ShiyuHuang commited on
Commit
bdbc530
·
1 Parent(s): aa28160

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -6
README.md CHANGED
@@ -1,14 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
1
  ```
2
  ---
3
  license: apache-2.0
4
  ---
5
  ```
6
 
7
- Our proposed DeepFakeFace(DFF) dataset are genreated by various diffusionm models, aiming to protect the privacy of celebrities. There are four zip files in our dataset and each file contains 30,000 images. We maintain the same directory struture with IMDB-WIKI dataset where real images are selected.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- - inpainting.zip are generated by Stable Diffusion Inpainting model.
10
- - insight.zip are generated by InsightFace toolbox.
11
- - text2img.zip are generated by Stable Diffusion V1.5
12
- - wiki.zip contains original real images selected from IMDB-WIKI dataset.
13
 
14
- [[Website](https://sites.google.com/view/deepfakeface/home)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ task_categories:
4
+ - image-to-image
5
+ language:
6
+ - en
7
+ tags:
8
+ - deepfake
9
+ - diffusion model
10
+ pretty_name: DeepFakeFace'
11
+ ---
12
  ```
13
  ---
14
  license: apache-2.0
15
  ---
16
  ```
17
 
18
+ The dataset accompanying the paper
19
+ "Robustness and Generalizability of Deepfake Detection: A Study with Diffusion Models".
20
+
21
+ [[Website](https://sites.google.com/view/deepfakeface/home)] [[paper](https://arxiv.org/abs/2309.02218)] [[GitHub](https://github.com/OpenRL-Lab/DeepFakeFace)].
22
+
23
+
24
+ ### Introduction
25
+
26
+ Welcome to the **DeepFakeFace (DFF)** dataset! Here we present a meticulously curated collection of artificial celebrity faces, crafted using cutting-edge diffusion models.
27
+ Our aim is to tackle the rising challenge posed by deepfakes in today's digital landscape.
28
+
29
+ Here are some example images in our dataset:
30
+ <div align="center">
31
+ <img width="100%" height="auto" src="docs/images/deepfake_examples.jpg">
32
+ </div>
33
+
34
+ Our proposed DeepFakeFace(DFF) dataset is generated by various diffusion models, aiming to protect the privacy of celebrities.
35
+ There are four zip files in our dataset and each file contains 30,000 images.
36
+ We maintain the same directory structure as the IMDB-WIKI dataset where real images are selected.
37
+
38
+ - inpainting.zip is generated by the Stable Diffusion Inpainting model.
39
+ - insight.zip is generated by the InsightFace toolbox.
40
+ - text2img.zip is generated by Stable Diffusion V1.5
41
+ - wiki.zip contains original real images selected from the IMDB-WIKI dataset.
42
+
43
+ ### DeepFake Dataset Compare
44
 
45
+ We compare our dataset with previous datasets here:
46
+ <div align="center">
47
+ <img width="100%" height="auto" src="docs/images/compare.jpg">
48
+ </div>
49
 
50
+ ### Experimental Results
51
+
52
+ Performance of RECCE across different generators, measured in terms of Acc (%), AUC (%), and EER (%):
53
+ <div align="center">
54
+ <img width="78%" height="auto" src="docs/images/table1.jpg">
55
+ </div>
56
+
57
+
58
+ Robustness evaluation in terms of ACC(%), AUC (%) and EER(%):
59
+ <div align="center">
60
+ <img width="100%" height="auto" src="docs/images/table2.jpg">
61
+ </div>
62
+
63
+ ### Cite
64
+
65
+ Please cite our paper if you use our codes or our dataset in your own work:
66
+
67
+
68
+ ```
69
+ @article{song2023deepfake,
70
+ title={Robustness and Generalizability of Deepfake Detection: A Study with Diffusion Models},
71
+ author={Haixu Song, Shiyu Huang, Yinpeng Dong, Wei-Wei Tu},
72
+ journal={arXiv preprint arXiv:2309.02218},
73
+ year={2023}
74
+ }
75
+ ```