Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 18,600 Bytes
fcc3454
 
 
8136cf6
fcc3454
 
8136cf6
 
 
 
4697ac2
8136cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4697ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c01d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f244cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fad0a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8be43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b409c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926d239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236e025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d81ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8136cf6
 
 
 
 
4697ac2
 
 
 
23c01d2
 
 
 
6f244cf
 
 
 
2fad0a7
 
 
 
dd8be43
 
 
 
6b409c8
 
 
 
926d239
 
 
 
236e025
 
 
 
c8d81ee
 
 
 
fcc3454
 
11475e1
 
fcc3454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
---
language:
- en
license: cc-by-4.0
size_categories:
- 100M<n<1B
task_categories:
- image-to-text
- visual-question-answering
dataset_info:
- config_name: CC-MAIN-2013-20
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 19908676196
    num_examples: 3878063
  download_size: 9303464923
  dataset_size: 19908676196
- config_name: CC-MAIN-2013-48
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 15282078925
    num_examples: 3091537
  download_size: 6965036866
  dataset_size: 15282078925
- config_name: CC-MAIN-2014-10
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 7227087609
    num_examples: 1390034
  download_size: 3259239561
  dataset_size: 7227087609
- config_name: CC-MAIN-2014-15
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 10106913108
    num_examples: 1968361
  download_size: 4567738362
  dataset_size: 10106913108
- config_name: CC-MAIN-2014-23
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 7997621043
    num_examples: 1455331
  download_size: 3468852905
  dataset_size: 7997621043
- config_name: CC-MAIN-2014-35
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 6228103779
    num_examples: 1219200
  download_size: 2849584613
  dataset_size: 6228103779
- config_name: CC-MAIN-2014-41
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 8321822952
    num_examples: 1573955
  download_size: 3775989970
  dataset_size: 8321822952
- config_name: CC-MAIN-2014-42
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 7732679416
    num_examples: 1511931
  download_size: 3505766162
  dataset_size: 7732679416
- config_name: CC-MAIN-2014-49
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 4473311810
    num_examples: 837735
  download_size: 1982728919
  dataset_size: 4473311810
- config_name: CC-MAIN-2014-52
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 7292722888
    num_examples: 1304730
  download_size: 2957626766
  dataset_size: 7292722888
configs:
- config_name: CC-MAIN-2013-20
  data_files:
  - split: train
    path: CC-MAIN-2013-20/train-*
- config_name: CC-MAIN-2013-48
  data_files:
  - split: train
    path: CC-MAIN-2013-48/train-*
- config_name: CC-MAIN-2014-10
  data_files:
  - split: train
    path: CC-MAIN-2014-10/train-*
- config_name: CC-MAIN-2014-15
  data_files:
  - split: train
    path: CC-MAIN-2014-15/train-*
- config_name: CC-MAIN-2014-23
  data_files:
  - split: train
    path: CC-MAIN-2014-23/train-*
- config_name: CC-MAIN-2014-35
  data_files:
  - split: train
    path: CC-MAIN-2014-35/train-*
- config_name: CC-MAIN-2014-41
  data_files:
  - split: train
    path: CC-MAIN-2014-41/train-*
- config_name: CC-MAIN-2014-42
  data_files:
  - split: train
    path: CC-MAIN-2014-42/train-*
- config_name: CC-MAIN-2014-49
  data_files:
  - split: train
    path: CC-MAIN-2014-49/train-*
- config_name: CC-MAIN-2014-52
  data_files:
  - split: train
    path: CC-MAIN-2014-52/train-*
---

We are uploading the dataset files ~ 

# OmniCorpus-CC

This is the repository of OmniCorpus-CC, which contains 988 million image-text interleaved documents collected from [Common Crawl](https://commoncrawl.org/).

- Repository: https://github.com/OpenGVLab/OmniCorpus
- Paper: https://arxiv.org/abs/2406.08418

OmniCorpus dataset is a large-scale image-text interleaved dataset, which pushes the boundaries of scale and diversity by encompassing **8.6 billion images** interleaved with **1,696 text tokens** from diverse sources, significantly surpassing previous datasets.
This dataset demonstrates several advantages over its counterparts:

1. **Larger data scale:** Our dataset is 1.7 times larger in images and 12.5 times larger in texts compared to the previously largest multimodal dataset, LAION-5B, while maintaining excellent data quality.
2. **Richer data diversity:** Drawing from a broader range of data sources, our dataset is more diverse than other image-text interleaved datasets. It includes bilingual multimodal data in both Chinese and English, and encompasses text-centric and vision-centric documents extracted from common websites and video platforms.
3. **More flexible format:** The streaming data format of our dataset offers exceptional flexibility, allowing adaptation to various data structures, including pure text corpora, image-text pairs, and interleaved data formats.

<img width="578" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/641a6427-ba50-41e6-8634-8810113fd803">

The OmniCorpus contains three sections:

- **OmniCorpus-CC**: processed from dumps in Common Crawl from 2013 to Nov./Dec. 2023.
- **OmniCorpus-CW**: sourced from Chinese internet resources, will be availiable in [OpenDataLab](https://opendatalab.com/) platform.
- **OmniCorpus-YT**: samples Youtube video frames as images and collects subtitles as texts.

Code for pre-training, evaluating, main body extracting, and filtering have been released in the official [repository](https://github.com/OpenGVLab/OmniCorpus). A pre-trained model is availiable [here](). We are processing and uploading the rest data sections as soon as possible.

### Update (2024-10-16):
We are uploading the natural arrangement version of the OmniCorpus-CC documents.

Coming soon:
- Documents with Similarities: Documents with  split at the sentence level, resulting in minor differences of text content.

# Data Pipeline

Our data pipeline consists of five key stages: main body extraction, preliminary text filtering, document deduplication, image downloading \& filtering, and detailed text filtering. Each stage efficiently reduces the dataset to retain only high-quality data.
Please refer to our paper for more details about the data pipeline.

<img width="723" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/a6de8928-58fb-4ff4-8ef9-4bd90e9ada5f">

# Usages

The image-text interleaved documents are recommanded for the following usages:
- Pre-training multimodal large language model (MLLM): Recent MLLMs (such as Flamingo series, EMU series, IDEFICS series, MM1, Cambrian-1, and xGen-MM) have shown that image-text interleaved data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning.
- Long text-image retrieval: We provide image-text similarities calculated with CLIP, which can convert the documents to image-text retrieval dataset with longer text. A retrieval model pre-trained on such data can retrieval images based on longer text, which can be used for multimodal RAG, converting pure text to multimodal sample, etc.
- Source for futher dataset research: Our data is large-scale, which can serve as the source for researches for data curation strategies. We provide many useful attributes as metadata for each document, which can enrich the filtering strategy and reduce the cost.
- ......

# Data Format

Following common practices, the data is organized into Parquet file format.
You might encounter errors when using `pandas.read_parquet` (because the data structure contains nested elements). We recommend using fastparquet to load the parquet files.
```Python
import fastparquet
df = fastparquet.ParquetFile(parquet_file_path).to_pandas()

# You can also use iter_batches
parquet_file = pq.ParquetFile(filepath)
for batch in parquet_file.iter_batches():
    df = batch.to_pandas()
```

You can convert the i-th document and convert it into a dictionary. 
```Python
doc_dict = df.iloc[i].to_dict()
```

The document format is as follow:
```json
{
    'images': [
        <str: image_1_url>,
        None,
        <str: image_2_url>,
        None,
    ],
    'texts': [
        None,
        <str: text_paragraph_1_content>
        None,
        <str: text_paragraph_2_content>,
    ]
    'metadata': [
        <dict: image_1_metadata>,
        None,
        <dict: image_2_metadata>,
        None
    ],
    'general_metadata': {
        "url": <str: document url>,
        "id": <str: document id>,
        "domain": <list[str]: domains extracted from document url>,
        "fluency_prob": <float: the probability of fluency>,
        "non_advertisement_prob": <float: the probability of non-advertisement>,
        "porn_prob": <float: the probability of porn content>,
        "politics_prob": <float: the probability of politics content>,
        "toxic_prob": <float: the probability of toxic content>,
    }
}
```
Each image metadata is as follow:
```json
{
    "img_url_sha": <str: sha code of image url>,
    "width": <int: image width>,
    "height": <int: image height>,
    "bytes": <int: byte number of the image file>,
    "d_hash": <str: d_hash code of the image, used for image deduplication>,
    "p_hash": <str: p_hash code of the image, used for image deduplication>,
    "d_hash_dup_count": <int: duplicated times detected by d_hash code>,
    "p_hash_dup_count": <int: duplicated times detected by p_hash code>,
    "aesthetic prob": <float: aesthetic probility>,
    "unsafe prob": <float: NSFW probility>, 
}
```

# License

OmniCorpus is released under a [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/deed.en) license, with the primary intent of supporting research activities. 

# Citation

```
@article{li2024omnicorpus,
  title={OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text},
  author={Li, Qingyun and Chen, Zhe and Wang, Weiyun and Wang, Wenhai and Ye, Shenglong and Jin, Zhenjiang and others},
  journal={arXiv preprint arXiv:2406.08418},
  year={2024}
}
```