File size: 1,864 Bytes
8d8a3ed
 
 
 
 
 
 
 
590cdff
 
8d8a3ed
 
d5c8978
8d8a3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5c8978
 
 
 
 
 
 
3da4d9e
 
 
 
 
 
 
 
d5c8978
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
task_categories:
- sentence-similarity
language:
- ar
size_categories:
- 100K<n<1M
tags:
- sentence-transformers
---


# Arabic NLI Pair-Score

## Dataset Summary

- The Arabic Version of SNLI and MultiNLI datasets. (Pair-Score Subset)
- Originally used for Natural Language Inference (NLI),
- Dataset may be used for training/finetuning an embedding model for semantic textual similarity.

## Pair-Class Subset

- Columns: "sentence1", "sentence2", "score"
- Column types: str, str, float

## Arabic Examples:

```python
{
  "sentence1": "شخص على حصان يقفز فوق طائرة معطلة",
  "sentence2": "شخص يقوم بتدريب حصانه للمنافسة",
  "score": 0.5,
},
{
  "sentence1": "شخص على حصان يقفز فوق طائرة معطلة",
  "sentence2": "شخص في مطعم، يطلب عجة.",
  "score": 0,
},
{
  "sentence1": "شخص على حصان يقفز فوق طائرة معطلة",
  "sentence2": "شخص في الهواء الطلق، على حصان.",
  "score": 1,
}
```


## Disclaimer

Please note that the translated sentences are generated using neural machine translation and may not always convey the intended meaning accurately.


## Contact
[Contact Me](https://www.omarai.co) if you have any questions or you want to use thid dataset 


## Note

Original work done by [SentenceTransformers](https://www.sbert.net)

## Citation

If you use the Arabic Matryoshka Embeddings Dataset, please cite it as follows:

```bibtex
@misc{nacar2024enhancingsemanticsimilarityunderstanding,
      title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, 
      author={Omer Nacar and Anis Koubaa},
      year={2024},
      eprint={2407.21139},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.21139}, 
}