|
import json |
|
import os.path |
|
|
|
import datasets |
|
|
|
|
|
_VERSION = "1.0.0" |
|
|
|
_DESCRIPTION = "Deepset's germanDPR dataset made compatible with BEIR benchmark framework. One version contains " \ |
|
"the original dataset 1:1 (but deduplicated) and the other dataset is furhter preprocessed. " \ |
|
"See official dataset card for dataset usage with BEIR." |
|
|
|
_SUBSETS = ["original-queries", "original-corpus", "original-qrels", |
|
"processed-queries", "processed-corpus", "original-qrels"] |
|
|
|
|
|
class GermanDPRBeir(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = ( |
|
[ |
|
datasets.BuilderConfig( |
|
name="original-queries", |
|
description=f"BEIR queries created 1:1 but deduplicated from deepset/germanDPR.", |
|
version=_VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="original-corpus", |
|
description=f"BEIR corpus created 1:1 but deduplicated from deepset/germanDPR.", |
|
version=_VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="original-qrels", |
|
description=f"BEIR qrels for original version of deepset/germanDPR.", |
|
version=_VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="processed-queries", |
|
description=f"BEIR queries created, deduplicated and further text-processed from deepset/germanDPR.", |
|
version=_VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="processed-corpus", |
|
description=f"BEIR corpus created, deduplicated and further text-processed from deepset/germanDPR.", |
|
version=_VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="processed-qrels", |
|
description=f"BEIR qrels for processed version of deepset/germanDPR.", |
|
version=_VERSION, |
|
) |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = _SUBSETS[0] |
|
|
|
def _info(self): |
|
name = self.config.name |
|
if name.endswith("queries"): |
|
features = { |
|
"_id": datasets.Value("string"), |
|
"text": datasets.Value("string") |
|
} |
|
elif name.endswith("corpus"): |
|
features = { |
|
"_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
elif name.endswith("qrels"): |
|
|
|
features = { |
|
"query-id": datasets.Value("string"), |
|
"corpus-id": datasets.Value("string"), |
|
"score": datasets.Value("int32") |
|
} |
|
else: |
|
raise ValueError(f'Unknown subset, choose from: {", ".join(_SUBSETS)}') |
|
|
|
return datasets.DatasetInfo( |
|
description=f"{_DESCRIPTION}\n{self.config.description}", |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/PM-AI/germandpr-beir", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
name = self.config.name |
|
if name.startswith("original"): |
|
dl_path = dl_manager.download_and_extract("https://huggingface.co/datasets/PM-AI/germandpr-beir/resolve/main/data/original.tar.gz") |
|
elif name.startswith("processed"): |
|
dl_path = dl_manager.download_and_extract("https://huggingface.co/datasets/PM-AI/germandpr-beir/resolve/main/data/processed.tar.gz") |
|
else: |
|
raise ValueError(f'Unknown subset, choose from: {", ".join(_SUBSETS)}') |
|
|
|
type1, type2 = name.split("-") |
|
if type2 in ["corpus", "queries"]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(dl_path, f'{type1}/train/{type2}.jsonl')}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(dl_path, f'{type1}/test/{type2}.jsonl')}) |
|
] |
|
elif type2 == "qrels": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(dl_path, f'{type1}/train/qrels/train.tsv')}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(dl_path, f'{type1}/test/qrels/test.tsv')}) |
|
] |
|
else: |
|
raise ValueError(f'Unknown subset, choose from: {", ".join(_SUBSETS)}') |
|
|
|
def _generate_queries_data(self, filepath): |
|
print("filepath: ", filepath) |
|
with open(filepath, "r", encoding="utf-8") as in_file: |
|
for idx, line in enumerate(in_file): |
|
data = json.loads(line) |
|
yield idx, data |
|
|
|
def _generate_corpus_data(self, filepath): |
|
with open(filepath, "r", encoding="utf-8") as in_file: |
|
for idx, line in enumerate(in_file): |
|
data = json.loads(line) |
|
if "metadata" in data: |
|
del data["metadata"] |
|
yield idx, data |
|
|
|
def _generate_qrel_data(self, filepath): |
|
with open(filepath, "r", encoding="utf-8") as in_file: |
|
in_file.readline() |
|
for idx, line in enumerate(in_file): |
|
qid, cid, score = line.rstrip().split("\t") |
|
yield idx, {"query-id": qid, "corpus-id": cid, "score": score} |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
name = self.config.name |
|
if name.endswith("queries"): |
|
return self._generate_queries_data(filepath) |
|
elif name.endswith("corpus"): |
|
return self._generate_corpus_data(filepath) |
|
elif name.endswith("qrels"): |
|
return self._generate_qrel_data(filepath) |
|
else: |
|
raise ValueError(f'Unknown subset, choose from: {", ".join(_SUBSETS)}') |
|
|