File size: 11,517 Bytes
ad576ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
"""
This module generates datasets doing string manipulations
"""
import enum
import random
from collections import deque
import os
import string
import json
class StringOperations(str, enum.Enum):
SLICE = "slicing"
STARTS_ENDS_WITH = "starts_ends_with"
LEN= "len"
CONCAT= "concat"
REPEAT= "repeat"
UPPER_LOWER_SWAP_CASE= "upper_lower_swap_case"
IS= "is"
def generate_random_string(length, charset = None):
"""
Generates a random string of length length
:param length: the length of the string
:param alphabet: the alphabet to use
:return: the string
"""
if charset is None:
charset = string.ascii_letters + string.digits
return ''.join(charset[b % len(charset)] for b in os.urandom(length))
def generate_reverse_string_prompt(samples, length=20, rev_op="'{sample}'[::-1]",result_var="res", **kwargs):
"""
provides samples examples of reversing a random string.
:param s: the string
:return: the reversed string
"""
for i in range(samples):
s = generate_random_string(length)
o = rev_op.format(sample=s)
yield o, s[::-1], f"{result_var}='{o}'[::-1]", result_var, "reverse"
def generate_slicing_examples(samples, length=20, #char_at_op="'{sample}'[{pos}]",
pos_range=(1,2),
slice_range = (1,1),
step_size = (1,1),
result_var="res", **kwargs):
"""
provides samples examples of reversing a random string.
:param s: the string
:return: yields inp, outp, code, res_var, todo_str
"""
for _ in range(samples):
s = generate_random_string(length)
for i in range(*pos_range):
for j in range(*slice_range):
if j == 1: # only one character means no slice
o = f"'{s}'[{i}]"
yield o, s[i], f"{result_var}={o}", result_var, f"char_at_{i}"
else:
for k in range(*step_size):
if k==0:
continue
elif j==0 and i==0: # only step size
o = f"'{s}'[::{k}]"
yield o, s[::k], f"{result_var}={o}", result_var, f"step_::{k}"
elif k==1:
o = f"'{s}'[{i}:{i+j}]"
yield o, s[i:i+j], f"{result_var}={o}", result_var, f"slice_{i}:{i+j}"
elif abs(k)<j: # step size needs to be smaller
if k>0:
o = f"'{s}'[{i}:{i+j}:{k}]"
yield o, s[i:i+j:k], f"{result_var}={o}", result_var, f"slice_step_{i}:{i+j}:{k}"
else:
o = f"'{s}'[{i}:{i+j}][::{k}]"
yield o, s[i:i+j][::k], f"{result_var}={o}", result_var, f"slice_reverse_{i}:{i+j}:{k}"
class StringOperationGenerator:
"""
"""
data=None
def set_samples(self, equations):
self.equations = equations
return self
@staticmethod
def get_prompt(template_name:str = "simple", with_code:bool = False):
if template_name == "simple":
returns = StringOperationGenerator._get_simple_string_op_prompt()
else: returns = StringOperationGenerator._get_plain_prompt()
if with_code:
returns[-1].extend( [{"templates": ["###ACTION: exec-python\n{code}\n###/ACTION"],
"keys": ["code"],
"component": "action",},
])
return returns
@staticmethod
def _get_plain_prompt():
"""
:return: template for generating value filled equation, e.g. 1+2=3 and mapping needed for the dataset
"""
inp, out = [], []
inp.extend([{"templates": ["{input}="],
"keys": ["input"],
"component": "input",
},
])
out.extend([{"templates": ["{output}\n"],
"keys": ["output"],
"component": "output",
"tags": ["exact"]}])
return [inp, out]
@staticmethod
def _get_simple_string_op_prompt():
inp, out = [], []
# todo: this is a problem here, since the prompt is context sensitive, i.e. it depends on the data.
inp.extend([{"templates": ["Conduct the string operation {operation} as follows: {input}.\n"],
"keys": ["operation", "input"],
"component": "input",
},
])
out.extend([{"templates": ["{res_var}={output}\n"],
"keys": ["res_var", "output"],
"component": "output",
"tags": ["exact"]}])
return [inp, out]
def create_data (self, samples=100, operations=(StringOperations.SLICE),
valid_data_only=True, **kwargs):
self.data = deque()
for op in operations:
if op==StringOperations.SLICE.value:
g = generate_slicing_examples(samples, **kwargs)
else:
raise NotImplementedError(f"Operation {op} not implemented")
for inp, outp, code, res_var, todo_str in g:
if valid_data_only and (outp=="" or outp is None): continue
self.data.append({"input": inp, "output": outp, "code": code,"res_var": res_var, "operation": todo_str })
self.data = list(self.data)
return self
def save(self, filename):
# load prompts and equations from file
import json
with open(filename, "w") as f:
json.dump(self.data, f)
return self
def load(self, filename):
# load data and equations from file
import json
with open(filename, "r") as f:
self.data = json.load(f)
return self
def write_data(dump_dir, file, out, compress, indent=2 ):
import json, gzip
filename = os.path.join(dump_dir, file)
if compress:
with gzip.open(f'{filename}.gz', 'wt', encoding='utf-8') as f:
json.dump(out, f, indent=indent)
else:
json.dump(out, open(filename, "w"), indent=indent)
return filename
def generate_data_for_config(dump_dir, about, s_length = (10,25, 5), pos_range = (0,5), slice_range = (0,4),
step_size = (-1,2), samples_per_config = 10, valid_data_only = True):
samples = samples_per_config * (step_size[1]-step_size[0]) \
* (slice_range[1]-slice_range[0])\
* (pos_range[1]-pos_range[0])
about["data_files"] = {"train": [], "test": []}
markdown = ["", "|Length|Set|Group|Amount|File|", "|---|---|---|---|---|" ]
train_total, test_total, id = 0, 0, 1
for length in tqdm.tqdm(range(*s_length), desc="Generating data"):
generator = StringOperationGenerator()
data = generator.create_data(samples=samples,
operations=("slicing",),
length=length,
pos_range=pos_range,
slice_range = slice_range,
step_size = step_size,
valid_data_only=valid_data_only,
result_var="res",).data
for e in data:
e["id"] = id
id=id+1
cnt = Counter([e["operation"] for e in data])
test, train = {}, {}
for d in cnt.keys(): test[d], train[d] = [], []
for ix, e in enumerate(data): # not very smart, but it is late
if len(test[e["operation"]])>cnt[e["operation"]] *(1-split_ratio):
train[e["operation"]].append(e)
else:
test[e["operation"]].append(e)
markdown.extend([f"|{length}|train|{k}|{len(v)}|stop_{length}_train.json|" for k, v in train.items()])
markdown.extend([f"|{length}|test|{k}|{len(v)}|stop_{length}_train.json|" for k, v in test.items()])
about["length"]= length
about["set"] = "train"
data = [v for value in train.values() for v in value]
write_data(dump_dir, f"stop_{length}_train.json", data, compress)
about["data_files"]["train"].append({"length": length,
"files": [f"stop_{length}_train.json"],
"entries": len(data),
"groups": [{"name": k, "amount": len(v)} for k, v in train.items()]})
train_total+=len(data)
data = [v for value in test.values() for v in value]
write_data(dump_dir, f"stop_{length}_test.json", data, compress)
about["data_files"]["test"].append({"length": length,
"files": [f"stop_{length}_test.json"],
"entries": len(data),
"groups": [{"name": k, "amount": len(v)} for k, v in test.items()]})
test_total+=len(data)
about["items"] = {"train": train_total, "test": test_total}
# now add all about key value pairs except data_files to makrdown varialbe as separate table
pre_md = ["# Metadata", "|Key|Value|", "|---|---|"]
pre_md.extend([f"|{k}|{v}|" for k, v in about.items() if k!="data_files"])
markdown = pre_md + markdown
with open(os.path.join(dump_dir, "about.json"), "w") as f:
json.dump(about, f, indent=2)
with open(os.path.join(dump_dir, "Readme.md"), "w") as f:
f.write("\n".join(markdown))
return about, markdown
if __name__=="__main__":
import datetime, os, tqdm
from collections import Counter
split_ratio = 0.7
compress = True
about = {
"dataset_name" : "StOp-small",
"hfuser":"mgrani",
"version": "0.0.1",
# add date today as created field with the date of now
"created" : datetime.datetime.now().strftime("%Y-%m-%d"),
"creator" : "Michael Granitzer, [email protected]",
"split_ratio" : split_ratio,
"prompt": {"plain": StringOperationGenerator.get_prompt(template_name="plain"),
"simple": StringOperationGenerator.get_prompt(template_name="simple"),
"simple_with_code": StringOperationGenerator.get_prompt(template_name="simple_with_code")}
}
# get the date for today, but nicely formatted as string
dump_dir = os.path.expanduser("./small")
if not os.path.exists(dump_dir): os.mkdir(dump_dir)
about, markdown = generate_data_for_config(dump_dir, about, s_length=(10,25, 5), pos_range=(0,5),
slice_range=(0,4), step_size=(-1,2), samples_per_config=10,
valid_data_only=True)
# with open(os.path.join(dump_dir, "README.md"), "w") as readme:
# card = StringOperationGenerator.dataset_card(train_total, test_total,
# group_stats_table="\n".join(group_stats),
# metadata= "\n".join([f"{k}={v}" for k,v in about.items()]))
# readme.write(card)
# readme.close()
|