File size: 4,964 Bytes
5d10ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a372f8e
5d10ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a372f8e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
annotations_creators:
- found
language_creators:
- found
languages:
- zh
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
---

# Dataset Card for LiveQA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Github](https://github.com/PKU-TANGENT/LiveQA)
- **Repository:** [Github](https://github.com/PKU-TANGENT/LiveQA)
- **Paper:** [Liu et al., 2020](https://www.aclweb.org/anthology/2020.ccl-1.98.pdf)
- **Leaderboard:** N/A
- **Point of Contact:** Qianying Liu

### Dataset Summary
The LiveQA dataset is a Chinese question-answering resource constructed from playby-play live broadcasts. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.

### Supported Tasks and Leaderboards
Question Answering. 

[More Information Needed]

### Languages
Chinese. 

## Dataset Structure

### Data Instances
Each instance represents a timeline (i.e., a game) with an identifier. The passages field comprise an array of text or question segments. In the following truncated example, user comments about the game is followed by a question about which team will be the first to reach 60 points. 
```python
{
  
    'id': 1,
    'passages': [
      {
        "is_question": False,
        "text": "'我希望两位球员都能做到!!",
        "candidate1": "",
        "candidate2": "",
        "answer": "",
      },
      {
        "is_question": False,
        "text": "新年给我们送上精彩比赛!",
        "candidate1": "",
        "candidate2": "",
        "answer": "",
      },
      {
        "is_question": True,
        "text": "先达到60分?",
        "candidate1": "火箭",
        "candidate2": "勇士",
        "answer": "勇士",
      },
      {
        "is_question": False,
        "text": "自己急停跳投!!!",
        "candidate1": "",
        "candidate2": "",
        "answer": "",
      }
    ]
}
```

### Data Fields
- id: identifier for the game
- passages: collection of text/question segments
- text: real-time text comment or binary question related to the context
- candidate1/2: one of the two answer options to the question
- answer: correct answer to the question in text

### Data Splits
There is no predefined split in this dataset. 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information
This resource is developed by [Liu et al., 2020](https://www.aclweb.org/anthology/2020.ccl-1.98.pdf).
```
@inproceedings{qianying-etal-2020-liveqa,
    title = "{L}ive{QA}: A Question Answering Dataset over Sports Live",
    author = "Qianying, Liu  and
      Sicong, Jiang  and
      Yizhong, Wang  and
      Sujian, Li",
    booktitle = "Proceedings of the 19th Chinese National Conference on Computational Linguistics",
    month = oct,
    year = "2020",
    address = "Haikou, China",
    publisher = "Chinese Information Processing Society of China",
    url = "https://www.aclweb.org/anthology/2020.ccl-1.98",
    pages = "1057--1067"
}
```

### Contributions

Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset.