File size: 18,600 Bytes
fcc3454 8136cf6 fcc3454 8136cf6 4697ac2 8136cf6 4697ac2 23c01d2 6f244cf 2fad0a7 dd8be43 6b409c8 926d239 236e025 c8d81ee 8136cf6 4697ac2 23c01d2 6f244cf 2fad0a7 dd8be43 6b409c8 926d239 236e025 c8d81ee fcc3454 11475e1 fcc3454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
---
language:
- en
license: cc-by-4.0
size_categories:
- 100M<n<1B
task_categories:
- image-to-text
- visual-question-answering
dataset_info:
- config_name: CC-MAIN-2013-20
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 19908676196
num_examples: 3878063
download_size: 9303464923
dataset_size: 19908676196
- config_name: CC-MAIN-2013-48
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 15282078925
num_examples: 3091537
download_size: 6965036866
dataset_size: 15282078925
- config_name: CC-MAIN-2014-10
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 7227087609
num_examples: 1390034
download_size: 3259239561
dataset_size: 7227087609
- config_name: CC-MAIN-2014-15
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 10106913108
num_examples: 1968361
download_size: 4567738362
dataset_size: 10106913108
- config_name: CC-MAIN-2014-23
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 7997621043
num_examples: 1455331
download_size: 3468852905
dataset_size: 7997621043
- config_name: CC-MAIN-2014-35
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 6228103779
num_examples: 1219200
download_size: 2849584613
dataset_size: 6228103779
- config_name: CC-MAIN-2014-41
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 8321822952
num_examples: 1573955
download_size: 3775989970
dataset_size: 8321822952
- config_name: CC-MAIN-2014-42
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 7732679416
num_examples: 1511931
download_size: 3505766162
dataset_size: 7732679416
- config_name: CC-MAIN-2014-49
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 4473311810
num_examples: 837735
download_size: 1982728919
dataset_size: 4473311810
- config_name: CC-MAIN-2014-52
features:
- name: general_metadata
struct:
- name: domain
sequence: string
- name: fluency_prob
dtype: float64
- name: id
dtype: string
- name: non_advertisement_prob
dtype: float64
- name: politics_prob
dtype: float64
- name: porn_prob
dtype: float64
- name: toxic_prob
dtype: float64
- name: url
dtype: string
- name: images
sequence: string
- name: texts
sequence: string
- name: metadata
list:
- name: aesthetic_prob
dtype: float64
- name: bytes
dtype: int64
- name: d_hash
dtype: string
- name: d_hash_dup_count
dtype: int64
- name: height
dtype: int64
- name: img_url_sha
dtype: string
- name: p_hash
dtype: string
- name: p_hash_dup_count
dtype: int64
- name: unsafe_prob
dtype: float64
- name: width
dtype: int64
splits:
- name: train
num_bytes: 7292722888
num_examples: 1304730
download_size: 2957626766
dataset_size: 7292722888
configs:
- config_name: CC-MAIN-2013-20
data_files:
- split: train
path: CC-MAIN-2013-20/train-*
- config_name: CC-MAIN-2013-48
data_files:
- split: train
path: CC-MAIN-2013-48/train-*
- config_name: CC-MAIN-2014-10
data_files:
- split: train
path: CC-MAIN-2014-10/train-*
- config_name: CC-MAIN-2014-15
data_files:
- split: train
path: CC-MAIN-2014-15/train-*
- config_name: CC-MAIN-2014-23
data_files:
- split: train
path: CC-MAIN-2014-23/train-*
- config_name: CC-MAIN-2014-35
data_files:
- split: train
path: CC-MAIN-2014-35/train-*
- config_name: CC-MAIN-2014-41
data_files:
- split: train
path: CC-MAIN-2014-41/train-*
- config_name: CC-MAIN-2014-42
data_files:
- split: train
path: CC-MAIN-2014-42/train-*
- config_name: CC-MAIN-2014-49
data_files:
- split: train
path: CC-MAIN-2014-49/train-*
- config_name: CC-MAIN-2014-52
data_files:
- split: train
path: CC-MAIN-2014-52/train-*
---
We are uploading the dataset files ~
# OmniCorpus-CC
This is the repository of OmniCorpus-CC, which contains 988 million image-text interleaved documents collected from [Common Crawl](https://commoncrawl.org/).
- Repository: https://github.com/OpenGVLab/OmniCorpus
- Paper: https://arxiv.org/abs/2406.08418
OmniCorpus dataset is a large-scale image-text interleaved dataset, which pushes the boundaries of scale and diversity by encompassing **8.6 billion images** interleaved with **1,696 text tokens** from diverse sources, significantly surpassing previous datasets.
This dataset demonstrates several advantages over its counterparts:
1. **Larger data scale:** Our dataset is 1.7 times larger in images and 12.5 times larger in texts compared to the previously largest multimodal dataset, LAION-5B, while maintaining excellent data quality.
2. **Richer data diversity:** Drawing from a broader range of data sources, our dataset is more diverse than other image-text interleaved datasets. It includes bilingual multimodal data in both Chinese and English, and encompasses text-centric and vision-centric documents extracted from common websites and video platforms.
3. **More flexible format:** The streaming data format of our dataset offers exceptional flexibility, allowing adaptation to various data structures, including pure text corpora, image-text pairs, and interleaved data formats.
<img width="578" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/641a6427-ba50-41e6-8634-8810113fd803">
The OmniCorpus contains three sections:
- **OmniCorpus-CC**: processed from dumps in Common Crawl from 2013 to Nov./Dec. 2023.
- **OmniCorpus-CW**: sourced from Chinese internet resources, will be availiable in [OpenDataLab](https://opendatalab.com/) platform.
- **OmniCorpus-YT**: samples Youtube video frames as images and collects subtitles as texts.
Code for pre-training, evaluating, main body extracting, and filtering have been released in the official [repository](https://github.com/OpenGVLab/OmniCorpus). A pre-trained model is availiable [here](). We are processing and uploading the rest data sections as soon as possible.
### Update (2024-10-16):
We are uploading the natural arrangement version of the OmniCorpus-CC documents.
Coming soon:
- Documents with Similarities: Documents with split at the sentence level, resulting in minor differences of text content.
# Data Pipeline
Our data pipeline consists of five key stages: main body extraction, preliminary text filtering, document deduplication, image downloading \& filtering, and detailed text filtering. Each stage efficiently reduces the dataset to retain only high-quality data.
Please refer to our paper for more details about the data pipeline.
<img width="723" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/a6de8928-58fb-4ff4-8ef9-4bd90e9ada5f">
# Usages
The image-text interleaved documents are recommanded for the following usages:
- Pre-training multimodal large language model (MLLM): Recent MLLMs (such as Flamingo series, EMU series, IDEFICS series, MM1, Cambrian-1, and xGen-MM) have shown that image-text interleaved data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning.
- Long text-image retrieval: We provide image-text similarities calculated with CLIP, which can convert the documents to image-text retrieval dataset with longer text. A retrieval model pre-trained on such data can retrieval images based on longer text, which can be used for multimodal RAG, converting pure text to multimodal sample, etc.
- Source for futher dataset research: Our data is large-scale, which can serve as the source for researches for data curation strategies. We provide many useful attributes as metadata for each document, which can enrich the filtering strategy and reduce the cost.
- ......
# Data Format
Following common practices, the data is organized into Parquet file format.
You might encounter errors when using `pandas.read_parquet` (because the data structure contains nested elements). We recommend using fastparquet to load the parquet files.
```Python
import fastparquet
df = fastparquet.ParquetFile(parquet_file_path).to_pandas()
# You can also use iter_batches
parquet_file = pq.ParquetFile(filepath)
for batch in parquet_file.iter_batches():
df = batch.to_pandas()
```
You can convert the i-th document and convert it into a dictionary.
```Python
doc_dict = df.iloc[i].to_dict()
```
The document format is as follow:
```json
{
'images': [
<str: image_1_url>,
None,
<str: image_2_url>,
None,
],
'texts': [
None,
<str: text_paragraph_1_content>
None,
<str: text_paragraph_2_content>,
]
'metadata': [
<dict: image_1_metadata>,
None,
<dict: image_2_metadata>,
None
],
'general_metadata': {
"url": <str: document url>,
"id": <str: document id>,
"domain": <list[str]: domains extracted from document url>,
"fluency_prob": <float: the probability of fluency>,
"non_advertisement_prob": <float: the probability of non-advertisement>,
"porn_prob": <float: the probability of porn content>,
"politics_prob": <float: the probability of politics content>,
"toxic_prob": <float: the probability of toxic content>,
}
}
```
Each image metadata is as follow:
```json
{
"img_url_sha": <str: sha code of image url>,
"width": <int: image width>,
"height": <int: image height>,
"bytes": <int: byte number of the image file>,
"d_hash": <str: d_hash code of the image, used for image deduplication>,
"p_hash": <str: p_hash code of the image, used for image deduplication>,
"d_hash_dup_count": <int: duplicated times detected by d_hash code>,
"p_hash_dup_count": <int: duplicated times detected by p_hash code>,
"aesthetic prob": <float: aesthetic probility>,
"unsafe prob": <float: NSFW probility>,
}
```
# License
OmniCorpus is released under a [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/deed.en) license, with the primary intent of supporting research activities.
# Citation
```
@article{li2024omnicorpus,
title={OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text},
author={Li, Qingyun and Chen, Zhe and Wang, Weiyun and Wang, Wenhai and Ye, Shenglong and Jin, Zhenjiang and others},
journal={arXiv preprint arXiv:2406.08418},
year={2024}
}
```
|