Update README.md
Browse files
README.md
CHANGED
@@ -30,19 +30,19 @@ license: apache-2.0
|
|
30 |
|
31 |
| Train loss | Test Acc | Reward |
|
32 |
| -------------------------------------------------- | -------- | ------ |
|
33 |
-
| <img src="
|
34 |
|
35 |
- Baselines when sequence length for decision is 4:
|
36 |
|
37 |
| Train action loss | Train hidden state loss | Train acc (auto-regressive mode) | Reward |
|
38 |
| ----------------------------------------------------- | ------------------------------------------------- | --------------------------------------------------- | ------ |
|
39 |
-
| <img src="
|
40 |
|
41 |
## Data Usage
|
42 |
|
43 |
### Data description
|
44 |
|
45 |
-
This dataset includes 8 episodes of pong-v4 environment. The expert policy is [EfficientZero](
|
46 |
|
47 |
### Data Fields
|
48 |
|
|
|
30 |
|
31 |
| Train loss | Test Acc | Reward |
|
32 |
| -------------------------------------------------- | -------- | ------ |
|
33 |
+
| <img src="./img/sup_loss.png" style="zoom:50%;" /> | 0.90 | 20 |
|
34 |
|
35 |
- Baselines when sequence length for decision is 4:
|
36 |
|
37 |
| Train action loss | Train hidden state loss | Train acc (auto-regressive mode) | Reward |
|
38 |
| ----------------------------------------------------- | ------------------------------------------------- | --------------------------------------------------- | ------ |
|
39 |
+
| <img src="./img/action_loss.png" style="zoom:50%;" /> | <img src="./img/hs_loss.png" style="zoom:50%;" /> | <img src="./img/train_acc.png" style="zoom:50%;" /> | -21 |
|
40 |
|
41 |
## Data Usage
|
42 |
|
43 |
### Data description
|
44 |
|
45 |
+
This dataset includes 8 episodes of pong-v4 environment. The expert policy is [EfficientZero](https://arxiv.org/abs/2111.00210), which is able to generate MCTS hidden states. Because of the contained hidden states for each observation, this dataset is suitable for Imitation Learning methods that learn from a sequence like PC.
|
46 |
|
47 |
### Data Fields
|
48 |
|