokens.item()):.3f}' if peak_mem is not None: msg += f' | Peak memory = {peak_mem / 1024:.3f} GB.' print_log(msg) def train(model, train_data, test_data, criterion, optimizer, scaler, lr_scheduler): rank = get_rank() world_size = get_world_size() mem_monitor = None if CONFIG.get('use_mem_monitor'): mem_monitor = AsyncMemoryMonitor(rank) numel = CONFIG['model']['numel'] if numel < 1e9: msg = f'{numel / 1e6:.3f} M' else: msg = f'{numel / 1e9:.3f} B' print_log(f'Model is built (parameter size = {msg}).') print_log('Benchmark start.') for epoch in range(CONFIG['hyperparameter']['num_epochs']): _train(epoch, rank, world_size, train_data, model, criterion, optimizer, lr_scheduler, scaler, mem_monitor) _test(epoch, rank, world_size, test_data, model, criterion, mem_monitor) print_log('Benchmark complete.')
36.770833
119
0.560246
bbc1d6e0a55056cbe4b8ffb3c3cc4cc9eb80fe3c
7,572
py
Python
homemonitoring/homemonitoring/solaredge.py
BigCrunsh/home-monitoring
c82e02462cbd040e5814464b926321bdb84ed446
[ "MIT" ]
2
2020-06-25T20:13:33.000Z
2020-08-06T09:08:26.000Z
homemonitoring/homemonitoring/solaredge.py
BigCrunsh/home-monitoring
c82e02462cbd040e5814464b926321bdb84ed446
[ "MIT" ]
1
2021-06-17T09:50:33.000Z
2021-06-17T09:50:33.000Z
homemonitoring/homemonitoring/solaredge.py
BigCrunsh/home-monitoring
c82e02462cbd040e5814464b926321bdb84ed446
[ "MIT" ]
null
null
null
"""The module contains a wrapper of the Solaredge API with additional functionality.""" import solaredge import datetime import pytz import pandas as pd import numpy as np class Solaredge(solaredge.Solaredge): """Solaredge is a wrapper around the Solaredge API with additional functionality. The Solaredge API is queried with date ranges. Date ranges are relative to the location of the photovoltaic system. The wrapper sets reasonable default values, normalizes dates to be compliant with the API call, and splits the call by month ranges. Args: site_token(string): api key """ def __init__(self, *args, **kwargs): super(Solaredge, self).__init__(*args, **kwargs) self.meta = None def get_meta(self): """Returns solaredge meta data. Queries list end point of API. The call is cached it will return the same result when called twice. Returns: dict: meta data """ if self.meta is None: self.meta = self.get_list()['sites']['site'][0] return self.meta def get_site_id(self): """Returns solaredge site id. Queries list end point of API. The call is cached it will return the same result when called twice. Returns: int: site id """ return self.get_meta()['id'] def get_installation_date(self): """Returns the installation date of the photovoltaic system. Queries list end point of API. The call is cached it will return the same result when called twice. Returns: datetime.datetime: installation date (localized) """ return self.get_tz().localize( datetime.datetime.fromisoformat(self.get_meta()['installationDate']) ) def get_tz(self): """Returns time zone. Queries list end point of API. The call is cached it will return the same result when called twice. Returns: pytz.timezone: system time zone """ return pytz.timezone(self.get_meta()['location']['timeZone']) @staticmethod def _get_date_ranges(start_datetime, end_datetime): """Split date range by months. The SolarEdge API is limited to one-month period, i.e., period between endTime and startTime should not exceed one month. This function splits the date range into chunks by months. Args: start_datetime (datetime.datetime): localized start datetime of range end_datetime (datetime.datetime): localized end datetime of range Returns: zip: list of start and end dates by months """ end_dates = np.array(list(map( lambda d: d.replace(hour=23, minute=59, second=59), pd.date_range(start_datetime, end_datetime, freq='M', normalize=False).to_pydatetime() ))) start_dates = end_dates + datetime.timedelta(seconds=1) if start_datetime <= end_datetime: end_dates = np.append(end_dates, end_datetime) start_dates = np.append(start_datetime, start_dates) return zip(start_dates, end_dates) def _normalize_date(self, datetime): """Normalizes datetime for SolarEdge API call. Normalizes `datetime` to be used in solaredge API, i.e., - timezone is converted to time zone of system location - time zone info and microseconds are removed (API fails otherwise) Args: datetime (datetime.datetime): localized datetime to be normalized Raises: AssertionError: if datime misses tzinfo Returns: datetime.datetime: datetime normalized for solaredge API call """ assert datetime.tzinfo is not None, "dates are expected to be localized" return datetime.astimezone(self.get_tz()).replace(microsecond=0).replace(tzinfo=None) def get_power_details(self, start_time=None, end_time=None): """Returns power details. Calls `powerDetails` endpoint of SolarEdge API. The parameters are not limited to one-month period. The first data point returned is the `start_time` rounded down to the full quarter of an hour. The last data point returned is the `end_time` of the last (not equal) full quarter of an hour. The last available data point might change until the next quarter of the hour. Example: self.get_power_details( start_time=datetime.datetime(2020, 4, 21, 20, 55), end_time=datetime.datetime(2020, 4, 21, 21, 0) ) # returns data for '2020-04-21 20:45:00' self.get_power_details( start_time=datetime.datetime(2020, 4, 21, 20, 55), end_time=datetime.datetime(2020, 4, 21, 21, 1) ) # returns data for '2020-04-21 20:45:00' and '2020-04-21 21:00:00' Args: start_time (datetime.datetime): start datetime of range; default: installation date (based on solaredge meta data) end_time (datetime.datetime): end datetime of range default: current timestamp Returns: dict: response """ start_time = self._normalize_date( start_time or self.get_installation_date() ) end_time = self._normalize_date( end_time or datetime.datetime.now(self.get_tz()) ) return [ super(Solaredge, self).get_power_details( site_id=self.get_site_id(), start_time=s, end_time=e ) for s, e in self._get_date_ranges(start_time, end_time) ] def get_energy_details(self, start_time=None, end_time=None): """Returns energy details. Calls `energyDetails` endpoint of SolarEdge API. The parameters are not limited to one-month period. The first data point returned is the `start_time` rounded down to the full quarter of an hour. The last data point returned is the `end_time` of the last (not equal) full quarter of an hour. The last available data point might change until the next quarter of the hour. Example: self.get_power_details( start_time=datetime.datetime(2020, 4, 21, 20, 55), end_time=datetime.datetime(2020, 4, 21, 21, 0) ) # returns data for '2020-04-21 20:45:00' self.get_power_details( start_time=datetime.datetime(2020, 4, 21, 20, 55), end_time=datetime.datetime(2020, 4, 21, 21, 1) ) # returns data for '2020-04-21 20:45:00' and '2020-04-21 21:00:00' Args: start_time (datetime.datetime): start datetime of range; default: installation date (based on solaredge meta data) end_time (datetime.datetime): end datetime of range default: current timestamp Returns: dict: response """ start_time = self._normalize_date( start_time or self.get_installation_date() ) end_time = self._normalize_date( end_time or datetime.datetime.now(self.get_tz()) ) return [ super(Solaredge, self).get_energy_details( site_id=self.get_site_id(), start_time=s, end_time=e, time_unit='QUARTER_OF_AN_HOUR' ) for s, e in self._get_date_ranges(start_time, end_time) ]
36.57971
100
0.623217
2ab675eae82058adddc28ece463f504e9b3fd706
6,211
py
Python
sugaroid/brain/convert.py
vardaan-raj/sugaroid
d0476fb9c44a73fee2e0de45162f2b1ac86452aa
[ "MIT" ]
4
2020-09-28T13:52:40.000Z
2020-10-30T15:24:50.000Z
sugaroid/brain/convert.py
sreyasaju/sugaroid
d58e06fb664daa16fda1bf23cc73068efcd5634c
[ "MIT" ]
null
null
null
sugaroid/brain/convert.py
sreyasaju/sugaroid
d58e06fb664daa16fda1bf23cc73068efcd5634c
[ "MIT" ]
null
null
null
""" MIT License Sugaroid Artificial Intelligence Chatbot Core Copyright (c) 2020-2021 Srevin Saju Copyright (c) 2021 The Sugaroid Project Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging from chatterbot.logic import LogicAdapter from currency_converter import CurrencyConverter from sugaroid.sugaroid import SugaroidStatement from sugaroid.brain.ooo import Emotion class SugaroidCurrency: def __init__(self): self.currency_api = CurrencyConverter() def convert(self, src: str, dest: str, amount: float): if (src in self.currency_api.currencies) and ( dest in self.currency_api.currencies ): return self.currency_api.convert(amount, src, dest) else: if src not in self.currency_api.currencies: bad_cur = src else: bad_cur = dest return "Hmm. Seems like {} is not a recognized currency.".format(bad_cur) class CurrencyAdapter(LogicAdapter): """ Gives a random response, because Sugaroid tries not to say I don't know """ def __init__(self, chatbot, **kwargs): super().__init__(chatbot, **kwargs) self.currencies_src_ord = None self.currencies_dest = None self.currencies_src = None self.tokenized = None def can_process(self, statement): self.tokenized = self.chatbot.lp.tokenize( str(statement) .replace("$", " USD ") .replace("₹", " INR ") .replace("€", " EUR ") .replace("£", " GBP ") ) self.currencies_dest = [] self.currencies_src = None if len(self.tokenized) >= 3: for i in range(len(self.tokenized) - 1): if self.tokenized[i].tag_ == "TO": dst = str(self.tokenized[i + 1].text).upper() if len(dst) < 4: self.currencies_dest.append(dst) try: if len(self.tokenized[i - 1].lower_) < 4: self.currencies_src = str( self.tokenized[i - 1].text ).upper() except IndexError: pass elif self.tokenized[i].lower_ == "is": for j in range(i + 1, len(self.tokenized)): if self.tokenized[j].tag_ == "IN": dst = str(self.tokenized[j + 1].text).upper() if len(dst) < 4: self.currencies_dest.append(dst) try: src = str(self.tokenized[j - 1].text).upper() if len(src) < 4: self.currencies_src = src except IndexError: pass if self.currencies_dest and self.currencies_src: return True else: return False elif self.tokenized[i].tag_ == "IN": dst = str(self.tokenized[i + 1].text).upper() if len(dst) < 4: self.currencies_dest.append(dst) if self.currencies_dest and self.currencies_src: logging.info( "CurrencyAdapter: Recognized source and destination currency types. src: {} and dest: {}".format( self.currencies_src, self.currencies_dest ) ) return True else: return False def process(self, statement, additional_response_selection_parameters=None): emotion = Emotion.rich confidence = 0.9 response = None converted = [] for i in self.tokenized: if i.tag_ in ["LS", "CD"]: self.currencies_src_ord = i.text if self.currencies_src_ord: try: self.currencies_src_ord = float(self.currencies_src_ord) sg_currency = SugaroidCurrency() for destination in self.currencies_dest: converted.append( "{} {}".format( sg_currency.convert( self.currencies_src.upper(), destination.upper(), self.currencies_src_ord, ), destination.upper(), ) ) response = " ".join(converted) except ValueError: response = "Seems like I cannot process {}. Maybe try a numerical value for me to understand better".format( self.currencies_src_ord ) else: response = "Seems like you forgot the important part of your currency conversion statement. The number!" selected_statement = SugaroidStatement(response, chatbot=True) selected_statement.confidence = confidence selected_statement.emotion = emotion return selected_statement
39.310127
124
0.5545
749c2f169a498db20130c5e07b8f6e4474e468e0
12,087
py
Python
karolos/agents/sac.py
tmdt-buw/karolos
33039b9a318b4d7ab4b399e2a8737655eccbc80b
[ "MIT" ]
12
2021-01-18T15:00:23.000Z
2022-03-04T13:42:14.000Z
karolos/agents/sac.py
tmdt-buw/karolos
33039b9a318b4d7ab4b399e2a8737655eccbc80b
[ "MIT" ]
4
2021-03-12T15:53:34.000Z
2021-11-18T08:38:48.000Z
karolos/agents/sac.py
tmdt-buw/karolos
33039b9a318b4d7ab4b399e2a8737655eccbc80b
[ "MIT" ]
null
null
null
""" https://spinningup.openai.com/en/latest/algorithms/sac.html """ import os import os.path as osp import numpy as np import torch import torch.nn as nn from torch.distributions import MultivariateNormal from . import Agent from .utils.nn import NeuralNetwork, Clamp, init_xavier_uniform class Policy(NeuralNetwork): def __init__(self, state_dims, action_dim, network_structure, log_std_min=-20, log_std_max=2): in_dim = int( np.sum([np.product(state_dim) for state_dim in state_dims])) out_dim = int(np.product(action_dim)) * 2 super(Policy, self).__init__(in_dim, network_structure) dummy = super(Policy, self).forward(torch.zeros((1, in_dim))) self.operators.append(nn.Linear(dummy.shape[1], out_dim)) self.operators.apply(init_xavier_uniform) self.std_clamp = Clamp(log_std_min, log_std_max) def forward(self, *state_args, deterministic=True): x = super(Policy, self).forward(*state_args) mean, log_std = torch.split(x, x.shape[1] // 2, dim=1) log_std = self.std_clamp(log_std) if deterministic: action = torch.tanh(mean) log_prob = torch.zeros(log_std.shape[0]).unsqueeze_(-1) else: std = log_std.exp() normal = MultivariateNormal(mean, torch.diag_embed(std.pow(2))) action_base = normal.rsample() log_prob = normal.log_prob(action_base) log_prob.unsqueeze_(-1) action = torch.tanh(action_base) action_bound_compensation = torch.log( 1. - action.pow(2) + np.finfo(float).eps).sum(dim=1, keepdim=True) log_prob.sub_(action_bound_compensation) return action, log_prob class Critic(NeuralNetwork): def __init__(self, state_dims, action_dim, network_structure): in_dim = int( np.sum([np.product(arg) for arg in state_dims]) + np.product( action_dim)) super(Critic, self).__init__(in_dim, network_structure) dummy = super(Critic, self).forward(torch.zeros((1, in_dim))) self.operators.append(nn.Linear(dummy.shape[1], 1)) self.operators.apply(init_xavier_uniform) def forward(self, *args): return super(Critic, self).forward(*args) class AgentSAC(Agent): def __init__(self, config, observation_space, action_space, reward_function, experiment_dir=None): super(AgentSAC, self).__init__(config, observation_space, action_space, reward_function, experiment_dir) self.learning_rate_critic = config.get("learning_rate_critic", 5e-4) self.learning_rate_policy = config.get("learning_rate_policy", 5e-4) self.learning_rate_entropy_regularization = config.get( "learning_rate_entropy_regularization", 5e-5) self.weight_decay = config.get("weight_decay", 1e-4) self.tau = config.get('tau', 2.5e-3) self.entropy_regularization = config.get("entropy_regularization", 1) self.automatic_entropy_regularization = config.get( 'automatic_entropy_regularization', True) self.policy_structure = config.get('policy_structure', []) self.critic_structure = config.get('critic_structure', []) self.target_entropy = -1 * self.action_dim[0] # generate networks self.critic_1 = Critic(self.state_dim, self.action_dim, self.critic_structure).to(self.device) self.critic_2 = Critic(self.state_dim, self.action_dim, self.critic_structure).to(self.device) self.target_critic_1 = Critic(self.state_dim, self.action_dim, self.critic_structure).to(self.device) self.target_critic_2 = Critic(self.state_dim, self.action_dim, self.critic_structure).to(self.device) self.policy = Policy(self.state_dim, self.action_dim, self.policy_structure).to(self.device) self.log_entropy_regularization = torch.tensor( [np.log(self.entropy_regularization)], dtype=torch.float, requires_grad=True, device=self.device) self.optimizer_critic_1 = torch.optim.AdamW(self.critic_1.parameters(), lr=self.learning_rate_critic, weight_decay=self.weight_decay) self.optimizer_critic_2 = torch.optim.AdamW(self.critic_2.parameters(), lr=self.learning_rate_critic, weight_decay=self.weight_decay) self.optimizer_policy = torch.optim.AdamW(self.policy.parameters(), lr=self.learning_rate_policy, weight_decay=self.weight_decay) self.optimizer_entropy_regularization = torch.optim.AdamW( [self.log_entropy_regularization], lr=self.learning_rate_entropy_regularization, weight_decay=self.weight_decay) self.update_target(self.critic_1, self.target_critic_1, 1.) self.update_target(self.critic_2, self.target_critic_2, 1.) self.criterion_critic_1 = nn.MSELoss() self.criterion_critic_2 = nn.MSELoss() def learn(self): self.policy.train() self.critic_1.train() self.critic_2.train() self.target_critic_1.train() self.target_critic_2.train() experiences, indices = self.memory.sample(self.batch_size) states, actions, rewards, next_states, dones = experiences states = torch.FloatTensor(states).to(self.device) actions = torch.FloatTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.device) next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(np.float32(dones)).unsqueeze(1).to( self.device) rewards *= self.reward_scale predicted_value_1 = self.critic_1(states, actions) predicted_value_2 = self.critic_2(states, actions) predicted_action, log_prob = self.policy(states, deterministic=False) predicted_next_action, next_log_prob = self.policy(next_states, deterministic=False) if self.automatic_entropy_regularization is True: entropy_regularization_loss = -(self.log_entropy_regularization * ( log_prob + self.target_entropy).detach()).mean() self.optimizer_entropy_regularization.zero_grad() entropy_regularization_loss.backward() self.optimizer_entropy_regularization.step() self.entropy_regularization = self.log_entropy_regularization.exp() else: self.entropy_regularization = 1. # Train critic target_critic_min = torch.min( self.target_critic_1(next_states, predicted_next_action), self.target_critic_2(next_states, predicted_next_action)) target_critic_min.sub_(self.entropy_regularization * next_log_prob) target_q_value = rewards + ( 1 - dones) * self.reward_discount * target_critic_min q_val_loss_1 = self.criterion_critic_1(predicted_value_1, target_q_value.detach()) q_val_loss_2 = self.criterion_critic_2(predicted_value_2, target_q_value.detach()) self.optimizer_critic_1.zero_grad() self.optimizer_critic_2.zero_grad() q_val_loss_1.backward() q_val_loss_2.backward() self.optimizer_critic_1.step() self.optimizer_critic_2.step() # Training policy predicted_new_q_val = torch.min( self.critic_1(states, predicted_action), self.critic_2(states, predicted_action)) loss_policy = ( self.entropy_regularization * log_prob - predicted_new_q_val).mean() self.optimizer_policy.zero_grad() loss_policy.backward() self.optimizer_policy.step() predicted_value_avg = (predicted_value_1 + predicted_value_2) / 2 self.update_priorities(indices, predicted_value_avg, target_q_value) # Update target self.update_target(self.critic_1, self.target_critic_1, self.tau) self.update_target(self.critic_2, self.target_critic_2, self.tau) if self.writer: self.writer.add_scalar('entropy_regularization', self.entropy_regularization, self.learning_step) self.writer.add_histogram('predicted_value_1', predicted_value_1, self.learning_step) self.writer.add_histogram('predicted_value_2', predicted_value_2, self.learning_step) self.writer.add_histogram('rewards', rewards, self.learning_step) try: self.writer.add_histogram('target_critic_min_1', target_critic_min, self.learning_step) except: raise self.writer.add_histogram('target_critic_min_2', target_critic_min, self.learning_step) self.writer.add_histogram('target_q_value', target_q_value, self.learning_step) self.writer.add_scalar('q_val_loss1', q_val_loss_1.item(), self.learning_step) self.writer.add_scalar('q_val_loss2', q_val_loss_2.item(), self.learning_step) self.learning_step += self.sample_training_ratio def save(self, path): if not osp.exists(path): os.makedirs(path) torch.save(self.policy.state_dict(), osp.join(path, "policy.pt")) torch.save(self.critic_1.state_dict(), osp.join(path, "critic_1.pt")) torch.save(self.critic_2.state_dict(), osp.join(path, "critic_2.pt")) torch.save(self.target_critic_1.state_dict(), osp.join(path, "target_critic_1.pt")) torch.save(self.target_critic_2.state_dict(), osp.join(path, "target_critic_2.pt")) torch.save(self.optimizer_policy.state_dict(), osp.join(path, "optimizer_policy.pt")) torch.save(self.optimizer_critic_1.state_dict(), osp.join(path, "optimizer_critic_1.pt")) torch.save(self.optimizer_critic_2.state_dict(), osp.join(path, "optimizer_critic_2.pt")) def load(self, path): self.policy.load_state_dict( torch.load(osp.join(path, "policy.pt"))) self.critic_1.load_state_dict( torch.load(osp.join(path, "critic_1.pt"))) self.critic_2.load_state_dict( torch.load(osp.join(path, "critic_2.pt"))) self.target_critic_1.load_state_dict( torch.load(osp.join(path, "target_critic_1.pt"))) self.target_critic_2.load_state_dict( torch.load(osp.join(path, "target_critic_2.pt"))) self.optimizer_policy.load_state_dict( torch.load(osp.join(path, "optimizer_policy.pt"))) self.optimizer_critic_1.load_state_dict( torch.load(osp.join(path, "optimizer_critic_1.pt"))) self.optimizer_critic_2.load_state_dict( torch.load(osp.join(path, "optimizer_critic_2.pt"))) def predict(self, states, deterministic=True): self.policy.eval() states = torch.tensor(states, dtype=torch.float).to(self.device) action, _ = self.policy(states, deterministic=deterministic) action = action.detach().cpu().numpy() action = action.clip(self.action_space.low, self.action_space.high) return action def set_target_entropy(self, target_entropy): self.target_entropy = target_entropy
40.424749
109
0.627037
467fd0839130985051b26afada913ce8eff80d11
1,082
py
Python
experiment/tools/test_measure.py
Shitaibin/tweets-spam-clustering
52148c63dd1d1ad97ea7595503e3172ca9268a75
[ "MIT" ]
null
null
null
experiment/tools/test_measure.py
Shitaibin/tweets-spam-clustering
52148c63dd1d1ad97ea7595503e3172ca9268a75
[ "MIT" ]
null
null
null
experiment/tools/test_measure.py
Shitaibin/tweets-spam-clustering
52148c63dd1d1ad97ea7595503e3172ca9268a75
[ "MIT" ]
null
null
null
from unittest import TestCase from measure import cos_similarity class MeasureTestCase(TestCase): """ Unittest for tools.py """ ################################################## # Unittest for Visulize fucntions def test_cos_similarity(self): """ Unittest for function CosSimilirity. The input parameters is normalize vector/list. So, cos_similarity just caculate the dot product. In this test, we just need to test dot product is enough. """ self.assertEqual(8, cos_similarity([1, 2], [2, 3]), msg="The cosine\ similarity of (1,2) and (2,3) should be \ {}".format(8)) self.assertEqual(0, cos_similarity([0, 0], [2, 3]), msg="The cosine\ similarity of (0,0) and (2,3) should be \ {}".format(0)) self.assertEqual(4, cos_similarity([-1, 2], [2, 3]), msg="The cosine\ similarity of (-1,2) and (2,3) should be \ {}".format(4))
31.823529
77
0.511091
b8d4fd9cd0b7e8d4b845e72743a3adaa7f7dc2c3
313
py
Python
pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/test/gluesemantics_malt_fixt.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/test/gluesemantics_malt_fixt.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/nltk-3.2-py27_0/lib/python2.7/site-packages/nltk/test/gluesemantics_malt_fixt.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import def setup_module(module): from nose import SkipTest from nltk.parse.malt import MaltParser try: depparser = MaltParser('maltparser-1.7.2') except LookupError: raise SkipTest("MaltParser is not available")
26.083333
54
0.670927
179e68939b02779715c289f7af4d34c763cefff6
1,012
py
Python
django_boilerplate/user/migrations/0003_rightssupport.py
eugen1j/django-boilerplate
952df758141acded74dc762ccfd6d0eb7de5bf43
[ "MIT" ]
null
null
null
django_boilerplate/user/migrations/0003_rightssupport.py
eugen1j/django-boilerplate
952df758141acded74dc762ccfd6d0eb7de5bf43
[ "MIT" ]
null
null
null
django_boilerplate/user/migrations/0003_rightssupport.py
eugen1j/django-boilerplate
952df758141acded74dc762ccfd6d0eb7de5bf43
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-04-08 12:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("user", "0002_auto_20210329_0713"), ] operations = [ migrations.CreateModel( name="RightsSupport", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ], options={ "permissions": [ ("MANAGE_USERS", "Manage Users"), ("VIEW_USERS", "Read Users"), ("MANAGE_BLOG", "Manage Blog"), ("MANAGE_TASKS", "Manage Tasks"), ], "managed": False, "default_permissions": (), }, ), ]
26.631579
53
0.400198
45dd63b5923f8ab25a55d2afa3aa5014fddaad7d
7,468
py
Python
pennylane/templates/layers/particle_conserving_u2.py
aglitoiu/pennylane
fd99be754d55bbb919aadbbbdff70e40fbe3bcbf
[ "Apache-2.0" ]
null
null
null
pennylane/templates/layers/particle_conserving_u2.py
aglitoiu/pennylane
fd99be754d55bbb919aadbbbdff70e40fbe3bcbf
[ "Apache-2.0" ]
null
null
null
pennylane/templates/layers/particle_conserving_u2.py
aglitoiu/pennylane
fd99be754d55bbb919aadbbbdff70e40fbe3bcbf
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Contains the hardware efficient ``ParticleConservingU2`` template. """ import pennylane as qml # pylint: disable-msg=too-many-branches,too-many-arguments,protected-access from pennylane.templates.decorator import template from pennylane.ops import CNOT, CRX, RZ from pennylane.wires import Wires def _preprocess(weights, wires, init_state): """Validate and pre-process inputs as follows: * Check that the weights tensor has the correct shape. * Extract a wire list for the subroutines of this template. * Cast initial state to a numpy array. Args: weights (tensor_like): trainable parameters of the template wires (Wires): wires that template acts on init_state (tensor_like): shape ``(len(wires),)`` tensor Returns: int, list[Wires], array: number of times that the ansatz is repeated, wires pattern, and preprocessed initial state """ if len(wires) < 2: raise ValueError( "This template requires the number of qubits to be greater than one;" "got a wire sequence with {} elements".format(len(wires)) ) shape = qml.math.shape(weights) if len(shape) != 2: raise ValueError(f"Weights tensor must be 2-dimensional; got shape {shape}") if shape[1] != 2 * len(wires) - 1: raise ValueError( f"Weights tensor must have a second dimension of length {2 * len(wires) - 1}; got {shape[1]}" ) repeat = shape[0] nm_wires = [wires.subset([l, l + 1]) for l in range(0, len(wires) - 1, 2)] nm_wires += [wires.subset([l, l + 1]) for l in range(1, len(wires) - 1, 2)] # we can extract the numpy representation here # since init_state can never be differentiable init_state = qml.math.toarray(init_state) return repeat, nm_wires, init_state def u2_ex_gate(phi, wires=None): r"""Implements the two-qubit exchange gate :math:`U_{2,\mathrm{ex}}` proposed in `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_ to build particle-conserving VQE ansatze for Quantum Chemistry simulations. The unitary matrix :math:`U_{2, \mathrm{ex}}` acts on the Hilbert space of two qubits .. math:: U_{2, \mathrm{ex}}(\phi) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \mathrm{cos}(\phi) & -i\;\mathrm{sin}(\phi) & 0 \\ 0 & -i\;\mathrm{sin}(\phi) & \mathrm{cos}(\phi) & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right). Args: phi (float): angle entering the controlled-RX operator :math:`CRX(2\phi)` wires (list[Wires]): the two wires ``n`` and ``m`` the circuit acts on """ CNOT(wires=wires) CRX(2 * phi, wires=wires[::-1]) CNOT(wires=wires) @template def ParticleConservingU2(weights, wires, init_state=None): r"""Implements the heuristic VQE ansatz for Quantum Chemistry simulations using the particle-conserving entangler :math:`U_\mathrm{ent}(\vec{\theta}, \vec{\phi})` proposed in `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_. This template prepares :math:`N`-qubit trial states by applying :math:`D` layers of the entangler block :math:`U_\mathrm{ent}(\vec{\theta}, \vec{\phi})` to the Hartree-Fock state .. math:: \vert \Psi(\vec{\theta}, \vec{\phi}) \rangle = \hat{U}^{(D)}_\mathrm{ent}(\vec{\theta}_D, \vec{\phi}_D) \dots \hat{U}^{(2)}_\mathrm{ent}(\vec{\theta}_2, \vec{\phi}_2) \hat{U}^{(1)}_\mathrm{ent}(\vec{\theta}_1, \vec{\phi}_1) \vert \mathrm{HF}\rangle, where :math:`\hat{U}^{(i)}_\mathrm{ent}(\vec{\theta}_i, \vec{\phi}_i) = \hat{R}_\mathrm{z}(\vec{\theta}_i) \hat{U}_\mathrm{2,\mathrm{ex}}(\vec{\phi}_i)`. The circuit implementing the entangler blocks is shown in the figure below: | .. figure:: ../../_static/templates/layers/particle_conserving_u2.png :align: center :width: 60% :target: javascript:void(0); | Each layer contains :math:`N` rotation gates :math:`R_\mathrm{z}(\vec{\theta})` and :math:`N-1` particle-conserving exchange gates :math:`U_{2,\mathrm{ex}}(\phi)` that act on pairs of nearest-neighbors qubits. The repeated units across several qubits are shown in dotted boxes. The unitary matrix representing :math:`U_{2,\mathrm{ex}}(\phi)` (`arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_) is decomposed into its elementary gates and implemented in the :func:`~.u2_ex_gate` function using PennyLane quantum operations. | .. figure:: ../../_static/templates/layers/u2_decomposition.png :align: center :width: 60% :target: javascript:void(0); | Args: weights (tensor_like): Weight tensor of shape ``(D, M)`` where ``D`` is the number of layers and ``M`` = ``2N-1`` is the total number of rotation ``(N)`` and exchange ``(N-1)`` gates per layer. wires (Iterable or Wires): Wires that the template acts on. Accepts an iterable of numbers or strings, or a Wires object. init_state (tensor_like): shape ``(len(wires),)`` tensor representing the Hartree-Fock state used to initialize the wires. Raises: ValueError: if inputs do not have the correct format .. UsageDetails:: #. The number of wires has to be equal to the number of spin orbitals included in the active space. #. The number of trainable parameters scales with the number of layers :math:`D` as :math:`D(2N-1)`. An example of how to use this template is shown below: .. code-block:: python import pennylane as qml from pennylane.templates import ParticleConservingU2 from functools import partial # Build the electronic Hamiltonian from a local .xyz file h, qubits = qml.qchem.molecular_hamiltonian("h2", "h2.xyz") # Define the HF state ref_state = qml.qchem.hf_state(2, qubits) # Define the device dev = qml.device('default.qubit', wires=qubits) # Define the ansatz ansatz = partial(ParticleConservingU2, init_state=ref_state) # Define the cost function cost_fn = qml.ExpvalCost(ansatz, h, dev) # Compute the expectation value of 'h' for a given set of parameters layers = 1 params = qml.init.particle_conserving_u2_normal(layers, qubits) print(cost_fn(params)) """ wires = Wires(wires) repeat, nm_wires, init_state = _preprocess(weights, wires, init_state) qml.BasisState(init_state, wires=wires) for l in range(repeat): for j, _ in enumerate(wires): RZ(weights[l, j], wires=wires[j]) for i, wires_ in enumerate(nm_wires): u2_ex_gate(weights[l, len(wires) + i], wires=wires_)
36.607843
105
0.641537
0d2c790ad119c6f5f84e0d70ef9be1411d800cf4
6,232
py
Python
lectures/nonlinear_equations/nonlinear_algorithms.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
lectures/nonlinear_equations/nonlinear_algorithms.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
lectures/nonlinear_equations/nonlinear_algorithms.py
carolinalvarez/ose-course-scientific-computing
4b816fa81320c88fc5f35b203f0541e0a1a00939
[ "MIT" ]
null
null
null
"""Algorithms for lecture on nonlinear equations. The materials follow Miranda and Fackler (2004, :cite:`miranda2004applied`) (Chapter 3). The python code draws on Romero-Aguilar (2020, :cite:`CompEcon`). """ from functools import partial import numpy as np from scipy import optimize def bisect(f, a, b, tolerance=1.5e-8): """Apply bisect method to root finding problem. Iterative procedure to find the root of a continuous real-values function :math:`f(x)` defined on a bounded interval of the real line. Define interval :math:`[a, b]` that is known to contain or bracket the root of :math:`f` (i.e. the signs of :math:`f(a)` and :math:`f(b)` must differ). The given interval :math:`[a, b]` is then repeatedly bisected into subintervals of equal length. Each iteration, one of the two subintervals has endpoints of different signs (thus containing the root of :math:`f`) and is again bisected until the size of the subinterval containing the root reaches a specified convergence tolerance. Parameters ---------- f : callable Continuous, real-valued, univariate function :math:`f(x)`. a : int or float Lower bound :math:`a` for :math:`x \\in [a,b]`. b : int or float Upper bound :math:`a` for :math:`x \\in [a,b]`. Select :math:`a` and :math:`b` so that :math:`f(b)` has different sign than :math:`f(a)`. tolerance : float Convergence tolerance. Returns ------- x : float Solution to the root finding problem within specified tolerance. Examples -------- >>> x = bisect(f=lambda x : x ** 3 - 2, a=1, b=2)[0] >>> round(x, 4) 1.2599 """ # Get sign for f(a). s = np.sign(f(a)) # Get staring values for x and interval length. x = (a + b) / 2 d = (b - a) / 2 # Continue operation as long as d is above the convergence tolerance threshold. # Update x by adding or subtracting value of d depending on sign of f. xvals = [x] while d > tolerance: d = d / 2 if s == np.sign(f(x)): x += d else: x -= d xvals.append(x) return x, np.array(xvals) def fixpoint(f, x0, tolerance=10e-5): """Compute fixed point using function iteration. Parameters ---------- f : callable Function :math:`f(x)`. x0 : float Initial guess for fixed point (starting value for function iteration). tolerance : float Convergence tolerance (tolerance < 1). Returns ------- x : float Solution of function iteration. Examples -------- >>> import numpy as np >>> x = fixpoint(f=lambda x : x**0.5, x0=0.4, tolerance=1e-10)[0] >>> np.allclose(x, 1) True """ e = 1 xvals = [x0] while e > tolerance: # Fixed point equation. x = f(x0) # Error at the current step. e = np.linalg.norm(x0 - x) x0 = x xvals.append(x0) return x, np.array(xvals) def newton_method(f, x0, tolerance=1.5e-8): """Apply Newton's method to solving nonlinear equation. Solve equation using successive linearization, which replaces the nonlinear problem by a sequence of linear problems whose solutions converge to the solution of the nonlinear problem. Parameters ---------- f : callable (Univariate) function :math:`f(x)`. x0 : float Initial guess for the root of :math:`f`. tolerance : float Convergence tolerance. Returns ------- xn : float Solution of function iteration. """ x0 = np.atleast_1d(x0) # This is tailored to the univariate case. assert x0.shape[0] == 1 xn = x0.copy() while True: fxn, gxn = f(xn) if np.linalg.norm(fxn) < tolerance: return xn else: xn = xn - fxn / gxn def mcp_minmax(f, x0, a, b): """Apply minmax root finding formulation to mixed complementarity problem. Function utilizes Broyden's method for solution using the function :func:`scipy.optimize.root`. Parameters ---------- f : callable Function :math:`f(x)`. x0 : float Initial guess to root finding problem. a : float Lower bound :math:`a`. b : float Upper bound :math:`b`. Returns ------- rslt : float """ # Define minmax formulation. def wrapper(f, a, b, x): fval = f(x)[0] return np.fmin(np.fmax(fval, a - x), b - x) # Apply partial function to minmax wrapper to fix all arguments but x0. wrapper_p = partial(wrapper, f, a, b) # Apply scipy function to find root using Broyden's method. rslt = optimize.root(wrapper_p, x0, method="broyden1", options={"maxiter": 500}) return rslt def fischer(u, v, sign): """Define Fischer's function. .. math:: \\phi_{i}^{\\pm}(u, v) = u_{i} + v_{i} \\pm \\sqrt{u_{i}^{2} + v_{i}^{2}} Parameters ---------- u : float v : float sign : float or int Gives sign of equation. Should be either 1 or -1. Returns ------- callable """ return u + v + sign * np.sqrt(u ** 2 + v ** 2) def mcp_fischer(f, x0, a, b): """Apply Fischer's function :func:`fischer` to mixed complementarity Problem. Parameters ---------- f : callable Function :math:`f(x)`. x0 : float Initial guess to root finding problem. a : float Lower bound :math:`a`. b : float Upper bound :math:`b`. Returns ------- rslt : float """ def wrapper(f, a, b, x): b[b == np.inf] = 1000 # fisher solution quite sensitive, maybe good exercise to run in # class. u_inner, v_inner, sign_inner = f(x)[0], a - x, +1.0 u_outer, v_outer, sign_outer = fischer(u_inner, v_inner, sign_inner), b - x, -1.0 return fischer(u_outer, v_outer, sign_outer) # Apply partial function to minmax wrapper to fix all arguments but x0. wrapper_p = partial(wrapper, f, a, b) # Apply scipy function to find root using Broyden's method. rslt = optimize.root(wrapper_p, x0, method="broyden1", options={"maxiter": 500}) return rslt
26.519149
100
0.59018
be70cd7ccae184bc5cc83e6cd43ddc535c9219a7
6,096
py
Python
src/crawler/test_crawler.py
gbarkway/hypnospace-sitemap
fce9ed296971fd409bdd4d6da5101a7f7f6afcc9
[ "MIT" ]
4
2021-04-18T16:01:54.000Z
2022-02-02T17:23:01.000Z
src/crawler/test_crawler.py
gbarkway/hypnospace-sitemap
fce9ed296971fd409bdd4d6da5101a7f7f6afcc9
[ "MIT" ]
null
null
null
src/crawler/test_crawler.py
gbarkway/hypnospace-sitemap
fce9ed296971fd409bdd4d6da5101a7f7f6afcc9
[ "MIT" ]
null
null
null
import unittest import crawler from pathlib import Path class TestCrawler(unittest.TestCase): def test_readHypnospace(self): hs = crawler.readHypnospace('./test_data') self.assertEqual(len(hs.captures), 1, 'Hypnospace should have expected # captures') self.assertEqual(len(hs.adLinks), 2, 'Hypnospace should have expected # ad links') self.assertEqual(len(hs.mailLinks), 1, 'Hypnospace should have expected # mail links') def test_readCapture(self): capture = crawler.readCapture('./test_data/hs') self.assertEqual('1999-11-05', capture.date) page = [ page for page in capture.pages if 'dead_link_test' in page.path ][0] self.assertIn(r'00_test\tags_no_description.hsp', page.linksTo, 'non-dead link should be kept') self.assertNotIn(r'00_test\dead_link.hsp', page.linksTo, 'dead link should be removed') self.assertEqual(len(capture.pages), 14) def test_readZone(self): pages = crawler.readZone('test_data/hs/00_test') self.assertEqual( len(pages), len([ path for path in Path('test_data/hs/00_test').iterdir() if '.hsp' in path.suffix ])) implicit_links = [ str(path.relative_to('test_data/hs')).replace('/', '\\') for path in Path('test_data/hs/00_test').iterdir() if '~' not in str(path) and not 'zone.hsp' == path.name ] explicit_links = [r'00_test\explicit_zone_link.hsp'] zonePage = [p for p in pages if r'00_test\zone.hsp' == p.path][0] self.assertEqual('00_test', zonePage.zone) self.assertTrue(zonePage.isZoneHome) self.assertEqual(len(zonePage.linksTo), len(implicit_links) + len(explicit_links)) for link in implicit_links + explicit_links: self.assertIn(link, zonePage.linksTo) def test_readPage_basics(self): page = crawler.readPage('test_data/hs/00_test/page.hsp') self.assertEqual(r'00_test\page.hsp', page.path) self.assertEqual('Citizen name', page.citizenName) self.assertEqual('Page name', page.name) self.assertEqual('00_test', page.zone) self.assertFalse(page.isZoneHome) def test_readPage_zone(self): page = crawler.readPage('test_data/hs/00_test/zone.hsp') self.assertTrue(page.isZoneHome) def test_readPage_finds_links_from_all_captures(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertIn(r'00_test\~10th_el_hs_prefix.hsp', links, 'link with hs prefix should be found') self.assertIn(r'00_test\~10th_el_hsa_prefix.hsp', links, 'link with hsa prefix should be found') self.assertIn(r'00_test\~10th_el_hsb_prefix.hsp', links, 'link with hsb prefix should be found') self.assertIn(r'00_test\10th_el_hsc_prefix.hsp', links, 'link with hsc prefix should be found') def test_readPage_finds_links_from_10th_or_11th_element(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertIn(r'00_test\~10th_el_hs_prefix.hsp', links, 'link in 10th position should be found') self.assertIn(r'00_test\11th_el.hsp', links, 'link in 11th position should be found') def test_readPage_finds_complex_link(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertIn(r'00_test\~complex_link.hsp', links, 'complex link should be found') def test_readPage_has_right_link_count(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertEqual(len(links), 6, 'should find expected amount of links') def test_readPage_no_duplicate_links(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertCountEqual(links, set(links), 'should have no duplicate links') def test_readPage_no_links_to_self(self): links = crawler.readPage('test_data/hs/00_test/page.hsp').linksTo self.assertNotIn('00_test/page.hsp', links, 'should have no links to self') def test_readPage_empty_list_if_no_links(self): links = crawler.readPage('test_data/hs/00_test/no_links.hsp').linksTo self.assertEqual(len(links), 0, 'page with no links should have empty linksTo') def test_readPage_tags_and_description(self): page = crawler.readPage( 'test_data/hs/00_test/tags_and_description.hsp') self.assertIn('tag1', page.tags) self.assertIn('tag2', page.tags) self.assertEqual(len(page.tags), 2) self.assertEqual('Test description', page.description) def test_readPage_tags_and_no_description(self): page = crawler.readPage('test_data/hs/00_test/tags_no_description.hsp') self.assertIn('tag1', page.tags) self.assertIn('tag2', page.tags) self.assertEqual(len(page.tags), 2) self.assertEqual(None, page.description) def test_readPage_no_tags_and_description(self): page = crawler.readPage('test_data/hs/00_test/no_tags_description.hsp') self.assertEqual(len(page.tags), 0) self.assertEqual('Test description', page.description) def test_readPage_no_tags_no_description(self): page = crawler.readPage( 'test_data/hs/00_test/no_tags_no_description.hsp') self.assertEqual(len(page.tags), 0) self.assertEqual(None, page.description) def test_readPage_empty_citizen_name_is_none(self): page = crawler.readPage( 'test_data/hs/00_test/no_citizen_name.hsp') self.assertEqual(None, page.citizenName) if __name__ == '__main__': unittest.main()
42.929577
79
0.64042
704759eedb76612148bda5a7c5d4b877cdb52443
2,661
py
Python
data/p4VQE/R4/benchmark/startQiskit_QC695.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_QC695.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_QC695.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=14 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.cx(input_qubit[3],input_qubit[0]) # number=11 prog.z(input_qubit[3]) # number=12 prog.cx(input_qubit[3],input_qubit[0]) # number=13 prog.z(input_qubit[1]) # number=8 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[3],input_qubit[0]) # number=5 prog.swap(input_qubit[3],input_qubit[0]) # number=6 prog.x(input_qubit[3]) # number=9 prog.x(input_qubit[3]) # number=10 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit_QC695.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
28.010526
118
0.637354
87d02725f50cb901eb3cee04d59a902f776f6909
3,423
py
Python
shared/sentry/external/crashpad/util/mach/mig_gen.py
Eeems-Org/oxide
d3bfa47e60bf311feb7768234dfe95a15adeb9da
[ "MIT" ]
18
2022-01-11T17:24:50.000Z
2022-03-30T04:35:25.000Z
shared/sentry/external/crashpad/util/mach/mig_gen.py
Eeems-Org/oxide
d3bfa47e60bf311feb7768234dfe95a15adeb9da
[ "MIT" ]
21
2022-01-07T19:20:04.000Z
2022-03-24T14:32:28.000Z
shared/sentry/external/crashpad/util/mach/mig_gen.py
Eeems-Org/oxide
d3bfa47e60bf311feb7768234dfe95a15adeb9da
[ "MIT" ]
2
2022-01-15T16:45:34.000Z
2022-03-01T22:37:48.000Z
#!/usr/bin/env python3 # Copyright 2019 The Crashpad Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import os import subprocess import sys MigInterface = collections.namedtuple( 'MigInterface', ['user_c', 'server_c', 'user_h', 'server_h']) def generate_interface(defs, interface, includes=[], sdk=None, clang_path=None, mig_path=None, migcom_path=None, arch=None): if mig_path is None: mig_path = 'mig' # yapf: disable command = [ mig_path, '-user', interface.user_c, '-server', interface.server_c, '-header', interface.user_h, '-sheader', interface.server_h, ] # yapf: enable if clang_path is not None: os.environ['MIGCC'] = clang_path if migcom_path is not None: os.environ['MIGCOM'] = migcom_path if arch is not None: command.extend(['-arch', arch]) if sdk is not None: command.extend(['-isysroot', sdk]) for include in includes: command.extend(['-I' + include]) command.append(defs) subprocess.check_call(command) def parse_args(args, multiple_arch=False): parser = argparse.ArgumentParser() parser.add_argument('--clang-path', help='Path to clang') parser.add_argument('--mig-path', help='Path to mig') parser.add_argument('--migcom-path', help='Path to migcom') if not multiple_arch: parser.add_argument('--arch', help='Target architecture') else: parser.add_argument( '--arch', default=[], action='append', help='Target architecture (may appear multiple times)') parser.add_argument('--sdk', help='Path to SDK') parser.add_argument( '--include', default=[], action='append', help='Additional include directory (may appear multiple times)') parser.add_argument('defs') parser.add_argument('user_c') parser.add_argument('server_c') parser.add_argument('user_h') parser.add_argument('server_h') # This is a HACK to parse arch from env when cmake is configured to use xcode parsed = parser.parse_args(args) if multiple_arch and len(parsed.arch) == 1 and parsed.arch[0] == "FROM_ENV": parsed.arch = os.environ.get("ARCHS", "").split(" ") return parsed def main(args): parsed = parse_args(args) interface = MigInterface(parsed.user_c, parsed.server_c, parsed.user_h, parsed.server_h) generate_interface(parsed.defs, interface, parsed.include, parsed.sdk, parsed.clang_path, parsed.mig_path, parsed.migcom_path, parsed.arch) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
32.6
81
0.62752
6b2c5bb85d0c5f15a8750916042d66240cd89dfa
1,921
py
Python
examples/background_tasks.py
CoderLeague/research_aiohttp
01113d3edb09388e25fd4a0af73fb7cc01e4aa74
[ "Apache-2.0" ]
1
2019-05-09T08:59:46.000Z
2019-05-09T08:59:46.000Z
examples/background_tasks.py
snjypl/aiohttp
1473f2722b2a804269d4fdbff4880f9ff9da0c3f
[ "Apache-2.0" ]
null
null
null
examples/background_tasks.py
snjypl/aiohttp
1473f2722b2a804269d4fdbff4880f9ff9da0c3f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """Example of aiohttp.web.Application.on_startup signal handler""" import asyncio import aioredis from aiohttp.web import Application, WebSocketResponse, run_app async def websocket_handler(request): ws = WebSocketResponse() await ws.prepare(request) request.app['websockets'].append(ws) try: async for msg in ws: print(msg) await asyncio.sleep(1) finally: request.app['websockets'].remove(ws) return ws async def on_shutdown(app): for ws in app['websockets']: await ws.close(code=999, message='Server shutdown') async def listen_to_redis(app): try: sub = await aioredis.create_redis(('localhost', 6379), loop=app.loop) ch, *_ = await sub.subscribe('news') async for msg in ch.iter(encoding='utf-8'): # Forward message to all connected websockets: for ws in app['websockets']: await ws.send_str('{}: {}'.format(ch.name, msg)) print("message in {}: {}".format(ch.name, msg)) except asyncio.CancelledError: pass finally: print('Cancel Redis listener: close connection...') await sub.unsubscribe(ch.name) await sub.quit() print('Redis connection closed.') async def start_background_tasks(app): app['redis_listener'] = app.loop.create_task(listen_to_redis(app)) async def cleanup_background_tasks(app): print('cleanup background tasks...') app['redis_listener'].cancel() await app['redis_listener'] async def init(loop): app = Application() app['websockets'] = [] app.router.add_get('/news', websocket_handler) app.on_startup.append(start_background_tasks) app.on_cleanup.append(cleanup_background_tasks) app.on_shutdown.append(on_shutdown) return app loop = asyncio.get_event_loop() app = loop.run_until_complete(init(loop)) run_app(app)
28.671642
77
0.665279
18fdd813f66637068fc484a9d2cf7ba0f5c590c2
105,442
py
Python
lib/galaxy/tools/__init__.py
igorhollaender/sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
2
2018-10-14T16:42:39.000Z
2018-10-14T16:42:41.000Z
lib/galaxy/tools/__init__.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/tools/__init__.py
igorhollaender/OBSOLETE_sirv_dashboard
85aec60b80ef6f561d89398e3da5963d3d0f2aa4
[ "CC-BY-3.0" ]
null
null
null
""" Classes encapsulating galaxy tools and tool configuration. """ import glob import json import logging import os import re import tarfile import tempfile import threading import urllib from datetime import datetime from cgi import FieldStorage from xml.etree import ElementTree from mako.template import Template from paste import httpexceptions from six import string_types from galaxy.version import VERSION_MAJOR from galaxy import model from galaxy.managers import histories from galaxy.datatypes.metadata import JobExternalOutputMetadataWrapper from galaxy import exceptions from galaxy.tools.actions import DefaultToolAction from galaxy.tools.actions.upload import UploadToolAction from galaxy.tools.actions.data_source import DataSourceToolAction from galaxy.tools.actions.data_manager import DataManagerToolAction from galaxy.tools.parameters import params_to_incoming, check_param, params_from_strings, params_to_strings, visit_input_values from galaxy.tools.parameters import output_collect from galaxy.tools.parameters.basic import (BaseURLToolParameter, DataToolParameter, DataCollectionToolParameter, HiddenToolParameter, SelectToolParameter, ToolParameter) from galaxy.tools.parameters.grouping import Conditional, ConditionalWhen, Repeat, Section, UploadDataset from galaxy.tools.parameters.input_translation import ToolInputTranslator from galaxy.tools.test import parse_tests from galaxy.tools.parser import get_tool_source from galaxy.tools.parser.xml import XmlPageSource from galaxy.tools.parser import ToolOutputCollectionPart from galaxy.tools.toolbox import BaseGalaxyToolBox from galaxy.util import rst_to_html, string_as_bool from galaxy.util import ExecutionTimer from galaxy.util import listify from galaxy.util import unicodify from galaxy.tools.parameters.meta import expand_meta_parameters from galaxy.util.bunch import Bunch from galaxy.util.expressions import ExpressionContext from galaxy.util.json import json_fix from galaxy.util.odict import odict from galaxy.util.template import fill_template from galaxy.web import url_for from galaxy.web.form_builder import SelectField from galaxy.util.dictifiable import Dictifiable from galaxy.work.context import WorkRequestContext from tool_shed.util import common_util from tool_shed.util import shed_util_common as suc from .loader import template_macro_params, raw_tool_xml_tree, imported_macro_paths from .execute import execute as execute_job import galaxy.jobs log = logging.getLogger( __name__ ) HELP_UNINITIALIZED = threading.Lock() class ToolErrorLog: def __init__(self): self.error_stack = [] self.max_errors = 100 def add_error(self, file, phase, exception): self.error_stack.insert(0, { "file": file, "time": str(datetime.now()), "phase": phase, "error": str(exception) } ) if len(self.error_stack) > self.max_errors: self.error_stack.pop() global_tool_errors = ToolErrorLog() class ToolNotFoundException( Exception ): pass class ToolBox( BaseGalaxyToolBox ): """ A derivative of AbstractToolBox with knowledge about Tool internals - how to construct them, action types, dependency management, etc.... """ def __init__( self, config_filenames, tool_root_dir, app ): super( ToolBox, self ).__init__( config_filenames=config_filenames, tool_root_dir=tool_root_dir, app=app, ) @property def tools_by_id( self ): # Deprecated method, TODO - eliminate calls to this in test/. return self._tools_by_id def create_tool( self, config_file, repository_id=None, guid=None, **kwds ): try: tool_source = get_tool_source( config_file, getattr( self.app.config, "enable_beta_tool_formats", False ) ) except Exception, e: # capture and log parsing errors global_tool_errors.add_error(config_file, "Tool XML parsing", e) raise e # Allow specifying a different tool subclass to instantiate tool_module = tool_source.parse_tool_module() if tool_module is not None: module, cls = tool_module mod = __import__( module, globals(), locals(), [cls] ) ToolClass = getattr( mod, cls ) elif tool_source.parse_tool_type(): tool_type = tool_source.parse_tool_type() ToolClass = tool_types.get( tool_type ) else: # Normal tool root = getattr( tool_source, 'root', None ) ToolClass = Tool tool = ToolClass( config_file, tool_source, self.app, guid=guid, repository_id=repository_id, **kwds ) return tool def handle_datatypes_changed( self ): """ Refresh upload tools when new datatypes are added. """ for tool_id in self._tools_by_id: tool = self._tools_by_id[ tool_id ] if isinstance( tool.tool_action, UploadToolAction ): self.reload_tool_by_id( tool_id ) def get_tool_components( self, tool_id, tool_version=None, get_loaded_tools_by_lineage=False, set_selected=False ): """ Retrieve all loaded versions of a tool from the toolbox and return a select list enabling selection of a different version, the list of the tool's loaded versions, and the specified tool. """ toolbox = self tool_version_select_field = None tools = [] tool = None # Backwards compatibility for datasource tools that have default tool_id configured, but which # are now using only GALAXY_URL. tool_ids = listify( tool_id ) for tool_id in tool_ids: if get_loaded_tools_by_lineage: tools = toolbox.get_loaded_tools_by_lineage( tool_id ) else: tools = toolbox.get_tool( tool_id, tool_version=tool_version, get_all_versions=True ) if tools: tool = toolbox.get_tool( tool_id, tool_version=tool_version, get_all_versions=False ) if len( tools ) > 1: tool_version_select_field = self.__build_tool_version_select_field( tools, tool.id, set_selected ) break return tool_version_select_field, tools, tool def _get_tool_shed_repository( self, tool_shed, name, owner, installed_changeset_revision ): # Abstract toolbox doesn't have a dependency on the the database, so # override _get_tool_shed_repository here to provide this information. return suc.get_installed_repository( self.app, tool_shed=tool_shed, name=name, owner=owner, installed_changeset_revision=installed_changeset_revision ) def __build_tool_version_select_field( self, tools, tool_id, set_selected ): """Build a SelectField whose options are the ids for the received list of tools.""" options = [] refresh_on_change_values = [] for tool in tools: options.insert( 0, ( tool.version, tool.id ) ) refresh_on_change_values.append( tool.id ) select_field = SelectField( name='tool_id', refresh_on_change=True, refresh_on_change_values=refresh_on_change_values ) for option_tup in options: selected = set_selected and option_tup[ 1 ] == tool_id if selected: select_field.add_option( 'version %s' % option_tup[ 0 ], option_tup[ 1 ], selected=True ) else: select_field.add_option( 'version %s' % option_tup[ 0 ], option_tup[ 1 ] ) return select_field class DefaultToolState( object ): """ Keeps track of the state of a users interaction with a tool between requests. """ def __init__( self ): self.page = 0 self.rerun_remap_job_id = None self.inputs = None def encode( self, tool, app ): """ Convert the data to a string """ # Convert parameters to a dictionary of strings, and save curent # page in that dict value = params_to_strings( tool.inputs, self.inputs, app ) value["__page__"] = self.page value["__rerun_remap_job_id__"] = self.rerun_remap_job_id return json.dumps( value ) def decode( self, value, tool, app ): """ Restore the state from a string """ values = json_fix( json.loads( value ) ) self.page = values.pop( "__page__" ) if '__rerun_remap_job_id__' in values: self.rerun_remap_job_id = values.pop( "__rerun_remap_job_id__" ) else: self.rerun_remap_job_id = None self.inputs = params_from_strings( tool.inputs, values, app, ignore_errors=True ) def copy( self ): """ Shallow copy of the state """ new_state = DefaultToolState() new_state.page = self.page new_state.rerun_remap_job_id = self.rerun_remap_job_id new_state.inputs = self.inputs return new_state class Tool( object, Dictifiable ): """ Represents a computational tool that can be executed through Galaxy. """ tool_type = 'default' requires_setting_metadata = True default_tool_action = DefaultToolAction dict_collection_visible_keys = ( 'id', 'name', 'version', 'description', 'labels' ) def __init__( self, config_file, tool_source, app, guid=None, repository_id=None, allow_code_files=True ): """Load a tool from the config named by `config_file`""" # Determine the full path of the directory where the tool config is self.config_file = config_file self.tool_dir = os.path.dirname( config_file ) self.app = app self.repository_id = repository_id self._allow_code_files = allow_code_files # setup initial attribute values self.inputs = odict() self.stdio_exit_codes = list() self.stdio_regexes = list() self.inputs_by_page = list() self.display_by_page = list() self.action = '/tool_runner/index' self.target = 'galaxy_main' self.method = 'post' self.labels = [] self.check_values = True self.nginx_upload = False self.input_required = False self.display_interface = True self.require_login = False self.rerun = False # Define a place to keep track of all input These # differ from the inputs dictionary in that inputs can be page # elements like conditionals, but input_params are basic form # parameters like SelectField objects. This enables us to more # easily ensure that parameter dependencies like index files or # tool_data_table_conf.xml entries exist. self.input_params = [] # Attributes of tools installed from Galaxy tool sheds. self.tool_shed = None self.repository_name = None self.repository_owner = None self.changeset_revision = None self.installed_changeset_revision = None # The tool.id value will be the value of guid, but we'll keep the # guid attribute since it is useful to have. self.guid = guid self.old_id = None self.version = None # Enable easy access to this tool's version lineage. self.lineage_ids = [] # populate toolshed repository info, if available self.populate_tool_shed_info() # add tool resource parameters self.populate_resource_parameters( tool_source ) # Parse XML element containing configuration try: self.parse( tool_source, guid=guid ) except Exception, e: global_tool_errors.add_error(config_file, "Tool Loading", e) raise e self.history_manager = histories.HistoryManager( app ) @property def sa_session( self ): """Returns a SQLAlchemy session""" return self.app.model.context @property def tool_version( self ): """Return a ToolVersion if one exists for our id""" return self.app.install_model.context.query( self.app.install_model.ToolVersion ) \ .filter( self.app.install_model.ToolVersion.table.c.tool_id == self.id ) \ .first() @property def tool_versions( self ): # If we have versions, return them. tool_version = self.tool_version if tool_version: return tool_version.get_versions( self.app ) return [] @property def tool_shed_repository( self ): # If this tool is included in an installed tool shed repository, return it. if self.tool_shed: return suc.get_installed_repository( self.app, tool_shed=self.tool_shed, name=self.repository_name, owner=self.repository_owner, installed_changeset_revision=self.installed_changeset_revision ) return None @property def produces_collections_of_unknown_type( self ): def output_is_dynamic_collection(output): if not output.collection: return False if output.structure.collection_type: return False return True return any( map( output_is_dynamic_collection, self.outputs.values() ) ) @property def produces_collections_with_unknown_structure( self ): def output_is_dynamic(output): if not output.collection: return False return output.dynamic_structure return any( map( output_is_dynamic, self.outputs.values() ) ) def __get_job_tool_configuration(self, job_params=None): """Generalized method for getting this tool's job configuration. :type job_params: dict or None :returns: `galaxy.jobs.JobToolConfiguration` -- JobToolConfiguration that matches this `Tool` and the given `job_params` """ rval = None if len(self.job_tool_configurations) == 1: # If there's only one config, use it rather than wasting time on comparisons rval = self.job_tool_configurations[0] elif job_params is None: for job_tool_config in self.job_tool_configurations: if not job_tool_config.params: rval = job_tool_config break else: for job_tool_config in self.job_tool_configurations: if job_tool_config.params: # There are job params and this config has params defined for param, value in job_params.items(): if param not in job_tool_config.params or job_tool_config.params[param] != job_params[param]: break else: # All params match, use this config rval = job_tool_config break else: rval = job_tool_config assert rval is not None, 'Could not get a job tool configuration for Tool %s with job_params %s, this is a bug' % (self.id, job_params) return rval def get_job_handler(self, job_params=None): """Get a suitable job handler for this `Tool` given the provided `job_params`. If multiple handlers are valid for combination of `Tool` and `job_params` (e.g. the defined handler is a handler tag), one will be selected at random. :param job_params: Any params specific to this job (e.g. the job source) :type job_params: dict or None :returns: str -- The id of a job handler for a job run of this `Tool` """ # convert tag to ID if necessary return self.app.job_config.get_handler(self.__get_job_tool_configuration(job_params=job_params).handler) def get_job_destination(self, job_params=None): """ :returns: galaxy.jobs.JobDestination -- The destination definition and runner parameters. """ return self.app.job_config.get_destination(self.__get_job_tool_configuration(job_params=job_params).destination) def get_panel_section( self ): return self.app.toolbox.get_integrated_section_for_tool( self ) def allow_user_access( self, user, attempting_access=True ): """ :returns: bool -- Whether the user is allowed to access the tool. """ if self.require_login and user is None: return False return True def parse( self, tool_source, guid=None ): """ Read tool configuration from the element `root` and fill in `self`. """ self.profile = float( tool_source.parse_profile() ) # Get the UNIQUE id for the tool self.old_id = tool_source.parse_id() if guid is None: self.id = self.old_id else: self.id = guid if not self.id: raise Exception( "Missing tool 'id' for tool at '%s'" % tool_source ) if self.profile >= 16.04 and VERSION_MAJOR < self.profile: template = "The tool %s targets version %s of Galaxy, you should upgrade Galaxy to ensure proper functioning of this tool." message = template % (self.id, self.profile) log.warn(message) # Get the (user visible) name of the tool self.name = tool_source.parse_name() if not self.name: raise Exception( "Missing tool 'name' for tool with id '%s' at '%s'" % (self.id, tool_source) ) self.version = tool_source.parse_version() if not self.version: if self.profile < 16.04: # For backward compatibility, some tools may not have versions yet. self.version = "1.0.0" else: raise Exception( "Missing tool 'version' for tool with id '%s' at '%s'" % (self.id, tool_source) ) # Support multi-byte tools self.is_multi_byte = tool_source.parse_is_multi_byte() # Legacy feature, ignored by UI. self.force_history_refresh = False self.display_interface = tool_source.parse_display_interface( default=self.display_interface ) self.require_login = tool_source.parse_require_login( self.require_login ) request_param_translation_elem = tool_source.parse_request_param_translation_elem() if request_param_translation_elem is not None: # Load input translator, used by datasource tools to change names/values of incoming parameters self.input_translator = ToolInputTranslator.from_element( request_param_translation_elem ) else: self.input_translator = None self.parse_command( tool_source ) self.environment_variables = self.parse_environment_variables( tool_source ) # Parameters used to build URL for redirection to external app redirect_url_params = tool_source.parse_redirect_url_params_elem() if redirect_url_params is not None and redirect_url_params.text is not None: # get rid of leading / trailing white space redirect_url_params = redirect_url_params.text.strip() # Replace remaining white space with something we can safely split on later # when we are building the params self.redirect_url_params = redirect_url_params.replace( ' ', '**^**' ) else: self.redirect_url_params = '' # Short description of the tool self.description = tool_source.parse_description() # Versioning for tools self.version_string_cmd = None version_command = tool_source.parse_version_command() if version_command is not None: self.version_string_cmd = version_command.strip() version_cmd_interpreter = tool_source.parse_version_command_interpreter() if version_cmd_interpreter: executable = self.version_string_cmd.split()[0] abs_executable = os.path.abspath(os.path.join(self.tool_dir, executable)) command_line = self.version_string_cmd.replace(executable, abs_executable, 1) self.version_string_cmd = version_cmd_interpreter + " " + command_line # Parallelism for tasks, read from tool config. self.parallelism = tool_source.parse_parallelism() # Get JobToolConfiguration(s) valid for this particular Tool. At least # a 'default' will be provided that uses the 'default' handler and # 'default' destination. I thought about moving this to the # job_config, but it makes more sense to store here. -nate self_ids = [ self.id.lower() ] if self.old_id != self.id: # Handle toolshed guids self_ids = [ self.id.lower(), self.id.lower().rsplit('/', 1)[0], self.old_id.lower() ] self.all_ids = self_ids # In the toolshed context, there is no job config. if hasattr( self.app, 'job_config' ): self.job_tool_configurations = self.app.job_config.get_job_tool_configurations(self_ids) # Is this a 'hidden' tool (hidden in tool menu) self.hidden = tool_source.parse_hidden() self.__parse_legacy_features(tool_source) # Load any tool specific options (optional) self.options = dict( sanitize=tool_source.parse_sanitize(), refresh=tool_source.parse_refresh(), ) self.options = Bunch(** self.options) # Parse tool inputs (if there are any required) self.parse_inputs( tool_source ) # Parse tool help self.parse_help( tool_source ) # Description of outputs produced by an invocation of the tool self.parse_outputs( tool_source ) # Parse result handling for tool exit codes and stdout/stderr messages: self.parse_stdio( tool_source ) self.strict_shell = tool_source.parse_strict_shell() # Any extra generated config files for the tool self.__parse_config_files(tool_source) # Action action = tool_source.parse_action_module() if action is None: self.tool_action = self.default_tool_action() else: module, cls = action mod = __import__( module, globals(), locals(), [cls]) self.tool_action = getattr( mod, cls )() # Tests self.__parse_tests(tool_source) # Requirements (dependencies) requirements, containers = tool_source.parse_requirements_and_containers() self.requirements = requirements self.containers = containers self.citations = self._parse_citations( tool_source ) # Determine if this tool can be used in workflows self.is_workflow_compatible = self.check_workflow_compatible(tool_source) self.__parse_trackster_conf( tool_source ) def __parse_legacy_features(self, tool_source): self.code_namespace = dict() self.hook_map = {} self.uihints = {} if not hasattr(tool_source, 'root'): return # TODO: Move following logic into XmlToolSource. root = tool_source.root # Load any tool specific code (optional) Edit: INS 5/29/2007, # allow code files to have access to the individual tool's # "module" if it has one. Allows us to reuse code files, etc. if self._allow_code_files: for code_elem in root.findall("code"): for hook_elem in code_elem.findall("hook"): for key, value in hook_elem.items(): # map hook to function self.hook_map[key] = value file_name = code_elem.get("file") code_path = os.path.join( self.tool_dir, file_name ) execfile( code_path, self.code_namespace ) # User interface hints uihints_elem = root.find( "uihints" ) if uihints_elem is not None: for key, value in uihints_elem.attrib.iteritems(): self.uihints[ key ] = value def __parse_tests(self, tool_source): self.__tests_source = tool_source self.__tests_populated = False def __parse_config_files(self, tool_source): self.config_files = [] if not hasattr(tool_source, 'root'): return root = tool_source.root conf_parent_elem = root.find("configfiles") if conf_parent_elem is not None: inputs_elem = conf_parent_elem.find( "inputs" ) if inputs_elem is not None: name = inputs_elem.get( "name" ) filename = inputs_elem.get( "filename", None ) format = inputs_elem.get("format", "json") content = dict(format=format) self.config_files.append( ( name, filename, content ) ) for conf_elem in conf_parent_elem.findall( "configfile" ): name = conf_elem.get( "name" ) filename = conf_elem.get( "filename", None ) content = conf_elem.text self.config_files.append( ( name, filename, content ) ) def __parse_trackster_conf(self, tool_source): self.trackster_conf = None if not hasattr(tool_source, 'root'): return # Trackster configuration. trackster_conf = tool_source.root.find( "trackster_conf" ) if trackster_conf is not None: self.trackster_conf = TracksterConfig.parse( trackster_conf ) @property def tests( self ): if not self.__tests_populated: tests_source = self.__tests_source if tests_source: try: self.__tests = parse_tests( self, tests_source ) except: self.__tests = None log.exception( "Failed to parse tool tests" ) else: self.__tests = None self.__tests_populated = True return self.__tests def parse_command( self, tool_source ): """ """ # Command line (template). Optional for tools that do not invoke a local program command = tool_source.parse_command() if command is not None: self.command = command.lstrip() # get rid of leading whitespace # Must pre-pend this AFTER processing the cheetah command template self.interpreter = tool_source.parse_interpreter() else: self.command = '' self.interpreter = None def parse_environment_variables( self, tool_source ): return tool_source.parse_environment_variables() def parse_inputs( self, tool_source ): """ Parse the "<inputs>" element and create appropriate `ToolParameter`s. This implementation supports multiple pages and grouping constructs. """ # Load parameters (optional) pages = tool_source.parse_input_pages() enctypes = set() if pages.inputs_defined: if hasattr(pages, "input_elem"): input_elem = pages.input_elem # Handle properties of the input form self.check_values = string_as_bool( input_elem.get("check_values", self.check_values ) ) self.nginx_upload = string_as_bool( input_elem.get( "nginx_upload", self.nginx_upload ) ) self.action = input_elem.get( 'action', self.action ) # If we have an nginx upload, save the action as a tuple instead of # a string. The actual action needs to get url_for run to add any # prefixes, and we want to avoid adding the prefix to the # nginx_upload_path. This logic is handled in the tool_form.mako # template. if self.nginx_upload and self.app.config.nginx_upload_path: if '?' in urllib.unquote_plus( self.action ): raise Exception( 'URL parameters in a non-default tool action can not be used ' 'in conjunction with nginx upload. Please convert them to ' 'hidden POST parameters' ) self.action = (self.app.config.nginx_upload_path + '?nginx_redir=', urllib.unquote_plus(self.action)) self.target = input_elem.get( "target", self.target ) self.method = input_elem.get( "method", self.method ) # Parse the actual parameters # Handle multiple page case for page_source in pages.page_sources: inputs = self.parse_input_elem( page_source, enctypes ) display = page_source.parse_display() self.inputs_by_page.append( inputs ) self.inputs.update( inputs ) self.display_by_page.append( display ) else: self.inputs_by_page.append( self.inputs ) self.display_by_page.append( None ) self.display = self.display_by_page[0] self.npages = len( self.inputs_by_page ) self.last_page = len( self.inputs_by_page ) - 1 self.has_multiple_pages = bool( self.last_page ) # Determine the needed enctype for the form if len( enctypes ) == 0: self.enctype = "application/x-www-form-urlencoded" elif len( enctypes ) == 1: self.enctype = enctypes.pop() else: raise Exception( "Conflicting required enctypes: %s" % str( enctypes ) ) # Check if the tool either has no parameters or only hidden (and # thus hardcoded) FIXME: hidden parameters aren't # parameters at all really, and should be passed in a different # way, making this check easier. template_macros = {} if hasattr(tool_source, 'root'): template_macros = template_macro_params(tool_source.root) self.template_macro_params = template_macros for param in self.inputs.values(): if not isinstance( param, ( HiddenToolParameter, BaseURLToolParameter ) ): self.input_required = True break def parse_help( self, tool_source ): """ Parse the help text for the tool. Formatted in reStructuredText, but stored as Mako to allow for dynamic image paths. This implementation supports multiple pages. """ # TODO: Allow raw HTML or an external link. self.__help = HELP_UNINITIALIZED self.__help_by_page = HELP_UNINITIALIZED self.__help_source = tool_source def parse_outputs( self, tool_source ): """ Parse <outputs> elements and fill in self.outputs (keyed by name) """ self.outputs, self.output_collections = tool_source.parse_outputs(self) # TODO: Include the tool's name in any parsing warnings. def parse_stdio( self, tool_source ): """ Parse <stdio> element(s) and fill in self.return_codes, self.stderr_rules, and self.stdout_rules. Return codes have a range and an error type (fault or warning). Stderr and stdout rules have a regular expression and an error level (fault or warning). """ exit_codes, regexes = tool_source.parse_stdio() self.stdio_exit_codes = exit_codes self.stdio_regexes = regexes def _parse_citations( self, tool_source ): # TODO: Move following logic into ToolSource abstraction. if not hasattr(tool_source, 'root'): return [] root = tool_source.root citations = [] citations_elem = root.find("citations") if citations_elem is None: return citations for citation_elem in citations_elem: if citation_elem.tag != "citation": pass citation = self.app.citations_manager.parse_citation( citation_elem, self.tool_dir ) if citation: citations.append( citation ) return citations def parse_input_elem( self, page_source, enctypes, context=None ): """ Parse a parent element whose children are inputs -- these could be groups (repeat, conditional) or param elements. Groups will be parsed recursively. """ rval = odict() context = ExpressionContext( rval, context ) for input_source in page_source.parse_input_sources(): # Repeat group input_type = input_source.parse_input_type() if input_type == "repeat": group = Repeat() group.name = input_source.get( "name" ) group.title = input_source.get( "title" ) group.help = input_source.get( "help", None ) page_source = input_source.parse_nested_inputs_source() group.inputs = self.parse_input_elem( page_source, enctypes, context ) group.default = int( input_source.get( "default", 0 ) ) group.min = int( input_source.get( "min", 0 ) ) # Use float instead of int so that 'inf' can be used for no max group.max = float( input_source.get( "max", "inf" ) ) assert group.min <= group.max, \ ValueError( "Min repeat count must be less-than-or-equal to the max." ) # Force default to be within min-max range group.default = min( max( group.default, group.min ), group.max ) rval[group.name] = group elif input_type == "conditional": group = Conditional() group.name = input_source.get( "name" ) group.value_ref = input_source.get( 'value_ref', None ) group.value_ref_in_group = input_source.get_bool( 'value_ref_in_group', True ) value_from = input_source.get("value_from", None) if value_from: value_from = value_from.split( ':' ) group.value_from = locals().get( value_from[0] ) group.test_param = rval[ group.value_ref ] group.test_param.refresh_on_change = True for attr in value_from[1].split( '.' ): group.value_from = getattr( group.value_from, attr ) for case_value, case_inputs in group.value_from( context, group, self ).iteritems(): case = ConditionalWhen() case.value = case_value if case_inputs: page_source = XmlPageSource( ElementTree.XML( "<when>%s</when>" % case_inputs ) ) case.inputs = self.parse_input_elem( page_source, enctypes, context ) else: case.inputs = odict() group.cases.append( case ) else: # Should have one child "input" which determines the case test_param_input_source = input_source.parse_test_input_source() group.test_param = self.parse_param_elem( test_param_input_source, enctypes, context ) if group.test_param.optional: log.warning("Tool with id %s declares a conditional test parameter as optional, this is invalid and will be ignored." % self.id) group.test_param.optional = False possible_cases = list( group.test_param.legal_values ) # store possible cases, undefined whens will have no inputs # Must refresh when test_param changes group.test_param.refresh_on_change = True # And a set of possible cases for (value, case_inputs_source) in input_source.parse_when_input_sources(): case = ConditionalWhen() case.value = value case.inputs = self.parse_input_elem( case_inputs_source, enctypes, context ) group.cases.append( case ) try: possible_cases.remove( case.value ) except: log.warning( "Tool %s: a when tag has been defined for '%s (%s) --> %s', but does not appear to be selectable." % ( self.id, group.name, group.test_param.name, case.value ) ) for unspecified_case in possible_cases: log.warning( "Tool %s: a when tag has not been defined for '%s (%s) --> %s', assuming empty inputs." % ( self.id, group.name, group.test_param.name, unspecified_case ) ) case = ConditionalWhen() case.value = unspecified_case case.inputs = odict() group.cases.append( case ) rval[group.name] = group elif input_type == "section": group = Section() group.name = input_source.get( "name" ) group.title = input_source.get( "title" ) group.help = input_source.get( "help", None ) group.expanded = input_source.get_bool( "expanded", False ) page_source = input_source.parse_nested_inputs_source() group.inputs = self.parse_input_elem( page_source, enctypes, context ) rval[group.name] = group elif input_type == "upload_dataset": elem = input_source.elem() group = UploadDataset() group.name = elem.get( "name" ) group.title = elem.get( "title" ) group.file_type_name = elem.get( 'file_type_name', group.file_type_name ) group.default_file_type = elem.get( 'default_file_type', group.default_file_type ) group.metadata_ref = elem.get( 'metadata_ref', group.metadata_ref ) rval[ group.file_type_name ].refresh_on_change = True rval[ group.file_type_name ].refresh_on_change_values = \ self.app.datatypes_registry.get_composite_extensions() group_page_source = XmlPageSource(elem) group.inputs = self.parse_input_elem( group_page_source, enctypes, context ) rval[ group.name ] = group elif input_type == "param": param = self.parse_param_elem( input_source, enctypes, context ) rval[param.name] = param if hasattr( param, 'data_ref' ): param.ref_input = context[ param.data_ref ] self.input_params.append( param ) return rval def parse_param_elem( self, input_source, enctypes, context ): """ Parse a single "<param>" element and return a ToolParameter instance. Also, if the parameter has a 'required_enctype' add it to the set enctypes. """ param = ToolParameter.build( self, input_source ) param_enctype = param.get_required_enctype() if param_enctype: enctypes.add( param_enctype ) # If parameter depends on any other paramters, we must refresh the # form when it changes for name in param.get_dependencies(): # Let it throw exception, but give some hint what the problem might be if name not in context: log.error("Could not find dependency '%s' of parameter '%s' in tool %s" % (name, param.name, self.name) ) context[ name ].refresh_on_change = True return param def populate_resource_parameters( self, tool_source ): root = getattr( tool_source, 'root', None ) if root is not None and hasattr( self.app, 'job_config' ) and hasattr( self.app.job_config, 'get_tool_resource_xml' ): resource_xml = self.app.job_config.get_tool_resource_xml( root.get( 'id' ), self.tool_type ) if resource_xml is not None: inputs = root.find( 'inputs' ) if inputs is None: inputs = ElementTree.fromstring( '<inputs/>' ) root.append( inputs ) inputs.append( resource_xml ) def populate_tool_shed_info( self ): if self.repository_id is not None and self.app.name == 'galaxy': repository_id = self.app.security.decode_id( self.repository_id ) tool_shed_repository = self.app.install_model.context.query( self.app.install_model.ToolShedRepository ).get( repository_id ) if tool_shed_repository: self.tool_shed = tool_shed_repository.tool_shed self.repository_name = tool_shed_repository.name self.repository_owner = tool_shed_repository.owner self.changeset_revision = tool_shed_repository.changeset_revision self.installed_changeset_revision = tool_shed_repository.installed_changeset_revision @property def help(self): if self.__help is HELP_UNINITIALIZED: self.__ensure_help() return self.__help @property def help_by_page(self): if self.__help_by_page is HELP_UNINITIALIZED: self.__ensure_help() return self.__help_by_page def __ensure_help(self): with HELP_UNINITIALIZED: if self.__help is HELP_UNINITIALIZED: self.__inititalize_help() def __inititalize_help(self): tool_source = self.__help_source self.__help = None self.__help_by_page = [] help_header = "" help_footer = "" help_text = tool_source.parse_help() if help_text is not None: if self.repository_id and help_text.find( '.. image:: ' ) >= 0: # Handle tool help image display for tools that are contained in repositories in the tool shed or installed into Galaxy. try: help_text = suc.set_image_paths( self.app, self.repository_id, help_text ) except Exception, e: log.exception( "Exception in parse_help, so images may not be properly displayed:\n%s" % str( e ) ) try: self.__help = Template( rst_to_html(help_text), input_encoding='utf-8', output_encoding='utf-8', default_filters=[ 'decode.utf8' ], encoding_errors='replace' ) except: log.exception( "error in help for tool %s" % self.name ) # Handle deprecated multi-page help text in XML case. if hasattr(tool_source, "root"): help_elem = tool_source.root.find("help") help_header = help_text help_pages = help_elem.findall( "page" ) # Multiple help page case if help_pages: for help_page in help_pages: self.__help_by_page.append( help_page.text ) help_footer = help_footer + help_page.tail # Each page has to rendered all-together because of backreferences allowed by rst try: self.__help_by_page = [ Template( rst_to_html( help_header + x + help_footer ), input_encoding='utf-8', output_encoding='utf-8', default_filters=[ 'decode.utf8' ], encoding_errors='replace' ) for x in self.__help_by_page ] except: log.exception( "error in multi-page help for tool %s" % self.name ) # Pad out help pages to match npages ... could this be done better? while len( self.__help_by_page ) < self.npages: self.__help_by_page.append( self.__help ) def find_output_def( self, name ): # name is JobToOutputDatasetAssociation name. # TODO: to defensive, just throw IndexError and catch somewhere # up that stack. if ToolOutputCollectionPart.is_named_collection_part_name( name ): collection_name, part = ToolOutputCollectionPart.split_output_name( name ) collection_def = self.output_collections.get( collection_name, None ) if not collection_def: return None return collection_def.outputs.get( part, None ) else: return self.outputs.get( name, None ) def check_workflow_compatible( self, tool_source ): """ Determine if a tool can be used in workflows. External tools and the upload tool are currently not supported by workflows. """ # Multiple page tools are not supported -- we're eliminating most # of these anyway if self.has_multiple_pages: return False # This is probably the best bet for detecting external web tools # right now if self.tool_type.startswith( 'data_source' ): return False if self.produces_collections_of_unknown_type: # Getting there... return False if hasattr( tool_source, "root"): root = tool_source.root if not string_as_bool( root.get( "workflow_compatible", "True" ) ): return False # TODO: Anyway to capture tools that dynamically change their own # outputs? return True def new_state( self, trans ): """ Create a new `DefaultToolState` for this tool. It will be initialized with default values for inputs. """ state = DefaultToolState() state.inputs = {} self.fill_in_new_state( trans, self.inputs, state.inputs ) return state def fill_in_new_state( self, trans, inputs, state, context=None ): """ Fill in a tool state dictionary with default values for all parameters in the dictionary `inputs`. Grouping elements are filled in recursively. """ context = ExpressionContext( state, context ) for input in inputs.itervalues(): state[ input.name ] = input.get_initial_value( trans, context ) def get_param( self, key ): """ Returns the parameter named `key` or None if there is no such parameter. """ return self.inputs.get( key, None ) def get_hook(self, name): """ Returns an object from the code file referenced by `code_namespace` (this will normally be a callable object) """ if self.code_namespace: # Try to look up hook in self.hook_map, otherwise resort to default if name in self.hook_map and self.hook_map[name] in self.code_namespace: return self.code_namespace[self.hook_map[name]] elif name in self.code_namespace: return self.code_namespace[name] return None def visit_inputs( self, values, callback ): """ Call the function `callback` on each parameter of this tool. Visits grouping parameters recursively and constructs unique prefixes for each nested set of The callback method is then called as: `callback( level_prefix, parameter, parameter_value )` """ # HACK: Yet another hack around check_values -- WHY HERE? if self.check_values: visit_input_values( self.inputs, values, callback ) def handle_input( self, trans, incoming, history=None ): """ Process incoming parameters for this tool from the dict `incoming`, update the tool state (or create if none existed), and either return to the form or execute the tool (only if 'execute' was clicked and there were no errors). """ request_context = WorkRequestContext( app=trans.app, user=trans.user, history=history or trans.history ) rerun_remap_job_id = None if 'rerun_remap_job_id' in incoming: try: rerun_remap_job_id = trans.app.security.decode_id( incoming[ 'rerun_remap_job_id' ] ) except Exception, exception: log.error( str( exception ) ) raise exceptions.MessageException( 'Failure executing tool (attempting to rerun invalid job).' ) # Fixed set of input parameters may correspond to any number of jobs. # Expand these out to individual parameters for given jobs (tool executions). expanded_incomings, collection_info = expand_meta_parameters( trans, self, incoming ) if not expanded_incomings: raise exceptions.MessageException( 'Tool execution failed, trying to run a tool over an empty collection.' ) # Remapping a single job to many jobs doesn't make sense, so disable # remap if multi-runs of tools are being used. if rerun_remap_job_id and len( expanded_incomings ) > 1: raise exceptions.MessageException( 'Failure executing tool (cannot create multiple jobs when remapping existing job).' ) # Process incoming data validation_timer = ExecutionTimer() all_errors = [] all_params = [] for expanded_incoming in expanded_incomings: params = {} errors = {} if self.input_translator: self.input_translator.translate( expanded_incoming ) if not self.check_values: # If `self.check_values` is false we don't do any checking or # processing on input This is used to pass raw values # through to/from external sites. params = expanded_incoming else: # Update state for all inputs on the current page taking new # values from `incoming`. self.populate_state( request_context, self.inputs, expanded_incoming, params, errors ) # If the tool provides a `validate_input` hook, call it. validate_input = self.get_hook( 'validate_input' ) if validate_input: validate_input( request_context, errors, params, self.inputs ) all_errors.append( errors ) all_params.append( params ) log.debug( 'Validated and populated state for tool request %s' % validation_timer ) # If there were errors, we stay on the same page and display them if any( all_errors ): raise exceptions.MessageException( ', '.join( [ msg for msg in all_errors[ 0 ].itervalues() ] ), err_data=all_errors[ 0 ] ) else: execution_tracker = execute_job( trans, self, all_params, history=request_context.history, rerun_remap_job_id=rerun_remap_job_id, collection_info=collection_info ) if execution_tracker.successful_jobs: return dict( out_data=execution_tracker.output_datasets, num_jobs=len( execution_tracker.successful_jobs ), job_errors=execution_tracker.execution_errors, jobs=execution_tracker.successful_jobs, output_collections=execution_tracker.output_collections, implicit_collections=execution_tracker.implicit_collections ) else: raise exceptions.MessageException( execution_tracker.execution_errors[ 0 ] ) def handle_single_execution( self, trans, rerun_remap_job_id, params, history, mapping_over_collection, execution_cache=None ): """ Return a pair with whether execution is successful as well as either resulting output data or an error message indicating the problem. """ try: job, out_data = self.execute( trans, incoming=params, history=history, rerun_remap_job_id=rerun_remap_job_id, mapping_over_collection=mapping_over_collection, execution_cache=execution_cache ) except httpexceptions.HTTPFound, e: # if it's a paste redirect exception, pass it up the stack raise e except Exception, e: log.exception('Exception caught while attempting tool execution:') message = 'Error executing tool: %s' % str(e) return False, message if isinstance( out_data, odict ): return job, out_data.items() else: if isinstance( out_data, string_types ): message = out_data else: message = 'Failure executing tool (invalid data returned from tool execution)' return False, message def find_fieldstorage( self, x ): if isinstance( x, FieldStorage ): raise InterruptedUpload( None ) elif isinstance(x, dict): [ self.find_fieldstorage( y ) for y in x.values() ] elif isinstance(x, list): [ self.find_fieldstorage( y ) for y in x ] @property def params_with_missing_data_table_entry( self ): """ Return all parameters that are dynamically generated select lists whose options require an entry not currently in the tool_data_table_conf.xml file. """ params = [] for input_param in self.input_params: if isinstance( input_param, SelectToolParameter ) and input_param.is_dynamic: options = input_param.options if options and options.missing_tool_data_table_name and input_param not in params: params.append( input_param ) return params @property def params_with_missing_index_file( self ): """ Return all parameters that are dynamically generated select lists whose options refer to a missing .loc file. """ params = [] for input_param in self.input_params: if isinstance( input_param, SelectToolParameter ) and input_param.is_dynamic: options = input_param.options if options and options.missing_index_file and input_param not in params: params.append( input_param ) return params def get_static_param_values( self, trans ): """ Returns a map of parameter names and values if the tool does not require any user input. Will raise an exception if any parameter does require input. """ args = dict() for key, param in self.inputs.iteritems(): # BaseURLToolParameter is now a subclass of HiddenToolParameter, so # we must check if param is a BaseURLToolParameter first if isinstance( param, BaseURLToolParameter ): args[key] = param.get_initial_value( trans, None ) elif isinstance( param, HiddenToolParameter ): args[key] = model.User.expand_user_properties( trans.user, param.value ) else: raise Exception( "Unexpected parameter type" ) return args def execute( self, trans, incoming={}, set_output_hid=True, history=None, **kwargs ): """ Execute the tool using parameter values in `incoming`. This just dispatches to the `ToolAction` instance specified by `self.tool_action`. In general this will create a `Job` that when run will build the tool's outputs, e.g. `DefaultToolAction`. """ return self.tool_action.execute( self, trans, incoming=incoming, set_output_hid=set_output_hid, history=history, **kwargs ) def params_to_strings( self, params, app ): return params_to_strings( self.inputs, params, app ) def params_from_strings( self, params, app, ignore_errors=False ): return params_from_strings( self.inputs, params, app, ignore_errors ) def check_and_update_param_values( self, values, trans, update_values=True, workflow_building_mode=False ): """ Check that all parameters have values, and fill in with default values where necessary. This could be called after loading values from a database in case new parameters have been added. """ messages = {} request_context = WorkRequestContext( app=trans.app, user=trans.user, history=trans.history, workflow_building_mode=workflow_building_mode ) def validate_inputs( input, value, error, parent, context, prefixed_name, prefixed_label, **kwargs ): if not error: value, error = check_param( request_context, input, value, context ) if error: if update_values: try: value = input.get_initial_value( request_context, context ) if not prefixed_name.startswith( '__' ): messages[ prefixed_name ] = '%s Using default: \'%s\'.' % ( error, value ) parent[ input.name ] = value except: messages[ prefixed_name ] = 'Attempt to replace invalid value for \'%s\' failed.' % ( prefixed_label ) else: messages[ prefixed_name ] = error visit_input_values( self.inputs, values, validate_inputs ) return messages def build_dependency_shell_commands( self, job_directory=None ): """Return a list of commands to be run to populate the current environment to include this tools requirements.""" return self.app.toolbox.dependency_manager.dependency_shell_commands( self.requirements, installed_tool_dependencies=self.installed_tool_dependencies, tool_dir=self.tool_dir, job_directory=job_directory, ) @property def installed_tool_dependencies(self): if self.tool_shed_repository: installed_tool_dependencies = self.tool_shed_repository.tool_dependencies_installed_or_in_error else: installed_tool_dependencies = None return installed_tool_dependencies def build_redirect_url_params( self, param_dict ): """ Substitute parameter values into self.redirect_url_params """ if not self.redirect_url_params: return redirect_url_params = None # Substituting parameter values into the url params redirect_url_params = fill_template( self.redirect_url_params, context=param_dict ) # Remove newlines redirect_url_params = redirect_url_params.replace( "\n", " " ).replace( "\r", " " ) return redirect_url_params def parse_redirect_url( self, data, param_dict ): """ Parse the REDIRECT_URL tool param. Tools that send data to an external application via a redirect must include the following 3 tool params: 1) REDIRECT_URL - the url to which the data is being sent 2) DATA_URL - the url to which the receiving application will send an http post to retrieve the Galaxy data 3) GALAXY_URL - the url to which the external application may post data as a response """ redirect_url = param_dict.get( 'REDIRECT_URL' ) redirect_url_params = self.build_redirect_url_params( param_dict ) # Add the parameters to the redirect url. We're splitting the param # string on '**^**' because the self.parse() method replaced white # space with that separator. params = redirect_url_params.split( '**^**' ) rup_dict = {} for param in params: p_list = param.split( '=' ) p_name = p_list[0] p_val = p_list[1] rup_dict[ p_name ] = p_val DATA_URL = param_dict.get( 'DATA_URL', None ) assert DATA_URL is not None, "DATA_URL parameter missing in tool config." DATA_URL += "/%s/display" % str( data.id ) redirect_url += "?DATA_URL=%s" % DATA_URL # Add the redirect_url_params to redirect_url for p_name in rup_dict: redirect_url += "&%s=%s" % ( p_name, rup_dict[ p_name ] ) # Add the current user email to redirect_url if data.history.user: USERNAME = str( data.history.user.email ) else: USERNAME = 'Anonymous' redirect_url += "&USERNAME=%s" % USERNAME return redirect_url def call_hook( self, hook_name, *args, **kwargs ): """ Call the custom code hook function identified by 'hook_name' if any, and return the results """ try: code = self.get_hook( hook_name ) if code: return code( *args, **kwargs ) except Exception, e: original_message = '' if len( e.args ): original_message = e.args[0] e.args = ( "Error in '%s' hook '%s', original message: %s" % ( self.name, hook_name, original_message ), ) raise def exec_before_job( self, app, inp_data, out_data, param_dict={} ): pass def exec_after_process( self, app, inp_data, out_data, param_dict, job=None ): pass def job_failed( self, job_wrapper, message, exception=False ): """ Called when a job has failed """ pass def collect_child_datasets( self, output, job_working_directory ): """ Look for child dataset files, create HDA and attach to parent. """ children = {} # Loop through output file names, looking for generated children in # form of 'child_parentId_designation_visibility_extension' for name, outdata in output.items(): filenames = [] if 'new_file_path' in self.app.config.collect_outputs_from: filenames.extend( glob.glob(os.path.join(self.app.config.new_file_path, "child_%i_*" % outdata.id) ) ) if 'job_working_directory' in self.app.config.collect_outputs_from: filenames.extend( glob.glob(os.path.join(job_working_directory, "child_%i_*" % outdata.id) ) ) for filename in filenames: if name not in children: children[name] = {} fields = os.path.basename(filename).split("_") designation = fields[2] visible = fields[3].lower() if visible == "visible": visible = True else: visible = False ext = fields[4].lower() child_dataset = self.app.model.HistoryDatasetAssociation( extension=ext, parent_id=outdata.id, designation=designation, visible=visible, dbkey=outdata.dbkey, create_dataset=True, sa_session=self.sa_session ) self.app.security_agent.copy_dataset_permissions( outdata.dataset, child_dataset.dataset ) # Move data from temp location to dataset location self.app.object_store.update_from_file(child_dataset.dataset, file_name=filename, create=True) self.sa_session.add( child_dataset ) self.sa_session.flush() child_dataset.set_size() child_dataset.name = "Secondary Dataset (%s)" % ( designation ) child_dataset.init_meta() child_dataset.set_meta() child_dataset.set_peek() # Associate new dataset with job job = None for assoc in outdata.creating_job_associations: job = assoc.job break if job: assoc = self.app.model.JobToOutputDatasetAssociation( '__new_child_file_%s|%s__' % ( name, designation ), child_dataset ) assoc.job = job self.sa_session.add( assoc ) self.sa_session.flush() child_dataset.state = outdata.state self.sa_session.add( child_dataset ) self.sa_session.flush() # Add child to return dict children[name][designation] = child_dataset # Need to update all associated output hdas, i.e. history was # shared with job running for dataset in outdata.dataset.history_associations: if outdata == dataset: continue # Create new child dataset child_data = child_dataset.copy( parent_id=dataset.id ) self.sa_session.add( child_data ) self.sa_session.flush() return children def collect_primary_datasets( self, output, job_working_directory, input_ext, input_dbkey="?" ): """ Find any additional datasets generated by a tool and attach (for cases where number of outputs is not known in advance). """ return output_collect.collect_primary_datasets( self, output, job_working_directory, input_ext, input_dbkey=input_dbkey ) def collect_dynamic_collections( self, output, **kwds ): """ Find files corresponding to dynamically structured collections. """ return output_collect.collect_dynamic_collections( self, output, **kwds ) def to_archive(self): tool = self tarball_files = [] temp_files = [] tool_xml = open( os.path.abspath( tool.config_file ), 'r' ).read() # Retrieve tool help images and rewrite the tool's xml into a temporary file with the path # modified to be relative to the repository root. image_found = False if tool.help is not None: tool_help = tool.help._source # Check each line of the rendered tool help for an image tag that points to a location under static/ for help_line in tool_help.split( '\n' ): image_regex = re.compile( 'img alt="[^"]+" src="\${static_path}/([^"]+)"' ) matches = re.search( image_regex, help_line ) if matches is not None: tool_help_image = matches.group(1) tarball_path = tool_help_image filesystem_path = os.path.abspath( os.path.join( self.app.config.root, 'static', tool_help_image ) ) if os.path.exists( filesystem_path ): tarball_files.append( ( filesystem_path, tarball_path ) ) image_found = True tool_xml = tool_xml.replace( '${static_path}/%s' % tarball_path, tarball_path ) # If one or more tool help images were found, add the modified tool XML to the tarball instead of the original. if image_found: fd, new_tool_config = tempfile.mkstemp( suffix='.xml' ) os.close( fd ) open( new_tool_config, 'w' ).write( tool_xml ) tool_tup = ( os.path.abspath( new_tool_config ), os.path.split( tool.config_file )[-1] ) temp_files.append( os.path.abspath( new_tool_config ) ) else: tool_tup = ( os.path.abspath( tool.config_file ), os.path.split( tool.config_file )[-1] ) tarball_files.append( tool_tup ) # TODO: This feels hacky. tool_command = tool.command.strip().split()[0] tool_path = os.path.dirname( os.path.abspath( tool.config_file ) ) # Add the tool XML to the tuple that will be used to populate the tarball. if os.path.exists( os.path.join( tool_path, tool_command ) ): tarball_files.append( ( os.path.join( tool_path, tool_command ), tool_command ) ) # Find and add macros and code files. for external_file in tool.get_externally_referenced_paths( os.path.abspath( tool.config_file ) ): external_file_abspath = os.path.abspath( os.path.join( tool_path, external_file ) ) tarball_files.append( ( external_file_abspath, external_file ) ) if os.path.exists( os.path.join( tool_path, "Dockerfile" ) ): tarball_files.append( ( os.path.join( tool_path, "Dockerfile" ), "Dockerfile" ) ) # Find tests, and check them for test data. tests = tool.tests if tests is not None: for test in tests: # Add input file tuples to the list. for input in test.inputs: for input_value in test.inputs[ input ]: input_path = os.path.abspath( os.path.join( 'test-data', input_value ) ) if os.path.exists( input_path ): td_tup = ( input_path, os.path.join( 'test-data', input_value ) ) tarball_files.append( td_tup ) # And add output file tuples to the list. for label, filename, _ in test.outputs: output_filepath = os.path.abspath( os.path.join( 'test-data', filename ) ) if os.path.exists( output_filepath ): td_tup = ( output_filepath, os.path.join( 'test-data', filename ) ) tarball_files.append( td_tup ) for param in tool.input_params: # Check for tool data table definitions. if hasattr( param, 'options' ): if hasattr( param.options, 'tool_data_table' ): data_table = param.options.tool_data_table if hasattr( data_table, 'filenames' ): data_table_definitions = [] for data_table_filename in data_table.filenames: # FIXME: from_shed_config seems to always be False. if not data_table.filenames[ data_table_filename ][ 'from_shed_config' ]: tar_file = data_table.filenames[ data_table_filename ][ 'filename' ] + '.sample' sample_file = os.path.join( data_table.filenames[ data_table_filename ][ 'tool_data_path' ], tar_file ) # Use the .sample file, if one exists. If not, skip this data table. if os.path.exists( sample_file ): tarfile_path, tarfile_name = os.path.split( tar_file ) tarfile_path = os.path.join( 'tool-data', tarfile_name ) tarball_files.append( ( sample_file, tarfile_path ) ) data_table_definitions.append( data_table.xml_string ) if len( data_table_definitions ) > 0: # Put the data table definition XML in a temporary file. table_definition = '<?xml version="1.0" encoding="utf-8"?>\n<tables>\n %s</tables>' table_definition = table_definition % '\n'.join( data_table_definitions ) fd, table_conf = tempfile.mkstemp() os.close( fd ) open( table_conf, 'w' ).write( table_definition ) tarball_files.append( ( table_conf, os.path.join( 'tool-data', 'tool_data_table_conf.xml.sample' ) ) ) temp_files.append( table_conf ) # Create the tarball. fd, tarball_archive = tempfile.mkstemp( suffix='.tgz' ) os.close( fd ) tarball = tarfile.open( name=tarball_archive, mode='w:gz' ) # Add the files from the previously generated list. for fspath, tarpath in tarball_files: tarball.add( fspath, arcname=tarpath ) tarball.close() # Delete any temporary files that were generated. for temp_file in temp_files: os.remove( temp_file ) return tarball_archive def to_dict( self, trans, link_details=False, io_details=False ): """ Returns dict of tool. """ # Basic information tool_dict = super( Tool, self ).to_dict() # Fill in ToolShedRepository info if hasattr(self, 'tool_shed') and self.tool_shed: tool_dict['tool_shed_repository'] = { 'name': self.repository_name, 'owner': self.repository_owner, 'changeset_revision': self.changeset_revision, 'tool_shed': self.tool_shed } # If an admin user, expose the path to the actual tool config XML file. if trans.user_is_admin(): tool_dict[ 'config_file' ] = os.path.abspath( self.config_file ) # Add link details. if link_details: # Add details for creating a hyperlink to the tool. if not isinstance( self, DataSourceTool ): link = url_for( controller='tool_runner', tool_id=self.id ) else: link = url_for( controller='tool_runner', action='data_source_redirect', tool_id=self.id ) # Basic information tool_dict.update( { 'link': link, 'min_width': self.uihints.get( 'minwidth', -1 ), 'target': self.target } ) # Add input and output details. if io_details: tool_dict[ 'inputs' ] = [ input.to_dict( trans ) for input in self.inputs.values() ] tool_dict[ 'outputs' ] = [ output.to_dict( app=self.app ) for output in self.outputs.values() ] tool_dict[ 'panel_section_id' ], tool_dict[ 'panel_section_name' ] = self.get_panel_section() return tool_dict def to_json( self, trans, kwd={}, job=None, workflow_mode=False ): """ Recursively creates a tool dictionary containing repeats, dynamic options and updated states. """ history_id = kwd.get( 'history_id', None ) history = None try: if history_id is not None: history = self.history_manager.get_owned( trans.security.decode_id( history_id ), trans.user, current_history=trans.history ) else: history = trans.get_history() if history is None: raise exceptions.MessageException( 'History unavailable. Please specify a valid history id' ) except Exception, e: raise exceptions.MessageException( '[history_id=%s] Failed to retrieve history. %s.' % ( history_id, str( e ) ) ) # build request context request_context = WorkRequestContext( app=trans.app, user=trans.user, history=history, workflow_building_mode=workflow_mode ) # load job parameters into incoming tool_message = '' tool_warnings = '' if job: try: job_params = job.get_param_values( self.app, ignore_errors=True ) tool_warnings = self.check_and_update_param_values( job_params, request_context, update_values=False ) self._map_source_to_history( request_context, self.inputs, job_params ) tool_message = self._compare_tool_version( job ) params_to_incoming( kwd, self.inputs, job_params, self.app ) except Exception as e: raise exceptions.MessageException( str( e ) ) # create parameter object params = galaxy.util.Params( kwd, sanitize=False ) # populates model from state def populate_model( inputs, state_inputs, group_inputs, other_values=None ): other_values = ExpressionContext( state_inputs, other_values ) for input_index, input in enumerate( inputs.itervalues() ): tool_dict = None group_state = state_inputs.get( input.name, {} ) if input.type == 'repeat': tool_dict = input.to_dict( request_context ) group_cache = tool_dict[ 'cache' ] = {} for i in range( len( group_state ) ): group_cache[ i ] = {} populate_model( input.inputs, group_state[ i ], group_cache[ i ], other_values ) elif input.type == 'conditional': tool_dict = input.to_dict( request_context ) if 'test_param' in tool_dict: test_param = tool_dict[ 'test_param' ] test_param[ 'value' ] = input.test_param.value_to_basic( group_state.get( test_param[ 'name' ], input.test_param.get_initial_value( request_context, other_values ) ), self.app ) test_param[ 'text_value' ] = input.test_param.value_to_display_text( test_param[ 'value' ], self.app ) for i in range( len( tool_dict['cases'] ) ): current_state = {} if i == group_state.get( '__current_case__' ): current_state = group_state populate_model( input.cases[ i ].inputs, current_state, tool_dict[ 'cases' ][ i ][ 'inputs' ], other_values ) elif input.type == 'section': tool_dict = input.to_dict( request_context ) populate_model( input.inputs, group_state, tool_dict[ 'inputs' ], other_values ) else: try: tool_dict = input.to_dict( request_context, other_values=other_values ) tool_dict[ 'value' ] = input.value_to_basic( state_inputs.get( input.name, input.get_initial_value( request_context, other_values ) ), self.app ) tool_dict[ 'text_value' ] = input.value_to_display_text( tool_dict[ 'value' ], self.app ) except Exception as e: tool_dict = input.to_dict( request_context ) log.exception('tools::to_json() - Skipping parameter expansion \'%s\': %s.' % ( input.name, e ) ) pass group_inputs[ input_index ] = tool_dict # expand incoming parameters (parameters might trigger multiple tool executions, # here we select the first execution only in order to resolve dynamic parameters) expanded_incomings, _ = expand_meta_parameters( trans, self, params.__dict__ ) if expanded_incomings: params.__dict__ = expanded_incomings[ 0 ] # do param translation here, used by datasource tools if self.input_translator: self.input_translator.translate( params ) # create tool state state_inputs = {} state_errors = {} self.populate_state( request_context, self.inputs, params.__dict__, state_inputs, state_errors ) # create tool model tool_model = self.to_dict( request_context ) tool_model[ 'inputs' ] = {} populate_model( self.inputs, state_inputs, tool_model[ 'inputs' ] ) # create tool help tool_help = '' if self.help: tool_help = self.help.render( static_path=url_for( '/static' ), host_url=url_for( '/', qualified=True ) ) tool_help = unicodify( tool_help, 'utf-8' ) # create tool versions tool_versions = [] tools = self.app.toolbox.get_loaded_tools_by_lineage( self.id ) for t in tools: if t.version not in tool_versions: tool_versions.append( t.version ) # update tool model tool_model.update({ 'id' : self.id, 'help' : tool_help, 'citations' : bool( self.citations ), 'biostar_url' : self.app.config.biostar_url, 'sharable_url' : self.tool_shed_repository.get_sharable_url( self.app ) if self.tool_shed_repository else None, 'message' : tool_message, 'warnings' : tool_warnings, 'versions' : tool_versions, 'requirements' : [ { 'name' : r.name, 'version' : r.version } for r in self.requirements ], 'errors' : state_errors, 'state_inputs' : params_to_strings( self.inputs, state_inputs, self.app ), 'job_id' : trans.security.encode_id( job.id ) if job else None, 'job_remap' : self._get_job_remap( job ), 'history_id' : trans.security.encode_id( history.id ), 'display' : self.display_interface, 'action' : url_for( self.action ), 'method' : self.method, 'enctype' : self.enctype }) return tool_model # populates state from incoming parameters def populate_state( self, request_context, inputs, incoming, state, errors={}, prefix='', context=None ): context = ExpressionContext( state, context ) for input in inputs.itervalues(): state[ input.name ] = input.get_initial_value( request_context, context ) key = prefix + input.name group_state = state[ input.name ] group_prefix = '%s|' % ( key ) if input.type == 'repeat': rep_index = 0 del group_state[:] while True: rep_prefix = '%s_%d' % ( key, rep_index ) if not any( [ incoming_key.startswith( rep_prefix ) for incoming_key in incoming.keys() ] ) and rep_index >= input.min: break if rep_index < input.max: new_state = { '__index__' : rep_index } group_state.append( new_state ) self.populate_state( request_context, input.inputs, incoming, new_state, errors, prefix=rep_prefix + '|', context=context ) rep_index += 1 elif input.type == 'conditional': if input.value_ref and not input.value_ref_in_group: test_param_key = prefix + input.test_param.name else: test_param_key = group_prefix + input.test_param.name test_param_value = incoming.get( test_param_key, group_state.get( input.test_param.name ) ) value, error = check_param( request_context, input.test_param, test_param_value, context ) if error: errors[ test_param_key ] = error else: try: current_case = input.get_current_case( value ) group_state = state[ input.name ] = {} self.populate_state( request_context, input.cases[ current_case ].inputs, incoming, group_state, errors, prefix=group_prefix, context=context ) group_state[ '__current_case__' ] = current_case except Exception: errors[ test_param_key ] = 'The selected case is unavailable/invalid.' pass group_state[ input.test_param.name ] = value elif input.type == 'section': self.populate_state( request_context, input.inputs, incoming, group_state, errors, prefix=group_prefix, context=context ) elif input.type == 'upload_dataset': d_type = input.get_datatype( request_context, context=context ) writable_files = d_type.writable_files while len( group_state ) > len( writable_files ): del group_state[ -1 ] while len( writable_files ) > len( group_state ): new_state = { '__index__' : len( group_state ) } for upload_item in input.inputs.itervalues(): new_state[ upload_item.name ] = upload_item.get_initial_value( request_context, context ) group_state.append( new_state ) for i, rep_state in enumerate( group_state ): rep_index = rep_state[ '__index__' ] rep_prefix = '%s_%d|' % ( key, rep_index ) self.populate_state( request_context, input.inputs, incoming, rep_state, errors, prefix=rep_prefix, context=context ) else: param_value = self._get_incoming_value( incoming, key, state.get( input.name ) ) value, error = check_param( request_context, input, param_value, context ) if error: errors[ key ] = error state[ input.name ] = value def _get_incoming_value( self, incoming, key, default ): """ Fetch value from incoming dict directly or check special nginx upload created variants of this key. """ if '__' + key + '__is_composite' in incoming: composite_keys = incoming[ '__' + key + '__keys' ].split() value = dict() for composite_key in composite_keys: value[ composite_key ] = incoming[ key + '_' + composite_key ] return value else: return incoming.get( key, default ) def _get_job_remap( self, job): if job: if job.state == job.states.ERROR: try: if [ hda.dependent_jobs for hda in [ jtod.dataset for jtod in job.output_datasets ] if hda.dependent_jobs ]: return True except Exception, exception: log.error( str( exception ) ) pass return False def _map_source_to_history( self, trans, tool_inputs, params ): # Need to remap dataset parameters. Job parameters point to original # dataset used; parameter should be the analygous dataset in the # current history. history = trans.history # Create index for hdas. hda_source_dict = {} for hda in history.datasets: key = '%s_%s' % ( hda.hid, hda.dataset.id ) hda_source_dict[ hda.dataset.id ] = hda_source_dict[ key ] = hda # Ditto for dataset collections. hdca_source_dict = {} for hdca in history.dataset_collections: key = '%s_%s' % ( hdca.hid, hdca.collection.id ) hdca_source_dict[ hdca.collection.id ] = hdca_source_dict[ key ] = hdca # Map dataset or collection to current history def map_to_history( value ): id = None source = None if isinstance( value, self.app.model.HistoryDatasetAssociation ): id = value.dataset.id source = hda_source_dict elif isinstance( value, self.app.model.HistoryDatasetCollectionAssociation ): id = value.collection.id source = hdca_source_dict else: return None key = '%s_%s' % ( value.hid, id ) if key in source: return source[ key ] elif id in source: return source[ id ] else: return None def mapping_callback( input, value, **kwargs ): if isinstance( input, DataToolParameter ): if isinstance(value, list): values = [] for val in value: new_val = map_to_history( val ) if new_val: values.append( new_val ) else: values.append( val ) return values else: return map_to_history( value ) elif isinstance( input, DataCollectionToolParameter ): return map_to_history( value ) visit_input_values( tool_inputs, params, mapping_callback ) def _compare_tool_version( self, job ): """ Compares a tool version with the tool version from a job (from ToolRunner). """ tool_id = job.tool_id tool_version = job.tool_version message = '' try: select_field, tools, tool = self.app.toolbox.get_tool_components( tool_id, tool_version=tool_version, get_loaded_tools_by_lineage=False, set_selected=True ) if tool is None: raise exceptions.MessageException( 'This dataset was created by an obsolete tool (%s). Can\'t re-run.' % tool_id ) if ( self.id != tool_id and self.old_id != tool_id ) or self.version != tool_version: if self.id == tool_id: if tool_version is None: # for some reason jobs don't always keep track of the tool version. message = '' else: message = 'This job was run with tool version "%s", which is not available. ' % tool_version if len( tools ) > 1: message += 'You can re-run the job with the selected tool or choose another version of the tool.' else: message += 'You can re-run the job with this tool version, which is a different version of the original tool.' else: new_tool_shed_url = '%s/%s/' % ( tool.tool_shed_repository.get_sharable_url( tool.app ), tool.tool_shed_repository.changeset_revision ) old_tool_shed_url = common_util.get_tool_shed_url_from_tool_shed_registry( self.app, tool_id.split( '/repos/' )[ 0 ] ) old_tool_shed_url = '%s/view/%s/%s/' % ( old_tool_shed_url, tool.repository_owner, tool.repository_name ) message = 'This job was run with <a href=\"%s\" target=\"_blank\">tool id \"%s\"</a>, version "%s", which is not available. ' % ( old_tool_shed_url, tool_id, tool_version ) if len( tools ) > 1: message += 'You can re-run the job with the selected <a href=\"%s\" target=\"_blank\">tool id \"%s\"</a> or choose another derivation of the tool.' % ( new_tool_shed_url, self.id ) else: message += 'You can re-run the job with <a href=\"%s\" target=\"_blank\">tool id \"%s\"</a>, which is a derivation of the original tool.' % ( new_tool_shed_url, self.id ) except Exception as e: raise exceptions.MessageException( str( e ) ) return message def get_default_history_by_trans( self, trans, create=False ): return trans.get_history( create=create ) @classmethod def get_externally_referenced_paths( self, path ): """ Return relative paths to externally referenced files by the tool described by file at `path`. External components should not assume things about the structure of tool xml files (this is the tool's responsibility). """ tree = raw_tool_xml_tree(path) root = tree.getroot() external_paths = [] for code_elem in root.findall( 'code' ): external_path = code_elem.get( 'file' ) if external_path: external_paths.append( external_path ) external_paths.extend( imported_macro_paths( root ) ) # May also need to load external citation files as well at some point. return external_paths class OutputParameterJSONTool( Tool ): """ Alternate implementation of Tool that provides parameters and other values JSONified within the contents of an output dataset """ tool_type = 'output_parameter_json' def _prepare_json_list( self, param_list ): rval = [] for value in param_list: if isinstance( value, dict ): rval.append( self._prepare_json_param_dict( value ) ) elif isinstance( value, list ): rval.append( self._prepare_json_list( value ) ) else: rval.append( str( value ) ) return rval def _prepare_json_param_dict( self, param_dict ): rval = {} for key, value in param_dict.iteritems(): if isinstance( value, dict ): rval[ key ] = self._prepare_json_param_dict( value ) elif isinstance( value, list ): rval[ key ] = self._prepare_json_list( value ) else: rval[ key ] = str( value ) return rval def exec_before_job( self, app, inp_data, out_data, param_dict=None ): if param_dict is None: param_dict = {} json_params = {} json_params[ 'param_dict' ] = self._prepare_json_param_dict( param_dict ) # it would probably be better to store the original incoming parameters here, instead of the Galaxy modified ones? json_params[ 'output_data' ] = [] json_params[ 'job_config' ] = dict( GALAXY_DATATYPES_CONF_FILE=param_dict.get( 'GALAXY_DATATYPES_CONF_FILE' ), GALAXY_ROOT_DIR=param_dict.get( 'GALAXY_ROOT_DIR' ), TOOL_PROVIDED_JOB_METADATA_FILE=galaxy.jobs.TOOL_PROVIDED_JOB_METADATA_FILE ) json_filename = None for i, ( out_name, data ) in enumerate( out_data.iteritems() ): # use wrapped dataset to access certain values wrapped_data = param_dict.get( out_name ) # allow multiple files to be created file_name = str( wrapped_data ) extra_files_path = str( wrapped_data.files_path ) data_dict = dict( out_data_name=out_name, ext=data.ext, dataset_id=data.dataset.id, hda_id=data.id, file_name=file_name, extra_files_path=extra_files_path ) json_params[ 'output_data' ].append( data_dict ) if json_filename is None: json_filename = file_name out = open( json_filename, 'w' ) out.write( json.dumps( json_params ) ) out.close() class DataSourceTool( OutputParameterJSONTool ): """ Alternate implementation of Tool for data_source tools -- those that allow the user to query and extract data from another web site. """ tool_type = 'data_source' default_tool_action = DataSourceToolAction def _build_GALAXY_URL_parameter( self ): return ToolParameter.build( self, ElementTree.XML( '<param name="GALAXY_URL" type="baseurl" value="/tool_runner?tool_id=%s" />' % self.id ) ) def parse_inputs( self, tool_source ): super( DataSourceTool, self ).parse_inputs( tool_source ) # Open all data_source tools in _top. self.target = '_top' if 'GALAXY_URL' not in self.inputs: self.inputs[ 'GALAXY_URL' ] = self._build_GALAXY_URL_parameter() self.inputs_by_page[0][ 'GALAXY_URL' ] = self.inputs[ 'GALAXY_URL' ] def exec_before_job( self, app, inp_data, out_data, param_dict=None ): if param_dict is None: param_dict = {} dbkey = param_dict.get( 'dbkey' ) info = param_dict.get( 'info' ) data_type = param_dict.get( 'data_type' ) name = param_dict.get( 'name' ) json_params = {} json_params[ 'param_dict' ] = self._prepare_json_param_dict( param_dict ) # it would probably be better to store the original incoming parameters here, instead of the Galaxy modified ones? json_params[ 'output_data' ] = [] json_params[ 'job_config' ] = dict( GALAXY_DATATYPES_CONF_FILE=param_dict.get( 'GALAXY_DATATYPES_CONF_FILE' ), GALAXY_ROOT_DIR=param_dict.get( 'GALAXY_ROOT_DIR' ), TOOL_PROVIDED_JOB_METADATA_FILE=galaxy.jobs.TOOL_PROVIDED_JOB_METADATA_FILE ) json_filename = None for i, ( out_name, data ) in enumerate( out_data.iteritems() ): # use wrapped dataset to access certain values wrapped_data = param_dict.get( out_name ) # allow multiple files to be created cur_base_param_name = 'GALAXY|%s|' % out_name cur_name = param_dict.get( cur_base_param_name + 'name', name ) cur_dbkey = param_dict.get( cur_base_param_name + 'dkey', dbkey ) cur_info = param_dict.get( cur_base_param_name + 'info', info ) cur_data_type = param_dict.get( cur_base_param_name + 'data_type', data_type ) if cur_name: data.name = cur_name if not data.info and cur_info: data.info = cur_info if cur_dbkey: data.dbkey = cur_dbkey if cur_data_type: data.extension = cur_data_type file_name = str( wrapped_data ) extra_files_path = str( wrapped_data.files_path ) data_dict = dict( out_data_name=out_name, ext=data.ext, dataset_id=data.dataset.id, hda_id=data.id, file_name=file_name, extra_files_path=extra_files_path ) json_params[ 'output_data' ].append( data_dict ) if json_filename is None: json_filename = file_name out = open( json_filename, 'w' ) out.write( json.dumps( json_params ) ) out.close() class AsyncDataSourceTool( DataSourceTool ): tool_type = 'data_source_async' def _build_GALAXY_URL_parameter( self ): return ToolParameter.build( self, ElementTree.XML( '<param name="GALAXY_URL" type="baseurl" value="/async/%s" />' % self.id ) ) class DataDestinationTool( Tool ): tool_type = 'data_destination' class SetMetadataTool( Tool ): """ Tool implementation for special tool that sets metadata on an existing dataset. """ tool_type = 'set_metadata' requires_setting_metadata = False def exec_after_process( self, app, inp_data, out_data, param_dict, job=None ): for name, dataset in inp_data.iteritems(): external_metadata = JobExternalOutputMetadataWrapper( job ) if external_metadata.external_metadata_set_successfully( dataset, app.model.context ): dataset.metadata.from_JSON_dict( external_metadata.get_output_filenames_by_dataset( dataset, app.model.context ).filename_out ) else: dataset._state = model.Dataset.states.FAILED_METADATA self.sa_session.add( dataset ) self.sa_session.flush() return # If setting external metadata has failed, how can we inform the # user? For now, we'll leave the default metadata and set the state # back to its original. dataset.datatype.after_setting_metadata( dataset ) if job and job.tool_id == '1.0.0': dataset.state = param_dict.get( '__ORIGINAL_DATASET_STATE__' ) else: # Revert dataset.state to fall back to dataset.dataset.state dataset._state = None # Need to reset the peek, which may rely on metadata dataset.set_peek() self.sa_session.add( dataset ) self.sa_session.flush() def job_failed( self, job_wrapper, message, exception=False ): job = job_wrapper.sa_session.query( model.Job ).get( job_wrapper.job_id ) if job: inp_data = {} for dataset_assoc in job.input_datasets: inp_data[dataset_assoc.name] = dataset_assoc.dataset return self.exec_after_process( job_wrapper.app, inp_data, {}, job_wrapper.get_param_dict(), job=job ) class ExportHistoryTool( Tool ): tool_type = 'export_history' class ImportHistoryTool( Tool ): tool_type = 'import_history' class DataManagerTool( OutputParameterJSONTool ): tool_type = 'manage_data' default_tool_action = DataManagerToolAction def __init__( self, config_file, root, app, guid=None, data_manager_id=None, **kwds ): self.data_manager_id = data_manager_id super( DataManagerTool, self ).__init__( config_file, root, app, guid=guid, **kwds ) if self.data_manager_id is None: self.data_manager_id = self.id def exec_after_process( self, app, inp_data, out_data, param_dict, job=None, **kwds ): assert self.allow_user_access( job.user ), "You must be an admin to access this tool." # run original exec_after_process super( DataManagerTool, self ).exec_after_process( app, inp_data, out_data, param_dict, job=job, **kwds ) # process results of tool if job and job.state == job.states.ERROR: return # Job state may now be 'running' instead of previous 'error', but datasets are still set to e.g. error for dataset in out_data.itervalues(): if dataset.state != dataset.states.OK: return data_manager_id = job.data_manager_association.data_manager_id data_manager = self.app.data_managers.get_manager( data_manager_id, None ) assert data_manager is not None, "Invalid data manager (%s) requested. It may have been removed before the job completed." % ( data_manager_id ) data_manager.process_result( out_data ) def get_default_history_by_trans( self, trans, create=False ): def _create_data_manager_history( user ): history = trans.app.model.History( name='Data Manager History (automatically created)', user=user ) data_manager_association = trans.app.model.DataManagerHistoryAssociation( user=user, history=history ) trans.sa_session.add_all( ( history, data_manager_association ) ) trans.sa_session.flush() return history user = trans.user assert user, 'You must be logged in to use this tool.' assert self.allow_user_access( user ), "You must be an admin to access this tool." history = user.data_manager_histories if not history: # create if create: history = _create_data_manager_history( user ) else: history = None else: for history in reversed( history ): history = history.history if not history.deleted: break if history.deleted: if create: history = _create_data_manager_history( user ) else: history = None return history def allow_user_access( self, user, attempting_access=True ): """ :param user: model object representing user. :type user: galaxy.model.User :param attempting_access: is the user attempting to do something with the the tool (set false for incidental checks like toolbox listing) :type attempting_access: bool :returns: bool -- Whether the user is allowed to access the tool. Data Manager tools are only accessible to admins. """ if super( DataManagerTool, self ).allow_user_access( user ) and self.app.config.is_admin_user( user ): return True # If this is just an incidental check - do not log the scary message # about users attempting to do something problematic. if attempting_access: if user: user = user.id log.debug( "User (%s) attempted to access a data manager tool (%s), but is not an admin.", user, self.id ) return False # Populate tool_type to ToolClass mappings tool_types = {} for tool_class in [ Tool, SetMetadataTool, OutputParameterJSONTool, DataManagerTool, DataSourceTool, AsyncDataSourceTool, DataDestinationTool ]: tool_types[ tool_class.tool_type ] = tool_class # ---- Utility classes to be factored out ----------------------------------- class TracksterConfig: """ Trackster configuration encapsulation. """ def __init__( self, actions ): self.actions = actions @staticmethod def parse( root ): actions = [] for action_elt in root.findall( "action" ): actions.append( SetParamAction.parse( action_elt ) ) return TracksterConfig( actions ) class SetParamAction: """ Set parameter action. """ def __init__( self, name, output_name ): self.name = name self.output_name = output_name @staticmethod def parse( elt ): """ Parse action from element. """ return SetParamAction( elt.get( "name" ), elt.get( "output_name" ) ) class BadValue( object ): def __init__( self, value ): self.value = value class InterruptedUpload( Exception ): pass
47.862914
249
0.602986
029abe629472399ca12593136eee3c058f346634
1,988
py
Python
speecht/vocabulary.py
Mehdi-Habibi/MySpeechT
00b07f4fff8b8b0cee1e01fbd07eb9032143eda9
[ "Apache-2.0" ]
154
2016-11-21T19:31:40.000Z
2020-07-30T12:18:56.000Z
speecht/vocabulary.py
sporiyano/speechT
e68dc77e3e0c62be6822963c521750dfcc4272f1
[ "Apache-2.0" ]
23
2017-04-21T15:26:09.000Z
2019-06-24T13:11:13.000Z
speecht/vocabulary.py
sporiyano/speechT
e68dc77e3e0c62be6822963c521750dfcc4272f1
[ "Apache-2.0" ]
37
2016-11-03T09:37:34.000Z
2020-03-02T07:41:17.000Z
# Copyright 2016 Louis Kirsch. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== APOSTROPHE = 26 SPACE_ID = 27 A_ASCII_CODE = ord('a') SIZE = 28 def letter_to_id(letter): """ Converts `letter` to vocabulary id Args: letter: letter to convert, allowed is a-z, apostrophe and space Returns: the vocabulary encoded letter """ if letter == ' ': return SPACE_ID if letter == '\'': return APOSTROPHE return ord(letter) - A_ASCII_CODE def id_to_letter(identifier): """ Converts the vocabulary encoded letter `identifier` to its character representation Args: identifier: encoded letter to decode Returns: the character letter """ if identifier == SPACE_ID: return ' ' if identifier == APOSTROPHE: return '\'' return chr(identifier + A_ASCII_CODE) def sentence_to_ids(sentence): """ Convert a string `sentence` to its encoded representation Args: sentence: sentence of type string Returns: list of ints (encoded characters) """ return [letter_to_id(letter) for letter in sentence.lower()] def ids_to_sentence(identifiers): """ Convert an complete list of encoded characters `identifiers` to their character representation Args: identifiers: list of ints (encoded characters) Returns: decoded sentence as string """ return ''.join(id_to_letter(identifier) for identifier in identifiers)
24.243902
96
0.694165
e42b9fc9668fde06e771f70503dc05ab143406a4
2,927
py
Python
tests/test_MulticlassEvaluator.py
AlexeyVatolin/sentence-transformers
084b80cd351b135a1d48211ec4f4aea37f01a641
[ "Apache-2.0" ]
null
null
null
tests/test_MulticlassEvaluator.py
AlexeyVatolin/sentence-transformers
084b80cd351b135a1d48211ec4f4aea37f01a641
[ "Apache-2.0" ]
null
null
null
tests/test_MulticlassEvaluator.py
AlexeyVatolin/sentence-transformers
084b80cd351b135a1d48211ec4f4aea37f01a641
[ "Apache-2.0" ]
null
null
null
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from sentence_transformers import SentenceTransformer, evaluation, models, losses, InputExample import unittest import torch from torch.utils.data import DataLoader from sklearn.metrics import f1_score, accuracy_score import numpy as np from sentence_transformers.evaluation import MulticlassEvaluator class MulticlassEvaluatorTest(unittest.TestCase): def test_multiclass(self): transformer = models.Transformer('prajjwal1/bert-tiny') model = SentenceTransformer(modules=[ transformer, models.Pooling(transformer.get_word_embedding_dimension()) ]) softmax_loss = losses.SoftmaxLoss(model, transformer.get_word_embedding_dimension(), num_labels=3) samples = [ InputExample(texts=["Hello Word, a first test sentence", "Hello Word, a other test sentence"], label=0), InputExample(texts=["Hello Word, a second test sentence", "Hello Word, a other test sentence"], label=1), InputExample(texts=["Hello Word, a third test sentence", "Hello Word, a other test sentence"], label=2) ] dataloader = DataLoader(samples, batch_size=1) evaluator = MulticlassEvaluator(dataloader, softmax_model=softmax_loss) result = evaluator(model) i = 0 # assert emb.shape == (transformer.get_word_embedding_dimension() * num_heads,) # # # Single sentence as list # emb = model.encode(["Hello Word, a test sentence"]) # assert emb.shape == (1, transformer.get_word_embedding_dimension() * num_heads def test_find_best_f1_and_threshold(self): """Tests that the F1 score for the computed threshold is correct""" y_true = np.random.randint(0, 2, 1000) y_pred_cosine = np.random.randn(1000) best_f1, best_precision, best_recall, threshold = evaluation.BinaryClassificationEvaluator.find_best_f1_and_threshold( y_pred_cosine, y_true, high_score_more_similar=True) y_pred_labels = [1 if pred >= threshold else 0 for pred in y_pred_cosine] sklearn_f1score = f1_score(y_true, y_pred_labels) assert np.abs(best_f1 - sklearn_f1score) < 1e-6 def test_find_best_accuracy_and_threshold(self): """Tests that the Acc score for the computed threshold is correct""" y_true = np.random.randint(0, 2, 1000) y_pred_cosine = np.random.randn(1000) max_acc, threshold = evaluation.BinaryClassificationEvaluator.find_best_acc_and_threshold(y_pred_cosine, y_true, high_score_more_similar=True) y_pred_labels = [1 if pred >= threshold else 0 for pred in y_pred_cosine] sklearn_acc = accuracy_score(y_true, y_pred_labels) assert np.abs(max_acc - sklearn_acc) < 1e-6
50.465517
127
0.689443
c671a638a900f177d5c4e011b79cb992537acbb9
11,997
py
Python
reefbot_msgs/src/reefbot_msgs/msg/_ImageRegion.py
MRSD2018/reefbot-1
a595ca718d0cda277726894a3105815cef000475
[ "MIT" ]
null
null
null
reefbot_msgs/src/reefbot_msgs/msg/_ImageRegion.py
MRSD2018/reefbot-1
a595ca718d0cda277726894a3105815cef000475
[ "MIT" ]
null
null
null
reefbot_msgs/src/reefbot_msgs/msg/_ImageRegion.py
MRSD2018/reefbot-1
a595ca718d0cda277726894a3105815cef000475
[ "MIT" ]
null
null
null
"""autogenerated by genpy from reefbot_msgs/ImageRegion.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg import sensor_msgs.msg class ImageRegion(genpy.Message): _md5sum = "65cc1a85d539c02ff4e503921c8e033b" _type = "reefbot_msgs/ImageRegion" _has_header = False #flag to mark the presence of a Header object _full_text = """# Message that species a region in the image to look at to identify # the species. # # Author: Mark Desnoyer ([email protected]) # Date: June 2010 # Bounding box in the image that specifies the region sensor_msgs/RegionOfInterest bounding_box # Binary mask image specifying where the species is in the bounding # box. A pixel value of zero means to ignore the pixel. If this image # is empty, then the entire box should be used, but if it's not empty, # it must be the same size as bbox or else an error will be generated. sensor_msgs/Image mask ================================================================================ MSG: sensor_msgs/RegionOfInterest # This message is used to specify a region of interest within an image. # # When used to specify the ROI setting of the camera when the image was # taken, the height and width fields should either match the height and # width fields for the associated image; or height = width = 0 # indicates that the full resolution image was captured. uint32 x_offset # Leftmost pixel of the ROI # (0 if the ROI includes the left edge of the image) uint32 y_offset # Topmost pixel of the ROI # (0 if the ROI includes the top edge of the image) uint32 height # Height of ROI uint32 width # Width of ROI # True if a distinct rectified ROI should be calculated from the "raw" # ROI in this message. Typically this should be False if the full image # is captured (ROI not used), and True if a subwindow is captured (ROI # used). bool do_rectify ================================================================================ MSG: sensor_msgs/Image # This message contains an uncompressed image # (0, 0) is at top-left corner of image # Header header # Header timestamp should be acquisition time of image # Header frame_id should be optical frame of camera # origin of frame should be optical center of cameara # +x should point to the right in the image # +y should point down in the image # +z should point into to plane of the image # If the frame_id here and the frame_id of the CameraInfo # message associated with the image conflict # the behavior is undefined uint32 height # image height, that is, number of rows uint32 width # image width, that is, number of columns # The legal values for encoding are in file src/image_encodings.cpp # If you want to standardize a new string format, join # [email protected] and send an email proposing a new encoding. string encoding # Encoding of pixels -- channel meaning, ordering, size # taken from the list of strings in src/image_encodings.cpp uint8 is_bigendian # is this data bigendian? uint32 step # Full row length in bytes uint8[] data # actual matrix data, size is (step * rows) ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.secs: seconds (stamp_secs) since epoch # * stamp.nsecs: nanoseconds since stamp_secs # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id """ __slots__ = ['bounding_box','mask'] _slot_types = ['sensor_msgs/RegionOfInterest','sensor_msgs/Image'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: bounding_box,mask :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(ImageRegion, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.bounding_box is None: self.bounding_box = sensor_msgs.msg.RegionOfInterest() if self.mask is None: self.mask = sensor_msgs.msg.Image() else: self.bounding_box = sensor_msgs.msg.RegionOfInterest() self.mask = sensor_msgs.msg.Image() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_struct_4IB3I.pack(_x.bounding_box.x_offset, _x.bounding_box.y_offset, _x.bounding_box.height, _x.bounding_box.width, _x.bounding_box.do_rectify, _x.mask.header.seq, _x.mask.header.stamp.secs, _x.mask.header.stamp.nsecs)) _x = self.mask.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_struct_2I.pack(_x.mask.height, _x.mask.width)) _x = self.mask.encoding length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_struct_BI.pack(_x.mask.is_bigendian, _x.mask.step)) _x = self.mask.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(se) except TypeError as te: self._check_types(te) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.bounding_box is None: self.bounding_box = sensor_msgs.msg.RegionOfInterest() if self.mask is None: self.mask = sensor_msgs.msg.Image() end = 0 _x = self start = end end += 29 (_x.bounding_box.x_offset, _x.bounding_box.y_offset, _x.bounding_box.height, _x.bounding_box.width, _x.bounding_box.do_rectify, _x.mask.header.seq, _x.mask.header.stamp.secs, _x.mask.header.stamp.nsecs,) = _struct_4IB3I.unpack(str[start:end]) self.bounding_box.do_rectify = bool(self.bounding_box.do_rectify) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.header.frame_id = str[start:end].decode('utf-8') else: self.mask.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.mask.height, _x.mask.width,) = _struct_2I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.encoding = str[start:end].decode('utf-8') else: self.mask.encoding = str[start:end] _x = self start = end end += 5 (_x.mask.is_bigendian, _x.mask.step,) = _struct_BI.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.data = str[start:end].decode('utf-8') else: self.mask.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_struct_4IB3I.pack(_x.bounding_box.x_offset, _x.bounding_box.y_offset, _x.bounding_box.height, _x.bounding_box.width, _x.bounding_box.do_rectify, _x.mask.header.seq, _x.mask.header.stamp.secs, _x.mask.header.stamp.nsecs)) _x = self.mask.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_struct_2I.pack(_x.mask.height, _x.mask.width)) _x = self.mask.encoding length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_struct_BI.pack(_x.mask.is_bigendian, _x.mask.step)) _x = self.mask.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(se) except TypeError as te: self._check_types(te) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.bounding_box is None: self.bounding_box = sensor_msgs.msg.RegionOfInterest() if self.mask is None: self.mask = sensor_msgs.msg.Image() end = 0 _x = self start = end end += 29 (_x.bounding_box.x_offset, _x.bounding_box.y_offset, _x.bounding_box.height, _x.bounding_box.width, _x.bounding_box.do_rectify, _x.mask.header.seq, _x.mask.header.stamp.secs, _x.mask.header.stamp.nsecs,) = _struct_4IB3I.unpack(str[start:end]) self.bounding_box.do_rectify = bool(self.bounding_box.do_rectify) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.header.frame_id = str[start:end].decode('utf-8') else: self.mask.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.mask.height, _x.mask.width,) = _struct_2I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.encoding = str[start:end].decode('utf-8') else: self.mask.encoding = str[start:end] _x = self start = end end += 5 (_x.mask.is_bigendian, _x.mask.step,) = _struct_BI.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.mask.data = str[start:end].decode('utf-8') else: self.mask.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_4IB3I = struct.Struct("<4IB3I") _struct_2I = struct.Struct("<2I") _struct_BI = struct.Struct("<BI")
37.726415
248
0.645411
494a05a78966b975a6f0acabab2821e49ff1ebb3
22,669
py
Python
model_zoo/research/cv/centernet_det/src/utils.py
Vincent34/mindspore
a39a60878a46e7e9cb02db788c0bca478f2fa6e5
[ "Apache-2.0" ]
2
2021-07-08T13:10:42.000Z
2021-11-08T02:48:57.000Z
model_zoo/research/cv/centernet_det/src/utils.py
peixinhou/mindspore
fcb2ec2779b753e95c762cf292b23bd81d1f561b
[ "Apache-2.0" ]
null
null
null
model_zoo/research/cv/centernet_det/src/utils.py
peixinhou/mindspore
fcb2ec2779b753e95c762cf292b23bd81d1f561b
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Functional Cells to be used. """ import math import time import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import dtype as mstype from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore.nn.learning_rate_schedule import LearningRateSchedule, PolynomialDecayLR, WarmUpLR from mindspore.train.callback import Callback clip_grad = ops.MultitypeFuncGraph("clip_grad") @clip_grad.register("Number", "Tensor") def _clip_grad(clip_value, grad): """ Clip gradients. Inputs: clip_value (float): Specifies how much to clip. grad (tuple[Tensor]): Gradients. Outputs: tuple[Tensor], clipped gradients. """ dt = ops.dtype(grad) new_grad = nn.ClipByNorm()(grad, ops.cast(ops.tuple_to_array((clip_value,)), dt)) return new_grad class ClipByNorm(nn.Cell): """ Clip grads by gradient norm Args: clip_norm(float): The target norm of graident clip. Default: 1.0 Returns: Tuple of Tensors, gradients after clip. """ def __init__(self, clip_norm=1.0): super(ClipByNorm, self).__init__() self.hyper_map = ops.HyperMap() self.clip_norm = clip_norm def construct(self, grads): grads = self.hyper_map(ops.partial(clip_grad, self.clip_norm), grads) return grads reciprocal = ops.Reciprocal() grad_scale = ops.MultitypeFuncGraph("grad_scale") @grad_scale.register("Tensor", "Tensor") def tensor_grad_scale(scale, grad): return grad * reciprocal(scale) class GradScale(nn.Cell): """ Gradients scale Args: None Returns: Tuple of Tensors, gradients after rescale. """ def __init__(self): super(GradScale, self).__init__() self.hyper_map = ops.HyperMap() def construct(self, scale, grads): grads = self.hyper_map(ops.partial(grad_scale, scale), grads) return grads class ClipByValue(nn.Cell): """ Clip tensor by value Args: None Returns: Tensor, output after clip. """ def __init__(self): super(ClipByValue, self).__init__() self.min = ops.Minimum() self.max = ops.Maximum() def construct(self, x, clip_value_min, clip_value_max): x_min = self.min(x, clip_value_max) x_max = self.max(x_min, clip_value_min) return x_max class GatherFeature(nn.Cell): """ Gather feature at specified position Args: enable_cpu_gather (bool): Use cpu operator GatherD to gather feature or not, adaption for CPU. Default: True. Returns: Tensor, feature at spectified position """ def __init__(self, enable_cpu_gather=True): super(GatherFeature, self).__init__() self.tile = ops.Tile() self.shape = ops.Shape() self.concat = ops.Concat(axis=1) self.reshape = ops.Reshape() self.enable_cpu_gather = enable_cpu_gather if self.enable_cpu_gather: self.gather_nd = ops.GatherD() self.expand_dims = ops.ExpandDims() else: self.gather_nd = ops.GatherNd() def construct(self, feat, ind): """gather by specified index""" if self.enable_cpu_gather: _, _, c = self.shape(feat) # (b, N, c) index = self.expand_dims(ind, -1) index = self.tile(index, (1, 1, c)) feat = self.gather_nd(feat, 1, index) else: # (b, N)->(b*N, 1) b, N = self.shape(ind) ind = self.reshape(ind, (-1, 1)) ind_b = nn.Range(0, b, 1)() ind_b = self.reshape(ind_b, (-1, 1)) ind_b = self.tile(ind_b, (1, N)) ind_b = self.reshape(ind_b, (-1, 1)) index = self.concat((ind_b, ind)) # (b, N, 2) index = self.reshape(index, (b, N, -1)) # (b, N, c) feat = self.gather_nd(feat, index) return feat class TransposeGatherFeature(nn.Cell): """ Transpose and gather feature at specified position Args: None Returns: Tensor, feature at spectified position """ def __init__(self): super(TransposeGatherFeature, self).__init__() self.shape = ops.Shape() self.reshape = ops.Reshape() self.transpose = ops.Transpose() self.perm_list = (0, 2, 3, 1) self.gather_feat = GatherFeature() def construct(self, feat, ind): # (b, c, h, w)->(b, h*w, c) feat = self.transpose(feat, self.perm_list) b, _, _, c = self.shape(feat) feat = self.reshape(feat, (b, -1, c)) # (b, N, c) feat = self.gather_feat(feat, ind) return feat class Sigmoid(nn.Cell): """ Sigmoid and then Clip by value Args: None Returns: Tensor, feature after sigmoid and clip. """ def __init__(self): super(Sigmoid, self).__init__() self.cast = ops.Cast() self.dtype = ops.DType() self.sigmoid = nn.Sigmoid() self.clip_by_value = ops.clip_by_value def construct(self, x, min_value=1e-4, max_value=1-1e-4): x = self.sigmoid(x) dt = self.dtype(x) x = self.clip_by_value(x, self.cast(ops.tuple_to_array((min_value,)), dt), self.cast(ops.tuple_to_array((max_value,)), dt)) return x class FocalLoss(nn.Cell): """ Warpper for focal loss. Args: alpha(int): Super parameter in focal loss to mimic loss weight. Default: 2. beta(int): Super parameter in focal loss to mimic imbalance between positive and negative samples. Default: 4. Returns: Tensor, focal loss. """ def __init__(self, alpha=2, beta=4): super(FocalLoss, self).__init__() self.alpha = alpha self.beta = beta self.pow = ops.Pow() self.log = ops.Log() self.select = ops.Select() self.equal = ops.Equal() self.less = ops.Less() self.cast = ops.Cast() self.fill = ops.Fill() self.dtype = ops.DType() self.shape = ops.Shape() self.reduce_sum = ops.ReduceSum() def construct(self, out, target): """focal loss""" pos_inds = self.cast(self.equal(target, 1.0), mstype.float32) neg_inds = self.cast(self.less(target, 1.0), mstype.float32) neg_weights = self.pow(1 - target, self.beta) pos_loss = self.log(out) * self.pow(1 - out, self.alpha) * pos_inds neg_loss = self.log(1 - out) * self.pow(out, self.alpha) * neg_weights * neg_inds num_pos = self.reduce_sum(pos_inds, ()) num_pos = self.select(self.equal(num_pos, 0.0), self.fill(self.dtype(num_pos), self.shape(num_pos), 1.0), num_pos) pos_loss = self.reduce_sum(pos_loss, ()) neg_loss = self.reduce_sum(neg_loss, ()) loss = - (pos_loss + neg_loss) / num_pos return loss class GHMCLoss(nn.Cell): """ Warpper for gradient harmonizing loss for classification. Args: bins(int): Number of bins. Default: 10. momentum(float): Momentum for moving gradient density. Default: 0.0. Returns: Tensor, GHM loss for classification. """ def __init__(self, bins=10, momentum=0.0): super(GHMCLoss, self).__init__() self.bins = bins self.momentum = momentum edges_left = np.array([float(x) / bins for x in range(bins)], dtype=np.float32) self.edges_left = Tensor(edges_left.reshape((bins, 1, 1, 1, 1))) edges_right = np.array([float(x) / bins for x in range(1, bins + 1)], dtype=np.float32) edges_right[-1] += 1e-4 self.edges_right = Tensor(edges_right.reshape((bins, 1, 1, 1, 1))) if momentum >= 0: self.acc_sum = Parameter(initializer(0, [bins], mstype.float32)) self.abs = ops.Abs() self.log = ops.Log() self.cast = ops.Cast() self.select = ops.Select() self.reshape = ops.Reshape() self.reduce_sum = ops.ReduceSum() self.max = ops.Maximum() self.less = ops.Less() self.equal = ops.Equal() self.greater = ops.Greater() self.logical_and = ops.LogicalAnd() self.greater_equal = ops.GreaterEqual() self.zeros_like = ops.ZerosLike() self.expand_dims = ops.ExpandDims() def construct(self, out, target): """GHM loss for classification""" g = self.abs(out - target) g = self.expand_dims(g, 0) # (1, b, c, h, w) pos_inds = self.cast(self.equal(target, 1.0), mstype.float32) tot = self.max(self.reduce_sum(pos_inds, ()), 1.0) # (bin, b, c, h, w) inds_mask = self.logical_and(self.greater_equal(g, self.edges_left), self.less(g, self.edges_right)) zero_matrix = self.cast(self.zeros_like(inds_mask), mstype.float32) inds = self.cast(inds_mask, mstype.float32) # (bins,) num_in_bin = self.reduce_sum(inds, (1, 2, 3, 4)) valid_bins = self.greater(num_in_bin, 0) num_valid_bin = self.reduce_sum(self.cast(valid_bins, mstype.float32), ()) if self.momentum > 0: self.acc_sum = self.select(valid_bins, self.momentum * self.acc_sum + (1 - self.momentum) * num_in_bin, self.acc_sum) acc_sum = self.acc_sum acc_sum = self.reshape(acc_sum, (self.bins, 1, 1, 1, 1)) acc_sum = acc_sum + zero_matrix weights = self.select(self.equal(inds, 1), tot / acc_sum, zero_matrix) # (b, c, h, w) weights = self.reduce_sum(weights, 0) else: num_in_bin = self.reshape(num_in_bin, (self.bins, 1, 1, 1, 1)) num_in_bin = num_in_bin + zero_matrix weights = self.select(self.equal(inds, 1), tot / num_in_bin, zero_matrix) # (b, c, h, w) weights = self.reduce_sum(weights, 0) weights = weights / num_valid_bin ghmc_loss = (target - 1.0) * self.log(1.0 - out) - target * self.log(out) ghmc_loss = self.reduce_sum(ghmc_loss * weights, ()) / tot return ghmc_loss class GHMRLoss(nn.Cell): """ Warpper for gradient harmonizing loss for regression. Args: bins(int): Number of bins. Default: 10. momentum(float): Momentum for moving gradient density. Default: 0.0. mu(float): Super parameter for smoothed l1 loss. Default: 0.02. Returns: Tensor, GHM loss for regression. """ def __init__(self, bins=10, momentum=0.0, mu=0.02): super(GHMRLoss, self).__init__() self.bins = bins self.momentum = momentum self.mu = mu edges_left = np.array([float(x) / bins for x in range(bins)], dtype=np.float32) self.edges_left = Tensor(edges_left.reshape((bins, 1, 1, 1, 1))) edges_right = np.array([float(x) / bins for x in range(1, bins + 1)], dtype=np.float32) edges_right[-1] += 1e-4 self.edges_right = Tensor(edges_right.reshape((bins, 1, 1, 1, 1))) if momentum >= 0: self.acc_sum = Parameter(initializer(0, [bins], mstype.float32)) self.abs = ops.Abs() self.sqrt = ops.Sqrt() self.cast = ops.Cast() self.select = ops.Select() self.reshape = ops.Reshape() self.reduce_sum = ops.ReduceSum() self.max = ops.Maximum() self.less = ops.Less() self.equal = ops.Equal() self.greater = ops.Greater() self.logical_and = ops.LogicalAnd() self.greater_equal = ops.GreaterEqual() self.zeros_like = ops.ZerosLike() self.expand_dims = ops.ExpandDims() def construct(self, out, target): """GHM loss for regression""" # ASL1 loss diff = out - target # gradient length g = self.abs(diff / self.sqrt(self.mu * self.mu + diff * diff)) g = self.expand_dims(g, 0) # (1, b, c, h, w) pos_inds = self.cast(self.equal(target, 1.0), mstype.float32) tot = self.max(self.reduce_sum(pos_inds, ()), 1.0) # (bin, b, c, h, w) inds_mask = self.logical_and(self.greater_equal(g, self.edges_left), self.less(g, self.edges_right)) zero_matrix = self.cast(self.zeros_like(inds_mask), mstype.float32) inds = self.cast(inds_mask, mstype.float32) # (bins,) num_in_bin = self.reduce_sum(inds, (1, 2, 3, 4)) valid_bins = self.greater(num_in_bin, 0) num_valid_bin = self.reduce_sum(self.cast(valid_bins, mstype.float32), ()) if self.momentum > 0: self.acc_sum = self.select(valid_bins, self.momentum * self.acc_sum + (1 - self.momentum) * num_in_bin, self.acc_sum) acc_sum = self.acc_sum acc_sum = self.reshape(acc_sum, (self.bins, 1, 1, 1, 1)) acc_sum = acc_sum + zero_matrix weights = self.select(self.equal(inds, 1), tot / acc_sum, zero_matrix) # (b, c, h, w) weights = self.reduce_sum(weights, 0) else: num_in_bin = self.reshape(num_in_bin, (self.bins, 1, 1, 1, 1)) num_in_bin = num_in_bin + zero_matrix weights = self.select(self.equal(inds, 1), tot / num_in_bin, zero_matrix) # (b, c, h, w) weights = self.reduce_sum(weights, 0) weights = weights / num_valid_bin ghmr_loss = self.sqrt(diff * diff + self.mu * self.mu) - self.mu ghmr_loss = self.reduce_sum(ghmr_loss * weights, ()) / tot return ghmr_loss class RegLoss(nn.Cell): #reg_l1_loss """ Warpper for regression loss. Args: mode(str): L1 or Smoothed L1 loss. Default: "l1" Returns: Tensor, regression loss. """ def __init__(self, mode='l1'): super(RegLoss, self).__init__() self.reduce_sum = ops.ReduceSum() self.cast = ops.Cast() self.expand_dims = ops.ExpandDims() self.reshape = ops.Reshape() self.gather_feature = TransposeGatherFeature() if mode == 'l1': self.loss = nn.L1Loss(reduction='sum') elif mode == 'sl1': self.loss = nn.SmoothL1Loss() else: self.loss = None def construct(self, output, mask, ind, target): pred = self.gather_feature(output, ind) mask = self.cast(mask, mstype.float32) num = self.reduce_sum(mask, ()) mask = self.expand_dims(mask, 2) target = target * mask pred = pred * mask regr_loss = self.loss(pred, target) regr_loss = regr_loss / (num + 1e-4) return regr_loss class RegWeightedL1Loss(nn.Cell): """ Warpper for weighted regression loss. Args: None Returns: Tensor, regression loss. """ def __init__(self): super(RegWeightedL1Loss, self).__init__() self.reduce_sum = ops.ReduceSum() self.gather_feature = TransposeGatherFeature() self.cast = ops.Cast() self.l1_loss = nn.L1Loss(reduction='sum') def construct(self, output, mask, ind, target): pred = self.gather_feature(output, ind) mask = self.cast(mask, mstype.float32) num = self.reduce_sum(mask, ()) loss = self.l1_loss(pred * mask, target * mask) loss = loss / (num + 1e-4) return loss class LossCallBack(Callback): """ Monitor the loss in training. If the loss in NAN or INF terminating training. Args: dataset_size (int): Dataset size. Default: -1. enable_static_time (bool): enable static time cost, adaption for CPU. Default: False. """ def __init__(self, dataset_size=-1, enable_static_time=False): super(LossCallBack, self).__init__() self._dataset_size = dataset_size self._enable_static_time = enable_static_time def step_begin(self, run_context): """ Get beginning time of each step """ self._begin_time = time.time() def step_end(self, run_context): """ Print loss after each step """ cb_params = run_context.original_args() if self._dataset_size > 0: percent, epoch_num = math.modf(cb_params.cur_step_num / self._dataset_size) if percent == 0: percent = 1 epoch_num -= 1 if self._enable_static_time: cur_time = time.time() time_per_step = cur_time - self._begin_time print("epoch: {}, current epoch percent: {}, step: {}, time per step: {} s, outputs are {}" .format(int(epoch_num), "%.3f" % percent, cb_params.cur_step_num, "%.3f" % time_per_step, str(cb_params.net_outputs)), flush=True) else: print("epoch: {}, current epoch percent: {}, step: {}, outputs are {}" .format(int(epoch_num), "%.3f" % percent, cb_params.cur_step_num, str(cb_params.net_outputs)), flush=True) else: print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num, str(cb_params.net_outputs)), flush=True) class CenterNetPolynomialDecayLR(LearningRateSchedule): """ Warmup and polynomial decay learning rate for CenterNet network. Args: learning_rate(float): Initial learning rate. end_learning_rate(float): Final learning rate after decay. warmup_steps(int): Warmup steps. decay_steps(int): Decay steps. power(int): Learning rate decay factor. Returns: Tensor, learning rate in time. """ def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power): super(CenterNetPolynomialDecayLR, self).__init__() self.warmup_flag = False if warmup_steps > 0: self.warmup_flag = True self.warmup_lr = WarmUpLR(learning_rate, warmup_steps) self.decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power) self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32)) self.greater = ops.Greater() self.one = Tensor(np.array([1.0]).astype(np.float32)) self.cast = ops.Cast() def construct(self, global_step): decay_lr = self.decay_lr(global_step) if self.warmup_flag: is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) warmup_lr = self.warmup_lr(global_step) lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr else: lr = decay_lr return lr class CenterNetMultiEpochsDecayLR(LearningRateSchedule): """ Warmup and multi-steps decay learning rate for CenterNet network. Args: learning_rate(float): Initial learning rate. warmup_steps(int): Warmup steps. multi_steps(list int): The steps corresponding to decay learning rate. steps_per_epoch(int): How many steps for each epoch. factor(int): Learning rate decay factor. Default: 10. Returns: Tensor, learning rate in time. """ def __init__(self, learning_rate, warmup_steps, multi_epochs, steps_per_epoch, factor=10): super(CenterNetMultiEpochsDecayLR, self).__init__() self.warmup_flag = False if warmup_steps > 0: self.warmup_flag = True self.warmup_lr = WarmUpLR(learning_rate, warmup_steps) self.decay_lr = MultiEpochsDecayLR(learning_rate, multi_epochs, steps_per_epoch, factor) self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32)) self.greater = ops.Greater() self.one = Tensor(np.array([1.0]).astype(np.float32)) self.cast = ops.Cast() def construct(self, global_step): decay_lr = self.decay_lr(global_step) if self.warmup_flag: is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) warmup_lr = self.warmup_lr(global_step) lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr else: lr = decay_lr # print('CenterNetMultiEpochsDecayLR:',lr.dtype) return lr class MultiEpochsDecayLR(LearningRateSchedule): """ Calculate learning rate base on multi epochs decay function. Args: learning_rate(float): Initial learning rate. multi_steps(list int): The steps corresponding to decay learning rate. steps_per_epoch(int): How many steps for each epoch. factor(int): Learning rate decay factor. Default: 10. Returns: Tensor, learning rate. """ def __init__(self, learning_rate, multi_epochs, steps_per_epoch, factor=10): super(MultiEpochsDecayLR, self).__init__() if not isinstance(multi_epochs, (list, tuple)): raise TypeError("multi_epochs must be list or tuple.") self.multi_epochs = Tensor(np.array(multi_epochs, dtype=np.float32) * steps_per_epoch) self.num = len(multi_epochs) self.start_learning_rate = learning_rate self.steps_per_epoch = steps_per_epoch self.factor = factor self.pow = ops.Pow() self.cast = ops.Cast() self.less_equal = ops.LessEqual() self.reduce_sum = ops.ReduceSum() def construct(self, global_step): cur_step = self.cast(global_step, mstype.float32) multi_epochs = self.cast(self.multi_epochs, mstype.float32) epochs = self.cast(self.less_equal(multi_epochs, cur_step), mstype.float32) lr = self.start_learning_rate / self.pow(self.factor, self.reduce_sum(epochs, ())) return lr
35.309969
118
0.603776
11da27cd9925e5d76f06ff68d377bb095e8cd8b2
1,188
py
Python
workflow_array_ephys/pipeline.py
dimitri-yatsenko/workflow-ephys
ea89aa92da527960a6993245e53881bffd40e123
[ "MIT" ]
1
2021-07-28T07:54:40.000Z
2021-07-28T07:54:40.000Z
workflow_array_ephys/pipeline.py
dimitri-yatsenko/workflow-ephys
ea89aa92da527960a6993245e53881bffd40e123
[ "MIT" ]
28
2021-03-24T16:22:03.000Z
2022-03-25T16:02:05.000Z
workflow_array_ephys/pipeline.py
dimitri-yatsenko/workflow-ephys
ea89aa92da527960a6993245e53881bffd40e123
[ "MIT" ]
6
2021-04-27T23:15:36.000Z
2022-01-24T21:29:43.000Z
import datajoint as dj from element_animal import subject from element_lab import lab from element_session import session from element_array_ephys import probe, ephys from element_animal.subject import Subject from element_lab.lab import Source, Lab, Protocol, User, Project from element_session.session import Session from .paths import get_ephys_root_data_dir, get_session_directory if 'custom' not in dj.config: dj.config['custom'] = {} db_prefix = dj.config['custom'].get('database.prefix', '') # Activate "lab", "subject", "session" schema ---------------------------------- lab.activate(db_prefix + 'lab') subject.activate(db_prefix + 'subject', linking_module=__name__) session.activate(db_prefix + 'session', linking_module=__name__) # Declare table "SkullReference" for use in element-array-ephys ---------------- @lab.schema class SkullReference(dj.Lookup): definition = """ skull_reference : varchar(60) """ contents = zip(['Bregma', 'Lambda']) # Activate "ephys" schema ------------------------------------------------------ ephys.activate(db_prefix + 'ephys', db_prefix + 'probe', linking_module=__name__)
27.627907
80
0.66835
29361a6123f58daf5a9f423360f8dfb90ffa384a
497
py
Python
nomi/migrations/0121_auto_20170805_1213.py
TheDjangoBoys/Gymkhana-Nominations
6ce13fb3a21fe91630e0c8fdaf597e61c87f2d06
[ "MIT" ]
null
null
null
nomi/migrations/0121_auto_20170805_1213.py
TheDjangoBoys/Gymkhana-Nominations
6ce13fb3a21fe91630e0c8fdaf597e61c87f2d06
[ "MIT" ]
null
null
null
nomi/migrations/0121_auto_20170805_1213.py
TheDjangoBoys/Gymkhana-Nominations
6ce13fb3a21fe91630e0c8fdaf597e61c87f2d06
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-08-05 12:13 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('nomi', '0120_auto_20170805_1210'), ] operations = [ migrations.RemoveField( model_name='post', name='end_date', ), migrations.RemoveField( model_name='post', name='post_session', ), ]
20.708333
48
0.581489
5b2a64cca7083722a08fe3a607628e9bc3e5f5e5
1,002
py
Python
aqt/jax_legacy/jax/wmt_mlperf/hparams_configs/experimental/small_model_4bit_weights_and_fixed_acts.py
ychzhang/aqt
54427ea65120af980b8f2540e94ebe2db1dd3ccd
[ "Apache-2.0" ]
2
2022-01-13T06:34:00.000Z
2022-03-30T17:08:55.000Z
aqt/jax_legacy/jax/wmt_mlperf/hparams_configs/experimental/small_model_4bit_weights_and_fixed_acts.py
ychzhang/aqt
54427ea65120af980b8f2540e94ebe2db1dd3ccd
[ "Apache-2.0" ]
3
2022-03-30T19:48:22.000Z
2022-03-31T20:47:30.000Z
aqt/jax_legacy/jax/wmt_mlperf/hparams_configs/experimental/small_model_4bit_weights_and_fixed_acts.py
ychzhang/aqt
54427ea65120af980b8f2540e94ebe2db1dd3ccd
[ "Apache-2.0" ]
3
2022-01-13T00:10:17.000Z
2022-03-29T17:31:16.000Z
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Small version of full_model_4bit_weights_and_fixed_acts.""" from aqt.jax_legacy.jax.wmt_mlperf.hparams_configs import base_config from aqt.jax_legacy.jax.wmt_mlperf.hparams_configs.experimental import small_model_bfloat16 def get_config(): config = small_model_bfloat16.get_config( quant_target=base_config.QuantTarget.WEIGHTS_AND_FIXED_ACTS) config.weight_prec = 4 config.quant_act.prec = 4 return config
37.111111
91
0.788423
367626f40298ba8214c2c80e13657abbcf7d77cf
599
py
Python
reachme/complaint/migrations/0009_alter_complaint_subcategory_servant_role.py
akshita-k06/Socialshout
ef45c7f4a2d73f613760f59d507554465ba19264
[ "MIT" ]
1
2021-06-28T08:20:25.000Z
2021-06-28T08:20:25.000Z
reachme/complaint/migrations/0009_alter_complaint_subcategory_servant_role.py
akshita-k06/SocialShout
ef45c7f4a2d73f613760f59d507554465ba19264
[ "MIT" ]
null
null
null
reachme/complaint/migrations/0009_alter_complaint_subcategory_servant_role.py
akshita-k06/SocialShout
ef45c7f4a2d73f613760f59d507554465ba19264
[ "MIT" ]
1
2021-06-27T14:45:59.000Z
2021-06-27T14:45:59.000Z
# Generated by Django 3.2 on 2021-06-14 05:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('complaint', '0008_alter_complaint_subcategory_servant_role'), ] operations = [ migrations.AlterField( model_name='complaint_subcategory', name='servant_role', field=models.SmallIntegerField(choices=[(1, 'MSEB Chief Engineer'), (2, 'Health Department'), (3, 'Water Conservation officer'), (4, 'Public grievance officer'), (5, 'Department Safety Officer')], default=0), ), ]
31.526316
220
0.656093
4fa93542a574917045fd4e0f8e634b7399f863b5
1,907
py
Python
service-rpc/src/pypi/setup.py
Genius-pig/incubator-iotdb
67c0b62dbd7d1423a3ee2bf13683815a5bdb3d4a
[ "Apache-2.0" ]
1
2019-12-23T14:27:56.000Z
2019-12-23T14:27:56.000Z
service-rpc/src/pypi/setup.py
rongbo-j/incubator-iotdb
96fd6d70e35f8bbbcea1a0fc2d48989dd61c5379
[ "Apache-2.0" ]
null
null
null
service-rpc/src/pypi/setup.py
rongbo-j/incubator-iotdb
96fd6d70e35f8bbbcea1a0fc2d48989dd61c5379
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import setuptools import io try: with io.open('README.md', encoding='utf-8') as f: long_description = f.read() except FileNotFoundError: long_description = '' print long_description setuptools.setup( name="apache-iotdb", # Replace with your own username version="0.9.0", author=" Apache Software Foundation", author_email="[email protected]", description="Apache IoTDB (incubating) client API", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/apache/incubator-iotdb", packages=setuptools.find_packages(), install_requires=[ 'thrift', ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], python_requires='>=3.7', license='Apache License, Version 2.0', website='https://iotdb.apache.org', )
34.053571
71
0.698479
9291a3c63408da6afb0946c54331f76850050bfa
512
py
Python
views/charts/ClosenessCentralityChart.py
alvarofpp/ufrn-imd1155-brazil-air-traffic-network-analysis
41b9b24a238110c17c09e2a4e2df542c6bcbce1b
[ "MIT" ]
null
null
null
views/charts/ClosenessCentralityChart.py
alvarofpp/ufrn-imd1155-brazil-air-traffic-network-analysis
41b9b24a238110c17c09e2a4e2df542c6bcbce1b
[ "MIT" ]
null
null
null
views/charts/ClosenessCentralityChart.py
alvarofpp/ufrn-imd1155-brazil-air-traffic-network-analysis
41b9b24a238110c17c09e2a4e2df542c6bcbce1b
[ "MIT" ]
null
null
null
import networkx as nx from typing import Dict from .BokehChart import BokehChart class ClosenessCentralityChart(BokehChart): _title = 'Closeness Centrality' _attribute = 'closeness_centrality' def __init__(self, **kwargs): kwargs.update({ 'tooltips': [ ('closeness centrality', '@' + self._attribute) ], }) super().__init__(**kwargs) def manipulate_data(self, graph) -> Dict: return dict(nx.closeness_centrality(graph))
25.6
63
0.630859
b2f448445656385de2eaf744dfdc6dff0eb9055f
1,566
py
Python
Assignment/Week6/LinkMySQL.py
wcsodw1/Wehelp-assignments
1225e4d8614cb89b5ed4ea8ad58411a52cacc2f8
[ "MIT" ]
null
null
null
Assignment/Week6/LinkMySQL.py
wcsodw1/Wehelp-assignments
1225e4d8614cb89b5ed4ea8ad58411a52cacc2f8
[ "MIT" ]
null
null
null
Assignment/Week6/LinkMySQL.py
wcsodw1/Wehelp-assignments
1225e4d8614cb89b5ed4ea8ad58411a52cacc2f8
[ "MIT" ]
null
null
null
# python LinkMySQL.py import pymysql # 打开数据库连接 db = pymysql.connect(host='localhost', user='root', password='root', database='website') # 使用 cursor() 方法创建一个游标对象 cursor cursor = db.cursor() # 使用 execute() 方法执行 SQL,如果表存在则删除 cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") # 使用预处理语句创建表 sql = """CREATE TABLE MEMEBER_DATA ( NAME CHAR(20) NOT NULL, ACCOUNT CHAR(20), PASSWORD CHAR(20) )""" cursor.execute(sql) # 关闭数据库连接 db.close() # config = { # 'host': '127.0.0.1', # 'port': 3306, # 'user': 'root', # 'password': 'root', # 'db': 'website', # 'charset': 'utf8mb4', # 'cursorclass': pymysql.cursors.DictCursor, # } # with connection.cursor() as cursor: # # 執行sql語句,進行查詢 # sql = 'SHOW DATABASES' # cursor.execute(sql) # result = cursor.fetchall() # print(result) # db = pymysql.connect(host='127.0.0.1', port=3306, user='root', # passwd='root', charset='utf8mb4') # cursor = db.cursor() # sql = 'SELECT VERSION()' # cursor.execute(sql) # data = cursor.fetchone() # print("Database version : %s " % data) # # sql2 = "SHOW DATABASES" # sql2 = "SELECT * FROM member_" # cursor.execute(sql2) # restul = cursor.fetchall() # print(restul) # cursor.close() # import mysql.connector # from mysql.connector import Error # maxdb = mysql.connector.connect( # host="127.0.0.1", # user="root", # password="password", # database="website", # auth_plugin='root' # ) # cursor = maxdb.cursor()
21.452055
64
0.5894
e67436a1651546e9c261f400a2a86b3225fdcdad
8,930
py
Python
fies/fiesutils.py
nespinoza/ceres
e5426067bc5855b0f690e4a51b7d6fd2a48471c6
[ "MIT" ]
null
null
null
fies/fiesutils.py
nespinoza/ceres
e5426067bc5855b0f690e4a51b7d6fd2a48471c6
[ "MIT" ]
null
null
null
fies/fiesutils.py
nespinoza/ceres
e5426067bc5855b0f690e4a51b7d6fd2a48471c6
[ "MIT" ]
null
null
null
import pyfits import numpy as np import scipy import copy import glob import os import matplotlib.pyplot as plt import sys from pylab import * base = "../" sys.path.append(base+"utils/GLOBALutils") import GLOBALutils def get_thar_offsets(lines_thar, order_dir='wavcals/', pref='order_', suf='.iwdat', delt_or=10, del_width=200.,binning=1): start_or = int(.5*delt_or) xcs = [] for ii in range(delt_or,len(lines_thar)-delt_or): thar_order = lines_thar[ii] xct = [] for order in range(ii-start_or,ii+start_or): order_s = str(order) if (order < 10): order_s = '0' + order_s if os.access(order_dir+pref+order_s+suf,os.F_OK): f = open(order_dir+pref+order_s+suf,'r') llins = f.readlines() if True: pixel_centers_0 = [] for line in llins: w = line.split() nlines = int(w[0]) for j in range(nlines): pixel_centers_0.append(float(w[2*j+1])*1./float(binning)) pixel_centers_0 = np.array(pixel_centers_0).astype('int') #plot(thar_order) #plot(pixel_centers_0,thar_order[pixel_centers_0],'ro') #print order, order_s #show() ml = np.array(pixel_centers_0) - 2 mh = np.array(pixel_centers_0) + 2 if len(ml)>0: xc,offs = GLOBALutils.XCorPix( thar_order, ml, mh, del_width=del_width) else: xc = np.zeros(len(offs)) if len(xct) == 0: xct = xc.copy() else: xct = np.vstack((xct,xc)) if len(xcs) == 0: xcs = xct.copy() else: xcs += xct maxes, maxvels = [],[] for i in range(xcs.shape[0]): maxes.append(xcs[i].max()) maxvels.append(offs[np.argmax(xcs[i])]) #plot(offs,xcs[i]) #show() maxes,maxvels = np.array(maxes),np.array(maxvels) orders_offset = -start_or + np.argmax(maxes) rough_shift = maxvels[np.argmax(maxes)] return orders_offset, rough_shift def ra_from_sec(ra,time=True): ra = float(ra) sign = ' ' if ra < 0: sign = '-' ra *= -1 hh = ra/3600. mm = (hh - int(hh))*60. ss = (mm - int(mm))*60. shh = str(int(hh)) smm = str(int(mm)) sss = str(np.around(ss,2)) if hh<10: shh = '0' + shh if mm<10: smm = '0' + smm if ss<10: sss = '0' + sss return sign + shh + ':' + smm + ':' + sss def FileClassify(diri, log,binning=1,mode='F1', dark_corr=False): """ Classifies all files in a directory and writes a night log of science images """ # define output lists sim_sci = [] biases = [] flats = [] ThAr_ref = [] ThAr_ref_dates = [] ThAr_co = [] ThAr_co_dates = [] ThAr_sim = [] ThAr_sim_dates = [] flat_ref_dates = [] bias_ref_dates = [] obnames = [] exptimes = [] darks = [] flats_co = [] flats_co_dates = [] sdarks = [] if dark_corr and os.access(diri+'/darks.txt',os.F_OK): fd = open(diri+'/darks.txt','r') ds = fd.readlines() for dk in ds: sdarks.append(diri+dk[:-1]) sdarks = np.array(sdarks) f = open(log,'w') #Do not consider the images specified in dir+badfiles.txt bad_files = [] if os.access(diri+'bad_files.txt',os.F_OK): bf = open(diri+'bad_files.txt') linesbf = bf.readlines() for line in linesbf: bad_files.append(diri+line[:-1]) bf.close() all_files = glob.glob(diri+"/*fits") for archivo in all_files: #print archivo dump = False for bf in bad_files: if archivo == bf: dump = True break isdark=False for df in sdarks: if archivo == df: darks.append(archivo) isdark=True if dump == False and isdark == False: print archivo h = pyfits.open(archivo) hd = pyfits.getheader(archivo) if int(h[0].header['DETXBIN']) == binning and int(h[0].header['DETYBIN']) == binning and (mode in h[0].header['FIFMSKNM']) and h[0].header['IMAGETYP'] != 'COUNTTEST': print archivo, h[0].header['IMAGETYP'], h[0].header['SHSTAT'], h[0].header['EXPTIME'], h[0].header['OBJECT'], h[0].header['TCSTGT'], int(h[0].header['DETYBIN']) if h[0].header['IMAGETYP'] == 'BIAS': biases.append(archivo) mjd, mjd0 = mjd_fromheader2(h) bias_ref_dates.append( mjd ) elif h[0].header['IMAGETYP'] == 'FLAT': flats.append(archivo) mjd, mjd0 = mjd_fromheader2(h) flat_ref_dates.append( mjd ) if h[0].header['FICARMID'] == 6 and h[0].header['FILMP1'] == 1 and h[0].header['FILMP6']==0: flats_co.append(archivo) mjd, mjd0 = mjd_fromheader2(h) flats_co_dates.append( mjd ) else: flats.append(archivo) mjd, mjd0 = mjd_fromheader2(h) flat_ref_dates.append( mjd ) sc = pyfits.getdata(archivo) #plot(sc[1000]) elif h[0].header['IMAGETYP'] == 'WAVE': ThAr_ref.append(archivo) mjd, mjd0 = mjd_fromheader2(h) ThAr_ref_dates.append( mjd ) elif ((mode=='F3' or mode=='F4') and h[0].header['FICARMID'] == 6 and h[0].header['FILMP4'] == 0 and h[0].header['FILMP7']==1)\ or (mode=='F1' and h[0].header['FICARMID'] == 2 and h[0].header['FILMP4'] == 0 and h[0].header['FILMP7']==1): ThAr_ref.append(archivo) mjd, mjd0 = mjd_fromheader2(h) ThAr_ref_dates.append( mjd ) elif h[0].header['FICARMID'] == 6 and h[0].header['FILMP4'] == 1 and h[0].header['FILMP7']==0: ThAr_co.append(archivo) mjd, mjd0 = mjd_fromheader2(h) ThAr_co_dates.append( mjd ) elif h[0].header['FICARMID'] == 6 and h[0].header['FILMP4'] == 1 and h[0].header['FILMP7']==1: ThAr_sim.append(archivo) mjd, mjd0 = mjd_fromheader2(h) ThAr_sim_dates.append( mjd ) elif (mode=='F3' and h[0].header['FICARMID'] == 2) or (mode == 'F1' and h[0].header['FICARMID'] == 5)\ or (mode=='F4' and (h[0].header['FICARMID'] == 5 or h[0].header['FICARMID'] == 4)): sim_sci.append(archivo) obname = h[0].header['OBJECT'] obnames.append( obname ) ra = ra_from_sec(h[0].header['RA']*3600.*24./360.) delta = ra_from_sec(h[0].header['DEC']*3600.) airmass= float(h[0].header['AIRMASS']) texp = float(h[0].header['EXPTIME']) date = h[0].header['DATE-OBS'] hour = date[11:] date = date[:10] exptimes.append( texp ) if h[0].header['FILMP4'] == 1: simult = 'SIMULT' else: simult = 'NO_SIMULT' line = "%-15s %10s %10s %8.2f %4.2f %8s %11s %s %s\n" % (obname, ra, delta, texp, airmass, date, hour, archivo, simult) f.write(line) #show() flat_ref_dates = np.array(flat_ref_dates) flats = np.array(flats) IS = np.argsort(flat_ref_dates) flat_ref_dates = flat_ref_dates[IS] flats = flats[IS] #for i in range(len(flats)): # print 'flat',flats[i], flat_ref_dates[i] bias_ref_dates = np.array(bias_ref_dates) biases = np.array(biases) IS = np.argsort(bias_ref_dates) bias_ref_dates = bias_ref_dates[IS] biases = biases[IS] #for i in range(len(biases)): # print 'bias',biases[i], bias_ref_dates[i] f.close() return biases, np.array(flats), np.array(ThAr_ref), sim_sci, np.array(ThAr_ref_dates), obnames, exptimes, np.array(darks), np.array(flats_co), np.array(flats_co_dates),np.array(ThAr_sim), np.array(ThAr_sim_dates),np.array(ThAr_co), np.array(ThAr_co_dates) def get_darktimes(darks): times = [] for dark in darks: hd = pyfits.getheader(dark) times.append(hd['EXPTIME']) return np.unique(np.sort(np.array(times))), np.array(times) def mjd_fromheader2(h): """ return modified Julian date from header """ datetu = h[0].header['DATE-OBS'] mjd0,mjd,i = GLOBALutils.iau_cal2jd(int(datetu[:4]),int(datetu[5:7]),int(datetu[8:10])) ho = int(datetu[11:13]) mi = int(datetu[14:16]) se = float(datetu[17:]) ut = float(ho) + float(mi)/60.0 + float(se)/3600.0 mjd_start = mjd + ut/24.0 secinday = 24*3600.0 fraction = 0.5 texp = h[0].header['EXPTIME'] #sec mjd = mjd_start + (fraction * texp) / secinday return mjd, mjd0 def get_RONGAIN(hd): return hd['RDNOISE'], hd['GAIN'] def MedianCombine(ImgList, zero='none', binning=1, oii=100, off=2148): """ Median combine a list of images """ n = len(ImgList) if n==0: raise ValueError("empty list provided!") h = pyfits.open(ImgList[0]) d1 = h[1].data h1 = h[1].header d1 = OverscanTrim(d1, binning=binning,ii=oii, ff=off) if zero != 'none': z = pyfits.open(zero)[0] d1 -= z.data factor = 1.25 if (n < 3): factor = 1 ron1,gain1 = get_RONGAIN(h[1].header) ron1 = factor * ron1 / np.sqrt(n) if n>1: for i in range(n-1): td = pyfits.open(ImgList[i+1]) if zero == 'none': d1 = np.dstack((d1,OverscanTrim(td[1].data, binning=binning, ii=oii, ff=off))) else: d1 = np.dstack((d1,OverscanTrim(td[1].data, binning=binning, ii=oii, ff=off)-z.data)) d1 = np.median(d1,axis=2) return d1, ron1, gain1 def OverscanTrim(dat,binning=1,ii=100,ff=2148): """ Overscan correct and Trim a refurbished FEROS image """ #ff = 2098 #ii = 50 ff = int(np.around(ff/binning)) ii = int(np.around(ii/binning)) os = dat[:,ff:] s = np.median(os) newdata = dat[:,ii:ff].copy() - s return newdata
28.259494
256
0.619709
9f0ddebbd166f9815a9445e766f834f3cc461f15
4,396
py
Python
examples/getArch.py
kamnsv/impacket
83a581e4ba0cb3b7ba5dfa3018b87f9bf1a2cb58
[ "Apache-1.1" ]
6,612
2018-10-10T22:45:11.000Z
2022-03-31T18:13:01.000Z
examples/getArch.py
anno5750/impacket
ed7082cd0bc0d951f6eefb0a98c4c1360fe1a8a2
[ "Apache-1.1" ]
703
2018-10-11T11:38:30.000Z
2022-03-31T14:59:22.000Z
examples/getArch.py
anno5750/impacket
ed7082cd0bc0d951f6eefb0a98c4c1360fe1a8a2
[ "Apache-1.1" ]
2,172
2018-10-11T10:51:26.000Z
2022-03-31T04:45:49.000Z
#!/usr/bin/env python # Impacket - Collection of Python classes for working with network protocols. # # SECUREAUTH LABS. Copyright (C) 2020 SecureAuth Corporation. All rights reserved. # # This software is provided under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Description: # This script will connect against a target (or list of targets) machine/s and gather the OS architecture type # installed. # The trick has been discovered many years ago and is actually documented by Microsoft here: # https://msdn.microsoft.com/en-us/library/cc243948.aspx#Appendix_A_53 # and doesn't require any authentication at all. # # Have in mind this trick will *not* work if the target system is running Samba. Don't know what happens with macOS. # # Author: # beto (@agsolino) # # Reference for: # RPCRT, NDR # from __future__ import division from __future__ import print_function import argparse import logging import sys from impacket import version from impacket.examples import logger from impacket.dcerpc.v5.rpcrt import DCERPCException from impacket.dcerpc.v5.transport import DCERPCTransportFactory from impacket.dcerpc.v5.epm import MSRPC_UUID_PORTMAP class TARGETARCH: def __init__(self, options): self.__machinesList = list() self.__options = options self.NDR64Syntax = ('71710533-BEBA-4937-8319-B5DBEF9CCC36', '1.0') def run(self): if self.__options.targets is not None: for line in self.__options.targets.readlines(): self.__machinesList.append(line.strip(' \r\n')) else: self.__machinesList.append(self.__options.target) logging.info('Gathering OS architecture for %d machines' % len(self.__machinesList)) logging.info('Socket connect timeout set to %s secs' % self.__options.timeout) for machine in self.__machinesList: try: stringBinding = r'ncacn_ip_tcp:%s[135]' % machine transport = DCERPCTransportFactory(stringBinding) transport.set_connect_timeout(int(self.__options.timeout)) dce = transport.get_dce_rpc() dce.connect() try: dce.bind(MSRPC_UUID_PORTMAP, transfer_syntax=self.NDR64Syntax) except DCERPCException as e: if str(e).find('syntaxes_not_supported') >= 0: print('%s is 32-bit' % machine) else: logging.error(str(e)) pass else: print('%s is 64-bit' % machine) dce.disconnect() except Exception as e: #import traceback #traceback.print_exc() logging.error('%s: %s' % (machine, str(e))) # Process command-line arguments. if __name__ == '__main__': # Init the example's logger theme logger.init() print(version.BANNER) parser = argparse.ArgumentParser(add_help = True, description = "Gets the target system's OS architecture version") parser.add_argument('-target', action='store', help='<targetName or address>') parser.add_argument('-targets', type=argparse.FileType('r'), help='input file with targets system to query Arch ' 'from (one per line). ') parser.add_argument('-timeout', action='store', default='2', help='socket timeout out when connecting to the target (default 2 sec)') parser.add_argument('-debug', action='store_true', help='Turn DEBUG output ON') if len(sys.argv)==1: parser.print_help() sys.exit(1) options = parser.parse_args() if options.target is None and options.targets is None: logging.error('You have to specify a target!') sys.exit(1) if options.debug is True: logging.getLogger().setLevel(logging.DEBUG) # Print the Library's installation path logging.debug(version.getInstallationPath()) else: logging.getLogger().setLevel(logging.INFO) try: getArch = TARGETARCH(options) getArch.run() except (Exception, KeyboardInterrupt) as e: if logging.getLogger().level == logging.DEBUG: import traceback traceback.print_exc() logging.error(str(e)) sys.exit(0)
37.254237
137
0.648544
821a9f891dacf7a50c44e62891cfc79598d34d3b
13,350
py
Python
tchannel/tchannel.py
islavov/tchannel-python
ca3da9b4e0367d2e00078b158ab9e0bb4f328619
[ "MIT" ]
98
2015-07-10T23:42:11.000Z
2021-11-08T11:21:02.000Z
tchannel/tchannel.py
islavov/tchannel-python
ca3da9b4e0367d2e00078b158ab9e0bb4f328619
[ "MIT" ]
445
2015-07-10T23:58:02.000Z
2021-08-24T14:58:39.000Z
tchannel/tchannel.py
islavov/tchannel-python
ca3da9b4e0367d2e00078b158ab9e0bb4f328619
[ "MIT" ]
43
2015-07-22T19:14:57.000Z
2021-09-14T12:12:38.000Z
# Copyright (c) 2016 Uber Technologies, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import ( absolute_import, division, print_function, unicode_literals ) import json import logging from threading import Lock from tornado import gen from . import schemes from . import transport from . import retry from . import tracing from .errors import AlreadyListeningError, ServiceNameIsRequiredError from .glossary import DEFAULT_TIMEOUT from .health import health from .health import Meta from .response import Response, TransportHeaders from .tornado import TChannel as DeprecatedTChannel from .tornado.dispatch import RequestDispatcher as DeprecatedDispatcher from .tracing import TracingContextProvider log = logging.getLogger('tchannel') __all__ = ['TChannel'] class TChannel(object): """Manages connections and requests to other TChannel services. Usage for a JSON client/server: .. code:: python tchannel = TChannel(name='foo') @tchannel.json.register def handler(request): return {'foo': 'bar'} response = yield tchannel.json( service='some-service', endpoint='endpoint', headers={'req': 'headers'}, body={'req': 'body'}, ) :cvar thrift: Make Thrift requests over TChannel and register Thrift handlers. :vartype thrift: ThriftArgScheme :cvar json: Make JSON requests over TChannel and register JSON handlers. :vartype json: JsonArgScheme :cvar raw: Make requests and register handles that pass raw bytes. :vartype raw: RawArgScheme """ FALLBACK = DeprecatedTChannel.FALLBACK def __init__(self, name, hostport=None, process_name=None, known_peers=None, trace=True, reuse_port=False, context_provider=None, tracer=None): """ **Note:** In general only one ``TChannel`` instance should be used at a time. Multiple ``TChannel`` instances are not advisable and could result in undefined behavior. :param string name: How this application identifies itself. This is the name callers will use to make contact, it is also what your downstream services will see in their metrics. :param string hostport: An optional host/port to serve on, e.g., ``"127.0.0.1:5555``. If not provided an ephemeral port will be used. When advertising on Hyperbahn you callers do not need to know your port. """ if not name: raise ServiceNameIsRequiredError self.context_provider = context_provider or TracingContextProvider() # until we move everything here, # lets compose the old tchannel self._dep_tchannel = DeprecatedTChannel( name=name, hostport=hostport, process_name=process_name, known_peers=known_peers, trace=trace, tracer=tracer, dispatcher=DeprecatedDispatcher(_handler_returns_response=True), reuse_port=reuse_port, _from_new_api=True, context_provider_fn=lambda: self.context_provider, ) self.name = name # set arg schemes self.raw = schemes.RawArgScheme(self) self.json = schemes.JsonArgScheme(self) self.thrift = schemes.ThriftArgScheme(self) self._listen_lock = Lock() # register default health endpoint self.thrift.register(Meta)(health) # advertise_response is the Future containing the response of calling # advertise(). self._advertise_response = None self._advertise_lock = Lock() tracing.api_check(tracer=tracer) def is_listening(self): return self._dep_tchannel.is_listening() @property def hooks(self): return self._dep_tchannel.hooks @property def tracer(self): return self._dep_tchannel.tracer @gen.coroutine def call( self, scheme, service, arg1, arg2=None, arg3=None, timeout=None, retry_on=None, retry_limit=None, routing_delegate=None, hostport=None, shard_key=None, tracing_span=None, trace=None, # to trace or not, defaults to self._dep_tchannel.trace caller_name=None, ): """Make low-level requests to TChannel services. **Note:** Usually you would interact with a higher-level arg scheme like :py:class:`tchannel.schemes.JsonArgScheme` or :py:class:`tchannel.schemes.ThriftArgScheme`. """ # TODO - don't use asserts for public API assert format, "format is required" assert service, "service is required" assert arg1, "arg1 is required" # default args if arg2 is None: arg2 = "" if arg3 is None: arg3 = "" if timeout is None: timeout = DEFAULT_TIMEOUT if retry_on is None: retry_on = retry.DEFAULT if retry_limit is None: retry_limit = retry.DEFAULT_RETRY_LIMIT # TODO - allow filters/steps for serialization, tracing, etc... tracing.apply_trace_flag(tracing_span, trace, self._dep_tchannel.trace) # calls tchannel.tornado.peer.PeerClientOperation.__init__ operation = self._dep_tchannel.request( service=service, hostport=hostport, arg_scheme=scheme, retry=retry_on, tracing_span=tracing_span ) # fire operation transport_headers = { transport.SCHEME: scheme, transport.CALLER_NAME: caller_name or self.name, } if shard_key: transport_headers[transport.SHARD_KEY] = shard_key if routing_delegate: transport_headers[transport.ROUTING_DELEGATE] = routing_delegate response = yield operation.send( arg1=arg1, arg2=arg2, arg3=arg3, headers=transport_headers, retry_limit=retry_limit, ttl=timeout, ) # unwrap response body = yield response.get_body() headers = yield response.get_header() t = TransportHeaders.from_dict(response.headers) result = Response( body=body, headers=headers, transport=t, status=response.code, ) raise gen.Return(result) def listen(self, port=None): with self._listen_lock: if self._dep_tchannel.is_listening(): listening_port = int(self.hostport.rsplit(":")[1]) if port and port != listening_port: raise AlreadyListeningError( "TChannel server is already listening on port: %d" % listening_port ) else: return return self._dep_tchannel.listen(port) @property def host(self): return self._dep_tchannel.host @property def hostport(self): return self._dep_tchannel.hostport @property def port(self): return self._dep_tchannel.port def is_closed(self): return self._dep_tchannel.closed def close(self): return self._dep_tchannel.close() def register(self, scheme, endpoint=None, handler=None, **kwargs): if scheme is self.FALLBACK: # scheme is not required for fallback endpoints endpoint = scheme scheme = None def decorator(fn): # assert handler is None, "can't handler when using as decorator" if endpoint is None: e = fn.__name__ else: e = endpoint return self._dep_tchannel.register( endpoint=e, scheme=scheme, handler=fn, **kwargs ) if handler is None: return decorator else: return decorator(handler) def advertise(self, routers=None, name=None, timeout=None, router_file=None, jitter=None): """Advertise with Hyperbahn. After a successful advertisement, Hyperbahn will establish long-lived connections with your application. These connections are used to load balance inbound and outbound requests to other applications on the Hyperbahn network. Re-advertisement happens periodically after calling this method (every minute). Hyperbahn will eject us from the network if it doesn't get a re-advertise from us after 5 minutes. This function may be called multiple times if it fails. If it succeeds, all consecutive calls are ignored. :param list routers: A seed list of known Hyperbahn addresses to attempt contact with. Entries should be of the form ``"host:port"``. :param string name: The name your application identifies itself as. This is usually unneeded because in the common case it will match the ``name`` you initialized the ``TChannel`` instance with. This is the identifier other services will use to make contact with you. :param timeout: The timeout (in sec) for the initial advertise attempt. Defaults to 30 seconds. :param jitter: Variance allowed in the interval per request. Defaults to 5 seconds. The jitter applies to the initial advertise request as well. :param router_file: The host file that contains the routers information. The file should contain a JSON stringified format of the routers parameter. Either routers or router_file should be provided. If both provided, a ValueError will be raised. :returns: A future that resolves to the remote server's response after the first advertise finishes. :raises TimeoutError: When unable to make our first advertise request to Hyperbahn. Subsequent requests may fail but will be ignored. """ if routers is not None and router_file is not None: raise ValueError( 'Only one of routers and router_file can be provided.') if routers is None and router_file is not None: # should just let the exceptions fly try: with open(router_file, 'r') as json_data: routers = json.load(json_data) except (IOError, OSError, ValueError): log.exception('Failed to read seed routers list.') raise @gen.coroutine def _advertise(): result = yield self._dep_tchannel.advertise( routers=routers, name=name, timeout=timeout, ) body = yield result.get_body() headers = yield result.get_header() response = Response(json.loads(body.decode('utf8')), headers or {}) raise gen.Return(response) def _on_advertise(future): if not future.exception(): return # If the request failed, clear the response so that we can try # again. with self._advertise_lock: # `is` comparison to ensure we're not deleting another Future. if self._advertise_response is future: self._advertise_response = None with self._advertise_lock: if self._advertise_response is not None: return self._advertise_response future = self._advertise_response = _advertise() # We call add_done_callback here rather than when we call _advertise() # because if the future has already resolved by the time we call # add_done_callback, the callback will immediately be executed. The # callback will try to acquire the advertise_lock which we already # hold and end up in a deadlock. future.add_done_callback(_on_advertise) return future
34.056122
79
0.625243
1ec417d31df43492b706f9cf0a742f874e8822eb
653
bzl
Python
rules/jvm/private/label.bzl
tjarvstrand/rules_scala
ff423d8bdd0e5383f8f2c048ffd7704bb51a91bf
[ "Apache-2.0" ]
53
2019-01-07T23:15:32.000Z
2021-09-24T00:27:40.000Z
rules/jvm/private/label.bzl
tjarvstrand/rules_scala
ff423d8bdd0e5383f8f2c048ffd7704bb51a91bf
[ "Apache-2.0" ]
101
2019-01-05T04:52:40.000Z
2021-01-29T16:48:58.000Z
rules/jvm/private/label.bzl
tjarvstrand/rules_scala
ff423d8bdd0e5383f8f2c048ffd7704bb51a91bf
[ "Apache-2.0" ]
24
2019-01-23T07:54:28.000Z
2022-02-10T19:42:07.000Z
load("@rules_scala_annex//rules:providers.bzl", "LabeledJars") def labeled_jars_implementation(target, ctx): if JavaInfo not in target: return [] deps_labeled_jars = [dep[LabeledJars] for dep in getattr(ctx.rule.attr, "deps", []) if LabeledJars in dep] java_info = target[JavaInfo] return [ LabeledJars( values = depset( [struct(label = ctx.label, jars = depset(transitive = [java_info.compile_jars, java_info.full_compile_jars]))], order = "preorder", transitive = [labeled_jars.values for labeled_jars in deps_labeled_jars], ), ), ]
36.277778
127
0.623277
f955058a256de3e402aec4fa22a9f344a9ac4b04
11,961
py
Python
tests/v1/test_actions.py
tfuji384/atodeyomu
8a5e61a593d099726131e060a33b8801056bc286
[ "MIT" ]
null
null
null
tests/v1/test_actions.py
tfuji384/atodeyomu
8a5e61a593d099726131e060a33b8801056bc286
[ "MIT" ]
null
null
null
tests/v1/test_actions.py
tfuji384/atodeyomu
8a5e61a593d099726131e060a33b8801056bc286
[ "MIT" ]
null
null
null
import json from http import HTTPStatus from unittest import mock from fastapi.testclient import TestClient from moto import mock_dynamodb2 from app import app, models from tests.factories import get_object client = TestClient(app) def test_redirect_to_view_submission(): payload = { 'type': 'view_submission', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/', data=data, allow_redirects=False) assert res.status_code == HTTPStatus.TEMPORARY_REDIRECT assert res.headers['location'] == './view_submission/' def test_redirect_to_shortcuts(): payload = { 'type': 'shortcut', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/', data=data, allow_redirects=False) assert res.status_code == HTTPStatus.TEMPORARY_REDIRECT assert res.headers['location'] == './shortcuts/' def test_redirect_to_message(): payload = { 'type': 'block_actions', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'container': { 'type': 'message' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/', data=data, allow_redirects=False) assert res.status_code == HTTPStatus.TEMPORARY_REDIRECT assert res.headers['location'] == './message/' @mock.patch('app.models.TeamConf.get', mock.Mock(side_effect=models.TeamConf.DoesNotExist)) def test_shortcut_teamconf_doesnot_exists(): payload = { 'type': 'shortcut', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/shortcuts/', data=data) assert res.status_code == HTTPStatus.BAD_REQUEST @mock_dynamodb2 @mock.patch('slack_sdk.web.base_client.BaseClient.api_call', lambda x, *y, **z:...) def test_shortcut_add_emoji_set(): models.TeamConf.create_table() models.TeamConf('T0000000000', access_token='access_token').save() payload = { 'type': 'shortcut', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'callback_id': 'edit_emoji_set', 'trigger_id': 'trigger_id', } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/shortcuts/', data=data) assert res.status_code == HTTPStatus.OK @mock.patch('app.models.TeamConf.get', get_object) @mock.patch('slack_sdk.web.base_client.BaseClient.api_call', lambda x, *y, **z:...) def test_shortcut_edit_emoji_set(): payload = { 'type': 'shortcut', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'callback_id': 'edit_emoji_set', 'trigger_id': 'trigger_id', } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/shortcuts/', data=data) assert res.status_code == HTTPStatus.OK @mock.patch('app.models.TeamConf.get', get_object) @mock.patch('slack_sdk.web.base_client.BaseClient.api_call', lambda x, *y, **z:...) def test_shortcut_edit_emoji_set(): payload = { 'type': 'shortcut', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'callback_id': 'edit_emoji_set', 'trigger_id': 'trigger_id', } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/shortcuts/', data=data) assert res.status_code == HTTPStatus.OK @mock.patch('app.models.TeamConf.get', mock.Mock(side_effect=models.TeamConf.DoesNotExist)) def test_message_team_conf_does_not_exist(): payload = { 'type': 'block_actions', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'actions': [{ 'action_id': 'mark_as_read', 'value': 'mark_as_read', 'type': 'button', 'action_ts': '1629922346.043279' }], 'container': { 'type': 'message', 'message_ts': '1629922334.000700', 'channel_id': 'channel_id', } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/message/', data=data) assert res.status_code == HTTPStatus.BAD_REQUEST @mock.patch('app.models.TeamConf.get', get_object) @mock.patch('slack_sdk.web.base_client.BaseClient.api_call', lambda x, *y, **z:...) def test_message(): payload = { 'type': 'block_actions', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'actions': [{ 'action_id': 'mark_as_read', 'value': 'mark_as_read', 'type': 'button', 'action_ts': '1629922346.043279' }], 'container': { 'type': 'message', 'message_ts': '1629922334.000700', 'channel_id': 'channel_id', } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/message/', data=data) assert res.status_code == HTTPStatus.OK @mock.patch('app.models.TeamConf.get', mock.Mock(side_effect=models.TeamConf.DoesNotExist)) def test_view_submission_team_conf_does_not_exist(): payload = { 'type': 'view_submission', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'view': { 'callback_id': 'edit_emoji_set', 'state': { 'values': { 'emoji': { 'emoji': { 'type': 'plain_text_input', 'value': 'example' } } } }, } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/view_submission/', data=data) assert res.status_code == HTTPStatus.BAD_REQUEST @mock_dynamodb2 @mock.patch('slack_sdk.WebClient.emoji_list', lambda x: {'emoji': {'example': 'https://emoji.com/example.png'}}) def test_view_submission_add_emoji(): models.TeamConf.create_table() team_conf = models.TeamConf('T0000000000', access_token='access_token') team_conf.save() payload = { 'type': 'view_submission', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'view': { 'callback_id': 'edit_emoji_set', 'state': { 'values': { 'emoji_0': { 'emoji_0': { 'type': 'plain_text_input', 'value': ':example:' } }, 'emoji_1': { 'emoji_1': { 'type': 'plain_text_input', 'value': None } }, 'emoji_2': { 'emoji_2': { 'type': 'plain_text_input', 'value': None } } } }, } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/view_submission/', data=data) team_conf.refresh() assert len(team_conf.emoji_set) == 1 assert 'example' in team_conf.emoji_set assert res.status_code == HTTPStatus.OK @mock_dynamodb2 @mock.patch('slack_sdk.WebClient.emoji_list', lambda x: {'emoji': {}}) def test_view_submission_add_unregistered_emoji(): """存在しないemojiを入力したケース """ models.TeamConf.create_table() team_conf = models.TeamConf('T0000000000', access_token='access_token') team_conf.save() payload = { 'type': 'view_submission', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'view': { 'callback_id': 'edit_emoji_set', 'state': { 'values': { 'emoji_0': { 'emoji_0': { 'type': 'plain_text_input', 'value': 'example' } }, 'emoji_1': { 'emoji_1': { 'type': 'plain_text_input', 'value': None } }, 'emoji_2': { 'emoji_2': { 'type': 'plain_text_input', 'value': None } } } }, } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/view_submission/', data=data) team_conf.refresh() assert team_conf.emoji_set is None assert res.status_code == HTTPStatus.OK assert res.json()['errors']['emoji_0'] == '登録されていないemojiです' @mock_dynamodb2 @mock.patch('slack_sdk.WebClient.emoji_list', lambda x: {'emoji': {}}) def test_view_submission_remove_emoji(): """emojiを削除""" models.TeamConf.create_table() team_conf = models.TeamConf('T0000000000', access_token='access_token', emoji_set={'example'}) team_conf.save() payload = { 'type': 'view_submission', 'team': { 'id': 'T0000000000', 'domain': 'team_domain' }, 'user': { 'id': 'U00XXXXXXX', 'team_id': 'T0000000000' }, 'view': { 'callback_id': 'edit_emoji_set', 'state': { 'values': { 'emoji_0': { 'emoji_0': { 'type': 'plain_text_input', 'value': None } }, 'emoji_1': { 'emoji_1': { 'type': 'plain_text_input', 'value': None } }, 'emoji_2': { 'emoji_2': { 'type': 'plain_text_input', 'value': None } } } } } } data = {'payload': json.dumps(payload)} res = client.post('/v1/actions/view_submission/', data=data) team_conf.refresh() assert res.status_code == HTTPStatus.OK assert team_conf.emoji_set is None
30.357868
112
0.484491
c1508cc2a1134d35a365925048d460eef69170ca
4,369
py
Python
code/cmt/python/tests/glm_test.py
lucastheis/cmt
39cf7a341279a3700ca30909a2b254ae86d0c273
[ "MIT" ]
33
2015-06-15T16:52:23.000Z
2019-11-26T19:49:36.000Z
code/cmt/python/tests/glm_test.py
lucastheis/cmt
39cf7a341279a3700ca30909a2b254ae86d0c273
[ "MIT" ]
35
2015-03-17T09:27:32.000Z
2022-01-13T00:44:05.000Z
code/cmt/python/tests/glm_test.py
lucastheis/cmt
39cf7a341279a3700ca30909a2b254ae86d0c273
[ "MIT" ]
17
2015-01-20T10:39:59.000Z
2020-12-16T10:24:13.000Z
import sys import unittest from pickle import dump, load from tempfile import mkstemp from numpy import * from numpy import max from numpy.linalg import inv from numpy.random import randn, rand from cmt.models import Bernoulli, GLM from cmt.nonlinear import LogisticFunction, BlobNonlinearity class Tests(unittest.TestCase): def test_glm_basics(self): glm = GLM(4, LogisticFunction, Bernoulli) x = randn(1000) f = glm.nonlinearity y = f(x).ravel() for i in range(x.size): self.assertAlmostEqual(y[i], 1. / (1. + exp(-x[i]))) glm.nonlinearity = f y = glm.nonlinearity(x).ravel() for i in range(x.size): self.assertAlmostEqual(y[i], 1. / (1. + exp(-x[i]))) b = Bernoulli() glm = GLM(4, f, b) glm.nonlinearity = f y = glm.nonlinearity(x).ravel() for i in range(x.size): self.assertAlmostEqual(y[i], 1. / (1. + exp(-x[i]))) self.assertTrue(isinstance(glm.distribution, Bernoulli)) # test wrong order of arguments self.assertRaises(TypeError, lambda: GLM(5, Bernoulli, LogisticFunction)) def test_glm_train(self): w = asarray([[-1., 0., 1., 2.]]).T b = 1. x = randn(4, 100000) p = 1. / (1. + exp(-dot(w.T, x) - b)) y = rand(*p.shape) < p glm = GLM(4, LogisticFunction, Bernoulli) # test gradient err = glm._check_gradient(x, y, 1e-5, parameters={ 'train_weights': False, 'train_bias': True}) self.assertLess(err, 1e-8) err = glm._check_gradient(x, y, 1e-5, parameters={ 'train_weights': True, 'train_bias': False}) self.assertLess(err, 1e-8) err = glm._check_gradient(x, y, 1e-5) self.assertLess(err, 1e-8) err = glm._check_gradient(x, y, 1e-5, parameters={ 'regularize_weights': 10., 'regularize_bias': 10.}) self.assertLess(err, 1e-8) # test training glm.train(x, y, parameters={'verbosity': 0}) self.assertLess(max(abs(glm.weights - w)), 0.1) self.assertLess(max(abs(glm.bias - b)), 0.1) glm.weights = w glm.bias = -1. glm.train(x, y, parameters={'verbosity': 0, 'train_weights': False}) self.assertLess(max(abs(glm.weights - w)), 1e-12) self.assertLess(max(abs(glm.bias - b)), 0.1) glm.weights = randn(*glm.weights.shape) glm.bias = b glm.train(x, y, parameters={'verbosity': 0, 'train_bias': False}) self.assertLess(max(abs(glm.weights - w)), 0.1) self.assertLess(max(abs(glm.bias - b)), 1e-12) def test_glm_fisher_information(self): N = 1000 T = 100 glm = GLM(3) glm.weights = randn(glm.dim_in, 1) glm.bias = -2. inputs = randn(glm.dim_in, N) outputs = glm.sample(inputs) x = glm._parameters() I = glm._fisher_information(inputs, outputs) x_mle = [] # repeated maximum likelihood estimation for t in range(T): inputs = randn(glm.dim_in, N) outputs = glm.sample(inputs) # initialize at true parameters for fast convergence glm_ = GLM(glm.dim_in) glm_.weights = glm.weights glm_.bias = glm.bias glm_.train(inputs, outputs) x_mle.append(glm_._parameters()) C = cov(hstack(x_mle), ddof=1) # inv(I) should be sufficiently close to C self.assertLess(max(abs(inv(I) - C) / (abs(C) + .1)), max(abs(C) / (abs(C) + .1)) / 2.) def test_glm_data_gradient(self): glm = GLM(7, LogisticFunction, Bernoulli) x = randn(glm.dim_in, 100) y = glm.sample(x) dx, _, ll = glm._data_gradient(x, y) h = 1e-7 # compute numerical gradient dx_ = zeros_like(dx) for i in range(glm.dim_in): x_p = x.copy() x_m = x.copy() x_p[i] += h x_m[i] -= h dx_[i] = ( glm.loglikelihood(x_p, y) - glm.loglikelihood(x_m, y)) / (2. * h) self.assertLess(max(abs(ll - glm.loglikelihood(x, y))), 1e-8) self.assertLess(max(abs(dx_ - dx)), 1e-7) def test_glm_pickle(self): tmp_file = mkstemp()[1] model0 = GLM(5, BlobNonlinearity, Bernoulli) model0.weights = randn(*model0.weights.shape) model0.bias = randn() # store model with open(tmp_file, 'wb') as handle: dump({'model': model0}, handle) # load model with open(tmp_file, 'rb') as handle: model1 = load(handle)['model'] # make sure parameters haven't changed self.assertLess(max(abs(model0.bias - model1.bias)), 1e-20) self.assertLess(max(abs(model0.weights - model1.weights)), 1e-20) x = randn(model0.dim_in, 100) y = model0.sample(x) self.assertEqual( model0.evaluate(x, y), model1.evaluate(x, y)) if __name__ == '__main__': unittest.main()
22.755208
89
0.651637
b0a045f5932d32e2af57aa53fe2d0e0efd11f087
935
py
Python
tests/tools/perf/kvtable/test_dict2kvtable.py
michalbiesek/rpma
100bed7bebc57ba1164f9b786acd4ea9ba0b688e
[ "BSD-3-Clause" ]
83
2020-02-18T13:19:10.000Z
2022-03-29T08:22:28.000Z
tests/tools/perf/kvtable/test_dict2kvtable.py
michalbiesek/rpma
100bed7bebc57ba1164f9b786acd4ea9ba0b688e
[ "BSD-3-Clause" ]
603
2020-02-13T10:45:28.000Z
2022-03-31T11:13:17.000Z
tests/tools/perf/kvtable/test_dict2kvtable.py
michalbiesek/rpma
100bed7bebc57ba1164f9b786acd4ea9ba0b688e
[ "BSD-3-Clause" ]
51
2020-02-13T09:11:15.000Z
2022-03-29T08:22:31.000Z
#!/usr/bin/env python3 # # SPDX-License-Identifier: BSD-3-Clause # Copyright 2021, Intel Corporation # """test_dict2kvtable.py -- lib.kvtable.dict2kvtable() tests""" import lib.kvtable HEADER = '<tr><th>Item</th><th>Description</th></tr></thead><tbody>' START = '<table><thead>' STOP = '</tbody></table>' EMPTY = START + HEADER + STOP SIMPLE_RANGE = 10 SIMPLE = START + HEADER \ + "".join([ '<tr><td>{}</td><td><pre>{}</pre></td></tr>'.format(k, k + 1) for k in range(SIMPLE_RANGE)]) \ + STOP EMPTY_KVTABLE = {"type": "kvtable"} def test_empty_empty(): """produce an empty table""" output = lib.kvtable.dict2kvtable(EMPTY_KVTABLE, {}) assert(output == EMPTY) def test_simple(): """produce a simple table n -> (n + 1)""" kvt = {str(k): str(k + 1) for k in range(SIMPLE_RANGE)} kvt["type"] = "kvtable" output = lib.kvtable.dict2kvtable(kvt, {}) assert(output == SIMPLE)
25.972222
69
0.612834
4593aa22a82f7cf0a2cdf1f486867cbe7d2f68a3
556
py
Python
gryphon/data_service/pollers/orderbook/bitstamp_btc_eur_orderbook_poller.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
1,109
2019-06-20T19:23:27.000Z
2022-03-20T14:03:43.000Z
gryphon/data_service/pollers/orderbook/bitstamp_btc_eur_orderbook_poller.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
63
2019-06-21T05:36:17.000Z
2021-05-26T21:08:15.000Z
gryphon/data_service/pollers/orderbook/bitstamp_btc_eur_orderbook_poller.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
181
2019-06-20T19:42:05.000Z
2022-03-21T13:05:13.000Z
from gryphon.data_service.pollers.orderbook.orderbook_poller import OrderbookPoller class BitstampBTCEUROrderbook(OrderbookPoller): def __init__(self): self.exchange_name = u'BITSTAMP_BTC_EUR' self.url = 'https://www.bitstamp.net/api/v2/order_book/btceur/' self.poll_time = 1 # API response format: # { # "asks":[["0.09022887",1704.11453071]], # "bids":[["0.09000011",3.74072284]], # "isFrozen":"0","seq":477056211, # } def parse_order(self, order): return [order[0], order[1], '']
29.263158
83
0.638489
13a870a656ab218338034f8183320b874dfe75f3
7,358
py
Python
nets/triplet_loss_all.py
avagait/gaitcopy
2fee760156b289ef12f19fb366fb62cf535c305e
[ "MIT" ]
1
2022-01-25T17:32:47.000Z
2022-01-25T17:32:47.000Z
nets/triplet_loss_all.py
avagait/gaitcopy
2fee760156b289ef12f19fb366fb62cf535c305e
[ "MIT" ]
null
null
null
nets/triplet_loss_all.py
avagait/gaitcopy
2fee760156b289ef12f19fb366fb62cf535c305e
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow_addons.utils.types import FloatTensorLike, TensorLike from typeguard import typechecked from typing import Optional def _pairwise_distances(embeddings, squared=False): """Compute the 2D matrix of distances between all the embeddings. Args: embeddings: tensor of shape (batch_size, embed_dim) squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: pairwise_distances: tensor of shape (batch_size, batch_size) """ # Get the dot product between all embeddings # shape (batch_size, batch_size) dot_product = tf.linalg.matmul(embeddings, tf.transpose(embeddings)) # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`. # This also provides more numerical stability (the diagonal of the result will be exactly 0). # shape (batch_size,) square_norm = tf.linalg.diag_part(dot_product) # Compute the pairwise distance matrix as we have: # ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2 # shape (batch_size, batch_size) distances = tf.expand_dims(square_norm, 1) - 2.0 * dot_product + tf.expand_dims(square_norm, 0) # Because of computation errors, some distances might be negative so we put everything >= 0.0 distances = tf.math.maximum(distances, 0.0) if not squared: # Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal) # we need to add a small epsilon where distances == 0.0 mask = tf.cast(tf.equal(distances, 0.0), dtype=tf.dtypes.float32) distances = distances + mask * 1e-16 distances = tf.sqrt(distances) # Correct the epsilon added: set the distances on the mask to be exactly 0.0 distances = distances * (1.0 - mask) return distances def _get_triplet_mask(labels): """Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid. A triplet (i, j, k) is valid if: - i, j, k are distinct - labels[i] == labels[j] and labels[i] != labels[k] Args: labels: tf.int32 `Tensor` with shape [batch_size] """ # Check that i, j and k are distinct indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) indices_not_equal = tf.logical_not(indices_equal) i_not_equal_j = tf.expand_dims(indices_not_equal, 2) i_not_equal_k = tf.expand_dims(indices_not_equal, 1) j_not_equal_k = tf.expand_dims(indices_not_equal, 0) distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k) # Check if labels[i] == labels[j] and labels[i] != labels[k] label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) i_equal_j = tf.expand_dims(label_equal, 2) i_equal_k = tf.expand_dims(label_equal, 1) valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k)) # Combine the two masks mask = tf.logical_and(distinct_indices, valid_labels) return mask @tf.function def triplet_batch_all_loss( y_true: TensorLike, y_pred: TensorLike, margin: FloatTensorLike = 1.0, squared: bool = False ) -> tf.Tensor: """Computes the triplet loss with semi-hard negative mining. Args: y_true: 1-D integer `Tensor` with shape [batch_size] of multiclass integer labels. y_pred: 2-D float `Tensor` of embedding vectors. Embeddings should be l2 normalized. margin: Float, margin term in the loss definition. Returns: triplet_loss: float scalar with dtype of y_pred. """ labels, embeddings = y_true, y_pred convert_to_float32 = ( embeddings.dtype == tf.dtypes.float16 or embeddings.dtype == tf.dtypes.bfloat16 ) precise_embeddings = ( tf.cast(embeddings, tf.dtypes.float32) if convert_to_float32 else embeddings ) # Reshape label tensor to [batch_size, 1]. # lshape = tf.shape(labels) # labels = tf.reshape(labels, [lshape[0], 1]) labels = tf.squeeze(labels, axis = -1) print() print('labels.shape: {}'.format(labels.shape)) print('embeddings.shape: {}'.format(precise_embeddings.shape)) pairwise_dist = _pairwise_distances(precise_embeddings, squared=squared) # shape (batch_size, batch_size, 1) anchor_positive_dist = tf.expand_dims(pairwise_dist, 2) # shape (batch_size, 1, batch_size) anchor_negative_dist = tf.expand_dims(pairwise_dist, 1) # Compute a 3D tensor of size (batch_size, batch_size, batch_size) # triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k # Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1) # and the 2nd (batch_size, 1, batch_size) triplet_loss = anchor_positive_dist - anchor_negative_dist + margin # Put to zero the invalid triplets # (where label(a) != label(p) or label(n) == label(a) or a == p) mask = _get_triplet_mask(labels) mask = tf.cast(mask, dtype=tf.dtypes.float32) triplet_loss = tf.math.multiply(mask, triplet_loss) # Remove negative losses (i.e. the easy triplets) triplet_loss = tf.math.maximum(triplet_loss, 0.0) # Count number of positive triplets (where triplet_loss > 0) valid_triplets = tf.cast(tf.greater(triplet_loss, 1e-16), dtype=tf.dtypes.float32) num_positive_triplets = tf.math.reduce_sum(valid_triplets) num_valid_triplets = tf.math.reduce_sum(mask) fraction_positive_triplets = num_positive_triplets / (num_valid_triplets + 1e-16) # Get final mean triplet loss over the valid triplets triplet_loss = tf.math.truediv( tf.math.reduce_sum( triplet_loss ), num_positive_triplets + 1e-16, ) if convert_to_float32: return tf.cast(triplet_loss, embeddings.dtype) else: return triplet_loss class TripletBatchAllLoss(tf.keras.losses.Loss): """Computes the triplet loss with semi-hard negative mining. The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than the minimum negative distance among which are at least greater than the positive distance plus the margin constant (called semi-hard negative) in the mini-batch. If no such negative exists, uses the largest negative distance instead. See: https://arxiv.org/abs/1503.03832. We expect labels `y_true` to be provided as 1-D integer `Tensor` with shape [batch_size] of multi-class integer labels. And embeddings `y_pred` must be 2-D float `Tensor` of l2 normalized embedding vectors. Args: margin: Float, margin term in the loss definition. Default value is 1.0. name: Optional name for the op. """ @typechecked def __init__( self, margin: FloatTensorLike = 1.0, name: Optional[str] = None, **kwargs ): super().__init__(name=name, reduction=tf.keras.losses.Reduction.NONE) self.margin = margin def call(self, y_true, y_pred): return triplet_batch_all_loss(y_true, y_pred, self.margin) def get_config(self): config = { "margin": self.margin, } base_config = super().get_config() return {**base_config, **config} if __name__ == '__main__': import numpy as np logits = tf.convert_to_tensor([[1.1, 1.2, 1.4], [1.09, 1.21,1.41], [0.25, 0.45, 0.75], [0.23, 0.43, 0.7], [1.5, 2.5, 3.5], [1.55, 2.75, 3.8]], dtype=tf.dtypes.float32) labels = tf.convert_to_tensor(np.array([1, 1, 2, 2, 3, 3]), dtype=tf.dtypes.float32) loss = triplet_batch_all_loss(labels, logits) print(loss)
38.726316
168
0.718266
f1eaf6337ea04e32b587e8948581b4d279792607
471
py
Python
reinforceflow/__init__.py
ktk1012/reinforceflow
88d426a5ce0480a8a0bf8f28f573582e950ebe15
[ "MIT" ]
12
2017-07-16T12:13:25.000Z
2022-03-08T04:45:16.000Z
reinforceflow/__init__.py
ktk1012/reinforceflow
88d426a5ce0480a8a0bf8f28f573582e950ebe15
[ "MIT" ]
null
null
null
reinforceflow/__init__.py
ktk1012/reinforceflow
88d426a5ce0480a8a0bf8f28f573582e950ebe15
[ "MIT" ]
4
2017-07-25T13:28:56.000Z
2018-12-01T11:05:09.000Z
from __future__ import absolute_import from reinforceflow.config import version as __version__ from reinforceflow.config import get_random_seed from reinforceflow.config import set_random_seed from reinforceflow.config import logger from reinforceflow import config from reinforceflow import agents from reinforceflow import core from reinforceflow import envs from reinforceflow import utils from reinforceflow import models config.logger_setup() del absolute_import
27.705882
55
0.874735
6f219aeb01ea519373b2d340f40c1eec75858a63
1,242
py
Python
adafruit_circuitpython_libs/adafruit-circuitpython-bundle-py-20210214/examples/circuitplayground_temperature_neopixels.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
75
2017-08-17T18:00:28.000Z
2022-03-30T00:37:20.000Z
adafruit_circuitpython_libs/adafruit-circuitpython-bundle-py-20210214/examples/circuitplayground_temperature_neopixels.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
65
2017-08-02T02:06:54.000Z
2022-03-21T22:45:08.000Z
adafruit_circuitpython_libs/adafruit-circuitpython-bundle-py-20210214/examples/circuitplayground_temperature_neopixels.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
64
2017-09-15T21:05:50.000Z
2022-02-10T06:20:45.000Z
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """ This example use the temperature sensor on the Circuit Playground, located next to the picture of the thermometer on the board. Try warming up the board to watch the number of NeoPixels lit up increase, or cooling it down to see the number decrease. You can set the min and max temperatures to make it more or less sensitive to temperature changes. """ import time from adafruit_circuitplayground import cp cp.pixels.auto_write = False cp.pixels.brightness = 0.3 # Set these based on your ambient temperature in Celsius for best results! minimum_temp = 24 maximum_temp = 30 def scale_range(value): """Scale a value from the range of minimum_temp to maximum_temp (temperature range) to 0-10 (the number of NeoPixels). Allows remapping temperature value to pixel position.""" return int((value - minimum_temp) / (maximum_temp - minimum_temp) * 10) while True: peak = scale_range(cp.temperature) print(cp.temperature) print(int(peak)) for i in range(10): if i <= peak: cp.pixels[i] = (0, 255, 255) else: cp.pixels[i] = (0, 0, 0) cp.pixels.show() time.sleep(0.05)
31.846154
97
0.716586
5bf21623b2fd650d7ac57816200a2d165266d337
422
py
Python
teraserver/python/tests/opentera/db/models/test_TeraUserGroup.py
introlab/opentera
bfc4de672c9de40b7c9a659be2138731e7ee4e94
[ "Apache-2.0" ]
10
2020-03-16T14:46:06.000Z
2022-02-11T16:07:38.000Z
teraserver/python/tests/opentera/db/models/test_TeraUserGroup.py
introlab/opentera
bfc4de672c9de40b7c9a659be2138731e7ee4e94
[ "Apache-2.0" ]
114
2019-09-16T13:02:50.000Z
2022-03-22T19:17:36.000Z
teraserver/python/tests/opentera/db/models/test_TeraUserGroup.py
introlab/opentera
bfc4de672c9de40b7c9a659be2138731e7ee4e94
[ "Apache-2.0" ]
null
null
null
import unittest import os from modules.DatabaseModule.DBManager import DBManager from opentera.config.ConfigManager import ConfigManager from tests.opentera.db.models.BaseModelsTest import BaseModelsTest class TeraUserGroupTest(BaseModelsTest): filename = os.path.join(os.path.dirname(__file__), 'TeraUserGroupTest.db') SQLITE = { 'filename': filename } def test_defaults(self): pass
22.210526
78
0.758294
febf7fbc7ecaef4776bcedcb2d3c0564a2c9b3d8
3,461
py
Python
crseek/annotators.py
DamLabResources/crisprtree
13d8870dc1d3bba6c58ef23772c1a2504e817198
[ "MIT" ]
5
2018-11-11T08:57:42.000Z
2021-07-27T21:31:00.000Z
crseek/annotators.py
DamLabResources/crisprtree
13d8870dc1d3bba6c58ef23772c1a2504e817198
[ "MIT" ]
1
2019-01-08T15:17:07.000Z
2019-01-09T08:13:01.000Z
crseek/annotators.py
DamLabResources/crseek
13d8870dc1d3bba6c58ef23772c1a2504e817198
[ "MIT" ]
null
null
null
import pandas as pd from Bio import Alphabet from Bio.Seq import Seq, reverse_complement from Bio.SeqFeature import SeqFeature, FeatureLocation from Bio.SeqRecord import SeqRecord from crseek import exceptions from crseek.estimators import SequenceBase from crseek import utils def annotate_grna_binding(spacer, seq_record, estimator, extra_qualifiers=None, exhaustive=False, mismatch_tolerance=6, openci_devices=None): """ In-place annotation of gRNA binding location. Parameters ---------- spacer : Seq spacer to search for. seq_record : SeqRecord The sequence to search within estimator : SequenceBase or None Estimator to use to evaluate spacer binding. If None, exact string matching is used. extra_qualifiers : dict Extra qualifiers to add to the SeqFeature exhaustive : bool If True then all positions within the seq_record are checked. If False then a mismatch search is performed first. mismatch_tolerance : int If using a mismatch search, the tolerance. openci_devices : str or None Formatted string of device-IDs acceptable to cas-offinder. If None the first choice is picked from the OpenCI device list. Returns ------- SeqRecord """ exceptions._check_seq_alphabet(spacer, base_alphabet=Alphabet.RNAAlphabet) exceptions._check_seq_alphabet(seq_record.seq, base_alphabet=Alphabet.DNAAlphabet) if estimator is None: pos = seq_record.seq.find(spacer) strand = 1 if pos == -1: pos = seq_record.seq.find(reverse_complement(spacer)) strand = -1 if pos == -1: raise ValueError('Could not find exact match on either strand') seq_record.features.append(_build_target_feature(pos, strand, spacer, score=1, extra_quals=extra_qualifiers)) return seq_record if exhaustive: tiles = utils.tile_seqrecord(spacer, seq_record) else: tiles = utils.cas_offinder([spacer], mismatch_tolerance, locus=[seq_record], openci_devices=openci_devices) pred = estimator.predict(tiles[['spacer', 'target']].values) pred_ser = pd.Series(pred, index=tiles.index) hits = pred_ser[pred_ser] for _, strand, left in hits.index: seq_record.features.append(_build_target_feature(left, strand, spacer, score=1, extra_quals=extra_qualifiers)) return seq_record def _build_target_feature(left, strand, spacer, score=1, extra_quals=None): """ Parameters ---------- left : int Left most position of the binding site strand : int 1 or -1 indicating the positive or negative strand spacer : Seq gRNA that's targetted to this location score : float Binding score of the gRNA to this location extra_quals : dict Extra qualifiers to add to the SeqFeature Returns ------- SeqFeature """ if strand not in {-1, 1}: raise ValueError('Strand must be {1, -1}') quals = {'spacer': str(spacer), 'On Target Score': score} if extra_quals is not None: quals.update(extra_quals) return SeqFeature(FeatureLocation(start=left, end=left + 23, strand=strand), qualifiers=quals)
32.345794
92
0.645767
571aa4a263581d9cdbb9d3d32ade91bccc9465eb
173
py
Python
iamheadless_publisher/apps.py
plain-ie/iamheadless_publisher
8a7bcee202c3dae6909452d87936f4d9f2d2668e
[ "MIT" ]
null
null
null
iamheadless_publisher/apps.py
plain-ie/iamheadless_publisher
8a7bcee202c3dae6909452d87936f4d9f2d2668e
[ "MIT" ]
null
null
null
iamheadless_publisher/apps.py
plain-ie/iamheadless_publisher
8a7bcee202c3dae6909452d87936f4d9f2d2668e
[ "MIT" ]
null
null
null
from django.apps import AppConfig class IamheadlessPublisherConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'iamheadless_publisher'
24.714286
56
0.797688
b775e76527b76b4f14eabe487616fcd891e8a359
1,004
py
Python
main.py
yadhu621/zerossl-app
a20a9820cc0afb0b57968bfa8c13033623710db7
[ "MIT" ]
null
null
null
main.py
yadhu621/zerossl-app
a20a9820cc0afb0b57968bfa8c13033623710db7
[ "MIT" ]
1
2022-03-09T01:58:17.000Z
2022-03-09T01:58:17.000Z
main.py
yadhu621/zerossl-app
a20a9820cc0afb0b57968bfa8c13033623710db7
[ "MIT" ]
null
null
null
import requests API_KEY = "96903f1cf7f7d5e8493cf56d52be4c31" BASE_URL = "https://api.zerossl.com" # api.zerossl.com/example_endpoint?access_key=EXAMPLE_KEY URL = BASE_URL + '/certificates?access_key=' + API_KEY DOMAIN = "amyra.co.uk" # List certificates resp = requests.get(URL) resp_dict = resp.json() results = resp_dict["results"] existing_subdomains = [] for result in results: subdomain = result["common_name"] if result["status"] == "issued" and DOMAIN in subdomain: existing_subdomains.append(subdomain) print(existing_subdomains) # List certificates with expiry date existing_subdomains_with_expiry = [] for result in results: if result["status"] == "issued": subdomain = result["common_name"] expiry = result["expires"][0:10] existing_subdomains_with_expiry.append( { "subdomain": subdomain, "expiry": expiry }) print(existing_subdomains_with_expiry) if __name__ == "__main__": pass
25.74359
60
0.688247