File size: 5,439 Bytes
5d10ca4 f2c17f2 5d10ca4 f2c17f2 5d10ca4 cb8ece6 aa8722c 0a266e8 5d10ca4 cb8ece6 5d10ca4 cb8ece6 5d10ca4 a372f8e 5d10ca4 a372f8e 0a266e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
annotations_creators:
- found
language_creators:
- found
language:
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: liveqa
pretty_name: LiveQA
dataset_info:
features:
- name: id
dtype: int64
- name: passages
sequence:
- name: is_question
dtype: bool
- name: text
dtype: string
- name: candidate1
dtype: string
- name: candidate2
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 112187507
num_examples: 1670
download_size: 114704569
dataset_size: 112187507
---
# Dataset Card for LiveQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/PKU-TANGENT/LiveQA)
- **Repository:** [Github](https://github.com/PKU-TANGENT/LiveQA)
- **Paper:** [Liu et al., 2020](https://www.aclweb.org/anthology/2020.ccl-1.98.pdf)
- **Leaderboard:** N/A
- **Point of Contact:** Qianying Liu
### Dataset Summary
The LiveQA dataset is a Chinese question-answering resource constructed from playby-play live broadcasts. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.
### Supported Tasks and Leaderboards
Question Answering.
[More Information Needed]
### Languages
Chinese.
## Dataset Structure
### Data Instances
Each instance represents a timeline (i.e., a game) with an identifier. The passages field comprise an array of text or question segments. In the following truncated example, user comments about the game is followed by a question about which team will be the first to reach 60 points.
```python
{
'id': 1,
'passages': [
{
"is_question": False,
"text": "'我希望两位球员都能做到!!",
"candidate1": "",
"candidate2": "",
"answer": "",
},
{
"is_question": False,
"text": "新年给我们送上精彩比赛!",
"candidate1": "",
"candidate2": "",
"answer": "",
},
{
"is_question": True,
"text": "先达到60分?",
"candidate1": "火箭",
"candidate2": "勇士",
"answer": "勇士",
},
{
"is_question": False,
"text": "自己急停跳投!!!",
"candidate1": "",
"candidate2": "",
"answer": "",
}
]
}
```
### Data Fields
- id: identifier for the game
- passages: collection of text/question segments
- text: real-time text comment or binary question related to the context
- candidate1/2: one of the two answer options to the question
- answer: correct answer to the question in text
### Data Splits
There is no predefined split in this dataset.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
This resource is developed by [Liu et al., 2020](https://www.aclweb.org/anthology/2020.ccl-1.98.pdf).
```
@inproceedings{qianying-etal-2020-liveqa,
title = "{L}ive{QA}: A Question Answering Dataset over Sports Live",
author = "Qianying, Liu and
Sicong, Jiang and
Yizhong, Wang and
Sujian, Li",
booktitle = "Proceedings of the 19th Chinese National Conference on Computational Linguistics",
month = oct,
year = "2020",
address = "Haikou, China",
publisher = "Chinese Information Processing Society of China",
url = "https://www.aclweb.org/anthology/2020.ccl-1.98",
pages = "1057--1067"
}
```
### Contributions
Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset. |