Unnamed: 0
int64
0
409
Code
stringlengths
131
27.3k
Unit Test
stringlengths
89
30.5k
200
#ifndef TENSORSTORE_INTERNAL_JSON_SAME_H_ #define TENSORSTORE_INTERNAL_JSON_SAME_H_ #include <nlohmann/json_fwd.hpp> namespace tensorstore { namespace internal_json { bool JsonSame(const ::nlohmann::json& a, const ::nlohmann::json& b); } } #endif #include "tensorstore/internal/json/same.h" #include <variant> #include "absl/container/inlined_vector.h" #include <nlohmann/json.hpp> namespace tensorstore { namespace internal_json { bool JsonSame(const ::nlohmann::json& a, const ::nlohmann::json& b) { using value_t = ::nlohmann::json::value_t; using array_t = ::nlohmann::json::array_t; using object_t = ::nlohmann::json::object_t; struct ArrayIterators { array_t::const_iterator a_cur, a_end, b_cur; }; struct ObjectIterators { object_t::const_iterator a_cur, a_end, b_cur; }; using StackEntry = std::variant<ArrayIterators, ObjectIterators>; absl::InlinedVector<StackEntry, 64> stack; const auto compare_or_defer_values = [&](const ::nlohmann::json& a_value, const ::nlohmann::json& b_value) { const auto t = a_value.type(); switch (t) { case value_t::discarded: case value_t::null: return b_value.type() == t; case value_t::array: { if (b_value.type() != t) return false; const auto& a_arr = a_value.get_ref<const array_t&>(); const auto& b_arr = b_value.get_ref<const array_t&>(); if (a_arr.size() != b_arr.size()) return false; if (a_arr.empty()) return true; stack.emplace_back( ArrayIterators{a_arr.begin(), a_arr.end(), b_arr.begin()}); return true; } case value_t::object: { if (b_value.type() != t) return false; const auto& a_obj = a_value.get_ref<const object_t&>(); const auto& b_obj = b_value.get_ref<const object_t&>(); if (a_obj.size() != b_obj.size()) return false; if (a_obj.empty()) return true; stack.emplace_back( ObjectIterators{a_obj.begin(), a_obj.end(), b_obj.begin()}); return true; } default: return a_value == b_value; } }; if (!compare_or_defer_values(a, b)) return false; while (!stack.empty()) { auto& e = stack.back(); if (auto* array_iterators = std::get_if<ArrayIterators>(&e)) { auto& a_v = *array_iterators->a_cur; auto& b_v = *array_iterators->b_cur; if (++array_iterators->a_cur == array_iterators->a_end) { stack.pop_back(); } else { ++array_iterators->b_cur; } if (!compare_or_defer_values(a_v, b_v)) { return false; } } else { auto* object_iterators = std::get_if<ObjectIterators>(&e); auto& a_kv = *object_iterators->a_cur; auto& b_kv = *object_iterators->b_cur; if (++object_iterators->a_cur == object_iterators->a_end) { stack.pop_back(); } else { ++object_iterators->b_cur; } if (a_kv.first != b_kv.first || !compare_or_defer_values(a_kv.second, b_kv.second)) { return false; } } } return true; } } }
#include "tensorstore/internal/json/same.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> namespace { TEST(JsonSame, Basic) { EXPECT_TRUE(tensorstore::internal_json::JsonSame(1.0, 1)); EXPECT_FALSE(tensorstore::internal_json::JsonSame( ::nlohmann::json::value_t::discarded, ::nlohmann::json::value_t::null)); EXPECT_TRUE(tensorstore::internal_json::JsonSame( ::nlohmann::json::value_t::discarded, ::nlohmann::json::value_t::discarded)); EXPECT_TRUE(tensorstore::internal_json::JsonSame({1, 2, 3}, {1, 2, 3})); EXPECT_TRUE(tensorstore::internal_json::JsonSame( {1, {1, 2, 3, {{"a", 5}, {"b", 7}}}, 3}, {1, {1, 2, 3, {{"a", 5}, {"b", 7}}}, 3})); EXPECT_TRUE(tensorstore::internal_json::JsonSame( ::nlohmann::json::array_t{}, ::nlohmann::json::array_t{})); EXPECT_TRUE(tensorstore::internal_json::JsonSame( ::nlohmann::json::object_t{}, ::nlohmann::json::object_t{})); EXPECT_FALSE(tensorstore::internal_json::JsonSame({1, 2, 3}, {1, 2, 4})); EXPECT_FALSE(tensorstore::internal_json::JsonSame({1, 2, 3}, {1, 2})); EXPECT_TRUE(tensorstore::internal_json::JsonSame( {1, ::nlohmann::json::value_t::discarded, 3}, {1, ::nlohmann::json::value_t::discarded, 3})); EXPECT_TRUE(tensorstore::internal_json::JsonSame( {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}}, {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}})); EXPECT_FALSE(tensorstore::internal_json::JsonSame( {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}}, {{"a", ::nlohmann::json::value_t::discarded}, {"b", 4}})); EXPECT_FALSE(tensorstore::internal_json::JsonSame( {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}}, {{"a", ::nlohmann::json::value_t::discarded}, {"c", 3}})); EXPECT_FALSE(tensorstore::internal_json::JsonSame( {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}}, {{"a", ::nlohmann::json::value_t::discarded}, {"b", 3}, {"d", 4}})); const auto make_nested = [](int depth) { ::nlohmann::json value; ::nlohmann::json* tail = &value; for (int i = 0; i < depth; ++i) { *tail = ::nlohmann::json::object_t(); auto& obj = tail->get_ref<::nlohmann::json::object_t&>(); tail = &obj["a"]; } return value; }; auto nested = make_nested(10000); EXPECT_TRUE(tensorstore::internal_json::JsonSame(nested, nested)); } }
201
#ifndef AROLLA_QTYPE_TYPED_SLOT_H_ #define AROLLA_QTYPE_TYPED_SLOT_H_ #include <array> #include <cstddef> #include <cstdint> #include <optional> #include <ostream> #include <string> #include <tuple> #include <typeinfo> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/status.h" #include "arolla/util/status_macros_backport.h" namespace arolla { class TypedSlot { public: template <typename T> using Slot = FrameLayout::Slot<T>; TypedSlot(const TypedSlot&) = default; TypedSlot& operator=(const TypedSlot&) = default; static TypedSlot UnsafeFromOffset(QTypePtr type, size_t byte_offset) { return TypedSlot(type, byte_offset); } template <typename T> static TypedSlot FromSlot(Slot<T> slot, QTypePtr type) { DCHECK(type->type_info() == typeid(T)) << "Type mismatch"; return TypedSlot(type, slot.byte_offset()); } template <typename T> static TypedSlot FromSlot(Slot<T> slot) { return TypedSlot(GetQType<T>(), slot.byte_offset()); } template <class T> absl::StatusOr<Slot<T>> ToSlot() const { RETURN_IF_ERROR(VerifyType(typeid(T))); return Slot<T>::UnsafeSlotFromOffset(byte_offset_); } template <class T> Slot<T> UnsafeToSlot() const { DCHECK(GetType()->type_info() == typeid(T)); return Slot<T>::UnsafeSlotFromOffset(byte_offset_); } int64_t SubSlotCount() const { return type_->type_fields().size(); } TypedSlot SubSlot(int64_t index) const { DCHECK_GE(index, 0); DCHECK_LT(index, SubSlotCount()); const auto& field = type_->type_fields()[index]; return TypedSlot(field.GetType(), byte_offset_ + field.byte_offset()); } QTypePtr GetType() const { return type_; } size_t byte_offset() const { return byte_offset_; } void CopyTo(ConstFramePtr source_frame, TypedSlot destination_slot, FramePtr destination_frame) const { DCHECK_EQ(type_, destination_slot.type_) << "Type mismatch"; source_frame.DCheckFieldType(byte_offset_, type_->type_info()); destination_frame.DCheckFieldType(destination_slot.byte_offset_, destination_slot.type_->type_info()); type_->UnsafeCopy( source_frame.GetRawPointer(byte_offset_), destination_frame.GetRawPointer(destination_slot.byte_offset_)); } void Reset(FramePtr frame) const { frame.DCheckFieldType(byte_offset_, type_->type_info()); const auto& layout = type_->type_layout(); void* ptr = frame.GetRawPointer(byte_offset_); layout.DestroyAlloc(ptr); layout.InitializeAlignedAlloc(ptr); } friend bool operator==(const TypedSlot& a, const TypedSlot& b) { return a.type_ == b.type_ && a.byte_offset_ == b.byte_offset_; } friend bool operator!=(const TypedSlot& a, const TypedSlot& b) { return !(a == b); } template <typename H> friend H AbslHashValue(H h, const TypedSlot& a) { return H::combine(std::move(h), a.type_, a.byte_offset_); } friend std::ostream& operator<<(std::ostream& out, const TypedSlot& ts) { return out << "TypedSlot<" << ts.GetType()->name() << ">@" << ts.byte_offset_; } template <typename... Ts> static absl::StatusOr<std::tuple<FrameLayout::Slot<Ts>...>> ToSlots( absl::Span<const TypedSlot> slots) { if (slots.size() != sizeof...(Ts)) { return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("wrong number of slots: expected %d, got %d", sizeof...(Ts), slots.size())); } return ToSlotsImpl<std::tuple<FrameLayout::Slot<Ts>...>>( slots, std::index_sequence_for<Ts...>{}); } private: TypedSlot(const QType* type, size_t byte_offset) : type_(type), byte_offset_(byte_offset) {} absl::Status VerifyType(const std::type_info& tpe) const; template <typename ResultTuple, std::size_t... is> static absl::StatusOr<ResultTuple> ToSlotsImpl( absl::Span<const TypedSlot> slots, std::index_sequence<is...>) { (void)slots; return LiftStatusUp(slots[is] .ToSlot<typename std::tuple_element_t< is, ResultTuple>::value_type>()...); } QTypePtr type_; size_t byte_offset_; }; template <typename... Slots> std::array<TypedSlot, sizeof...(Slots)> ToTypedSlots(Slots... slots) { return std::array<TypedSlot, sizeof...(Slots)>{TypedSlot::FromSlot(slots)...}; } std::vector<QTypePtr> SlotsToTypes(absl::Span<const TypedSlot> slots); absl::flat_hash_map<std::string, QTypePtr> SlotsToTypes( const absl::flat_hash_map<std::string, TypedSlot>& slots); inline TypedSlot AddSlot(QTypePtr type, FrameLayout::Builder* layout_builder) { return TypedSlot::UnsafeFromOffset( type, layout_builder->AddSubFrame(type->type_layout()).byte_offset()); } std::vector<TypedSlot> AddSlots(absl::Span<const QTypePtr> types, FrameLayout::Builder* layout_builder); std::vector<std::pair<std::string, TypedSlot>> AddNamedSlots( absl::Span<const std::pair<std::string, QTypePtr>> types, FrameLayout::Builder* layout_builder); absl::flat_hash_map<std::string, TypedSlot> AddSlotsMap( const absl::flat_hash_map<std::string, QTypePtr>& types, FrameLayout::Builder* layout_builder); absl::Status RegisterUnsafeSlots(absl::Span<const TypedSlot> slots, FrameLayout::Builder* layout_builder); absl::Status RegisterUnsafeSlotsMap( const absl::flat_hash_map<std::string, TypedSlot>& slots, FrameLayout::Builder* layout_builder); absl::StatusOr<std::vector<std::optional<TypedSlot>>> MaybeFindSlotsAndVerifyTypes( absl::Span<const std::pair<std::string, QTypePtr>> types_in_order, const absl::flat_hash_map<std::string, TypedSlot>& slots); absl::StatusOr<std::vector<TypedSlot>> FindSlotsAndVerifyTypes( absl::Span<const std::pair<std::string, QTypePtr>> types_in_order, const absl::flat_hash_map<std::string, TypedSlot>& slots); absl::Status VerifySlotTypes( const absl::flat_hash_map<std::string, QTypePtr>& types, const absl::flat_hash_map<std::string, TypedSlot>& slots, bool verify_unwanted_slots = true, bool verify_missed_slots = true); } #endif #include "arolla/qtype/typed_slot.h" #include <algorithm> #include <optional> #include <string> #include <typeinfo> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/util/demangle.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { std::string TypeMismatchError(absl::string_view name, QTypePtr expected_type, QTypePtr actual_type) { return absl::StrFormat("%s{expected:%s, actual:%s}", name, expected_type->name(), actual_type->name()); } absl::Status SlotTypesError(std::vector<std::string> missed_slots, std::vector<std::string> type_mismatch, std::vector<std::string> unwanted_slots) { if (missed_slots.empty() && type_mismatch.empty() && unwanted_slots.empty()) { return absl::OkStatus(); } std::string msg = "slots/types match errors:"; if (!missed_slots.empty()) { std::sort(missed_slots.begin(), missed_slots.end()); msg += absl::StrFormat("missed slots: %s;", absl::StrJoin(missed_slots, ",")); } if (!type_mismatch.empty()) { std::sort(type_mismatch.begin(), type_mismatch.end()); msg += absl::StrFormat("slot types mismatch: %s;", absl::StrJoin(type_mismatch, ",")); } if (!unwanted_slots.empty()) { std::sort(unwanted_slots.begin(), unwanted_slots.end()); msg += absl::StrFormat("unwanted slots: %s;", absl::StrJoin(unwanted_slots, ",")); } return absl::FailedPreconditionError(msg); } } std::vector<QTypePtr> SlotsToTypes(absl::Span<const TypedSlot> slots) { std::vector<QTypePtr> types; types.reserve(slots.size()); for (const auto& slot : slots) { types.push_back(slot.GetType()); } return types; } absl::Status TypedSlot::VerifyType(const std::type_info& tpe) const { if (GetType()->type_info() != tpe) { return absl::InvalidArgumentError(absl::StrFormat( "slot type does not match C++ type: expected %s, got %s", TypeName(tpe), TypeName(GetType()->type_info()))); } return absl::OkStatus(); } absl::flat_hash_map<std::string, QTypePtr> SlotsToTypes( const absl::flat_hash_map<std::string, TypedSlot>& slots) { absl::flat_hash_map<std::string, QTypePtr> types; types.reserve(slots.size()); for (const auto& kv : slots) { types[kv.first] = kv.second.GetType(); } return types; } std::vector<TypedSlot> AddSlots(absl::Span<const QTypePtr> types, FrameLayout::Builder* layout_builder) { std::vector<TypedSlot> slots; slots.reserve(types.size()); for (const auto* type : types) { slots.push_back(AddSlot(type, layout_builder)); } return slots; } std::vector<std::pair<std::string, TypedSlot>> AddNamedSlots( absl::Span<const std::pair<std::string, QTypePtr>> types, FrameLayout::Builder* layout_builder) { std::vector<std::pair<std::string, TypedSlot>> slots; slots.reserve(types.size()); for (const auto& [name, type] : types) { slots.emplace_back(name, AddSlot(type, layout_builder)); } return slots; } absl::flat_hash_map<std::string, TypedSlot> AddSlotsMap( const absl::flat_hash_map<std::string, const QType*>& types, FrameLayout::Builder* layout_builder) { absl::flat_hash_map<std::string, TypedSlot> slots; slots.reserve(types.size()); for (const auto& name_type : types) { slots.insert({name_type.first, AddSlot(name_type.second, layout_builder)}); } return slots; } absl::Status RegisterUnsafeSlots(absl::Span<const TypedSlot> slots, FrameLayout::Builder* layout_builder) { for (const auto& slot : slots) { RETURN_IF_ERROR(layout_builder->RegisterUnsafeSlot( slot.byte_offset(), slot.GetType()->type_layout().AllocSize(), slot.GetType()->type_info())); } return absl::OkStatus(); } absl::Status RegisterUnsafeSlotsMap( const absl::flat_hash_map<std::string, TypedSlot>& slots, FrameLayout::Builder* layout_builder) { for (const auto& name_slot : slots) { const auto& slot = name_slot.second; RETURN_IF_ERROR(layout_builder->RegisterUnsafeSlot( slot.byte_offset(), slot.GetType()->type_layout().AllocSize(), slot.GetType()->type_info())); } return absl::OkStatus(); } absl::StatusOr<std::vector<std::optional<TypedSlot>>> MaybeFindSlotsAndVerifyTypes( absl::Span<const std::pair<std::string, QTypePtr>> types_in_order, const absl::flat_hash_map<std::string, TypedSlot>& slots) { std::vector<std::string> type_mismatch; std::vector<std::optional<TypedSlot>> res_slots; res_slots.reserve(types_in_order.size()); for (const auto& [name, type] : types_in_order) { auto it = slots.find(name); if (it == slots.end()) { res_slots.push_back(std::nullopt); continue; } res_slots.push_back({it->second}); if (it->second.GetType() != type) { type_mismatch.push_back( TypeMismatchError(name, type, it->second.GetType())); } } RETURN_IF_ERROR(SlotTypesError({}, std::move(type_mismatch), {})); return {std::move(res_slots)}; } absl::StatusOr<std::vector<TypedSlot>> FindSlotsAndVerifyTypes( absl::Span<const std::pair<std::string, QTypePtr>> types_in_order, const absl::flat_hash_map<std::string, TypedSlot>& slots) { std::vector<std::string> missed_slots; std::vector<std::string> type_mismatch; std::vector<TypedSlot> res_slots; res_slots.reserve(types_in_order.size()); for (const auto& [name, type] : types_in_order) { auto it = slots.find(name); if (it == slots.end()) { missed_slots.push_back(name); continue; } res_slots.push_back({it->second}); if (it->second.GetType() != type) { type_mismatch.push_back( TypeMismatchError(name, type, it->second.GetType())); } } RETURN_IF_ERROR(SlotTypesError(std::move(missed_slots), std::move(type_mismatch), {})); return {std::move(res_slots)}; } absl::Status VerifySlotTypes( const absl::flat_hash_map<std::string, QTypePtr>& types, const absl::flat_hash_map<std::string, TypedSlot>& slots, bool verify_unwanted_slots, bool verify_missed_slots) { std::vector<std::string> missed_slots; std::vector<std::string> type_mismatch; std::vector<std::string> unwanted_slots; for (const auto& [name, type] : types) { auto it = slots.find(name); if (it == slots.end()) { if (verify_missed_slots) { missed_slots.push_back(name); } continue; } if (it->second.GetType() != type) { type_mismatch.push_back( TypeMismatchError(name, type, it->second.GetType())); } } if (verify_unwanted_slots) { for (const auto& [name, _] : slots) { if (!types.contains(name)) { unwanted_slots.push_back(name); } } } return SlotTypesError(std::move(missed_slots), std::move(type_mismatch), std::move(unwanted_slots)); } }
#include "arolla/qtype/typed_slot.h" #include <cstdint> #include <optional> #include <sstream> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/bytes.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla { namespace { using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::MatchesRegex; using ::testing::Pair; using ::testing::StrEq; using ::testing::UnorderedElementsAre; TEST(TypedSlotTest, Copy) { FrameLayout::Builder layout_builder; auto slot = layout_builder.AddSlot<int>(); auto slot2 = layout_builder.AddSlot<float>(); auto typed_slot = TypedSlot::FromSlot(slot); auto typed_slot2 = TypedSlot::FromSlot(slot2); auto typed_slot_copy = typed_slot; EXPECT_EQ(typed_slot.GetType(), typed_slot_copy.GetType()); EXPECT_EQ(typed_slot, typed_slot_copy); typed_slot_copy = typed_slot2; EXPECT_EQ(typed_slot2.GetType(), typed_slot_copy.GetType()); EXPECT_EQ(typed_slot2, typed_slot_copy); } TEST(TypedSlotTest, PrimitiveTypes) { FrameLayout::Builder layout_builder; auto slot = layout_builder.AddSlot<int32_t>(); auto typed_slot = TypedSlot::FromSlot(slot); EXPECT_EQ(typed_slot.GetType(), GetQType<int32_t>()); FrameLayout::Slot<int32_t> new_slot = typed_slot.ToSlot<int32_t>().value(); EXPECT_EQ(slot.byte_offset(), new_slot.byte_offset()); EXPECT_THAT(typed_slot.ToSlot<int64_t>().status(), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(TypedSlotTest, SlotsToTypes) { FrameLayout::Builder layout_builder; auto slot1 = layout_builder.AddSlot<int32_t>(); auto slot2 = layout_builder.AddSlot<float>(); auto typed_slot1 = TypedSlot::FromSlot(slot1); auto typed_slot2 = TypedSlot::FromSlot(slot2); EXPECT_THAT(SlotsToTypes(std::vector<TypedSlot>{typed_slot1, typed_slot2}), ElementsAre(GetQType<int32_t>(), GetQType<float>())); EXPECT_THAT(SlotsToTypes(absl::flat_hash_map<std::string, TypedSlot>{ {"X", typed_slot1}, {"Y", typed_slot2}}), UnorderedElementsAre(Pair("X", GetQType<int32_t>()), Pair("Y", GetQType<float>()))); } TEST(TypedSlotTest, UnsafeFromOffset) { const QType* i32 = GetQType<int32_t>(); auto typed_slot = TypedSlot::UnsafeFromOffset(i32, 10); EXPECT_EQ(typed_slot.byte_offset(), 10); EXPECT_EQ(typed_slot.GetType(), i32); } TEST(TypedSlotTest, AddSlots) { FrameLayout::Builder layout_builder; const QType* i32 = GetQType<int32_t>(); const QType* i64 = GetQType<int64_t>(); std::vector<TypedSlot> slots = AddSlots({i32, i64}, &layout_builder); ASSERT_EQ(slots.size(), 2); EXPECT_EQ(i32, slots[0].GetType()); EXPECT_EQ(i64, slots[1].GetType()); } TEST(TypedSlotTest, AddNamedSlots) { FrameLayout::Builder layout_builder; const QType* i32 = GetQType<int32_t>(); const QType* i64 = GetQType<int64_t>(); std::vector<std::pair<std::string, TypedSlot>> slots = AddNamedSlots({{"c", i32}, {"b", i64}}, &layout_builder); ASSERT_EQ(slots.size(), 2); EXPECT_EQ("c", slots[0].first); EXPECT_EQ(i32, slots[0].second.GetType()); EXPECT_EQ("b", slots[1].first); EXPECT_EQ(i64, slots[1].second.GetType()); } TEST(TypedSlotTest, AddSlotsMap) { FrameLayout::Builder layout_builder; const QType* i32 = GetQType<int32_t>(); const QType* i64 = GetQType<int64_t>(); absl::flat_hash_map<std::string, TypedSlot> slots = AddSlotsMap({{"a", i32}, {"b", i64}}, &layout_builder); ASSERT_EQ(slots.size(), 2); EXPECT_EQ(i32, slots.at("a").GetType()); EXPECT_EQ(i64, slots.at("b").GetType()); } TEST(TypedSlotTest, RegisterUnsafeSlots) { FrameLayout::Builder layout_builder; layout_builder.AddSlot<int64_t>(); const QType* i32 = GetQType<int32_t>(); const QType* f32 = GetQType<float>(); auto slot_i32 = TypedSlot::UnsafeFromOffset(i32, 0); auto slot_f32 = TypedSlot::UnsafeFromOffset(f32, 4); ASSERT_OK(RegisterUnsafeSlots({slot_i32, slot_f32}, &layout_builder)); #ifndef NDEBUG ASSERT_FALSE(RegisterUnsafeSlots({slot_i32}, &layout_builder).ok()); #endif auto layout = std::move(layout_builder).Build(); layout.HasField(0, typeid(int32_t)); layout.HasField(4, typeid(float)); } TEST(TypedSlotTest, RegisterUnsafeSlotsMap) { FrameLayout::Builder layout_builder; layout_builder.AddSlot<int64_t>(); const QType* i32 = GetQType<int32_t>(); const QType* f32 = GetQType<float>(); auto slot_i32 = TypedSlot::UnsafeFromOffset(i32, 0); auto slot_f32 = TypedSlot::UnsafeFromOffset(f32, 4); ASSERT_OK(RegisterUnsafeSlotsMap({{"a", slot_i32}, {"b", slot_f32}}, &layout_builder)); #ifndef NDEBUG ASSERT_FALSE(RegisterUnsafeSlotsMap({{"a", slot_i32}}, &layout_builder).ok()); #endif auto layout = std::move(layout_builder).Build(); layout.HasField(0, typeid(int32_t)); layout.HasField(4, typeid(float)); } TEST(TypedSlotTest, GetSubslots) { FrameLayout::Builder layout_builder; auto opt_float_slot = layout_builder.AddSlot<OptionalValue<float>>(); auto opt_int32_slot = layout_builder.AddSlot<OptionalValue<int32_t>>(); auto float64_slot = layout_builder.AddSlot<double>(); FrameLayout layout = std::move(layout_builder).Build(); TypedSlot opt_float_tslot = TypedSlot::FromSlot(opt_float_slot); TypedSlot opt_int32_tslot = TypedSlot::FromSlot(opt_int32_slot); TypedSlot float64_tslot = TypedSlot::FromSlot(float64_slot); EXPECT_EQ(opt_float_tslot.SubSlotCount(), 2); EXPECT_EQ(opt_int32_tslot.SubSlotCount(), 2); EXPECT_EQ(float64_tslot.SubSlotCount(), 0); EXPECT_EQ(opt_float_tslot.SubSlot(0), TypedSlot::FromSlot(opt_float_slot.GetSubslot<0>())); EXPECT_EQ(opt_float_tslot.SubSlot(1), TypedSlot::FromSlot(opt_float_slot.GetSubslot<1>())); EXPECT_EQ(opt_int32_tslot.SubSlot(0), TypedSlot::FromSlot(opt_int32_slot.GetSubslot<0>())); EXPECT_EQ(opt_int32_tslot.SubSlot(1), TypedSlot::FromSlot(opt_int32_slot.GetSubslot<1>())); MemoryAllocation alloc_holder(&layout); FramePtr frame = alloc_holder.frame(); frame.Set(opt_float_slot, OptionalValue<float>(1.0)); frame.Set(opt_int32_slot, OptionalValue<int32_t>()); auto float_present_slot = opt_float_tslot.SubSlot(0).ToSlot<bool>().value(); auto int32_present_slot = opt_int32_tslot.SubSlot(0).ToSlot<bool>().value(); EXPECT_EQ(frame.Get(float_present_slot), true); EXPECT_EQ(frame.Get(int32_present_slot), false); auto int32_value_slot = opt_int32_tslot.SubSlot(1).ToSlot<int32_t>().value(); frame.Set(int32_present_slot, true); frame.Set(int32_value_slot, 2); EXPECT_EQ(frame.Get(opt_int32_slot), OptionalValue<int32_t>(2)); } TEST(TypedSlotTest, DebugPrintTypedSlot) { FrameLayout::Builder layout_builder; auto slot1 = layout_builder.AddSlot<int32_t>(); auto slot2 = layout_builder.AddSlot<float>(); auto slot3 = layout_builder.AddSlot<Bytes>(); auto typed_slot1 = TypedSlot::FromSlot(slot1); auto typed_slot2 = TypedSlot::FromSlot(slot2); auto typed_slot3 = TypedSlot::FromSlot(slot3); std::stringstream buffer; buffer << "typed_slot1 is: " << typed_slot1 << ", "; buffer << "typed_slot2 is: " << typed_slot2 << ", "; buffer << "typed_slot3 is: " << typed_slot3 << "."; EXPECT_THAT(buffer.str(), StrEq("typed_slot1 is: TypedSlot<INT32>@0, " "typed_slot2 is: TypedSlot<FLOAT32>@4, " "typed_slot3 is: TypedSlot<BYTES>@8.")); } TEST(TypedSlotTest, ToSlots) { FrameLayout::Builder layout_builder; auto slot1 = layout_builder.AddSlot<int32_t>(); auto slot2 = layout_builder.AddSlot<float>(); ASSERT_OK_AND_ASSIGN( auto slots_tuple, (TypedSlot::ToSlots<int32_t, float>( {TypedSlot::FromSlot(slot1), TypedSlot::FromSlot(slot2)}))); EXPECT_THAT(std::get<0>(slots_tuple).byte_offset(), Eq(slot1.byte_offset())); EXPECT_THAT(std::get<1>(slots_tuple).byte_offset(), Eq(slot2.byte_offset())); EXPECT_THAT(TypedSlot::ToSlots<float>({TypedSlot::FromSlot(slot1)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("slot type does not match C++ type"))); EXPECT_THAT( (TypedSlot::ToSlots<int32_t, float>({TypedSlot::FromSlot(slot1)})), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("wrong number of slots: expected 2, got 1"))); } TEST(TypedSlotTest, MaybeFindSlotsAndVerifyTypesErrors) { FrameLayout::Builder layout_builder; auto float_slot = layout_builder.AddSlot<float>(); EXPECT_THAT( MaybeFindSlotsAndVerifyTypes({{"a", GetQType<int>()}}, {{"a", TypedSlot::FromSlot(float_slot)}}), StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex(".*slot types " "mismatch.*a.*expected:INT32.*actual:FLOAT32.*"))); } TEST(TypedSlotTest, MaybeFindSlotsAndVerifyTypes) { FrameLayout::Builder layout_builder; auto int_slot = layout_builder.AddSlot<int>(); auto float_slot = layout_builder.AddSlot<float>(); EXPECT_THAT( MaybeFindSlotsAndVerifyTypes( {{"a", GetQType<int>()}, {"c", GetQType<float>()}}, {{"b", TypedSlot::FromSlot(float_slot)}, {"a", TypedSlot::FromSlot(int_slot)}}), IsOkAndHolds(ElementsAre(TypedSlot::FromSlot(int_slot), std::nullopt))); } TEST(TypedSlotTest, FindSlotsAndVerifyTypesErrors) { FrameLayout::Builder layout_builder; auto float_slot = layout_builder.AddSlot<float>(); EXPECT_THAT( FindSlotsAndVerifyTypes({{"NAME", GetQType<int>()}}, {{"NAME", TypedSlot::FromSlot(float_slot)}}), StatusIs( absl::StatusCode::kFailedPrecondition, MatchesRegex(".*slot types " "mismatch.*NAME.*expected:INT32.*actual:FLOAT32.*"))); EXPECT_THAT(FindSlotsAndVerifyTypes({{"FAKE", GetQType<int>()}}, {{"b", TypedSlot::FromSlot(float_slot)}}), StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex(".*missed slots:.*FAKE.*"))); EXPECT_THAT( FindSlotsAndVerifyTypes( {{"NAME", GetQType<int>()}, {"FAKE", GetQType<int>()}}, {{"NAME", TypedSlot::FromSlot(float_slot)}}), StatusIs( absl::StatusCode::kFailedPrecondition, MatchesRegex(".*missed slots:.*FAKE.*slot types mismatch:.*NAME.*"))); } TEST(TypedSlotTest, FindSlotsAndVerifyTypes) { FrameLayout::Builder layout_builder; auto int_slot = layout_builder.AddSlot<int>(); auto float_slot = layout_builder.AddSlot<float>(); auto int8_slot = layout_builder.AddSlot<int32_t>(); EXPECT_THAT(FindSlotsAndVerifyTypes( {{"c", GetQType<float>()}, {"a", GetQType<int>()}}, {{"c", TypedSlot::FromSlot(float_slot)}, {"b", TypedSlot::FromSlot(int8_slot)}, {"a", TypedSlot::FromSlot(int_slot)}}), IsOkAndHolds(ElementsAre(TypedSlot::FromSlot(float_slot), TypedSlot::FromSlot(int_slot)))); } TEST(TypedSlotTest, VerifySlotTypes) { FrameLayout::Builder layout_builder; auto int_slot = layout_builder.AddSlot<int>(); auto float_slot = layout_builder.AddSlot<float>(); EXPECT_OK(VerifySlotTypes({{"a", GetQType<int>()}, {"c", GetQType<float>()}}, {{"c", TypedSlot::FromSlot(float_slot)}, {"a", TypedSlot::FromSlot(int_slot)}})); EXPECT_OK(VerifySlotTypes({{"a", GetQType<int>()}, {"c", GetQType<float>()}}, {{"c", TypedSlot::FromSlot(float_slot)}}, true, false)); EXPECT_OK(VerifySlotTypes({{"a", GetQType<int>()}}, {{"c", TypedSlot::FromSlot(float_slot)}, {"a", TypedSlot::FromSlot(int_slot)}}, false)); EXPECT_THAT( VerifySlotTypes({{"a", GetQType<int>()}}, {{"a", TypedSlot::FromSlot(float_slot)}}), StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex(".*slot types " "mismatch.*a.*expected:INT32.*actual:FLOAT32.*"))); EXPECT_THAT( VerifySlotTypes({{"a", GetQType<int>()}, {"c", GetQType<float>()}}, {{"a", TypedSlot::FromSlot(float_slot)}}), StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex(".*missed slots:.*c.*slot types mismatch:.*a.*"))); EXPECT_THAT( VerifySlotTypes({{"d", GetQType<int>()}}, {{"a", TypedSlot::FromSlot(float_slot)}}), StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex(".*missed slots:.*d.*unwanted slots:.*a.*"))); } } }
202
#ifndef AROLLA_QTYPE_UNSPECIFIED_QTYPE_H_ #define AROLLA_QTYPE_UNSPECIFIED_QTYPE_H_ #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" namespace arolla { QTypePtr GetUnspecifiedQType(); const TypedValue& GetUnspecifiedQValue(); } #endif #include "arolla/qtype/unspecified_qtype.h" #include "absl/strings/string_view.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fingerprint.h" #include "arolla/util/indestructible.h" #include "arolla/util/repr.h" namespace arolla { namespace { struct Unspecified {}; class UnspecifiedQType final : public QType { public: UnspecifiedQType() : QType(ConstructorArgs{.name = "UNSPECIFIED", .type_info = typeid(Unspecified), .type_layout = MakeTypeLayout<Unspecified>()}) {} ReprToken UnsafeReprToken(const void* source) const override { return ReprToken{"unspecified"}; } void UnsafeCopy(const void* , void* ) const override {} void UnsafeCombineToFingerprintHasher( const void* , FingerprintHasher* hasher) const override { hasher->Combine(absl::string_view("::arolla::UnspecifiedQValue")); } }; } QTypePtr GetUnspecifiedQType() { static const Indestructible<UnspecifiedQType> result; return result.get(); } const TypedValue& GetUnspecifiedQValue() { static const Indestructible<TypedValue> result( TypedValue::UnsafeFromTypeDefaultConstructed(GetUnspecifiedQType())); return *result; } }
#include "arolla/qtype/unspecified_qtype.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla { namespace { using ::arolla::testing::ReprTokenEq; class UnspecifiedQTypeTest : public ::testing::Test { void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(UnspecifiedQTypeTest, UnspecifiedQType) { const auto unspecified_qtype = GetUnspecifiedQType(); EXPECT_EQ(unspecified_qtype->name(), "UNSPECIFIED"); EXPECT_EQ(unspecified_qtype->type_layout().AllocSize(), 1); EXPECT_EQ(unspecified_qtype->type_layout().AllocAlignment().value, 1); EXPECT_TRUE(unspecified_qtype->type_fields().empty()); EXPECT_EQ(unspecified_qtype->value_qtype(), nullptr); } TEST_F(UnspecifiedQTypeTest, UnspecifiedQValue) { const auto unspecified_qvalue = GetUnspecifiedQValue(); EXPECT_EQ(unspecified_qvalue.GetType(), GetUnspecifiedQType()); EXPECT_THAT(unspecified_qvalue.GenReprToken(), ReprTokenEq("unspecified")); } } }
203
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_ANDROID_HARDWARE_BUFFER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_ANDROID_HARDWARE_BUFFER_H_ #include <stdint.h> #ifdef __ANDROID__ #include <android/hardware_buffer.h> #else extern "C" { typedef struct AHardwareBuffer AHardwareBuffer; typedef struct AHardwareBuffer_Desc AHardwareBuffer_Desc; struct AHardwareBuffer_Desc { uint32_t width; uint32_t height; uint32_t layers; uint32_t format; uint64_t usage; uint32_t stride; uint32_t rfu0; uint64_t rfu1; }; } #endif namespace tflite::gpu { class OptionalAndroidHardwareBuffer { public: static OptionalAndroidHardwareBuffer& Instance() { static OptionalAndroidHardwareBuffer instance; return instance; } bool Supported() { return supported_; } int IsSupported(const AHardwareBuffer_Desc* description) { return is_supported_(description); } int Allocate(const AHardwareBuffer_Desc* description, AHardwareBuffer** buffer) { return allocate_(description, buffer); } void Acquire(AHardwareBuffer* buffer) { return acquire_(buffer); } void Release(AHardwareBuffer* buffer) { return release_(buffer); } void Describe(AHardwareBuffer* buffer, AHardwareBuffer_Desc* desc) { return describe_(buffer, desc); } private: void* dlopen_handle_; int (*is_supported_)(const AHardwareBuffer_Desc* desc); int (*allocate_)(const AHardwareBuffer_Desc* desc, AHardwareBuffer** buffer); void (*acquire_)(AHardwareBuffer* buffer); void (*release_)(AHardwareBuffer* buffer); void (*describe_)(AHardwareBuffer* buffer, AHardwareBuffer_Desc* desc); bool supported_; OptionalAndroidHardwareBuffer(); OptionalAndroidHardwareBuffer(const OptionalAndroidHardwareBuffer&) = delete; ~OptionalAndroidHardwareBuffer() = default; }; } #endif #include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include <dlfcn.h> namespace tflite::gpu { OptionalAndroidHardwareBuffer::OptionalAndroidHardwareBuffer() { #ifdef __ANDROID__ dlopen_handle_ = dlopen("libnativewindow.so", RTLD_NOW); if (dlopen_handle_ == nullptr) { supported_ = false; return; } allocate_ = reinterpret_cast<decltype(allocate_)>( dlsym(dlopen_handle_, "AHardwareBuffer_allocate")); acquire_ = reinterpret_cast<decltype(acquire_)>( dlsym(dlopen_handle_, "AHardwareBuffer_acquire")); release_ = reinterpret_cast<decltype(release_)>( dlsym(dlopen_handle_, "AHardwareBuffer_release")); describe_ = reinterpret_cast<decltype(describe_)>( dlsym(dlopen_handle_, "AHardwareBuffer_describe")); is_supported_ = reinterpret_cast<decltype(is_supported_)>( dlsym(dlopen_handle_, "AHardwareBuffer_isSupported")); supported_ = (allocate_ != nullptr && acquire_ != nullptr && release_ != nullptr && describe_ != nullptr && is_supported_ != nullptr); #else dlopen_handle_ = nullptr; allocate_ = nullptr; acquire_ = nullptr; release_ = nullptr; describe_ = nullptr; is_supported_ = nullptr; supported_ = false; #endif } }
#include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include <gtest/gtest.h> using tflite::gpu::OptionalAndroidHardwareBuffer; auto Instance = OptionalAndroidHardwareBuffer::Instance; namespace { #ifndef __ANDROID__ TEST(OptionalAndroidHardwareBufferTest, NotSupportedOnNonAndroid) { EXPECT_EQ(Instance().Supported(), false); } #else TEST(OptionalAndroidHardwareBufferTest, SupportedOnAndroid) { EXPECT_EQ(Instance().Supported(), true); } TEST(OptionalAndroidHardwareBufferTest, CanAllocateAndReleaseOnAndroid) { EXPECT_EQ(Instance().Supported(), true); AHardwareBuffer* buffer; AHardwareBuffer_Desc description{}; description.width = 1600; description.height = 1; description.layers = 1; description.rfu0 = 0; description.rfu1 = 0; description.stride = 1; description.format = AHARDWAREBUFFER_FORMAT_BLOB; description.usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN; EXPECT_TRUE(Instance().IsSupported(&description)); EXPECT_EQ(Instance().Allocate(&description, &buffer), 0); Instance().Release(buffer); } TEST(OptionalAndroidHardwareBufferTest, CanAcquireAndReleaseOnAndroid) { EXPECT_EQ(Instance().Supported(), true); AHardwareBuffer* buffer; AHardwareBuffer_Desc description{}; description.width = 1600; description.height = 1; description.layers = 1; description.rfu0 = 0; description.rfu1 = 0; description.stride = 1; description.format = AHARDWAREBUFFER_FORMAT_BLOB; description.usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN; EXPECT_TRUE(Instance().IsSupported(&description)); EXPECT_EQ(Instance().Allocate(&description, &buffer), 0); Instance().Acquire(buffer); Instance().Release(buffer); Instance().Release(buffer); } #endif }
204
#ifndef QUICHE_QUIC_TOOLS_SIMPLE_TICKET_CRYPTER_H_ #define QUICHE_QUIC_TOOLS_SIMPLE_TICKET_CRYPTER_H_ #include "openssl/aead.h" #include "quiche/quic/core/crypto/proof_source.h" #include "quiche/quic/core/quic_clock.h" #include "quiche/quic/core/quic_time.h" namespace quic { class QUIC_NO_EXPORT SimpleTicketCrypter : public quic::ProofSource::TicketCrypter { public: explicit SimpleTicketCrypter(QuicClock* clock); ~SimpleTicketCrypter() override; size_t MaxOverhead() override; std::vector<uint8_t> Encrypt(absl::string_view in, absl::string_view encryption_key) override; void Decrypt( absl::string_view in, std::shared_ptr<quic::ProofSource::DecryptCallback> callback) override; private: std::vector<uint8_t> Decrypt(absl::string_view in); void MaybeRotateKeys(); static constexpr size_t kKeySize = 16; struct Key { uint8_t key[kKeySize]; bssl::ScopedEVP_AEAD_CTX aead_ctx; QuicTime expiration = QuicTime::Zero(); }; std::unique_ptr<Key> NewKey(); std::unique_ptr<Key> current_key_; std::unique_ptr<Key> previous_key_; uint8_t key_epoch_ = 0; QuicClock* clock_; }; } #endif #include "quiche/quic/tools/simple_ticket_crypter.h" #include <memory> #include <utility> #include <vector> #include "openssl/aead.h" #include "openssl/rand.h" namespace quic { namespace { constexpr QuicTime::Delta kTicketKeyLifetime = QuicTime::Delta::FromSeconds(60 * 60 * 24 * 7); constexpr size_t kEpochSize = 1; constexpr size_t kIVSize = 16; constexpr size_t kAuthTagSize = 16; constexpr size_t kIVOffset = kEpochSize; constexpr size_t kMessageOffset = kIVOffset + kIVSize; } SimpleTicketCrypter::SimpleTicketCrypter(QuicClock* clock) : clock_(clock) { RAND_bytes(&key_epoch_, 1); current_key_ = NewKey(); } SimpleTicketCrypter::~SimpleTicketCrypter() = default; size_t SimpleTicketCrypter::MaxOverhead() { return kEpochSize + kIVSize + kAuthTagSize; } std::vector<uint8_t> SimpleTicketCrypter::Encrypt( absl::string_view in, absl::string_view encryption_key) { QUICHE_DCHECK(encryption_key.empty()); MaybeRotateKeys(); std::vector<uint8_t> out(in.size() + MaxOverhead()); out[0] = key_epoch_; RAND_bytes(out.data() + kIVOffset, kIVSize); size_t out_len; const EVP_AEAD_CTX* ctx = current_key_->aead_ctx.get(); if (!EVP_AEAD_CTX_seal(ctx, out.data() + kMessageOffset, &out_len, out.size() - kMessageOffset, out.data() + kIVOffset, kIVSize, reinterpret_cast<const uint8_t*>(in.data()), in.size(), nullptr, 0)) { return std::vector<uint8_t>(); } out.resize(out_len + kMessageOffset); return out; } std::vector<uint8_t> SimpleTicketCrypter::Decrypt(absl::string_view in) { MaybeRotateKeys(); if (in.size() < kMessageOffset) { return std::vector<uint8_t>(); } const uint8_t* input = reinterpret_cast<const uint8_t*>(in.data()); std::vector<uint8_t> out(in.size() - kMessageOffset); size_t out_len; const EVP_AEAD_CTX* ctx = current_key_->aead_ctx.get(); if (input[0] != key_epoch_) { if (input[0] == static_cast<uint8_t>(key_epoch_ - 1) && previous_key_) { ctx = previous_key_->aead_ctx.get(); } else { return std::vector<uint8_t>(); } } if (!EVP_AEAD_CTX_open(ctx, out.data(), &out_len, out.size(), input + kIVOffset, kIVSize, input + kMessageOffset, in.size() - kMessageOffset, nullptr, 0)) { return std::vector<uint8_t>(); } out.resize(out_len); return out; } void SimpleTicketCrypter::Decrypt( absl::string_view in, std::shared_ptr<quic::ProofSource::DecryptCallback> callback) { callback->Run(Decrypt(in)); } void SimpleTicketCrypter::MaybeRotateKeys() { QuicTime now = clock_->ApproximateNow(); if (current_key_->expiration < now) { previous_key_ = std::move(current_key_); current_key_ = NewKey(); key_epoch_++; } } std::unique_ptr<SimpleTicketCrypter::Key> SimpleTicketCrypter::NewKey() { auto key = std::make_unique<SimpleTicketCrypter::Key>(); RAND_bytes(key->key, kKeySize); EVP_AEAD_CTX_init(key->aead_ctx.get(), EVP_aead_aes_128_gcm(), key->key, kKeySize, EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr); key->expiration = clock_->ApproximateNow() + kTicketKeyLifetime; return key; } }
#include "quiche/quic/tools/simple_ticket_crypter.h" #include <memory> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { namespace { constexpr QuicTime::Delta kOneDay = QuicTime::Delta::FromSeconds(60 * 60 * 24); } class DecryptCallback : public quic::ProofSource::DecryptCallback { public: explicit DecryptCallback(std::vector<uint8_t>* out) : out_(out) {} void Run(std::vector<uint8_t> plaintext) override { *out_ = plaintext; } private: std::vector<uint8_t>* out_; }; absl::string_view StringPiece(const std::vector<uint8_t>& in) { return absl::string_view(reinterpret_cast<const char*>(in.data()), in.size()); } class SimpleTicketCrypterTest : public QuicTest { public: SimpleTicketCrypterTest() : ticket_crypter_(&mock_clock_) {} protected: MockClock mock_clock_; SimpleTicketCrypter ticket_crypter_; }; TEST_F(SimpleTicketCrypterTest, EncryptDecrypt) { std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5}; std::vector<uint8_t> ciphertext = ticket_crypter_.Encrypt(StringPiece(plaintext), {}); EXPECT_NE(plaintext, ciphertext); std::vector<uint8_t> out_plaintext; ticket_crypter_.Decrypt(StringPiece(ciphertext), std::make_unique<DecryptCallback>(&out_plaintext)); EXPECT_EQ(out_plaintext, plaintext); } TEST_F(SimpleTicketCrypterTest, CiphertextsDiffer) { std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5}; std::vector<uint8_t> ciphertext1 = ticket_crypter_.Encrypt(StringPiece(plaintext), {}); std::vector<uint8_t> ciphertext2 = ticket_crypter_.Encrypt(StringPiece(plaintext), {}); EXPECT_NE(ciphertext1, ciphertext2); } TEST_F(SimpleTicketCrypterTest, DecryptionFailureWithModifiedCiphertext) { std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5}; std::vector<uint8_t> ciphertext = ticket_crypter_.Encrypt(StringPiece(plaintext), {}); EXPECT_NE(plaintext, ciphertext); for (size_t i = 0; i < ciphertext.size(); i++) { SCOPED_TRACE(i); std::vector<uint8_t> munged_ciphertext = ciphertext; munged_ciphertext[i] ^= 1; std::vector<uint8_t> out_plaintext; ticket_crypter_.Decrypt(StringPiece(munged_ciphertext), std::make_unique<DecryptCallback>(&out_plaintext)); EXPECT_TRUE(out_plaintext.empty()); } } TEST_F(SimpleTicketCrypterTest, DecryptionFailureWithEmptyCiphertext) { std::vector<uint8_t> out_plaintext; ticket_crypter_.Decrypt(absl::string_view(), std::make_unique<DecryptCallback>(&out_plaintext)); EXPECT_TRUE(out_plaintext.empty()); } TEST_F(SimpleTicketCrypterTest, KeyRotation) { std::vector<uint8_t> plaintext = {1, 2, 3}; std::vector<uint8_t> ciphertext = ticket_crypter_.Encrypt(StringPiece(plaintext), {}); EXPECT_FALSE(ciphertext.empty()); mock_clock_.AdvanceTime(kOneDay * 8); std::vector<uint8_t> out_plaintext; ticket_crypter_.Decrypt(StringPiece(ciphertext), std::make_unique<DecryptCallback>(&out_plaintext)); EXPECT_EQ(out_plaintext, plaintext); mock_clock_.AdvanceTime(kOneDay * 8); ticket_crypter_.Decrypt(StringPiece(ciphertext), std::make_unique<DecryptCallback>(&out_plaintext)); EXPECT_TRUE(out_plaintext.empty()); } } }
205
#ifndef AROLLA_QTYPE_ANY_QTYPE_H_ #define AROLLA_QTYPE_ANY_QTYPE_H_ #include <any> #include <cstdint> #include <functional> #include <type_traits> #include <typeinfo> #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/qtype/simple_qtype.h" #include "arolla/util/fingerprint.h" namespace arolla { class Any { public: Any() = default; Any(Any&&) = default; Any(const Any&) = default; Any& operator=(Any&&) = default; Any& operator=(const Any&) = default; template <typename T, typename = std::enable_if_t<!std::is_same_v<Any, std::decay_t<T>>>> explicit Any(T&& v) : value_(std::forward<T>(v)) { absl::BitGen b; fingerprint_val1_ = absl::Uniform<uint64_t>(b); fingerprint_val2_ = absl::Uniform<uint64_t>(b); } template <typename T> absl::StatusOr<std::reference_wrapper<const T>> As() const { const T* v = std::any_cast<T>(&value_); if (v) { return *v; } else { return InvalidCast(typeid(T)); } } void ArollaFingerprint(FingerprintHasher* hasher) const { hasher->Combine(fingerprint_val1_, fingerprint_val2_); } private: std::any value_; uint64_t fingerprint_val1_, fingerprint_val2_; absl::Status InvalidCast(const std::type_info& t) const; }; AROLLA_DECLARE_SIMPLE_QTYPE(ANY, Any); } #endif #include "arolla/qtype/any_qtype.h" #include <typeinfo> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "arolla/qtype/simple_qtype.h" #include "arolla/util/demangle.h" namespace arolla { absl::Status Any::InvalidCast(const std::type_info& t) const { if (value_.has_value()) { return absl::FailedPreconditionError(absl::StrFormat( "can not cast Any(%s) to %s", TypeName(value_.type()), TypeName(t))); } else { return absl::FailedPreconditionError("can not cast an empty ::arolla::Any"); } } AROLLA_DEFINE_SIMPLE_QTYPE(ANY, Any); }
#include "arolla/qtype/any_qtype.h" #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla { namespace { using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; TEST(AnyQType, AnyConstructorRegression) { Any any; Any copy_1 = any; Any copy_2(any); Any copy_3 = std::move(any); Any copy_4(std::move(copy_2)); } TEST(AnyQType, Any) { int v1 = 5; std::string v2 = "string"; TypedValue tv1 = TypedValue::FromValue(Any(v1)); TypedValue tv2 = TypedValue::FromValue(Any(v2)); TypedValue tv3 = TypedValue::FromValue(Any()); ASSERT_OK_AND_ASSIGN(const Any& a1, tv1.As<Any>()); ASSERT_OK_AND_ASSIGN(const Any& a2, tv2.As<Any>()); ASSERT_OK_AND_ASSIGN(const Any& a3, tv3.As<Any>()); EXPECT_THAT(a1.As<int>(), IsOkAndHolds(v1)); EXPECT_THAT(a1.As<double>(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("can not cast Any"))); ASSERT_OK_AND_ASSIGN(const std::string& v2_res, a2.As<std::string>()); EXPECT_EQ(v2, v2_res); EXPECT_THAT(a2.As<double>(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("can not cast Any"))); EXPECT_THAT(a3.As<double>(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("can not cast an empty ::arolla::Any"))); } TEST(AnyQType, Fingerprint) { Any a = Any(1); Any b = Any(1); Any a_copy = a; EXPECT_NE(TypedValue::FromValue(a).GetFingerprint(), TypedValue::FromValue(b).GetFingerprint()); EXPECT_EQ(TypedValue::FromValue(a).GetFingerprint(), TypedValue::FromValue(a_copy).GetFingerprint()); } } }
206
#ifndef XLA_SERVICE_GPU_RUNTIME_KERNEL_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_KERNEL_THUNK_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <string_view> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" namespace xla { namespace gpu { class GpuExecutable; class KernelThunk : public Thunk { public: KernelThunk(const HloInstruction* instr, std::string kernel_name, absl::Span<const KernelArgument> kernel_arguments, LaunchDimensions launch_dimensions, std::optional<se::ClusterDim> cluster_dim, int64_t shmem_bytes); KernelThunk(const KernelThunk&) = delete; KernelThunk& operator=(const KernelThunk&) = delete; ~KernelThunk() override = default; std::string ToString(int indent) const override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const std::vector<BufferAllocation::Slice>& arguments() const { return args_; } const std::vector<bool>& written() const { return written_; } const std::string& kernel_name() const { return kernel_name_; } const LaunchDimensions& launch_dimensions() const { return launch_dimensions_; } int64_t shmem_bytes() const { return shmem_bytes_; } private: std::vector<BufferAllocation::Slice> args_; std::vector<bool> written_; const std::string kernel_name_; const LaunchDimensions launch_dimensions_; const std::optional<se::ClusterDim> cluster_dim_; int64_t shmem_bytes_; mutable absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernel_cache_ ABSL_GUARDED_BY(mutex_); }; class CustomKernelThunk : public Thunk { public: CustomKernelThunk(const HloInstruction* inst, CustomKernel custom_kernel, absl::Span<const KernelArgument> kernel_arguments); std::string ToString(int indent) const override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const CustomKernel& custom_kernel() const { return custom_kernel_; } const std::vector<BufferAllocation::Slice>& arguments() const { return args_; } std::string_view custom_kernel_name() const { return custom_kernel_.name(); } const std::vector<bool>& written() const { return written_; } LaunchDimensions launch_dimensions() const { return LaunchDimensions(custom_kernel_.block_dims(), custom_kernel_.thread_dims()); } int64_t shmem_bytes() const { return custom_kernel_.shared_memory_bytes(); } private: std::vector<BufferAllocation::Slice> args_; std::vector<bool> written_; CustomKernel custom_kernel_; mutable absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernel_cache_ ABSL_GUARDED_BY(mutex_); }; } } #endif #include "xla/service/gpu/runtime/kernel_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { KernelThunk::KernelThunk(const HloInstruction* instr, std::string kernel_name, absl::Span<const KernelArgument> kernel_arguments, LaunchDimensions launch_dimensions, std::optional<se::ClusterDim> cluster_dim, int64_t shmem_bytes) : Thunk(Kind::kKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), kernel_name_(std::move(kernel_name)), launch_dimensions_(std::move(launch_dimensions)), cluster_dim_(std::move(cluster_dim)), shmem_bytes_(shmem_bytes) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string KernelThunk::ToString(int indent) const { return absl::StrFormat( ", kernel = %s, launch dimensions = %s, cluster_dim = %s", kernel_name_, launch_dimensions_.ToString(), cluster_dim_.has_value() ? cluster_dim_->ToString() : "nullopt"); } absl::Status KernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, CreateKernel(kernel_name_, args_.size(), params.src.text, params.src.binary, params.executor, shmem_bytes_)); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } static void PrintBufferContents( se::Stream* stream, absl::Span<const se::DeviceMemoryBase> buffer_args) { int input_idx = 0; for (const se::DeviceMemoryBase& buf : buffer_args) { auto host_buffer = std::make_unique<char[]>(buf.size()); CHECK_OK(stream->Memcpy(host_buffer.get(), buf, buf.size())); CHECK_OK(stream->BlockHostUntilDone()); std::string buffer_contents; for (int i = 0; i < buf.size(); i++) { absl::StrAppendFormat(&buffer_contents, "%x ", static_cast<unsigned>(host_buffer[i])); } VLOG(100) << "BUF(" << input_idx++ << ") = " << buffer_contents; } } absl::Status KernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); LaunchDimensions launch_dimensions; std::optional<se::ClusterDim> cluster_dim; const se::Kernel* kernel = nullptr; TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(executor); CHECK(it != kernel_cache_.end()) << "Initialize() not called for StreamExecutor " << executor; launch_dimensions = launch_dimensions_; cluster_dim = cluster_dim_; kernel = it->second.get(); } VLOG(3) << "Launching " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(stream, buffer_args); } if (cluster_dim.has_value()) { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, cluster_dim.value(), stream); } else { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, stream); } } CustomKernelThunk::CustomKernelThunk( const HloInstruction* instr, CustomKernel custom_kernel, absl::Span<const KernelArgument> kernel_arguments) : Thunk(Kind::kCustomKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), custom_kernel_(std::move(custom_kernel)) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string CustomKernelThunk::ToString(int indent) const { return custom_kernel_.ToString(); } absl::Status CustomKernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Kernel> kernel, se::KernelFactory::Create( params.executor, custom_kernel_.kernel_spec())); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } absl::Status CustomKernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); const se::Kernel* kernel = [&] { absl::MutexLock lock(&mutex_); return kernel_cache_[executor].get(); }(); VLOG(3) << "Launching " << custom_kernel_.ToString() << " as device kernel " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(params.stream, buffer_args); } se::KernelArgsDeviceMemoryArray args(buffer_args, custom_kernel_.shared_memory_bytes()); if (auto cluster = custom_kernel_.cluster_dims(); cluster.has_value()) { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *cluster, *kernel, args); } else { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *kernel, args); } } } }
#include "xla/service/cpu/runtime/kernel_thunk.h" #include <cstddef> #include <cstdint> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { class AddF32HostKernels : public Thunk::HostKernels { public: absl::StatusOr<SE_HOST_Kernel*> Find(std::string_view name) override { return +[](const SE_HOST_KernelCallFrame* call_frame) { const SE_HOST_KernelArg& in = call_frame->args[0]; const SE_HOST_KernelArg& out = call_frame->args[1]; float* in_ptr = reinterpret_cast<float*>(in.data); float* out_ptr = reinterpret_cast<float*>(out.data); uint64_t i = call_frame->thread->x; *(out_ptr + i) = *(in_ptr + i) + *(in_ptr + i); return static_cast<SE_HOST_KernelError*>(nullptr); }; } }; TEST(KernelThunkTest, CheckAlignment) { auto thunk = KernelThunk::Create({"test"}, {}, {}, "test", se::ThreadDim(), 3); EXPECT_TRUE(absl::StrContains(thunk.status().message(), "minimum alignment 3 is not a power of 2")); } TEST(KernelThunkTest, AddF32) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in = {1.0, 2.0, 3.0, 4.0}; std::vector<float> out(4, 0.0); size_t size_in_bytes = in.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_alloc(0, size_in_bytes, 0); BufferAllocation out_alloc(1, size_in_bytes, 0); BufferAllocation::Slice in_slice(&in_alloc, 0, size_in_bytes); BufferAllocation::Slice out_slice(&out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create({"add_f32"}, {in_slice}, {out_slice}, "add_f32", se::ThreadDim(4))); AddF32HostKernels host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {2.0, 4.0, 6.0, 8.0}; EXPECT_EQ(out, expected); } } }
207
#ifndef TENSORFLOW_TSL_PROFILER_UTILS_PARSE_ANNOTATION_H_ #define TENSORFLOW_TSL_PROFILER_UTILS_PARSE_ANNOTATION_H_ #include <vector> #include "absl/strings/string_view.h" namespace tsl { namespace profiler { struct Annotation { absl::string_view name; struct Metadata { absl::string_view key; absl::string_view value; }; std::vector<Metadata> metadata; }; Annotation ParseAnnotation(absl::string_view annotation); inline bool HasMetadata(absl::string_view annotation) { constexpr char kUserMetadataMarker = '#'; return !annotation.empty() && annotation.back() == kUserMetadataMarker; } std::vector<Annotation> ParseAnnotationStack( absl::string_view annotation_stack); } } #endif #include "tsl/profiler/utils/parse_annotation.h" #include <stack> #include <string> #include <utility> #include <vector> #include "absl/strings/ascii.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" namespace tsl { namespace profiler { namespace { std::vector<absl::string_view> SplitNameAndMetadata( absl::string_view annotation) { std::vector<absl::string_view> parts; if (!HasMetadata(annotation)) { parts.emplace_back(annotation); } else { annotation.remove_suffix(1); parts = absl::StrSplit(annotation, '#'); if (parts.size() > 2) { parts.resize(2); } } while (parts.size() < 2) { parts.emplace_back(); } return parts; } std::vector<absl::string_view> SplitPairs(absl::string_view metadata) { std::vector<absl::string_view> key_value_pairs; std::stack<char> quotes; size_t start = 0, end = 0; for (; end < metadata.size(); ++end) { char ch = metadata[end]; switch (ch) { case '\"': case '\'': if (quotes.empty() || quotes.top() != ch) { quotes.push(ch); } else { quotes.pop(); } break; case '{': case '(': case '[': quotes.push(ch); break; case '}': if (!quotes.empty() && quotes.top() == '{') { quotes.pop(); } break; case ')': if (!quotes.empty() && quotes.top() == '(') { quotes.pop(); } break; case ']': if (!quotes.empty() && quotes.top() == '[') { quotes.pop(); } break; case ',': if (quotes.empty()) { if (end - start > 1) { key_value_pairs.emplace_back(metadata.data() + start, end - start); } start = end + 1; } break; } } if (end - start > 1) { key_value_pairs.emplace_back(metadata.data() + start, end - start); } return key_value_pairs; } std::vector<std::pair<absl::string_view, absl::string_view>> ParseMetadata( absl::string_view metadata) { std::vector<std::pair<absl::string_view, absl::string_view>> key_values; for (absl::string_view pair : SplitPairs(metadata)) { std::vector<absl::string_view> parts = absl::StrSplit(pair, absl::MaxSplits('=', 1)); if (parts.size() == 2) { absl::string_view key = absl::StripAsciiWhitespace(parts[0]); absl::string_view value = absl::StripAsciiWhitespace(parts[1]); if (!key.empty() && !value.empty()) { key_values.push_back({key, value}); } } } return key_values; } } Annotation ParseAnnotation(absl::string_view annotation) { Annotation result; std::vector<absl::string_view> parts = SplitNameAndMetadata(annotation); if (!parts.empty()) { result.name = absl::StripAsciiWhitespace(parts[0]); for (const auto& key_value : ParseMetadata(parts[1])) { result.metadata.push_back({key_value.first, key_value.second}); } } return result; } std::vector<Annotation> ParseAnnotationStack( absl::string_view annotation_stack) { std::vector<Annotation> annotations; const std::string kAnnotationDelimiter = "::"; for (absl::string_view annotation : absl::StrSplit( annotation_stack, kAnnotationDelimiter, absl::SkipEmpty())) { annotations.emplace_back(ParseAnnotation(annotation)); } return annotations; } } }
#include "tsl/profiler/utils/parse_annotation.h" #include <vector> #include "absl/strings/string_view.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(ParseAnnotationStackTest, EmptyAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack(""); ASSERT_TRUE(annotations.empty()); } TEST(ParseAnnotationStackTest, SingleAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack("name"); ASSERT_FALSE(annotations.empty()); EXPECT_EQ(annotations.back().name, "name"); EXPECT_TRUE(annotations.back().metadata.empty()); } TEST(ParseAnnotationStackTest, MultiLevelAnnotationStackTest) { std::vector<Annotation> annotations = ParseAnnotationStack("outer::inner"); ASSERT_EQ(annotations.size(), 2); EXPECT_EQ(annotations.front().name, "outer"); EXPECT_TRUE(annotations.front().metadata.empty()); EXPECT_EQ(annotations.back().name, "inner"); EXPECT_TRUE(annotations.back().metadata.empty()); } TEST(ParseAnnotationTest, EmptyAnnotationTest) { Annotation annotation = ParseAnnotation(""); EXPECT_TRUE(annotation.name.empty()); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SimpleNameTest) { Annotation annotation = ParseAnnotation("name"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SimpleNameWithWhitespaceTest) { Annotation annotation = ParseAnnotation("name "); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, EmptyMetadataTest) { Annotation annotation = ParseAnnotation("name#"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); annotation = ParseAnnotation("name1##"); EXPECT_EQ(annotation.name, "name1"); EXPECT_TRUE(annotation.metadata.empty()); annotation = ParseAnnotation("name2###"); EXPECT_EQ(annotation.name, "name2"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, SingleMetadataTest) { Annotation annotation = ParseAnnotation("name#key=value#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 1); EXPECT_EQ(annotation.metadata.at(0).key, "key"); EXPECT_EQ(annotation.metadata.at(0).value, "value"); } TEST(ParseAnnotationTest, MultipleMetadataTest) { Annotation annotation = ParseAnnotation("name#k1=v1,k2=v2,k3=v3#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 3); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "v2"); EXPECT_EQ(annotation.metadata.at(2).key, "k3"); EXPECT_EQ(annotation.metadata.at(2).value, "v3"); } TEST(ParseAnnotationTest, MultipleMetadataWithWhitespaceTest) { Annotation annotation = ParseAnnotation("name # k1 = v1, ,k2=v2 #"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 2); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "v2"); } TEST(ParseAnnotationTest, KeyValueSeparatorTest) { Annotation annotation = ParseAnnotation("name#=v1,k2=,k3==v3,k4=v4=#"); EXPECT_EQ(annotation.name, "name"); ASSERT_EQ(annotation.metadata.size(), 2); EXPECT_EQ(annotation.metadata.at(0).key, "k3"); EXPECT_EQ(annotation.metadata.at(0).value, "=v3"); EXPECT_EQ(annotation.metadata.at(1).key, "k4"); EXPECT_EQ(annotation.metadata.at(1).value, "v4="); } TEST(ParseAnnotationTest, ExtraMetadataSeparatorTest) { Annotation annotation = ParseAnnotation("name##k1=v1#"); EXPECT_EQ(annotation.name, "name"); EXPECT_TRUE(annotation.metadata.empty()); } TEST(ParseAnnotationTest, QuotedMetadata) { Annotation annotation = ParseAnnotation( "name#k1=(v11,v12),k2=[v21,v22,v23],k3={v31,v32}, k4=\"v41,v42\"," "(k51,k52)='v51,v52'#"); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "(v11,v12)"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "[v21,v22,v23]"); EXPECT_EQ(annotation.metadata.at(2).key, "k3"); EXPECT_EQ(annotation.metadata.at(2).value, "{v31,v32}"); EXPECT_EQ(annotation.metadata.at(3).key, "k4"); EXPECT_EQ(annotation.metadata.at(3).value, "\"v41,v42\""); EXPECT_EQ(annotation.metadata.at(4).key, "(k51,k52)"); EXPECT_EQ(annotation.metadata.at(4).value, "'v51,v52'"); } TEST(ParseAnnotationTest, UnmatchedQuotedMetadata) { Annotation annotation = ParseAnnotation("name#k1=v1,k2=(v2,k3=v3#"); EXPECT_EQ(annotation.metadata.at(0).key, "k1"); EXPECT_EQ(annotation.metadata.at(0).value, "v1"); EXPECT_EQ(annotation.metadata.at(1).key, "k2"); EXPECT_EQ(annotation.metadata.at(1).value, "(v2,k3=v3"); } } } }
208
#ifndef TENSORSTORE_INTERNAL_JSON_GTEST_H_ #define TENSORSTORE_INTERNAL_JSON_GTEST_H_ #include <ostream> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <nlohmann/json.hpp> namespace nlohmann { inline void PrintTo(json const& j, std::ostream* os) { *os << j.dump(); } } namespace tensorstore { ::testing::Matcher<::nlohmann::json> MatchesJson(::nlohmann::json j); ::testing::Matcher<::nlohmann::json> JsonSubValueMatches( std::string json_pointer, ::testing::Matcher<::nlohmann::json> value_matcher); ::testing::Matcher<::nlohmann::json> JsonSubValueMatches( std::string json_pointer, ::nlohmann::json value_matcher); ::testing::Matcher<::nlohmann::json> JsonSubValuesMatch( std::vector<std::pair<std::string, ::nlohmann::json>> matchers); } #endif #include "tensorstore/internal/json_gtest.h" #include <ostream> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json/same.h" #include "tensorstore/internal/json_pointer.h" #include "tensorstore/util/quote_string.h" namespace tensorstore { namespace { class JsonMatcherImpl : public ::testing::MatcherInterface<::nlohmann::json> { public: JsonMatcherImpl(::nlohmann::json value) : value_(std::move(value)) {} bool MatchAndExplain( ::nlohmann::json value_untyped, ::testing::MatchResultListener* listener) const override { if (!internal_json::JsonSame(value_, value_untyped)) { if (listener->IsInterested()) { *listener << "where the difference is:\n" << ::nlohmann::json::diff(value_, value_untyped).dump(2); } return false; } return true; } void DescribeTo(std::ostream* os) const override { *os << "matches json " << value_; } void DescribeNegationTo(std::ostream* os) const override { *os << "does not match json " << value_; } private: ::nlohmann::json value_; }; } ::testing::Matcher<::nlohmann::json> MatchesJson(::nlohmann::json j) { return ::testing::MakeMatcher(new JsonMatcherImpl(std::move(j))); } namespace { class JsonPointerMatcherImpl : public ::testing::MatcherInterface<::nlohmann::json> { public: JsonPointerMatcherImpl(std::string sub_value_pointer, ::testing::Matcher<::nlohmann::json> sub_value_matcher) : sub_value_pointer_(std::move(sub_value_pointer)), sub_value_matcher_(std::move(sub_value_matcher)) {} bool MatchAndExplain( ::nlohmann::json value_untyped, ::testing::MatchResultListener* listener) const override { auto sub_value = json_pointer::Dereference(value_untyped, sub_value_pointer_); if (!sub_value.ok()) { if (listener->IsInterested()) { *listener << "where the pointer could not be resolved: " << sub_value.status(); } return false; } if (listener->IsInterested()) { ::testing::StringMatchResultListener s; if (!sub_value_matcher_.MatchAndExplain(**sub_value, &s)) { *listener << "whose sub value doesn't match"; auto str = s.str(); if (!str.empty()) { *listener << ", " << str; } return false; } return true; } return sub_value_matcher_.Matches(**sub_value); } void DescribeTo(std::ostream* os) const override { *os << "has sub value " << tensorstore::QuoteString(sub_value_pointer_) << " that "; sub_value_matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const override { *os << "does not have sub value " << tensorstore::QuoteString(sub_value_pointer_) << " that "; sub_value_matcher_.DescribeTo(os); } private: std::string sub_value_pointer_; ::testing::Matcher<nlohmann::json> sub_value_matcher_; }; } ::testing::Matcher<::nlohmann::json> JsonSubValueMatches( std::string json_pointer, ::testing::Matcher<::nlohmann::json> value_matcher) { return ::testing::MakeMatcher(new JsonPointerMatcherImpl( std::move(json_pointer), std::move(value_matcher))); } ::testing::Matcher<::nlohmann::json> JsonSubValueMatches( std::string json_pointer, ::nlohmann::json value_matcher) { return JsonSubValueMatches(std::move(json_pointer), MatchesJson(std::move(value_matcher))); } ::testing::Matcher<::nlohmann::json> JsonSubValuesMatch( std::vector<std::pair<std::string, ::nlohmann::json>> matchers) { std::vector<::testing::Matcher<::nlohmann::json>> all; all.reserve(matchers.size()); for (const auto& p : matchers) { all.push_back(JsonSubValueMatches(p.first, p.second)); } return ::testing::AllOfArray(all); } }
#include "tensorstore/internal/json_gtest.h" #include <sstream> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> namespace { using ::tensorstore::JsonSubValueMatches; using ::tensorstore::JsonSubValuesMatch; using ::tensorstore::MatchesJson; template <typename MatcherType> std::string Describe(const MatcherType& m) { std::ostringstream ss; m.DescribeTo(&ss); return ss.str(); } template <typename MatcherType, typename Value> std::string Explain(const MatcherType& m, const Value& x) { testing::StringMatchResultListener listener; ExplainMatchResult(m, x, &listener); return listener.str(); } TEST(JsonSubValueMatchesTest, Example) { ::nlohmann::json obj{{"a", 123}, {"b", {{"c", "xyz"}}}}; EXPECT_THAT(obj, JsonSubValueMatches("/a", 123)); EXPECT_THAT(obj, JsonSubValueMatches("/b/c", "xyz")); EXPECT_THAT(obj, JsonSubValueMatches("/b/c", ::testing::Not(MatchesJson("xy")))); EXPECT_THAT(Describe(JsonSubValueMatches("/a", 123)), "has sub value \"/a\" that matches json 123"); EXPECT_THAT(Explain(JsonSubValueMatches("/a", 124), obj), ::testing::StartsWith( "whose sub value doesn't match, where the difference is:")); } TEST(JsonSubValuesMatchTest, Example) { ::nlohmann::json obj{{"a", 123}, {"b", {{"c", "xyz"}}}}; EXPECT_THAT(obj, JsonSubValuesMatch({{"/a", 123}, {"/b/c", "xyz"}})); } }
209
#ifndef TENSORFLOW_TOOLS_GRAPH_TRANSFORMS_TRANSFORM_GRAPH_H_ #define TENSORFLOW_TOOLS_GRAPH_TRANSFORMS_TRANSFORM_GRAPH_H_ #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { int ParseFlagsAndTransformGraph(int argc, char* argv[], bool init_main); typedef std::vector<std::pair<string, TransformFuncParameters>> TransformParameters; Status ParseTransformParameters(const string& transforms_string, TransformParameters* params_list); Status TransformGraph(const std::vector<string>& inputs, const std::vector<string>& outputs, const TransformParameters& transform_params, GraphDef* graph_def); } } #endif #include "tensorflow/tools/graph_transforms/transform_graph.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/lib/strings/scanner.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/tools/graph_transforms/file_utils.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" #if !defined(PLATFORM_WINDOWS) #include <pwd.h> #include <unistd.h> #endif namespace tensorflow { namespace graph_transforms { using tensorflow::strings::Scanner; Status ParseTransformParameters(const string& transforms_string, TransformParameters* params_list) { params_list->clear(); enum { TRANSFORM_NAME, TRANSFORM_PARAM_NAME, TRANSFORM_PARAM_VALUE, } state = TRANSFORM_NAME; StringPiece remaining(transforms_string); StringPiece match; StringPiece transform_name; StringPiece parameter_name; StringPiece parameter_value; TransformFuncParameters func_parameters; while (!remaining.empty()) { if (state == TRANSFORM_NAME) { func_parameters.clear(); Scanner(remaining).AnySpace().GetResult(&remaining, &match); if (remaining.empty()) { return OkStatus(); } const bool found_transform_name = Scanner(remaining) .Many(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &transform_name); if (!found_transform_name) { return errors::InvalidArgument("Looking for transform name, but found ", string(remaining).c_str()); } if (Scanner(remaining).OneLiteral("(").GetResult(&remaining, &match)) { state = TRANSFORM_PARAM_NAME; } else { params_list->push_back({string(transform_name), func_parameters}); transform_name = ""; state = TRANSFORM_NAME; } } else if (state == TRANSFORM_PARAM_NAME) { if (Scanner(remaining).OneLiteral(")").GetResult(&remaining, &match)) { params_list->push_back({string(transform_name), func_parameters}); transform_name = ""; state = TRANSFORM_NAME; } else { Scanner(remaining).ZeroOrOneLiteral(",").GetResult(&remaining, &match); Scanner(remaining).AnySpace().GetResult(&remaining, &match); const bool found_parameter_name = Scanner(remaining) .Many(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &parameter_name); if (!found_parameter_name) { return errors::InvalidArgument( "Looking for parameter name, but found ", string(remaining).c_str()); } if (Scanner(remaining).OneLiteral("=").GetResult(&remaining, &match)) { state = TRANSFORM_PARAM_VALUE; } else { return errors::InvalidArgument("Looking for =, but found ", string(remaining).c_str()); } } } else if (state == TRANSFORM_PARAM_VALUE) { bool found_parameter_value; if (Scanner(remaining).OneLiteral("\"").GetResult(&remaining, &match)) { found_parameter_value = Scanner(remaining).ScanEscapedUntil('"').GetResult( &remaining, &parameter_value); if (found_parameter_value) { Scanner(remaining).OneLiteral("\"").GetResult(&remaining, &match); } } else { found_parameter_value = Scanner(remaining) .Many(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE) .GetResult(&remaining, &parameter_value); } if (!found_parameter_value) { return errors::InvalidArgument("Looking for parameter name, but found ", string(remaining).c_str()); } func_parameters[string(parameter_name)].emplace_back(parameter_value); Scanner(remaining).ZeroOrOneLiteral("\"").GetResult(&remaining, &match); Scanner(remaining).ZeroOrOneLiteral("'").GetResult(&remaining, &match); state = TRANSFORM_PARAM_NAME; } } return OkStatus(); } std::string ExpandPath(const std::string& path_string) { #if defined(PLATFORM_WINDOWS) return path_string; #else if (path_string.empty() || path_string[0] != '~') { return path_string; } const char* home = nullptr; std::string::size_type prefix = path_string.find_first_of('/'); if (path_string.length() == 1 || prefix == 1) { home = getenv("HOME"); if (!home) { struct passwd* pw = getpwuid(getuid()); if (pw) { home = pw->pw_dir; } } } else { std::string user(path_string, 1, (prefix == std::string::npos) ? std::string::npos : prefix - 1); struct passwd* pw = getpwnam(user.c_str()); if (pw) { home = pw->pw_dir; } } if (!home) { return path_string; } string path(home); if (prefix == std::string::npos) { return path; } if (path.length() == 0 || path[path.length() - 1] != '/') { path += '/'; } path += path_string.substr(prefix + 1); return path; #endif } int ParseFlagsAndTransformGraph(int argc, char* argv[], bool init_main) { string in_graph_string = ""; string out_graph_string = ""; string inputs_string = ""; string outputs_string = ""; string transforms_string = ""; bool output_as_text = false; std::vector<Flag> flag_list = { Flag("in_graph", &in_graph_string, "input graph file name"), Flag("out_graph", &out_graph_string, "output graph file name"), Flag("inputs", &inputs_string, "inputs"), Flag("outputs", &outputs_string, "outputs"), Flag("transforms", &transforms_string, "list of transforms"), Flag("output_as_text", &output_as_text, "whether to write the graph in text protobuf format"), }; string usage = Flags::Usage(argv[0], flag_list); usage += "\nTransforms are:\n"; TransformRegistry* transform_registry = GetTransformRegistry(); for (const auto& pair : *transform_registry) { usage += pair.first + "\n"; } const bool parse_result = Flags::Parse(&argc, argv, flag_list); if (init_main) { port::InitMain(argv[0], &argc, &argv); } if (!parse_result) { LOG(ERROR) << usage; return -1; } if (argc > 1) { LOG(ERROR) << "Unknown argument " << argv[1] << ".\n" << usage; return -1; } if (in_graph_string.empty()) { LOG(ERROR) << "in_graph graph can't be empty.\n" << usage; return -1; } if (out_graph_string.empty()) { LOG(ERROR) << "out_graph graph can't be empty.\n" << usage; return -1; } if (transforms_string.empty()) { LOG(ERROR) << "You must specify at least one transform.\n" << usage; return -1; } string in_graph = ExpandPath(in_graph_string); string out_graph = ExpandPath(out_graph_string); std::vector<string> inputs = str_util::Split(inputs_string, ','); std::vector<string> outputs = str_util::Split(outputs_string, ','); TransformParameters transform_params; Status parse_status = ParseTransformParameters(transforms_string, &transform_params); if (!parse_status.ok()) { LOG(ERROR) << "Failed to parse --transform argument, error was " << parse_status.message(); return -1; } if (transform_params.empty()) { LOG(ERROR) << "You must specify at least one transform.\n" << usage; return -1; } GraphDef graph_def; Status load_status = LoadTextOrBinaryGraphFile(in_graph, &graph_def); if (!load_status.ok()) { LOG(ERROR) << "Loading graph '" << in_graph_string << "' failed with " << load_status.message(); LOG(ERROR) << usage; return -1; } Status transform_result = TransformGraph(inputs, outputs, transform_params, &graph_def); if (!transform_result.ok()) { LOG(ERROR) << transform_result.message(); LOG(ERROR) << usage; return -1; } Status save_status; if (output_as_text) { save_status = WriteTextProto(Env::Default(), out_graph, graph_def); } else { save_status = WriteBinaryProto(Env::Default(), out_graph, graph_def); } if (!save_status.ok()) { LOG(ERROR) << "Saving graph '" << out_graph_string << "' failed with " << save_status.message(); return -1; } return 0; } Status ShouldIgnoreErrors(const TransformFuncParameters& transform_params, bool* ignore_errors) { *ignore_errors = false; if (transform_params.count("ignore_errors") && (!transform_params.at("ignore_errors").empty())) { const string& ignore_errors_string = absl::AsciiStrToLower(transform_params.at("ignore_errors").at(0)); if (ignore_errors_string == "true") { *ignore_errors = true; } else if (ignore_errors_string == "false") { *ignore_errors = false; } else { return errors::InvalidArgument( "ignore_errors should be true or false, found ", ignore_errors_string); } } return OkStatus(); } Status TransformGraph(const std::vector<string>& inputs, const std::vector<string>& outputs, const TransformParameters& transform_params, GraphDef* graph_def) { TransformRegistry* transform_registry = GetTransformRegistry(); for (const auto& transform_info : transform_params) { const string& transform_name = transform_info.first; if (transform_name.empty()) { continue; } if (!transform_registry->count(transform_name)) { return errors::InvalidArgument("Transform '", transform_name, "' not recognized."); } LOG(INFO) << "Applying " << transform_name; const TransformFunc& transform_func = transform_registry->at(transform_name); TransformFuncContext context; context.input_names = inputs; context.output_names = outputs; context.params = transform_info.second; bool ignore_errors; TF_RETURN_IF_ERROR( ShouldIgnoreErrors(transform_info.second, &ignore_errors)); GraphDef transformed_graph_def; Status transform_result = transform_func(*graph_def, context, &transformed_graph_def); if (!transform_result.ok()) { if (ignore_errors) { LOG(ERROR) << transform_name << ": Ignoring error " << transform_result.message(); transformed_graph_def = *graph_def; } else { return transform_result; } } *transformed_graph_def.mutable_library() = graph_def->library(); TF_RETURN_IF_ERROR(IsGraphValid(transformed_graph_def)); *graph_def = transformed_graph_def; } return OkStatus(); } } }
#include "tensorflow/tools/graph_transforms/transform_graph.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status ShouldIgnoreErrors(const TransformFuncParameters& transform_params, bool* ignore_errors); namespace { Status test_empty_graph_transform(const GraphDef& graph_def, const TransformFuncContext& context, GraphDef* result) { result->Clear(); return OkStatus(); } } REGISTER_GRAPH_TRANSFORM("test_empty_graph_transform", test_empty_graph_transform); class TransformGraphTest : public ::testing::Test { protected: void TestConstantFolding() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; const int width = 100; Tensor a_data(DT_FLOAT, TensorShape({width})); test::FillIota<float>(&a_data, 1.0f); Output a_const = Const(root.WithOpName("a_expect_removed"), Input::Initializer(a_data)); Tensor b_data(DT_FLOAT, TensorShape({width})); test::FillIota<float>(&b_data, 1.0f); Output b_const = Const(root.WithOpName("b_expect_removed"), Input::Initializer(b_data)); Output add = Add(root.WithOpName("add_expect_removed"), a_const, b_const); Output placeholder = Placeholder(root.WithOpName("placeholder_expect_remains"), DT_FLOAT); Output mul = Mul(root.WithOpName("output_expect_remains"), add, placeholder); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); string graph_def_serialized; graph_def.SerializeToString(&graph_def_serialized); const string dir = testing::TmpDir(); const string in_filename_pb = io::JoinPath(dir, "in_graphdef.pb"); const string out_filename_pb = io::JoinPath(dir, "out_graphdef.pb"); TF_ASSERT_OK(WriteStringToFile(Env::Default(), in_filename_pb, graph_def_serialized)); std::vector<string> args = {"some_binary", "--in_graph=" + in_filename_pb, "--out_graph=" + out_filename_pb, "--inputs=placeholder_expect_remains", "--outputs=output_expect_remains", "--transforms=fold_constants"}; const int argc = 6; EXPECT_EQ(argc, args.size()); char* argv[argc]; std::vector<char*> char_strings; for (int i = 0; i < argc; ++i) { string arg = args[i]; char* char_string = new char[arg.size() + 1]; std::copy_n(arg.c_str(), arg.size() + 1, char_string); argv[i] = char_string; char_strings.push_back(char_string); } ParseFlagsAndTransformGraph(argc, argv, false); for (char* char_string : char_strings) { delete[] char_string; } GraphDef out_graph_def; TF_EXPECT_OK( ReadBinaryProto(Env::Default(), out_filename_pb, &out_graph_def)); std::map<string, const NodeDef*> out_node_map; graph_transforms::MapNamesToNodes(out_graph_def, &out_node_map); for (const NodeDef& node : out_graph_def.node()) { const int occurrence_count = out_node_map.count(node.name()); if (str_util::EndsWith(node.name(), "expect_removed")) { EXPECT_EQ(0, occurrence_count) << "node.name()=" << node.name(); } if (str_util::EndsWith(node.name(), "expect_remains")) { EXPECT_EQ(1, occurrence_count) << "node.name()=" << node.name(); } } } void TestTransformRegistration() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Output placeholder = Placeholder(root.WithOpName("placeholder_expect_remains"), DT_FLOAT); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); EXPECT_EQ(1, graph_def.node().size()); TF_ASSERT_OK(TransformGraph({}, {}, {{"test_empty_graph_transform", {}}}, &graph_def)); EXPECT_EQ(0, graph_def.node().size()); TF_ASSERT_OK(root.ToGraphDef(&graph_def)); Status no_such_status = TransformGraph({}, {}, {{"test_no_such_transform", {}}}, &graph_def); EXPECT_TRUE(absl::StrContains(no_such_status.ToString(), "not recognized")); } void TestParseTransformParameters() { TransformParameters params_list; TF_EXPECT_OK(ParseTransformParameters("foo", &params_list)); EXPECT_EQ(1, params_list.size()); EXPECT_EQ("foo", params_list[0].first); EXPECT_TRUE(params_list[0].second.empty()); TF_EXPECT_OK(ParseTransformParameters("foo bar", &params_list)); EXPECT_EQ(2, params_list.size()); EXPECT_EQ("foo", params_list[0].first); EXPECT_TRUE(params_list[0].second.empty()); EXPECT_EQ("bar", params_list[1].first); EXPECT_TRUE(params_list[1].second.empty()); TF_EXPECT_OK(ParseTransformParameters("foo() bar()", &params_list)); EXPECT_EQ(2, params_list.size()); EXPECT_EQ("foo", params_list[0].first); EXPECT_TRUE(params_list[0].second.empty()); EXPECT_EQ("bar", params_list[1].first); EXPECT_TRUE(params_list[1].second.empty()); TF_EXPECT_OK( ParseTransformParameters("foo(bob_something=sue)", &params_list)); EXPECT_EQ(1, params_list.size()); EXPECT_EQ("foo", params_list[0].first); EXPECT_EQ(1, params_list[0].second.count("bob_something")); EXPECT_EQ(1, params_list[0].second["bob_something"].size()); EXPECT_EQ("sue", params_list[0].second["bob_something"][0]); TF_EXPECT_OK(ParseTransformParameters("bar(a=1, b=2, a=3)", &params_list)); EXPECT_EQ(1, params_list.size()); EXPECT_EQ("bar", params_list[0].first); EXPECT_EQ(1, params_list[0].second.count("a")); EXPECT_EQ(2, params_list[0].second["a"].size()); EXPECT_EQ("1", params_list[0].second["a"][0]); EXPECT_EQ("3", params_list[0].second["a"][1]); EXPECT_EQ(1, params_list[0].second.count("b")); EXPECT_EQ(1, params_list[0].second["b"].size()); EXPECT_EQ("2", params_list[0].second["b"][0]); TF_EXPECT_OK(ParseTransformParameters("bar(a=\"1\", b=\"1,2,3\", a=3)", &params_list)); EXPECT_EQ(1, params_list.size()); EXPECT_EQ("bar", params_list[0].first); EXPECT_EQ(1, params_list[0].second.count("a")); EXPECT_EQ(2, params_list[0].second["a"].size()); EXPECT_EQ("1", params_list[0].second["a"][0]); EXPECT_EQ("3", params_list[0].second["a"][1]); EXPECT_EQ(1, params_list[0].second.count("b")); EXPECT_EQ(1, params_list[0].second["b"].size()); EXPECT_EQ("1,2,3", params_list[0].second["b"][0]); } void TestParseEscapedNewline() { TransformParameters params_list; ParseTransformParameters("\\\n", &params_list).IgnoreError(); EXPECT_EQ(0, params_list.size()); } void TestParseExtraSpaces() { TransformParameters params_list; ParseTransformParameters(" ", &params_list).IgnoreError(); EXPECT_EQ(0, params_list.size()); TF_EXPECT_OK(ParseTransformParameters(" foo bar \\\n", &params_list)); EXPECT_EQ(2, params_list.size()); EXPECT_EQ("foo", params_list[0].first); EXPECT_TRUE(params_list[0].second.empty()); EXPECT_EQ("bar", params_list[1].first); EXPECT_TRUE(params_list[1].second.empty()); } void TestShouldIgnoreErrors() { bool ignore_errors; TF_EXPECT_OK( ShouldIgnoreErrors({{"ignore_errors", {"true"}}}, &ignore_errors)); EXPECT_TRUE(ignore_errors); TF_EXPECT_OK( ShouldIgnoreErrors({{"ignore_errors", {"false"}}}, &ignore_errors)); EXPECT_FALSE(ignore_errors); TF_EXPECT_OK(ShouldIgnoreErrors({}, &ignore_errors)); EXPECT_FALSE(ignore_errors); EXPECT_FALSE( ShouldIgnoreErrors({{"ignore_errors", {"foo"}}}, &ignore_errors).ok()); } }; TEST_F(TransformGraphTest, TestConstantFolding) { TestConstantFolding(); } TEST_F(TransformGraphTest, TestTransformRegistration) { TestTransformRegistration(); } TEST_F(TransformGraphTest, TestParseTransformParameters) { TestParseTransformParameters(); } TEST_F(TransformGraphTest, TestParseEscapedNewline) { TestParseEscapedNewline(); } TEST_F(TransformGraphTest, TestShouldIgnoreErrors) { TestShouldIgnoreErrors(); } } }
210
#ifndef TENSORFLOW_CORE_DATA_COMPRESSION_UTILS_H_ #define TENSORFLOW_CORE_DATA_COMPRESSION_UTILS_H_ #include <vector> #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace data { Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out); Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out); } } #endif #include "tensorflow/core/data/compression_utils.h" #include <limits> #include <string> #include <vector> #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/snappy.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr int kCompressedElementVersion = 0; } class Iov { public: explicit Iov(size_t size) : iov_(size), idx_(0), num_bytes_(0) {} void Add(void* base, size_t len) { iov_[idx_].iov_base = base; iov_[idx_].iov_len = len; num_bytes_ += len; ++idx_; } iovec* Data() { return iov_.data(); } size_t NumBytes() const { return num_bytes_; } size_t NumPieces() const { return iov_.size(); } private: std::vector<struct iovec> iov_; size_t idx_; size_t num_bytes_; }; Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out) { size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; std::vector<TensorProto> nonmemcpyable_components; size_t total_nonmemcpyable_size = 0; for (const auto& component : element) { if (component.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += component.NumElements(); } else if (!DataTypeCanUseMemcpy(component.dtype())) { nonmemcpyable_components.emplace_back(); component.AsProtoTensorContent(&nonmemcpyable_components.back()); total_nonmemcpyable_size += nonmemcpyable_components.back().ByteSizeLong(); } } Iov iov{element.size() + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); int nonmemcpyable_component_index = 0; for (int i = 0; i < element.size(); ++i) { const auto& component = element[i]; CompressedComponentMetadata* metadata = out->mutable_component_metadata()->Add(); metadata->set_dtype(component.dtype()); component.shape().AsProto(metadata->mutable_tensor_shape()); if (DataTypeCanUseMemcpy(component.dtype())) { const TensorBuffer* buffer = DMAHelper::buffer(&component); if (buffer) { iov.Add(buffer->data(), buffer->size()); metadata->add_uncompressed_bytes(buffer->size()); } } else if (component.dtype() == DT_STRING) { const auto& flats = component.unaligned_flat<tstring>(); for (int i = 0; i < flats.size(); ++i) { iov.Add(const_cast<char*>(flats.data()[i].data()), flats.data()[i].size()); metadata->add_uncompressed_bytes(flats.data()[i].size()); } } else { TensorProto& proto = nonmemcpyable_components[nonmemcpyable_component_index++]; proto.SerializeToArray(nonmemcpyable_pos, proto.ByteSizeLong()); iov.Add(nonmemcpyable_pos, proto.ByteSizeLong()); nonmemcpyable_pos += proto.ByteSizeLong(); metadata->add_uncompressed_bytes(proto.ByteSizeLong()); } } if (iov.NumBytes() > kuint32max) { return errors::OutOfRange("Encountered dataset element of size ", iov.NumBytes(), ", exceeding the 4GB Snappy limit."); } if (!port::Snappy_CompressFromIOVec(iov.Data(), iov.NumBytes(), out->mutable_data())) { return errors::Internal("Failed to compress using snappy."); } out->set_version(kCompressedElementVersion); VLOG(3) << "Compressed element from " << iov.NumBytes() << " bytes to " << out->data().size() << " bytes"; return absl::OkStatus(); } Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out) { if (compressed.version() != kCompressedElementVersion) { return errors::Internal("Unsupported compressed element version: ", compressed.version()); } int num_components = compressed.component_metadata_size(); out->clear(); out->reserve(num_components); size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; size_t total_nonmemcpyable_size = 0; for (const auto& metadata : compressed.component_metadata()) { if (metadata.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += metadata.uncompressed_bytes_size(); } else if (!DataTypeCanUseMemcpy(metadata.dtype())) { total_nonmemcpyable_size += metadata.uncompressed_bytes(0); } } Iov iov{num_components + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); for (const auto& metadata : compressed.component_metadata()) { if (DataTypeCanUseMemcpy(metadata.dtype())) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); TensorBuffer* buffer = DMAHelper::buffer(&out->back()); if (buffer) { iov.Add(buffer->data(), metadata.uncompressed_bytes(0)); } } else if (metadata.dtype() == DT_STRING) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); const auto& flats = out->back().unaligned_flat<tstring>(); for (int i = 0; i < metadata.uncompressed_bytes_size(); ++i) { flats.data()[i].resize(metadata.uncompressed_bytes(i)); iov.Add(flats.data()[i].mdata(), metadata.uncompressed_bytes(i)); } } else { out->emplace_back(); iov.Add(nonmemcpyable_pos, metadata.uncompressed_bytes(0)); nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } const std::string& compressed_data = compressed.data(); size_t uncompressed_size; if (!port::Snappy_GetUncompressedLength( compressed_data.data(), compressed_data.size(), &uncompressed_size)) { return errors::Internal( "Could not get snappy uncompressed length. Compressed data size: ", compressed_data.size()); } if (uncompressed_size != static_cast<size_t>(iov.NumBytes())) { return errors::Internal( "Uncompressed size mismatch. Snappy expects ", uncompressed_size, " whereas the tensor metadata suggests ", iov.NumBytes()); } if (!port::Snappy_UncompressToIOVec(compressed_data.data(), compressed_data.size(), iov.Data(), iov.NumPieces())) { return errors::Internal("Failed to perform snappy decompression."); } nonmemcpyable_pos = nonmemcpyable.mdata(); for (int i = 0; i < num_components; ++i) { const CompressedComponentMetadata& metadata = compressed.component_metadata(i); if (!DataTypeCanUseMemcpy(metadata.dtype()) && metadata.dtype() != DT_STRING) { TensorProto tp; if (!tp.ParseFromString( {nonmemcpyable_pos, static_cast<size_t>(metadata.uncompressed_bytes(0))})) { return errors::Internal("Could not parse TensorProto"); } if (!out->at(i).FromProto(tp)) { return errors::Internal("Could not parse Tensor"); } nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } return absl::OkStatus(); } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(CompressedElement, "tensorflow.data.CompressedElement"); } }
#include "tensorflow/core/data/compression_utils.h" #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(CompressionUtilsTest, Exceeds4GB) { std::vector<Tensor> element = { CreateTensor<int64_t>(TensorShape{1024, 1024, 513})}; CompressedElement compressed; EXPECT_THAT(CompressElement(element, &compressed), StatusIs(error::OUT_OF_RANGE, HasSubstr("exceeding the 4GB Snappy limit"))); } std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1, 2}, {"abc", "xyz"}), CreateTensor<tstring>(TensorShape{2, 1}, {"ijk", "mnk"})}, {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{1, 0})}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, { DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {1, 2, 3}), CreateTensor<tstring>(TensorShape{}, {"abc"})}), DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {10, 11, 12}), CreateTensor<tstring>(TensorShape{}, {"xyz"})}), }, }; } class ParameterizedCompressionUtilsTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> {}; TEST_P(ParameterizedCompressionUtilsTest, RoundTrip) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); std::vector<Tensor> round_trip_element; TF_ASSERT_OK(UncompressElement(compressed, &round_trip_element)); TF_EXPECT_OK( ExpectEqual(element, round_trip_element, true)); } TEST_P(ParameterizedCompressionUtilsTest, CompressedElementVersion) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); EXPECT_EQ(0, compressed.version()); } TEST_P(ParameterizedCompressionUtilsTest, VersionMismatch) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); compressed.set_version(1); std::vector<Tensor> round_trip_element; EXPECT_THAT(UncompressElement(compressed, &round_trip_element), StatusIs(error::INTERNAL)); } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedCompressionUtilsTest, ::testing::ValuesIn(TestCases())); } } }
211
#ifndef THIRD_PARTY_CEL_CPP_EVAL_EVAL_UNKNOWNS_UTILITY_H_ #define THIRD_PARTY_CEL_CPP_EVAL_EVAL_UNKNOWNS_UTILITY_H_ #include "absl/status/statusor.h" #include "absl/types/span.h" #include "base/attribute.h" #include "base/attribute_set.h" #include "base/function_descriptor.h" #include "base/function_result_set.h" #include "common/value.h" #include "common/value_manager.h" #include "eval/eval/attribute_trail.h" namespace google::api::expr::runtime { class AttributeUtility { public: class Accumulator { public: Accumulator(const Accumulator&) = delete; Accumulator& operator=(const Accumulator&) = delete; Accumulator(Accumulator&&) = delete; Accumulator& operator=(Accumulator&&) = delete; void Add(const cel::UnknownValue& v); void Add(const AttributeTrail& attr); void MaybeAdd(const cel::Value& v); bool IsEmpty() const; cel::UnknownValue Build() &&; private: explicit Accumulator(const AttributeUtility& parent) : parent_(parent), unknown_present_(false) {} friend class AttributeUtility; const AttributeUtility& parent_; cel::AttributeSet attribute_set_; cel::FunctionResultSet function_result_set_; bool unknown_present_; }; AttributeUtility( absl::Span<const cel::AttributePattern> unknown_patterns, absl::Span<const cel::AttributePattern> missing_attribute_patterns, cel::ValueManager& value_factory) : unknown_patterns_(unknown_patterns), missing_attribute_patterns_(missing_attribute_patterns), value_factory_(value_factory) {} AttributeUtility(const AttributeUtility&) = delete; AttributeUtility& operator=(const AttributeUtility&) = delete; AttributeUtility(AttributeUtility&&) = delete; AttributeUtility& operator=(AttributeUtility&&) = delete; bool CheckForMissingAttribute(const AttributeTrail& trail) const; bool CheckForUnknown(const AttributeTrail& trail, bool use_partial) const; bool CheckForUnknownExact(const AttributeTrail& trail) const { return CheckForUnknown(trail, false); } bool CheckForUnknownPartial(const AttributeTrail& trail) const { return CheckForUnknown(trail, true); } cel::AttributeSet CheckForUnknowns(absl::Span<const AttributeTrail> args, bool use_partial) const; absl::optional<cel::UnknownValue> MergeUnknowns( absl::Span<const cel::Value> args) const; cel::UnknownValue MergeUnknownValues(const cel::UnknownValue& left, const cel::UnknownValue& right) const; absl::optional<cel::UnknownValue> IdentifyAndMergeUnknowns( absl::Span<const cel::Value> args, absl::Span<const AttributeTrail> attrs, bool use_partial) const; cel::UnknownValue CreateUnknownSet(cel::Attribute attr) const; absl::StatusOr<cel::ErrorValue> CreateMissingAttributeError( const cel::Attribute& attr) const; cel::UnknownValue CreateUnknownSet( const cel::FunctionDescriptor& fn_descriptor, int64_t expr_id, absl::Span<const cel::Value> args) const; Accumulator CreateAccumulator() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return Accumulator(*this); } private: cel::ValueManager& value_manager() const { return value_factory_; } void Add(Accumulator& a, const cel::UnknownValue& v) const; void Add(Accumulator& a, const AttributeTrail& attr) const; absl::Span<const cel::AttributePattern> unknown_patterns_; absl::Span<const cel::AttributePattern> missing_attribute_patterns_; cel::ValueManager& value_factory_; }; } #endif #include "eval/eval/attribute_utility.h" #include <cstdint> #include <string> #include <utility> #include "absl/status/statusor.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "base/attribute.h" #include "base/attribute_set.h" #include "base/function_descriptor.h" #include "base/function_result.h" #include "base/function_result_set.h" #include "base/internal/unknown_set.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/internal/errors.h" #include "internal/status_macros.h" namespace google::api::expr::runtime { using ::cel::AttributeSet; using ::cel::Cast; using ::cel::ErrorValue; using ::cel::FunctionResult; using ::cel::FunctionResultSet; using ::cel::InstanceOf; using ::cel::UnknownValue; using ::cel::Value; using ::cel::base_internal::UnknownSet; using Accumulator = AttributeUtility::Accumulator; bool AttributeUtility::CheckForMissingAttribute( const AttributeTrail& trail) const { if (trail.empty()) { return false; } for (const auto& pattern : missing_attribute_patterns_) { if (pattern.IsMatch(trail.attribute()) == cel::AttributePattern::MatchType::FULL) { return true; } } return false; } bool AttributeUtility::CheckForUnknown(const AttributeTrail& trail, bool use_partial) const { if (trail.empty()) { return false; } for (const auto& pattern : unknown_patterns_) { auto current_match = pattern.IsMatch(trail.attribute()); if (current_match == cel::AttributePattern::MatchType::FULL || (use_partial && current_match == cel::AttributePattern::MatchType::PARTIAL)) { return true; } } return false; } absl::optional<UnknownValue> AttributeUtility::MergeUnknowns( absl::Span<const cel::Value> args) const { absl::optional<UnknownSet> result_set; for (const auto& value : args) { if (!value->Is<cel::UnknownValue>()) continue; if (!result_set.has_value()) { result_set.emplace(); } const auto& current_set = value.As<cel::UnknownValue>(); cel::base_internal::UnknownSetAccess::Add( *result_set, UnknownSet(current_set.attribute_set(), current_set.function_result_set())); } if (!result_set.has_value()) { return absl::nullopt; } return value_factory_.CreateUnknownValue( result_set->unknown_attributes(), result_set->unknown_function_results()); } UnknownValue AttributeUtility::MergeUnknownValues( const UnknownValue& left, const UnknownValue& right) const { AttributeSet attributes; FunctionResultSet function_results; attributes.Add(left.attribute_set()); function_results.Add(left.function_result_set()); attributes.Add(right.attribute_set()); function_results.Add(right.function_result_set()); return value_factory_.CreateUnknownValue(std::move(attributes), std::move(function_results)); } AttributeSet AttributeUtility::CheckForUnknowns( absl::Span<const AttributeTrail> args, bool use_partial) const { AttributeSet attribute_set; for (const auto& trail : args) { if (CheckForUnknown(trail, use_partial)) { attribute_set.Add(trail.attribute()); } } return attribute_set; } absl::optional<UnknownValue> AttributeUtility::IdentifyAndMergeUnknowns( absl::Span<const cel::Value> args, absl::Span<const AttributeTrail> attrs, bool use_partial) const { absl::optional<UnknownSet> result_set; cel::AttributeSet attr_set = CheckForUnknowns(attrs, use_partial); if (!attr_set.empty()) { result_set.emplace(std::move(attr_set)); } absl::optional<UnknownValue> arg_unknowns = MergeUnknowns(args); if (!result_set.has_value()) { return arg_unknowns; } if (arg_unknowns.has_value()) { cel::base_internal::UnknownSetAccess::Add( *result_set, UnknownSet((*arg_unknowns).attribute_set(), (*arg_unknowns).function_result_set())); } return value_factory_.CreateUnknownValue( result_set->unknown_attributes(), result_set->unknown_function_results()); } UnknownValue AttributeUtility::CreateUnknownSet(cel::Attribute attr) const { return value_factory_.CreateUnknownValue(AttributeSet({std::move(attr)})); } absl::StatusOr<ErrorValue> AttributeUtility::CreateMissingAttributeError( const cel::Attribute& attr) const { CEL_ASSIGN_OR_RETURN(std::string message, attr.AsString()); return value_factory_.CreateErrorValue( cel::runtime_internal::CreateMissingAttributeError(message)); } UnknownValue AttributeUtility::CreateUnknownSet( const cel::FunctionDescriptor& fn_descriptor, int64_t expr_id, absl::Span<const cel::Value> args) const { return value_factory_.CreateUnknownValue( FunctionResultSet(FunctionResult(fn_descriptor, expr_id))); } void AttributeUtility::Add(Accumulator& a, const cel::UnknownValue& v) const { a.attribute_set_.Add(v.attribute_set()); a.function_result_set_.Add(v.function_result_set()); } void AttributeUtility::Add(Accumulator& a, const AttributeTrail& attr) const { a.attribute_set_.Add(attr.attribute()); } void Accumulator::Add(const UnknownValue& value) { unknown_present_ = true; parent_.Add(*this, value); } void Accumulator::Add(const AttributeTrail& attr) { parent_.Add(*this, attr); } void Accumulator::MaybeAdd(const Value& v) { if (InstanceOf<UnknownValue>(v)) { Add(Cast<UnknownValue>(v)); } } bool Accumulator::IsEmpty() const { return !unknown_present_ && attribute_set_.empty() && function_result_set_.empty(); } cel::UnknownValue Accumulator::Build() && { return parent_.value_manager().CreateUnknownValue( std::move(attribute_set_), std::move(function_result_set_)); } }
#include "eval/eval/attribute_utility.h" #include <vector> #include "base/attribute_set.h" #include "base/type_provider.h" #include "common/type_factory.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/public/cel_attribute.h" #include "eval/public/cel_value.h" #include "eval/public/unknown_attribute_set.h" #include "eval/public/unknown_set.h" #include "extensions/protobuf/memory_manager.h" #include "internal/testing.h" namespace google::api::expr::runtime { using ::cel::AttributeSet; using ::cel::UnknownValue; using ::cel::Value; using ::cel::extensions::ProtoMemoryManagerRef; using testing::Eq; using testing::SizeIs; using testing::UnorderedPointwise; class AttributeUtilityTest : public ::testing::Test { public: AttributeUtilityTest() : value_factory_(ProtoMemoryManagerRef(&arena_), cel::TypeProvider::Builtin()) {} protected: google::protobuf::Arena arena_; cel::common_internal::LegacyValueManager value_factory_; }; TEST_F(AttributeUtilityTest, UnknownsUtilityCheckUnknowns) { std::vector<CelAttributePattern> unknown_patterns = { CelAttributePattern("unknown0", {CreateCelAttributeQualifierPattern( CelValue::CreateInt64(1))}), CelAttributePattern("unknown0", {CreateCelAttributeQualifierPattern( CelValue::CreateInt64(2))}), CelAttributePattern("unknown1", {}), CelAttributePattern("unknown2", {}), }; std::vector<CelAttributePattern> missing_attribute_patterns; AttributeUtility utility(unknown_patterns, missing_attribute_patterns, value_factory_); ASSERT_FALSE(utility.CheckForUnknown(AttributeTrail(), true)); ASSERT_FALSE(utility.CheckForUnknown(AttributeTrail(), false)); AttributeTrail unknown_trail0("unknown0"); { ASSERT_FALSE(utility.CheckForUnknown(unknown_trail0, false)); } { ASSERT_TRUE(utility.CheckForUnknown(unknown_trail0, true)); } { ASSERT_TRUE(utility.CheckForUnknown( unknown_trail0.Step( CreateCelAttributeQualifier(CelValue::CreateInt64(1))), false)); } { ASSERT_TRUE(utility.CheckForUnknown( unknown_trail0.Step( CreateCelAttributeQualifier(CelValue::CreateInt64(1))), true)); } } TEST_F(AttributeUtilityTest, UnknownsUtilityMergeUnknownsFromValues) { std::vector<CelAttributePattern> unknown_patterns; std::vector<CelAttributePattern> missing_attribute_patterns; CelAttribute attribute0("unknown0", {}); CelAttribute attribute1("unknown1", {}); AttributeUtility utility(unknown_patterns, missing_attribute_patterns, value_factory_); UnknownValue unknown_set0 = value_factory_.CreateUnknownValue(AttributeSet({attribute0})); UnknownValue unknown_set1 = value_factory_.CreateUnknownValue(AttributeSet({attribute1})); std::vector<cel::Value> values = { unknown_set0, unknown_set1, value_factory_.CreateBoolValue(true), value_factory_.CreateIntValue(1), }; absl::optional<UnknownValue> unknown_set = utility.MergeUnknowns(values); ASSERT_TRUE(unknown_set.has_value()); EXPECT_THAT((*unknown_set).attribute_set(), UnorderedPointwise( Eq(), std::vector<CelAttribute>{attribute0, attribute1})); } TEST_F(AttributeUtilityTest, UnknownsUtilityCheckForUnknownsFromAttributes) { std::vector<CelAttributePattern> unknown_patterns = { CelAttributePattern("unknown0", {CelAttributeQualifierPattern::CreateWildcard()}), }; std::vector<CelAttributePattern> missing_attribute_patterns; AttributeTrail trail0("unknown0"); AttributeTrail trail1("unknown1"); CelAttribute attribute1("unknown1", {}); UnknownSet unknown_set1(UnknownAttributeSet({attribute1})); AttributeUtility utility(unknown_patterns, missing_attribute_patterns, value_factory_); UnknownSet unknown_attr_set(utility.CheckForUnknowns( { AttributeTrail(), trail0.Step(CreateCelAttributeQualifier(CelValue::CreateInt64(1))), trail0.Step(CreateCelAttributeQualifier(CelValue::CreateInt64(2))), }, false)); UnknownSet unknown_set(unknown_set1, unknown_attr_set); ASSERT_THAT(unknown_set.unknown_attributes(), SizeIs(3)); } TEST_F(AttributeUtilityTest, UnknownsUtilityCheckForMissingAttributes) { std::vector<CelAttributePattern> unknown_patterns; std::vector<CelAttributePattern> missing_attribute_patterns; AttributeTrail trail("destination"); trail = trail.Step(CreateCelAttributeQualifier(CelValue::CreateStringView("ip"))); AttributeUtility utility0(unknown_patterns, missing_attribute_patterns, value_factory_); EXPECT_FALSE(utility0.CheckForMissingAttribute(trail)); missing_attribute_patterns.push_back(CelAttributePattern( "destination", {CreateCelAttributeQualifierPattern(CelValue::CreateStringView("ip"))})); AttributeUtility utility1(unknown_patterns, missing_attribute_patterns, value_factory_); EXPECT_TRUE(utility1.CheckForMissingAttribute(trail)); } TEST_F(AttributeUtilityTest, CreateUnknownSet) { AttributeTrail trail("destination"); trail = trail.Step(CreateCelAttributeQualifier(CelValue::CreateStringView("ip"))); std::vector<CelAttributePattern> empty_patterns; AttributeUtility utility(empty_patterns, empty_patterns, value_factory_); UnknownValue set = utility.CreateUnknownSet(trail.attribute()); ASSERT_THAT(set.attribute_set(), SizeIs(1)); ASSERT_OK_AND_ASSIGN(auto elem, set.attribute_set().begin()->AsString()); EXPECT_EQ(elem, "destination.ip"); } }
212
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_COMPILER_FUSE_AUTO_INPUT_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_COMPILER_FUSE_AUTO_INPUT_H_ #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" namespace tflite { namespace gpu { namespace gl { class FuseAutoInput : public NodeTransformation { public: TransformResult ApplyToNode(Node* node, GraphFloat32* graph) final; }; } } } #endif #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_auto_input.h" #include <any> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/types/any.h" #include "absl/types/variant.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/compiled_node.h" namespace tflite { namespace gpu { namespace gl { namespace { std::pair<std::string, std::string> MakeValueReplacement(int n, int k) { return {absl::StrCat("value_", n), absl::StrCat("value_", k)}; } std::pair<std::string, std::string> MakeDataReplacement(int n, int k) { return {absl::StrCat("input_data_", n), absl::StrCat("input_data_", k)}; } } TransformResult FuseAutoInput::ApplyToNode(Node* node, GraphFloat32* graph) { auto& node_attr = std::any_cast<CompiledNodeAttributes&>(node->operation.attributes); auto& node_code = node_attr.code; if (node_code.input != IOStructure::AUTO) { return {TransformStatus::SKIPPED, ""}; } uint3 workgroup = node_code.workgroup; auto node_outputs = graph->FindOutputs(node->id); std::vector<std::pair<Node*, int>> nodes_to_fuse; std::vector<std::pair<ValueId, int>> input_values; int input_num = -1; for (auto input_value : graph->FindInputs(node->id)) { input_num++; const ValueId input_id = input_value->id; input_values.push_back({input_id, input_num}); if (graph->FindConsumers(input_id).size() > 1) { continue; } Node* input_producer = graph->FindProducer(input_id); if (input_producer == nullptr) { continue; } if (graph->FindOutputs(input_producer->id).size() != 1) { continue; } auto& input_producer_attr = std::any_cast<const CompiledNodeAttributes&>( input_producer->operation.attributes); if (input_producer_attr.code.output != IOStructure::AUTO) { continue; } if (input_producer_attr.code.workload != node_code.workload && uint3() != input_producer_attr.code.workload) { continue; } if (input_producer_attr.code.workgroup != uint3()) { if (workgroup != uint3()) { continue; } workgroup = input_producer_attr.code.workgroup; } nodes_to_fuse.push_back({input_producer, input_num}); input_values.pop_back(); } if (nodes_to_fuse.empty()) { return {TransformStatus::SKIPPED, ""}; } { absl::flat_hash_set<ValueId> all_inputs; for (const auto& node_to_fuse : nodes_to_fuse) { for (const auto& input : graph->FindInputs(node_to_fuse.first->id)) { if (all_inputs.find(input->id) != all_inputs.end()) { return {TransformStatus::SKIPPED, ""}; } all_inputs.insert(input->id); } } for (const auto& input : graph->FindInputs(node->id)) { if (all_inputs.find(input->id) != all_inputs.end()) { return {TransformStatus::SKIPPED, ""}; } all_inputs.insert(input->id); } } for (auto value : graph->FindInputs(node->id)) { if (!graph->RemoveConsumer(node->id, value->id).ok()) { return {TransformStatus::INVALID, ""}; } } std::string operation_type; std::string source_code; std::string values; std::swap(source_code, node_code.source_code); int extra_input_num = input_num; input_num = 0; for (auto input_and_num : nodes_to_fuse) { auto& input = input_and_num.first; auto& attr = std::any_cast<CompiledNodeAttributes&>(input->operation.attributes); auto super_inputs = graph->FindInputs(input->id); std::vector<std::pair<std::string, std::string>> replacements; for (int i = 0; i < super_inputs.size(); ++i) { int value_index = i == 0 ? input_and_num.second : ++extra_input_num; replacements.push_back(MakeValueReplacement(i, value_index)); replacements.push_back(MakeDataReplacement(i, input_num)); if (attr.code.input == IOStructure::AUTO) { absl::StrAppend(&values, " value_", value_index, " = $input_data_", input_num, "[gid.x, gid.y, gid.z]$;\n"); } if (!graph->AddConsumer(node->id, super_inputs[i]->id).ok()) { return {TransformStatus::INVALID, ""}; } input_num++; } for (auto& param : attr.code.parameters) { param.name = absl::StrReplaceAll(param.name, replacements); } attr.code.source_code = absl::StrReplaceAll(attr.code.source_code, replacements); if (!MergeCode(&attr, &node_attr).ok()) { return {TransformStatus::INVALID, "Unable to merge the code"}; } absl::StrAppend(&node_attr.code.source_code, "{\n", attr.code.source_code, "\n}"); if (!operation_type.empty()) { operation_type += ","; } operation_type += input->operation.type; if (!graph->DeleteNode(input->id).ok()) { return {TransformStatus::INVALID, ""}; } } for (int i = 0; i < input_values.size(); i++) { if (node_code.input == IOStructure::AUTO) { absl::StrAppend(&values, " value_", input_values[i].second, " = $input_data_", input_num, "[gid.x, gid.y, gid.z]$;\n"); } if (!graph->AddConsumer(node->id, input_values[i].first).ok()) { return {TransformStatus::INVALID, ""}; } input_num++; } node_code.input = IOStructure::ONLY_DEFINITIONS; absl::StrAppend(&node->operation.type, "(", operation_type, ")"); node_code.source_code = absl::StrCat(values, node_code.source_code, "{ node->operation.type, "\n", source_code, "\n}"); return {TransformStatus::APPLIED, ""}; } } } }
#include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_auto_input.h" #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/compiled_node.h" namespace tflite { namespace gpu { namespace gl { namespace { TEST(FuseAutoInputTest, SkipsDiamond) { GraphFloat32 graph; auto* v0 = graph.NewValue(); auto* v1 = graph.NewValue(); auto* v2 = graph.NewValue(); auto* v3 = graph.NewValue(); auto* n1 = graph.NewNode(); CompiledNodeAttributes a1; a1.code.output = IOStructure::AUTO; n1->operation.attributes = std::move(a1); ASSERT_OK(graph.AddConsumer(n1->id, v0->id)); ASSERT_OK(graph.SetProducer(n1->id, v1->id)); auto* n2 = graph.NewNode(); CompiledNodeAttributes a2; a2.code.output = IOStructure::AUTO; n2->operation.attributes = std::move(a2); ASSERT_OK(graph.AddConsumer(n2->id, v0->id)); ASSERT_OK(graph.SetProducer(n2->id, v2->id)); auto* n3 = graph.NewNode(); CompiledNodeAttributes a3; a3.code.input = IOStructure::AUTO; n3->operation.attributes = std::move(a3); ASSERT_OK(graph.AddConsumer(n3->id, v1->id)); ASSERT_OK(graph.AddConsumer(n3->id, v2->id)); ASSERT_OK(graph.SetProducer(n3->id, v3->id)); FuseAutoInput fuse_auto_input; EXPECT_EQ(fuse_auto_input.ApplyToNode(n3, &graph).status, TransformStatus::SKIPPED); } TEST(FuseAutoInputTest, SkipsTriangle) { GraphFloat32 graph; auto* v0 = graph.NewValue(); auto* v1 = graph.NewValue(); auto* v2 = graph.NewValue(); auto* n1 = graph.NewNode(); CompiledNodeAttributes a1; a1.code.output = IOStructure::AUTO; n1->operation.attributes = std::move(a1); ASSERT_OK(graph.AddConsumer(n1->id, v0->id)); ASSERT_OK(graph.SetProducer(n1->id, v1->id)); auto* n2 = graph.NewNode(); CompiledNodeAttributes a2; a2.code.input = IOStructure::AUTO; n2->operation.attributes = std::move(a2); ASSERT_OK(graph.AddConsumer(n2->id, v0->id)); ASSERT_OK(graph.AddConsumer(n2->id, v1->id)); ASSERT_OK(graph.SetProducer(n2->id, v2->id)); FuseAutoInput fuse_auto_input; EXPECT_EQ(fuse_auto_input.ApplyToNode(n2, &graph).status, TransformStatus::SKIPPED); } } } } }
213
#ifndef QUICHE_QUIC_CORE_QUIC_PATH_VALIDATOR_H_ #define QUICHE_QUIC_CORE_QUIC_PATH_VALIDATOR_H_ #include <memory> #include <ostream> #include "absl/container/inlined_vector.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_alarm.h" #include "quiche/quic/core/quic_alarm_factory.h" #include "quiche/quic/core/quic_arena_scoped_ptr.h" #include "quiche/quic/core/quic_clock.h" #include "quiche/quic/core/quic_connection_context.h" #include "quiche/quic/core/quic_one_block_arena.h" #include "quiche/quic/core/quic_packet_writer.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_export.h" #include "quiche/quic/platform/api/quic_socket_address.h" namespace quic { namespace test { class QuicPathValidatorPeer; } class QuicConnection; enum class PathValidationReason { kReasonUnknown, kMultiPort, kReversePathValidation, kServerPreferredAddressMigration, kPortMigration, kConnectionMigration, kMaxValue, }; class QUICHE_EXPORT QuicPathValidationContext { public: QuicPathValidationContext(const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address) : self_address_(self_address), peer_address_(peer_address), effective_peer_address_(peer_address) {} QuicPathValidationContext(const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, const QuicSocketAddress& effective_peer_address) : self_address_(self_address), peer_address_(peer_address), effective_peer_address_(effective_peer_address) {} virtual ~QuicPathValidationContext() = default; virtual QuicPacketWriter* WriterToUse() = 0; const QuicSocketAddress& self_address() const { return self_address_; } const QuicSocketAddress& peer_address() const { return peer_address_; } const QuicSocketAddress& effective_peer_address() const { return effective_peer_address_; } private: QUICHE_EXPORT friend std::ostream& operator<<( std::ostream& os, const QuicPathValidationContext& context); QuicSocketAddress self_address_; QuicSocketAddress peer_address_; QuicSocketAddress effective_peer_address_; }; class QUICHE_EXPORT QuicPathValidator { public: static const uint16_t kMaxRetryTimes = 2; class QUICHE_EXPORT SendDelegate { public: virtual ~SendDelegate() = default; virtual bool SendPathChallenge( const QuicPathFrameBuffer& data_buffer, const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, const QuicSocketAddress& effective_peer_address, QuicPacketWriter* writer) = 0; virtual QuicTime GetRetryTimeout(const QuicSocketAddress& peer_address, QuicPacketWriter* writer) const = 0; }; class QUICHE_EXPORT ResultDelegate { public: virtual ~ResultDelegate() = default; virtual void OnPathValidationSuccess( std::unique_ptr<QuicPathValidationContext> context, QuicTime start_time) = 0; virtual void OnPathValidationFailure( std::unique_ptr<QuicPathValidationContext> context) = 0; }; QuicPathValidator(QuicAlarmFactory* alarm_factory, QuicConnectionArena* arena, SendDelegate* delegate, QuicRandom* random, const QuicClock* clock, QuicConnectionContext* context); void StartPathValidation(std::unique_ptr<QuicPathValidationContext> context, std::unique_ptr<ResultDelegate> result_delegate, PathValidationReason reason); void OnPathResponse(const QuicPathFrameBuffer& probing_data, QuicSocketAddress self_address); void CancelPathValidation(); bool HasPendingPathValidation() const; QuicPathValidationContext* GetContext() const; std::unique_ptr<QuicPathValidationContext> ReleaseContext(); PathValidationReason GetPathValidationReason() const { return reason_; } void OnRetryTimeout(); bool IsValidatingPeerAddress(const QuicSocketAddress& effective_peer_address); void MaybeWritePacketToAddress(const char* buffer, size_t buf_len, const QuicSocketAddress& peer_address); private: friend class test::QuicPathValidatorPeer; const QuicPathFrameBuffer& GeneratePathChallengePayload(); void SendPathChallengeAndSetAlarm(); void ResetPathValidation(); struct QUICHE_EXPORT ProbingData { explicit ProbingData(QuicTime send_time) : send_time(send_time) {} QuicPathFrameBuffer frame_buffer; QuicTime send_time; }; absl::InlinedVector<ProbingData, 3> probing_data_; SendDelegate* send_delegate_; QuicRandom* random_; const QuicClock* clock_; std::unique_ptr<QuicPathValidationContext> path_context_; std::unique_ptr<ResultDelegate> result_delegate_; QuicArenaScopedPtr<QuicAlarm> retry_timer_; size_t retry_count_; PathValidationReason reason_ = PathValidationReason::kReasonUnknown; }; } #endif #include "quiche/quic/core/quic_path_validator.h" #include <memory> #include <ostream> #include <utility> #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_socket_address.h" namespace quic { class RetryAlarmDelegate : public QuicAlarm::DelegateWithContext { public: explicit RetryAlarmDelegate(QuicPathValidator* path_validator, QuicConnectionContext* context) : QuicAlarm::DelegateWithContext(context), path_validator_(path_validator) {} RetryAlarmDelegate(const RetryAlarmDelegate&) = delete; RetryAlarmDelegate& operator=(const RetryAlarmDelegate&) = delete; void OnAlarm() override { path_validator_->OnRetryTimeout(); } private: QuicPathValidator* path_validator_; }; std::ostream& operator<<(std::ostream& os, const QuicPathValidationContext& context) { return os << " from " << context.self_address_ << " to " << context.peer_address_; } QuicPathValidator::QuicPathValidator(QuicAlarmFactory* alarm_factory, QuicConnectionArena* arena, SendDelegate* send_delegate, QuicRandom* random, const QuicClock* clock, QuicConnectionContext* context) : send_delegate_(send_delegate), random_(random), clock_(clock), retry_timer_(alarm_factory->CreateAlarm( arena->New<RetryAlarmDelegate>(this, context), arena)), retry_count_(0u) {} void QuicPathValidator::OnPathResponse(const QuicPathFrameBuffer& probing_data, QuicSocketAddress self_address) { if (!HasPendingPathValidation()) { return; } QUIC_DVLOG(1) << "Match PATH_RESPONSE received on " << self_address; QUIC_BUG_IF(quic_bug_12402_1, !path_context_->self_address().IsInitialized()) << "Self address should have been known by now"; if (self_address != path_context_->self_address()) { QUIC_DVLOG(1) << "Expect the response to be received on " << path_context_->self_address(); return; } for (auto it = probing_data_.begin(); it != probing_data_.end(); ++it) { if (it->frame_buffer == probing_data) { result_delegate_->OnPathValidationSuccess(std::move(path_context_), it->send_time); ResetPathValidation(); return; } } QUIC_DVLOG(1) << "PATH_RESPONSE with payload " << probing_data.data() << " doesn't match the probing data."; } void QuicPathValidator::StartPathValidation( std::unique_ptr<QuicPathValidationContext> context, std::unique_ptr<ResultDelegate> result_delegate, PathValidationReason reason) { QUICHE_DCHECK(context); QUIC_DLOG(INFO) << "Start validating path " << *context << " via writer: " << context->WriterToUse(); if (path_context_ != nullptr) { QUIC_BUG(quic_bug_10876_1) << "There is an on-going validation on path " << *path_context_; ResetPathValidation(); } reason_ = reason; path_context_ = std::move(context); result_delegate_ = std::move(result_delegate); SendPathChallengeAndSetAlarm(); } void QuicPathValidator::ResetPathValidation() { path_context_ = nullptr; result_delegate_ = nullptr; retry_timer_->Cancel(); retry_count_ = 0; reason_ = PathValidationReason::kReasonUnknown; } void QuicPathValidator::CancelPathValidation() { if (path_context_ == nullptr) { return; } QUIC_DVLOG(1) << "Cancel validation on path" << *path_context_; result_delegate_->OnPathValidationFailure(std::move(path_context_)); ResetPathValidation(); } bool QuicPathValidator::HasPendingPathValidation() const { return path_context_ != nullptr; } QuicPathValidationContext* QuicPathValidator::GetContext() const { return path_context_.get(); } std::unique_ptr<QuicPathValidationContext> QuicPathValidator::ReleaseContext() { auto ret = std::move(path_context_); ResetPathValidation(); return ret; } const QuicPathFrameBuffer& QuicPathValidator::GeneratePathChallengePayload() { probing_data_.emplace_back(clock_->Now()); random_->RandBytes(probing_data_.back().frame_buffer.data(), sizeof(QuicPathFrameBuffer)); return probing_data_.back().frame_buffer; } void QuicPathValidator::OnRetryTimeout() { ++retry_count_; if (retry_count_ > kMaxRetryTimes) { CancelPathValidation(); return; } QUIC_DVLOG(1) << "Send another PATH_CHALLENGE on path " << *path_context_; SendPathChallengeAndSetAlarm(); } void QuicPathValidator::SendPathChallengeAndSetAlarm() { bool should_continue = send_delegate_->SendPathChallenge( GeneratePathChallengePayload(), path_context_->self_address(), path_context_->peer_address(), path_context_->effective_peer_address(), path_context_->WriterToUse()); if (!should_continue) { CancelPathValidation(); return; } retry_timer_->Set(send_delegate_->GetRetryTimeout( path_context_->peer_address(), path_context_->WriterToUse())); } bool QuicPathValidator::IsValidatingPeerAddress( const QuicSocketAddress& effective_peer_address) { return path_context_ != nullptr && path_context_->effective_peer_address() == effective_peer_address; } void QuicPathValidator::MaybeWritePacketToAddress( const char* buffer, size_t buf_len, const QuicSocketAddress& peer_address) { if (!HasPendingPathValidation() || path_context_->peer_address() != peer_address) { return; } QUIC_DVLOG(1) << "Path validator is sending packet of size " << buf_len << " from " << path_context_->self_address() << " to " << path_context_->peer_address(); path_context_->WriterToUse()->WritePacket( buffer, buf_len, path_context_->self_address().host(), path_context_->peer_address(), nullptr, QuicPacketWriterParams()); } }
#include "quiche/quic/core/quic_path_validator.h" #include <memory> #include "quiche/quic/core/frames/quic_path_challenge_frame.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/mock_random.h" #include "quiche/quic/test_tools/quic_path_validator_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" using testing::_; using testing::Invoke; using testing::Return; namespace quic { namespace test { class MockSendDelegate : public QuicPathValidator::SendDelegate { public: MOCK_METHOD(bool, SendPathChallenge, (const QuicPathFrameBuffer&, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*), (override)); MOCK_METHOD(QuicTime, GetRetryTimeout, (const QuicSocketAddress&, QuicPacketWriter*), (const, override)); }; class QuicPathValidatorTest : public QuicTest { public: QuicPathValidatorTest() : path_validator_(&alarm_factory_, &arena_, &send_delegate_, &random_, &clock_, nullptr), context_(new MockQuicPathValidationContext( self_address_, peer_address_, effective_peer_address_, &writer_)), result_delegate_( new testing::StrictMock<MockQuicPathValidationResultDelegate>()) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); ON_CALL(send_delegate_, GetRetryTimeout(_, _)) .WillByDefault( Return(clock_.ApproximateNow() + 3 * QuicTime::Delta::FromMilliseconds(kInitialRttMs))); } protected: quic::test::MockAlarmFactory alarm_factory_; MockSendDelegate send_delegate_; MockRandom random_; MockClock clock_; QuicConnectionArena arena_; QuicPathValidator path_validator_; QuicSocketAddress self_address_{QuicIpAddress::Any4(), 443}; QuicSocketAddress peer_address_{QuicIpAddress::Loopback4(), 443}; QuicSocketAddress effective_peer_address_{QuicIpAddress::Loopback4(), 12345}; MockPacketWriter writer_; MockQuicPathValidationContext* context_; MockQuicPathValidationResultDelegate* result_delegate_; }; TEST_F(QuicPathValidatorTest, PathValidationSuccessOnFirstRound) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)); const QuicTime expected_start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); EXPECT_TRUE(path_validator_.HasPendingPathValidation()); EXPECT_EQ(PathValidationReason::kMultiPort, path_validator_.GetPathValidationReason()); EXPECT_TRUE(path_validator_.IsValidatingPeerAddress(effective_peer_address_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, _)) .WillOnce(Invoke([=](std::unique_ptr<QuicPathValidationContext> context, QuicTime start_time) { EXPECT_EQ(context.get(), context_); EXPECT_EQ(start_time, expected_start_time); })); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, RespondWithDifferentSelfAddress) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)); const QuicTime expected_start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); const QuicSocketAddress kAlternativeSelfAddress(QuicIpAddress::Any6(), 54321); EXPECT_NE(kAlternativeSelfAddress, self_address_); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, kAlternativeSelfAddress); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, _)) .WillOnce(Invoke([=](std::unique_ptr<QuicPathValidationContext> context, QuicTime start_time) { EXPECT_EQ(context->self_address(), self_address_); EXPECT_EQ(start_time, expected_start_time); })); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, RespondAfter1stRetry) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { EXPECT_NE(payload, challenge_data); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(2u); const QuicTime start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); random_.ChangeValue(); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, start_time)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); } TEST_F(QuicPathValidatorTest, RespondToRetryChallenge) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { EXPECT_NE(challenge_data, payload); memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(2u); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); const QuicTime start_time = clock_.Now(); random_.ChangeValue(); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, start_time)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); } TEST_F(QuicPathValidatorTest, ValidationTimeOut) { EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .Times(3u) .WillRepeatedly(Return(true)); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(3u); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); QuicPathFrameBuffer challenge_data; memset(challenge_data.data(), 'a', challenge_data.size()); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_CALL(*result_delegate_, OnPathValidationFailure(_)) .WillOnce(Invoke([=](std::unique_ptr<QuicPathValidationContext> context) { EXPECT_EQ(context_, context.get()); })); for (size_t i = 0; i <= QuicPathValidator::kMaxRetryTimes; ++i) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); } EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, SendPathChallengeError) { EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer&, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { path_validator_.CancelPathValidation(); return false; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(0u); EXPECT_CALL(*result_delegate_, OnPathValidationFailure(_)); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); EXPECT_FALSE(QuicPathValidatorPeer::retry_timer(&path_validator_)->IsSet()); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } } }
214
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_RESOURCE_RESOURCE_VARIABLE_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_RESOURCE_RESOURCE_VARIABLE_H_ #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/experimental/resource/resource_base.h" namespace tflite { namespace resource { class ResourceVariable : public ResourceBase { public: ResourceVariable(); ResourceVariable(ResourceVariable&& other); ResourceVariable(const ResourceVariable&) = delete; ResourceVariable& operator=(const ResourceVariable&) = delete; ~ResourceVariable() override; TfLiteStatus AssignFrom(const TfLiteTensor* tensor); TfLiteTensor* GetTensor() { return is_initialized_ ? &tensor_ : nullptr; } bool IsInitialized() override { return is_initialized_; } size_t GetMemoryUsage() override { return is_initialized_ ? tensor_.bytes : 0; } protected: TfLiteTensor tensor_; bool is_initialized_ = false; }; void CreateResourceVariableIfNotAvailable(ResourceMap* resources, int resource_id); ResourceVariable* GetResourceVariable(ResourceMap* resources, int resource_id); bool IsBuiltinResource(const TfLiteTensor* tensor); } } #endif #include "tensorflow/lite/experimental/resource/resource_variable.h" #include <cstdlib> #include <cstring> #include <map> #include <memory> #include "tensorflow/lite/core/c/c_api_types.h" namespace tflite { namespace resource { ResourceVariable::ResourceVariable() { memset(&tensor_, 0, sizeof(TfLiteTensor)); } ResourceVariable::ResourceVariable(ResourceVariable&& other) { tensor_ = other.tensor_; is_initialized_ = other.is_initialized_; memset(&other.tensor_, 0, sizeof(TfLiteTensor)); other.is_initialized_ = false; } ResourceVariable::~ResourceVariable() { if (is_initialized_) { free(tensor_.data.raw); if (tensor_.dims) { TfLiteIntArrayFree(tensor_.dims); } } } TfLiteStatus ResourceVariable::AssignFrom(const TfLiteTensor* tensor) { char* old_raw = tensor_.data.raw; size_t old_bytes = tensor_.bytes; TfLiteIntArray* old_dims = tensor_.dims; memset(&tensor_, 0, sizeof(tensor_)); tensor_.name = "ResourceVariable"; tensor_.allocation_type = kTfLiteDynamic; tensor_.type = tensor->type; tensor_.params = tensor->params; tensor_.quantization = tensor->quantization; if (TfLiteIntArrayEqual(old_dims, tensor->dims)) { tensor_.dims = old_dims; } else { TfLiteIntArrayFree(old_dims); tensor_.dims = TfLiteIntArrayCopy(tensor->dims); } tensor_.data.raw = old_raw; if (old_bytes != tensor->bytes) { TfLiteTensorRealloc(tensor->bytes, &tensor_); } else { tensor_.bytes = old_bytes; } memcpy(tensor_.data.raw, tensor->data.raw, tensor_.bytes); is_initialized_ = true; return kTfLiteOk; } void CreateResourceVariableIfNotAvailable(ResourceMap* resources, int resource_id) { if (resources->count(resource_id) != 0) { return; } resources->emplace(resource_id, std::make_unique<ResourceVariable>()); } ResourceVariable* GetResourceVariable(ResourceMap* resources, int resource_id) { auto it = resources->find(resource_id); if (it != resources->end()) { return static_cast<ResourceVariable*>(it->second.get()); } return nullptr; } bool IsBuiltinResource(const TfLiteTensor* tensor) { return tensor && tensor->type == kTfLiteResource && tensor->delegate == nullptr; } } }
#include "tensorflow/lite/experimental/resource/resource_variable.h" #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace resource { void InitTensor(const std::vector<int>& shape, TfLiteAllocationType alloc_type, float default_value, TfLiteTensor* tensor) { memset(tensor, 0, sizeof(TfLiteTensor)); int num_elements = 1; for (auto dim : shape) num_elements *= dim; if (shape.empty()) num_elements = 0; float* buf = static_cast<float*>(malloc(sizeof(float) * num_elements)); for (int i = 0; i < num_elements; ++i) buf[i] = default_value; const int bytes = num_elements * sizeof(buf[0]); auto* dims = ConvertArrayToTfLiteIntArray(shape.size(), shape.data()); TfLiteTensorReset(TfLiteType::kTfLiteFloat32, nullptr, dims, {}, reinterpret_cast<char*>(buf), bytes, alloc_type, nullptr, false, tensor); } TEST(ResourceTest, NonDynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); free(tensor.data.raw); TfLiteTensorFree(&tensor); } TEST(ResourceTest, DynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteDynamic, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); TfLiteTensorFree(&tensor); } TEST(ResourceTest, AssignSameSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {1}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(ResourceTest, AssignDifferentSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {2}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); EXPECT_EQ(1, value->dims->size); EXPECT_EQ(1, value->dims->data[0]); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float) * 2, value->bytes); ASSERT_THAT(value, DimsAre({2})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(IsBuiltinResource, IsBuiltinResourceTest) { TfLiteTensor tensor; tensor.type = kTfLiteResource; tensor.delegate = nullptr; EXPECT_TRUE(IsBuiltinResource(&tensor)); EXPECT_FALSE(IsBuiltinResource(nullptr)); tensor.type = kTfLiteFloat32; EXPECT_FALSE(IsBuiltinResource(&tensor)); tensor.type = kTfLiteResource; TfLiteDelegate delegate; tensor.delegate = &delegate; EXPECT_FALSE(IsBuiltinResource(&tensor)); } TEST(ResourceTest, GetMemoryUsage) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {100}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(100 * sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({100})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(100 * sizeof(float), var.GetMemoryUsage()); free(tensor.data.raw); TfLiteTensorFree(&tensor); } } }
215
#ifndef STORAGE_LEVELDB_INCLUDE_CACHE_H_ #define STORAGE_LEVELDB_INCLUDE_CACHE_H_ #include <cstdint> #include "leveldb/export.h" #include "leveldb/slice.h" namespace leveldb { class LEVELDB_EXPORT Cache; LEVELDB_EXPORT Cache* NewLRUCache(size_t capacity); class LEVELDB_EXPORT Cache { public: Cache() = default; Cache(const Cache&) = delete; Cache& operator=(const Cache&) = delete; virtual ~Cache(); struct Handle {}; virtual Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) = 0; virtual Handle* Lookup(const Slice& key) = 0; virtual void Release(Handle* handle) = 0; virtual void* Value(Handle* handle) = 0; virtual void Erase(const Slice& key) = 0; virtual uint64_t NewId() = 0; virtual void Prune() {} virtual size_t TotalCharge() const = 0; }; } #endif #include "leveldb/cache.h" #include <cassert> #include <cstdio> #include <cstdlib> #include "port/port.h" #include "port/thread_annotations.h" #include "util/hash.h" #include "util/mutexlock.h" namespace leveldb { Cache::~Cache() {} namespace { struct LRUHandle { void* value; void (*deleter)(const Slice&, void* value); LRUHandle* next_hash; LRUHandle* next; LRUHandle* prev; size_t charge; size_t key_length; bool in_cache; uint32_t refs; uint32_t hash; char key_data[1]; Slice key() const { assert(next != this); return Slice(key_data, key_length); } }; class HandleTable { public: HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); } ~HandleTable() { delete[] list_; } LRUHandle* Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if (elems_ > length_) { Resize(); } } return old; } LRUHandle* Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } private: uint32_t length_; uint32_t elems_; LRUHandle** list_; LRUHandle** FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash & (length_ - 1)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void Resize() { uint32_t new_length = 4; while (new_length < elems_) { new_length *= 2; } LRUHandle** new_list = new LRUHandle*[new_length]; memset(new_list, 0, sizeof(new_list[0]) * new_length); uint32_t count = 0; for (uint32_t i = 0; i < length_; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash & (new_length - 1)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); delete[] list_; list_ = new_list; length_ = new_length; } }; class LRUCache { public: LRUCache(); ~LRUCache(); void SetCapacity(size_t capacity) { capacity_ = capacity; } Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)); Cache::Handle* Lookup(const Slice& key, uint32_t hash); void Release(Cache::Handle* handle); void Erase(const Slice& key, uint32_t hash); void Prune(); size_t TotalCharge() const { MutexLock l(&mutex_); return usage_; } private: void LRU_Remove(LRUHandle* e); void LRU_Append(LRUHandle* list, LRUHandle* e); void Ref(LRUHandle* e); void Unref(LRUHandle* e); bool FinishErase(LRUHandle* e) EXCLUSIVE_LOCKS_REQUIRED(mutex_); size_t capacity_; mutable port::Mutex mutex_; size_t usage_ GUARDED_BY(mutex_); LRUHandle lru_ GUARDED_BY(mutex_); LRUHandle in_use_ GUARDED_BY(mutex_); HandleTable table_ GUARDED_BY(mutex_); }; LRUCache::LRUCache() : capacity_(0), usage_(0) { lru_.next = &lru_; lru_.prev = &lru_; in_use_.next = &in_use_; in_use_.prev = &in_use_; } LRUCache::~LRUCache() { assert(in_use_.next == &in_use_); for (LRUHandle* e = lru_.next; e != &lru_;) { LRUHandle* next = e->next; assert(e->in_cache); e->in_cache = false; assert(e->refs == 1); Unref(e); e = next; } } void LRUCache::Ref(LRUHandle* e) { if (e->refs == 1 && e->in_cache) { LRU_Remove(e); LRU_Append(&in_use_, e); } e->refs++; } void LRUCache::Unref(LRUHandle* e) { assert(e->refs > 0); e->refs--; if (e->refs == 0) { assert(!e->in_cache); (*e->deleter)(e->key(), e->value); free(e); } else if (e->in_cache && e->refs == 1) { LRU_Remove(e); LRU_Append(&lru_, e); } } void LRUCache::LRU_Remove(LRUHandle* e) { e->next->prev = e->prev; e->prev->next = e->next; } void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) { e->next = list; e->prev = list->prev; e->prev->next = e; e->next->prev = e; } Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); LRUHandle* e = table_.Lookup(key, hash); if (e != nullptr) { Ref(e); } return reinterpret_cast<Cache::Handle*>(e); } void LRUCache::Release(Cache::Handle* handle) { MutexLock l(&mutex_); Unref(reinterpret_cast<LRUHandle*>(handle)); } Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) { MutexLock l(&mutex_); LRUHandle* e = reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size())); e->value = value; e->deleter = deleter; e->charge = charge; e->key_length = key.size(); e->hash = hash; e->in_cache = false; e->refs = 1; std::memcpy(e->key_data, key.data(), key.size()); if (capacity_ > 0) { e->refs++; e->in_cache = true; LRU_Append(&in_use_, e); usage_ += charge; FinishErase(table_.Insert(e)); } else { e->next = nullptr; } while (usage_ > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; assert(old->refs == 1); bool erased = FinishErase(table_.Remove(old->key(), old->hash)); if (!erased) { assert(erased); } } return reinterpret_cast<Cache::Handle*>(e); } bool LRUCache::FinishErase(LRUHandle* e) { if (e != nullptr) { assert(e->in_cache); LRU_Remove(e); e->in_cache = false; usage_ -= e->charge; Unref(e); } return e != nullptr; } void LRUCache::Erase(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); FinishErase(table_.Remove(key, hash)); } void LRUCache::Prune() { MutexLock l(&mutex_); while (lru_.next != &lru_) { LRUHandle* e = lru_.next; assert(e->refs == 1); bool erased = FinishErase(table_.Remove(e->key(), e->hash)); if (!erased) { assert(erased); } } } static const int kNumShardBits = 4; static const int kNumShards = 1 << kNumShardBits; class ShardedLRUCache : public Cache { private: LRUCache shard_[kNumShards]; port::Mutex id_mutex_; uint64_t last_id_; static inline uint32_t HashSlice(const Slice& s) { return Hash(s.data(), s.size(), 0); } static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); } public: explicit ShardedLRUCache(size_t capacity) : last_id_(0) { const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards; for (int s = 0; s < kNumShards; s++) { shard_[s].SetCapacity(per_shard); } } ~ShardedLRUCache() override {} Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter); } Handle* Lookup(const Slice& key) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Lookup(key, hash); } void Release(Handle* handle) override { LRUHandle* h = reinterpret_cast<LRUHandle*>(handle); shard_[Shard(h->hash)].Release(handle); } void Erase(const Slice& key) override { const uint32_t hash = HashSlice(key); shard_[Shard(hash)].Erase(key, hash); } void* Value(Handle* handle) override { return reinterpret_cast<LRUHandle*>(handle)->value; } uint64_t NewId() override { MutexLock l(&id_mutex_); return ++(last_id_); } void Prune() override { for (int s = 0; s < kNumShards; s++) { shard_[s].Prune(); } } size_t TotalCharge() const override { size_t total = 0; for (int s = 0; s < kNumShards; s++) { total += shard_[s].TotalCharge(); } return total; } }; } Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); } }
#include "leveldb/cache.h" #include <vector> #include "gtest/gtest.h" #include "util/coding.h" namespace leveldb { static std::string EncodeKey(int k) { std::string result; PutFixed32(&result, k); return result; } static int DecodeKey(const Slice& k) { assert(k.size() == 4); return DecodeFixed32(k.data()); } static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); } static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); } class CacheTest : public testing::Test { public: static void Deleter(const Slice& key, void* v) { current_->deleted_keys_.push_back(DecodeKey(key)); current_->deleted_values_.push_back(DecodeValue(v)); } static constexpr int kCacheSize = 1000; std::vector<int> deleted_keys_; std::vector<int> deleted_values_; Cache* cache_; CacheTest() : cache_(NewLRUCache(kCacheSize)) { current_ = this; } ~CacheTest() { delete cache_; } int Lookup(int key) { Cache::Handle* handle = cache_->Lookup(EncodeKey(key)); const int r = (handle == nullptr) ? -1 : DecodeValue(cache_->Value(handle)); if (handle != nullptr) { cache_->Release(handle); } return r; } void Insert(int key, int value, int charge = 1) { cache_->Release(cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter)); } Cache::Handle* InsertAndReturnHandle(int key, int value, int charge = 1) { return cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter); } void Erase(int key) { cache_->Erase(EncodeKey(key)); } static CacheTest* current_; }; CacheTest* CacheTest::current_; TEST_F(CacheTest, HitAndMiss) { ASSERT_EQ(-1, Lookup(100)); Insert(100, 101); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(200, 201); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(100, 102); ASSERT_EQ(102, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); } TEST_F(CacheTest, Erase) { Erase(200); ASSERT_EQ(0, deleted_keys_.size()); Insert(100, 101); Insert(200, 201); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); } TEST_F(CacheTest, EntriesArePinned) { Insert(100, 101); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); Insert(100, 102); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); ASSERT_EQ(0, deleted_keys_.size()); cache_->Release(h1); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(1, deleted_keys_.size()); cache_->Release(h2); ASSERT_EQ(2, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[1]); ASSERT_EQ(102, deleted_values_[1]); } TEST_F(CacheTest, EvictionPolicy) { Insert(100, 101); Insert(200, 201); Insert(300, 301); Cache::Handle* h = cache_->Lookup(EncodeKey(300)); for (int i = 0; i < kCacheSize + 100; i++) { Insert(1000 + i, 2000 + i); ASSERT_EQ(2000 + i, Lookup(1000 + i)); ASSERT_EQ(101, Lookup(100)); } ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(301, Lookup(300)); cache_->Release(h); } TEST_F(CacheTest, UseExceedsCacheSize) { std::vector<Cache::Handle*> h; for (int i = 0; i < kCacheSize + 100; i++) { h.push_back(InsertAndReturnHandle(1000 + i, 2000 + i)); } for (int i = 0; i < h.size(); i++) { ASSERT_EQ(2000 + i, Lookup(1000 + i)); } for (int i = 0; i < h.size(); i++) { cache_->Release(h[i]); } } TEST_F(CacheTest, HeavyEntries) { const int kLight = 1; const int kHeavy = 10; int added = 0; int index = 0; while (added < 2 * kCacheSize) { const int weight = (index & 1) ? kLight : kHeavy; Insert(index, 1000 + index, weight); added += weight; index++; } int cached_weight = 0; for (int i = 0; i < index; i++) { const int weight = (i & 1 ? kLight : kHeavy); int r = Lookup(i); if (r >= 0) { cached_weight += weight; ASSERT_EQ(1000 + i, r); } } ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10); } TEST_F(CacheTest, NewId) { uint64_t a = cache_->NewId(); uint64_t b = cache_->NewId(); ASSERT_NE(a, b); } TEST_F(CacheTest, Prune) { Insert(1, 100); Insert(2, 200); Cache::Handle* handle = cache_->Lookup(EncodeKey(1)); ASSERT_TRUE(handle); cache_->Prune(); cache_->Release(handle); ASSERT_EQ(100, Lookup(1)); ASSERT_EQ(-1, Lookup(2)); } TEST_F(CacheTest, ZeroSizeCache) { delete cache_; cache_ = NewLRUCache(0); Insert(1, 100); ASSERT_EQ(-1, Lookup(1)); } }
216
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_COMPILER_PREPROCESSOR_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_COMPILER_PREPROCESSOR_H_ #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/lite/delegates/gpu/common/status.h" namespace tflite { namespace gpu { namespace gl { enum class RewriteStatus { SUCCESS = 0, NOT_RECOGNIZED = 1, ERROR = 2, }; class InlineRewrite { public: virtual ~InlineRewrite() = default; virtual RewriteStatus Rewrite(absl::string_view input, std::string* output) = 0; }; class TextPreprocessor { public: TextPreprocessor(char inline_delimiter, bool keep_unknown_rewrites) : inline_delimiter_(inline_delimiter), keep_unknown_rewrites_(keep_unknown_rewrites) {} void AddRewrite(InlineRewrite* rewrite) { inline_rewrites_.push_back(rewrite); } absl::Status Rewrite(const std::string& input, std::string* output); private: const char inline_delimiter_; const bool keep_unknown_rewrites_; std::vector<InlineRewrite*> inline_rewrites_; }; } } } #endif #include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/status.h" namespace tflite { namespace gpu { namespace gl { namespace { absl::string_view FindInlineBlock(absl::string_view s, char delimiter) { size_t start = s.find(delimiter); if (start != absl::string_view::npos) { size_t end = s.find(delimiter, start + 1); if (end != std::string::npos) { return s.substr(start, end - start + 1); } return s.substr(start, 1); } return s.substr(s.size(), 0); } absl::string_view PastSubstr(absl::string_view s, absl::string_view subs) { return s.substr(subs.data() + subs.size() - s.data()); } } absl::Status TextPreprocessor::Rewrite(const std::string& input, std::string* output) { absl::string_view s = input; std::string result; while (true) { absl::string_view inline_block = FindInlineBlock(s, inline_delimiter_); result.append(s.data(), inline_block.data() - s.data()); if (inline_block.empty()) { break; } if (inline_block.size() == 1) { return absl::NotFoundError("Unable to find end of inline block"); } s = PastSubstr(s, inline_block); bool processed = false; for (auto& rewrite : inline_rewrites_) { if (processed) { break; } switch (rewrite->Rewrite(inline_block.substr(1, inline_block.size() - 2), &result)) { case RewriteStatus::NOT_RECOGNIZED: break; case RewriteStatus::SUCCESS: processed = true; break; case RewriteStatus::ERROR: return absl::InternalError(absl::StrCat("Error while rewriting '", inline_block, "': ", result)); } } if (!processed) { if (!keep_unknown_rewrites_) { return absl::NotFoundError(absl::StrCat( "Didn't find inline rewrite for '", inline_block, "'")); } absl::StrAppend(&result, inline_block); } } *output = std::move(result); return absl::OkStatus(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace gpu { namespace gl { namespace { class AccuInlineRewrite : public InlineRewrite { public: explicit AccuInlineRewrite(std::vector<std::string>* blocks) : blocks_(blocks) {} RewriteStatus Rewrite(absl::string_view input, std::string* output) final { blocks_->push_back(std::string(input.data(), input.size())); output->append("r:"); output->append(input.data(), input.size()); return RewriteStatus::SUCCESS; } std::vector<std::string>* blocks_; }; std::vector<std::string> ParseInlines(const std::string& text) { std::vector<std::string> blocks; TextPreprocessor preprocessor('$', false); AccuInlineRewrite rewrite(&blocks); preprocessor.AddRewrite(&rewrite); std::string discard; preprocessor.Rewrite(text, &discard).IgnoreError(); return blocks; } TEST(Preprocessor, CornerCases) { EXPECT_THAT(ParseInlines(""), testing::ElementsAre()); EXPECT_THAT(ParseInlines("text text"), testing::ElementsAre()); EXPECT_THAT(ParseInlines("$$"), testing::ElementsAre("")); } TEST(Preprocessor, One) { EXPECT_THAT(ParseInlines("$text$"), testing::ElementsAre("text")); EXPECT_THAT(ParseInlines(" $text$ "), testing::ElementsAre("text")); } TEST(Preprocessor, More) { EXPECT_THAT(ParseInlines("Test $inline1$\n$inline2$ test $inline3$ "), testing::ElementsAre("inline1", "inline2", "inline3")); } std::string RewriteInlines(const std::string& text) { std::vector<std::string> blocks; TextPreprocessor preprocessor('$', false); AccuInlineRewrite rewrite(&blocks); preprocessor.AddRewrite(&rewrite); std::string out; preprocessor.Rewrite(text, &out).IgnoreError(); return out; } TEST(Preprocessor, RewriteCornerCases) { EXPECT_EQ(RewriteInlines(""), ""); EXPECT_EQ(RewriteInlines("text text"), "text text"); EXPECT_EQ(RewriteInlines("$$"), "r:"); } TEST(Preprocessor, RewriteOne) { EXPECT_EQ(RewriteInlines("$text$"), "r:text"); EXPECT_EQ(RewriteInlines(" $text$ "), " r:text "); } TEST(Preprocessor, RewriteMore) { EXPECT_EQ(RewriteInlines("Test $inline1$\n$inline2$ test $inline3$ "), "Test r:inline1\nr:inline2 test r:inline3 "); } class SingleRewrite : public InlineRewrite { public: RewriteStatus Rewrite(absl::string_view input, std::string* output) final { if (input == "foo") { output->append("bla"); return RewriteStatus::SUCCESS; } return RewriteStatus::NOT_RECOGNIZED; } std::vector<std::string>* blocks_; }; TEST(Preprocessor, KeepUnknownRewrites) { TextPreprocessor preprocessor('$', true); SingleRewrite rewrite; preprocessor.AddRewrite(&rewrite); std::string out; ASSERT_TRUE(preprocessor.Rewrite("Good morning, $name$! $foo$", &out).ok()); EXPECT_EQ("Good morning, $name$! bla", out); } TEST(Preprocessor, KeepUnknownRewrites_Fail) { TextPreprocessor preprocessor('$', false); SingleRewrite rewrite; preprocessor.AddRewrite(&rewrite); std::string out; EXPECT_FALSE(preprocessor.Rewrite("Good morning, $name$! $foo$", &out).ok()); } } } } }
217
#ifndef TENSORFLOW_LITE_CORE_ASYNC_INTEROP_ATTRIBUTE_MAP_INTERNAL_H_ #define TENSORFLOW_LITE_CORE_ASYNC_INTEROP_ATTRIBUTE_MAP_INTERNAL_H_ #include <cstdint> #include <map> #include <string> #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/interop/variant.h" namespace tflite { namespace interop { class AttributeMap { public: explicit AttributeMap(TfLiteAttrMapType type) : type_(type) {} using KeyT = uint32_t; using CustomKeyT = std::string; using ValueT = tflite::interop::Variant; using ContainerT = std::map<KeyT, ValueT>; using CustomContainerT = std::map<CustomKeyT, ValueT>; bool IsBufferAttributeMap() const { return type_ == kTfLiteAttrMapTypeBuffer; } bool IsSyncAttributeMap() const { return type_ == kTfLiteAttrMapTypeSync; } bool ReconcileAttributes(const AttributeMap* other, AttributeMap* merged, AttributeMap* conflict) const; bool CheckAttributeCoverage(const AttributeMap* other, AttributeMap* conflict) const; template <typename AttrKeyT, typename ValueT> bool GetAttr(AttrKeyT key, ValueT* value) const { if (auto it = attrs_.find(static_cast<uint32_t>(key)); it != attrs_.end()) { if (auto* v = it->second.Get<ValueT>(); v != nullptr) { *value = *v; return true; } } return false; } template <typename AttrKeyT, typename ValueT> void SetAttr(AttrKeyT key, ValueT value) { attrs_.insert_or_assign(static_cast<KeyT>(key), value); } template <typename ValueT> bool GetCustomAttr(CustomKeyT key, ValueT* value) const { if (auto it = custom_attrs_.find(key); it != custom_attrs_.end()) { if (auto* v = it->second.Get<ValueT>(); v != nullptr) { *value = *v; return true; } } return false; } template <typename ValueT> void SetCustomAttr(CustomKeyT key, ValueT value) { custom_attrs_.insert_or_assign(key, value); } private: TfLiteAttrMapType type_; ContainerT attrs_; CustomContainerT custom_attrs_; }; } } struct TfLiteAttributeMap { explicit TfLiteAttributeMap(TfLiteAttrMapType type) : impl(type) {} tflite::interop::AttributeMap impl; }; #endif #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/reconcile_fns.h" namespace tflite { namespace interop { bool AttributeMap::ReconcileAttributes(const AttributeMap* other, AttributeMap* merged, AttributeMap* conflict) const { if (other == nullptr || merged == nullptr) return false; if (type_ != other->type_) return false; merged->type_ = type_; if (conflict) conflict->type_ = type_; return tflite::interop::ReconcileGeneralAttributeKeys( type_, &attrs_, &other->attrs_, &merged->attrs_, conflict ? &conflict->attrs_ : nullptr); } bool AttributeMap::CheckAttributeCoverage(const AttributeMap* other, AttributeMap* conflict) const { if (other == nullptr) return false; if (type_ != other->type_) return false; if (conflict) conflict->type_ = type_; return tflite::interop::CheckGeneralAttributeKeysCoverage( type_, &attrs_, &other->attrs_, conflict ? &conflict->attrs_ : nullptr); } } }
#include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include <cstdint> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { namespace { TEST(AttributeMapTest, TypeTest) { { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_TRUE(attrs.IsBufferAttributeMap()); EXPECT_FALSE(attrs.IsSyncAttributeMap()); } { auto attrs = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs.IsSyncAttributeMap()); EXPECT_FALSE(attrs.IsBufferAttributeMap()); } } TEST(AttributeMapTest, AccessorTest) { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); { attrs.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); size_t result; EXPECT_TRUE(attrs.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } { attrs.SetCustomAttr("Foo", 12); int result; EXPECT_FALSE(attrs.GetCustomAttr("Bar", &result)); EXPECT_TRUE(attrs.GetCustomAttr("Foo", &result)); EXPECT_EQ(12, result); } } TEST(AttributeMapTest, ReconcileFailDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE( attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); } TEST(AttributeMapTest, NullptrTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(nullptr, &attrs2, nullptr)); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, nullptr, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(nullptr, nullptr)); } TEST(AttributeMapTest, ReconcileDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); } TEST(AttributeMapTest, ReconcileTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs4 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.ReconcileAttributes(&attrs2, &attrs3, &attrs4)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); EXPECT_TRUE(attrs4.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(attrs3.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } TEST(AttributeMapTest, CoverageTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); } TEST(AttributeMapTest, CoverageFailedTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(10)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto conflict = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &conflict)); EXPECT_TRUE(conflict.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(conflict.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(4, result); } } } }
218
#ifndef XLA_TOOLS_HLO_EXPAND_H_ #define XLA_TOOLS_HLO_EXPAND_H_ #include <string> #include <vector> #include "xla/service/hlo_pass_pipeline.h" #include "xla/tsl/util/command_line_flags.h" namespace xla { struct HloExpandConfig { bool help{false}; std::string input_format; std::string output_file; std::string output_format; bool batch_norm_expander{false}; bool expand_all{false}; bool rng_bit_generator_expander{false}; bool batch_norm_grad_expander{false}; bool batch_norm_inference_expander{false}; bool batch_norm_training_expander{false}; bool cholesky_expander{false}; bool rng_expander{false}; bool rng_bit_generator_philox_expander{false}; bool rng_bit_generator_three_fry_expander{false}; bool triangular_solve_expander{false}; bool spmd_expander{false}; bool verify_hlo{false}; }; void AddPassesToPipeline(xla::HloExpandConfig& config, xla::HloPassPipeline& pipeline, const xla::HloModuleConfig& hlo_module_config); std::vector<tsl::Flag> GetFlags(xla::HloExpandConfig& config); void ParseCompoundFlags(xla::HloExpandConfig& config); } #endif #include "xla/tools/hlo_expand.h" #include <vector> #include "xla/service/batchnorm_expander.h" #include "xla/service/cholesky_expander.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/triangular_solve_expander.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/xla_data.pb.h" namespace xla { void AddPassesToPipeline(HloExpandConfig& config, HloPassPipeline& pipeline, const HloModuleConfig& hlo_module_config) { if (config.batch_norm_grad_expander || config.batch_norm_inference_expander || config.batch_norm_training_expander) { pipeline.AddPass<xla::BatchNormExpander>( config.batch_norm_training_expander, config.batch_norm_inference_expander, config.batch_norm_grad_expander); } if (config.cholesky_expander) { pipeline.AddPass<xla::CholeskyExpander>(); } if (config.rng_expander) { pipeline.AddPass<xla::RngExpander>(); } if (config.rng_bit_generator_philox_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_PHILOX); } if (config.rng_bit_generator_three_fry_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_THREE_FRY); } if (config.triangular_solve_expander) { pipeline.AddPass<xla::TriangularSolveExpander>(); } if (config.spmd_expander) { pipeline.AddPass<ShardingPropagation>( true, false, hlo_module_config.allow_spmd_sharding_propagation_to_output(), hlo_module_config.allow_spmd_sharding_propagation_to_parameters()); pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( hlo_module_config.num_partitions(), hlo_module_config.replica_count(), hlo_module_config.debug_options() .xla_gpu_threshold_for_windowed_einsum_mib()); } if (config.verify_hlo) { pipeline.AddPass<xla::HloVerifier>(false, false); } } std::vector<tsl::Flag> GetFlags(HloExpandConfig& config) { return { tsl::Flag("h", &config.help, "Alias of --help"), tsl::Flag("help", &config.help, "Display available options"), tsl::Flag( "input_format", &config.input_format, "The format of the input file. If this flag is not specified, it's" "inferred from the file extension instead. Valid values:\n " "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("o", &config.output_file, "Alias of --output_file="), tsl::Flag("output_file", &config.output_file, "Full output file path"), tsl::Flag("output_format", &config.output_format, "The format of the output file. Defaults to input_format. " "Valid values:\n" "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("batch_norm_expander", &config.batch_norm_expander, "Overrides and expands batch_norm_grad, batch_norm_inference, " "and batch_norm_training ops"), tsl::Flag("batch_norm_grad_expander", &config.batch_norm_grad_expander, "Expands batch_norm_grad op"), tsl::Flag("batch_norm_inference_expander", &config.batch_norm_inference_expander, "Expands batch_norm_inference_grad op"), tsl::Flag("batch_norm_training_expander", &config.batch_norm_training_expander, "Expands batch_norm_training_grad op"), tsl::Flag("cholesky_expander", &config.cholesky_expander, "Expands cholesky op"), tsl::Flag("spmd_expander", &config.spmd_expander, "Expands SPMD sharding"), tsl::Flag("expand_all", &config.expand_all, "Overrides and expands all supported passes below"), tsl::Flag("rng_expander", &config.rng_expander, "Expands rng op"), tsl::Flag( "rng_bit_generator_expander", &config.rng_bit_generator_expander, "Overrides and expands rng_bit_generator op on all prng algorithms"), tsl::Flag("rng_bit_generator_philox_expander", &config.rng_bit_generator_philox_expander, "Expands rng_bit_generator op using philox prng algorithm"), tsl::Flag("rng_bit_generator_three_fry_expander", &config.rng_bit_generator_three_fry_expander, "Expands rng_bit_generator op using three_fry prng algorithm"), tsl::Flag("triangular_solve_expander", &config.triangular_solve_expander, "Expands triangular_solve op"), tsl::Flag("verify_hlo", &config.verify_hlo, "Run HLO verifier after passes"), }; } void ParseCompoundFlags(HloExpandConfig& config) { config.batch_norm_grad_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_inference_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_training_expander |= config.expand_all || config.batch_norm_expander; config.cholesky_expander |= config.expand_all; config.rng_bit_generator_philox_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_bit_generator_three_fry_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_expander |= config.expand_all; config.triangular_solve_expander |= config.expand_all; } }
#include <string> #include <vector> #include <gmock/gmock.h> #include "tsl/platform/path.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloExpandTest : public ::testing::Test { protected: void HloOpt(std::vector<std::string>& additional_flags) { std::string hlo_opt_bin = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "hlo-expand"); tsl::SubProcess proc; std::vector<std::string> argv = {hlo_opt_bin}; argv.insert(argv.end(), additional_flags.begin(), additional_flags.end()); proc.SetProgram(hlo_opt_bin, argv); proc.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); proc.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(proc.Start()); stdout_output_ = stderr_output_ = ""; int status = proc.Communicate(nullptr, &stdout_output_, &stderr_output_); #if defined(_WIN32) || defined(_WIN64) exited_normally_ = (status == 0); exit_status_ = status; #else exited_normally_ = WIFEXITED(status); exit_status_ = exited_normally_ ? WEXITSTATUS(status) : -1; #endif } std::string stdout_output_; std::string stderr_output_; bool exited_normally_ = false; int exit_status_ = -1; }; TEST_F(HloExpandTest, CholeskyHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule main, entry_computation_layout={()->f64[3,3]{1,0}} ENTRY %main.3 () -> f64[3,3] { %constant.1 = f64[3,3]{1,0} constant({ { 1, 2, 3 }, { 2, 20, 26 }, { 3, 26, 70 } }) ROOT %cholesky.2 = f64[3,3]{1,0} cholesky(f64[3,3]{1,0} %constant.1), lower=true })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, SpmdHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "spmd.hlo"); std::vector<std::string> additional_flags = {"--spmd_expander", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule module, entry_computation_layout={(f32[24,64]{1,0}, f32[39296,64]{1,0})->f32[24,19648]{1,0}}, num_partitions=2 ENTRY %entry_spmd (param: f32[24,64], param.1: f32[39296,64]) -> f32[24,19648] { %param = f32[24,64]{1,0} parameter(0), sharding={replicated} %lhs.copy.1 = f32[24,64]{1,0} copy(f32[24,64]{1,0} %param) %param.1 = f32[39296,64]{1,0} parameter(1), sharding={replicated} %constant = s32[2]{0} constant({0, 19648}) %partition-id = u32[] partition-id() %dynamic-slice = s32[1]{0} dynamic-slice(s32[2]{0} %constant, u32[] %partition-id), dynamic_slice_sizes={1} %reshape = s32[] reshape(s32[1]{0} %dynamic-slice) %constant.1 = s32[] constant(0) %dynamic-slice.1 = f32[19648,64]{1,0} dynamic-slice(f32[39296,64]{1,0} %param.1, s32[] %reshape, s32[] %constant.1), dynamic_slice_sizes={19648,64} %rhs.copy.1 = f32[19648,64]{1,0} copy(f32[19648,64]{1,0} %dynamic-slice.1) ROOT %dot.1 = f32[24,19648]{1,0} dot(f32[24,64]{1,0} %lhs.copy.1, f32[19648,64]{1,0} %rhs.copy.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, CholeskyExpanderHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path, "--expand_all"}; HloOpt(additional_flags); const std::string& expected_hlo_string = "%xla.cholesky_f64"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, InvalidArgc) { std::vector<std::string> additional_flags = {"--input_format=hlo", "foo", "bar", "baz"}; HloOpt(additional_flags); const std::string& expected_string = "Cannot parse more than one argument. See usage below:"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFormat) { std::vector<std::string> additional_flags = {"--input_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::string output_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_file=" + output_path}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidFile) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Try: hlo-expand --help"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, UnsupportedOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", "--output_format=pb", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Printing to stdout must specify supported " "output_format=[hlo|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, VerificationFailure) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "invalid_concat.hlo"); std::vector<std::string> additional_flags = {"--verify_hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Cannot concatenate arrays that differ in dimensions"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } } }
219
#ifndef XLA_PERMUTATION_UTIL_H_ #define XLA_PERMUTATION_UTIL_H_ #include <vector> #include "absl/types/span.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { bool IsPermutation(absl::Span<const int64_t> permutation); template <typename Container> std::vector<typename Container::value_type> Permute( const Container& input, absl::Span<const int64_t> permutation) { using T = typename Container::value_type; absl::Span<const T> data(input); CHECK_EQ(permutation.size(), data.size()); CHECK(IsPermutation(permutation)); std::vector<T> output(data.size()); for (size_t i = 0; i < permutation.size(); ++i) { output[i] = data[permutation[i]]; } return output; } template <typename Container> std::vector<typename Container::value_type> PermuteInverse( const Container& input, absl::Span<const int64_t> permutation) { using T = typename Container::value_type; absl::Span<const T> data(input); CHECK_EQ(permutation.size(), data.size()); CHECK(IsPermutation(permutation)); std::vector<T> output(data.size()); for (size_t i = 0; i < permutation.size(); ++i) { output[permutation[i]] = data[i]; } return output; } std::vector<int64_t> InversePermutation( absl::Span<const int64_t> input_permutation); std::vector<int64_t> ComposePermutations(absl::Span<const int64_t> p1, absl::Span<const int64_t> p2); bool IsIdentityPermutation(absl::Span<const int64_t> permutation); } #endif #include "xla/permutation_util.h" #include <vector> #include "absl/container/inlined_vector.h" namespace xla { bool IsPermutation(absl::Span<const int64_t> permutation) { absl::InlinedVector<bool, 8> seen(permutation.size(), false); for (int64_t p : permutation) { if (p < 0 || p >= permutation.size() || seen[p]) { return false; } seen[p] = true; } return true; } std::vector<int64_t> InversePermutation( absl::Span<const int64_t> input_permutation) { DCHECK(IsPermutation(input_permutation)); std::vector<int64_t> output_permutation(input_permutation.size(), -1); for (size_t i = 0; i < input_permutation.size(); ++i) { output_permutation[input_permutation[i]] = i; } return output_permutation; } std::vector<int64_t> ComposePermutations(absl::Span<const int64_t> p1, absl::Span<const int64_t> p2) { CHECK_EQ(p1.size(), p2.size()); std::vector<int64_t> output; output.reserve(p1.size()); for (size_t i = 0; i < p1.size(); ++i) { output.push_back(p1.at(p2.at(i))); } return output; } bool IsIdentityPermutation(absl::Span<const int64_t> permutation) { for (int64_t i = 0; i < permutation.size(); ++i) { if (permutation[i] != i) { return false; } } return true; } }
#include "xla/permutation_util.h" #include "xla/test.h" namespace xla { namespace { TEST(PermutationUtilTest, IsPermutation) { EXPECT_TRUE(IsPermutation({})); EXPECT_TRUE(IsPermutation({0})); EXPECT_FALSE(IsPermutation({-3})); EXPECT_TRUE(IsPermutation({0, 1})); EXPECT_FALSE(IsPermutation({1, 1})); EXPECT_TRUE(IsPermutation({1, 0})); EXPECT_TRUE(IsPermutation({3, 1, 0, 2})); EXPECT_FALSE(IsPermutation({3, 0, 2})); } } }
220
#ifndef XLA_SERVICE_CONVERT_ASYNC_COLLECTIVES_TO_SYNC_H_ #define XLA_SERVICE_CONVERT_ASYNC_COLLECTIVES_TO_SYNC_H_ #include <utility> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ConvertAsyncCollectivesToSync : public HloModulePass { public: explicit ConvertAsyncCollectivesToSync(HloPredicate is_nop = {}) : is_nop_(is_nop) {} absl::string_view name() const override { return "convert-async-collectives-to-sync"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; virtual absl::Status ConvertAsyncInstructionsToSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) const { return ReplaceAsyncInstructionsWithSync(computation, async_pairs); } static absl::Status ReplaceAsyncInstructionsWithSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs); static constexpr char kAsyncCollectiveNameAttributeName[] = "async_collective_name"; private: absl::StatusOr<bool> RunOnComputation(HloComputation* computation); HloPredicate is_nop_; }; } #endif #include "xla/service/convert_async_collectives_to_sync.h" #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<HloInstruction*> CreateSyncVariant(HloInstruction* async_start, HloInstruction* async_done) { HloInstruction* sync_instruction = nullptr; HloComputation* computation = async_start->parent(); const HloOpcode async_start_op = async_start->opcode(); switch (async_start_op) { case HloOpcode::kAllReduceStart: { auto* async_ar = Cast<HloAllReduceInstruction>(async_start); sync_instruction = computation->AddInstruction(HloInstruction::CreateAllReduce( async_done->shape(), async_ar->operands(), async_ar->to_apply(), async_ar->device_list(), async_ar->constrain_layout(), async_ar->channel_id(), async_ar->use_global_device_ids())); break; } case HloOpcode::kAllGatherStart: { auto* async_ag = Cast<HloAllGatherInstruction>(async_start); sync_instruction = computation->AddInstruction(HloInstruction::CreateAllGather( async_done->shape(), async_ag->operands(), async_ag->all_gather_dimension(), async_ag->device_list(), async_ag->constrain_layout(), async_ag->channel_id(), async_ag->use_global_device_ids())); break; } case HloOpcode::kCollectivePermuteStart: { auto* async_cp = Cast<HloCollectivePermuteInstruction>(async_start); TF_RET_CHECK(async_cp->operand_count() == 1); sync_instruction = computation->AddInstruction(HloInstruction::CreateCollectivePermute( async_done->shape(), async_cp->mutable_operand(0), async_cp->source_target_pairs(), async_cp->channel_id())); break; } case HloOpcode::kAsyncStart: { auto* as_start = Cast<HloAsyncInstruction>(async_start); HloInstruction* wrapped = as_start->async_wrapped_instruction(); sync_instruction = computation->AddInstruction(wrapped->CloneWithNewOperands( async_done->shape(), as_start->operands())); break; } default: return Internal("Unexpected async start op %s", HloOpcodeString(async_start->opcode())); } sync_instruction->set_metadata(async_start->metadata()); sync_instruction->CopyBackendConfigFrom(async_start); TF_RETURN_IF_ERROR(async_done->ReplaceAllUsesWith(sync_instruction)); TF_RETURN_IF_ERROR(async_start->DropAllControlDeps()); TF_RETURN_IF_ERROR(async_done->DropAllControlDeps()); bool is_async_start_removed = false; auto track_async_start_removed = [&](const HloInstruction* instr) { is_async_start_removed |= instr == async_start; }; TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands( async_done, track_async_start_removed)); if (!is_async_start_removed) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(async_start)); } return sync_instruction; } absl::Status ConvertAsyncCollectivesToSync::ReplaceAsyncInstructionsWithSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) { absl::flat_hash_map<HloInstruction*, HloInstruction*> replaced_ops; for (auto& [async_start, async_done] : async_pairs) { TF_ASSIGN_OR_RETURN(HloInstruction * sync, CreateSyncVariant(async_start, async_done)); FrontendAttributes attributes; auto& map = *attributes.mutable_map(); map[kAsyncCollectiveNameAttributeName] = async_start->name(); sync->add_frontend_attributes(std::move(attributes)); replaced_ops[async_start] = nullptr; replaced_ops[async_done] = sync; } HloModule* module = computation->parent(); const HloInstructionSequence& sequence = module->schedule().sequence(computation); std::vector<HloInstruction*> new_sequence; new_sequence.reserve(sequence.size()); for (HloInstruction* instr : sequence.instructions()) { auto it = replaced_ops.find(instr); if (it != replaced_ops.end()) { if (it->second != nullptr) { new_sequence.push_back(it->second); } } else { new_sequence.push_back(instr); } } module->schedule().set_sequence(computation, new_sequence); return absl::OkStatus(); } absl::StatusOr<bool> ConvertAsyncCollectivesToSync::RunOnComputation( HloComputation* computation) { HloModule* module = computation->parent(); std::vector<std::pair<HloInstruction*, HloInstruction*>> async_pairs; const HloInstructionSequence& sequence = module->schedule().sequence(computation); absl::flat_hash_set<HloInstruction*> in_flight_ops; for (HloInstruction* instruction : sequence.instructions()) { if (hlo_query::IsAsyncCollectiveStartOp(instruction)) { in_flight_ops.insert(instruction); VLOG(3) << "Found async start " << instruction->ToString(); } else if (hlo_query::IsAsyncCollectiveDoneOp(instruction)) { VLOG(3) << "Found async done " << instruction->ToString(); TF_RET_CHECK(instruction->operand_count() == 1); HloInstruction* matching_async_start = instruction->mutable_operand(0); if (in_flight_ops.erase(matching_async_start) == 1) { async_pairs.push_back({matching_async_start, instruction}); VLOG(3) << "Added pair: {" << matching_async_start->name() << ", " << instruction->name(); } } else if (!in_flight_ops.empty() && (!is_nop_ || !is_nop_(instruction))) { VLOG(3) << "Found intervening non-NOP instruction " << instruction->ToString(); in_flight_ops.clear(); } } if (async_pairs.empty()) { return false; } TF_RETURN_IF_ERROR(ConvertAsyncInstructionsToSync(computation, async_pairs)); return true; } absl::StatusOr<bool> ConvertAsyncCollectivesToSync::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (!module->has_schedule()) { VLOG(3) << "Skipping as module is not scheduled"; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { if (!module->schedule().is_computation_scheduled(computation)) { VLOG(3) << "Skipping computation" << computation->name() << " as it is not scheduled"; continue; } TF_ASSIGN_OR_RETURN(bool computation_changed, RunOnComputation(computation)); changed |= computation_changed; } return changed; } }
#include "xla/service/convert_async_collectives_to_sync.h" #include <memory> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; class ConvertAsyncCollectivesToSyncTest : public HloTestBase { public: absl::Status RunPass(HloModule *module, bool expect_change, HloPredicate is_nop = {}) { TF_ASSIGN_OR_RETURN(bool changed, ConvertAsyncCollectivesToSync{is_nop}.Run(module)); EXPECT_EQ(changed, expect_change); return absl::OkStatus(); } absl::string_view GetAsyncName(const HloInstruction *inst) { const auto &map = inst->frontend_attributes().map(); return map.at( ConvertAsyncCollectivesToSync::kAsyncCollectiveNameAttributeName); } HloPredicate is_nop_simple_ = HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kGetTupleElement, HloOpcode::kParameter>; }; TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleAllReduce) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::AllReduce(m::ReplicaId())); const auto *ar = Cast<HloAllReduceInstruction>(root); EXPECT_TRUE(ar->channel_id().has_value()); EXPECT_EQ(ar->channel_id().value(), 3); EXPECT_EQ(GetAsyncName(ar), "start"); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3, replica_groups={{0,1}, {2,3}} id2 = f32[] bitcast(id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true, is_nop_simple_)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::AllReduce(m::ReplicaId())); const auto *ar = Cast<HloAllReduceInstruction>(root); EXPECT_TRUE(ar->channel_id().has_value()); EXPECT_EQ(ar->channel_id().value(), 3); EXPECT_THAT(ar, m::ReplicaGroups({{0, 1}, {2, 3}})); EXPECT_EQ(GetAsyncName(ar), "start"); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNonNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 id2 = u32[] add(id, id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), false)); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleAllGather) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { a1 = u32[1, 2] parameter(0) ags = (u32[1, 2], u32[2, 2]) all-gather-start(a1), dimensions={0}, channel_id=3 ROOT allgather = u32[2,2] all-gather-done(ags) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::AllGather(m::Parameter(0))); const auto *ag = Cast<HloAllGatherInstruction>(root); EXPECT_TRUE(ag->channel_id().has_value()); EXPECT_EQ(ag->channel_id().value(), 3); EXPECT_EQ(ag->all_gather_dimension(), 0); EXPECT_EQ(GetAsyncName(ag), "ags"); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleCollectivePermute) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { p = u32[2] parameter(0) start = (u32[2], u32[2], u32[], u32[]) collective-permute-start(p), source_target_pairs={{0,1}, {1,0}} ROOT done = u32[2] collective-permute-done(start) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::CollectivePermute(m::Parameter(0))); const auto *cp = Cast<HloCollectivePermuteInstruction>(root); EXPECT_THAT(cp, m::SourceTargetPairs({{0, 1}, {1, 0}})); EXPECT_EQ(GetAsyncName(cp), "start"); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleReduceScatter) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } reduce_scatter { p0 = u32[8] parameter(0) ROOT result = u32[4] reduce-scatter(p0), replica_groups={{0,3}, {1,2}}, dimensions={0}, to_apply=add } ENTRY main { data = u32[8] parameter(0) rs-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} %data), calls=reduce_scatter ROOT %ars = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) %rs-start), calls=reduce_scatter } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::ReduceScatter(m::Parameter(0))); const auto *rs = Cast<HloReduceScatterInstruction>(root); EXPECT_THAT(rs, m::ReplicaGroups({{0, 3}, {1, 2}})); EXPECT_EQ(rs->scatter_dimension(), 0); EXPECT_EQ(GetAsyncName(rs), "rs-start"); } TEST_F(ConvertAsyncCollectivesToSyncTest, SimpleAllToAll) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true all_to_all { p0 = u32[2] parameter(0) ROOT result = u32[2] all-to-all(p0), dimensions={0}, replica_groups={{0,1},{2,3}} } ENTRY test_computation { a1 = u32[2] parameter(0) a2a-start = ((u32[2]), u32[2]) async-start(u32[2] a1), calls=all_to_all ROOT a2s = u32[2] async-done(a2a-start), calls=all_to_all } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::AllToAll(m::Parameter(0))); const auto *a2a = Cast<HloAllToAllInstruction>(root); EXPECT_THAT(a2a, m::ReplicaGroups({{0, 1}, {2, 3}})); EXPECT_TRUE(a2a->split_dimension().has_value()); EXPECT_EQ(a2a->split_dimension().value(), 0); EXPECT_EQ(GetAsyncName(a2a), "a2a-start"); } TEST_F(ConvertAsyncCollectivesToSyncTest, ControlDeps) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 done1 = u32[] all-reduce-done(start1) start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4, control-predecessors={done1} done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::Add(m::AllReduce(), m::AllReduce())); } TEST_F(ConvertAsyncCollectivesToSyncTest, MultipleInFlightStreaming) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done1 = u32[] all-reduce-done(start1) done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::Add(m::AllReduce(), m::AllReduce())); } TEST_F(ConvertAsyncCollectivesToSyncTest, MultipleInFlightNested) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::Add(m::AllReduce(), m::AllReduce())); } TEST_F(ConvertAsyncCollectivesToSyncTest, MultipleInFlightNestedPartial) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) id2 = u32[] add(done2, done2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); const HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, m::Add(m::AllReduceDone(), m::AllReduce())); } } }
221
#ifndef TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_FUSION_UTILS_H_ #define TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_FUSION_UTILS_H_ #include <functional> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace fusion_utils { using SetFunctionSignatureFn = std::function<void( const OpDef& first_function_signature, const OpDef& second_function_signature, OpDef* fused_function_signature)>; using StringCollection = gtl::InlinedVector<string, 2>; using SetInputFn = std::function<string(const StringCollection& first_function_inputs, const StringCollection& second_function_inputs, const StringCollection& parent_outputs, int arg_num)>; using SetOutputFn = std::function<void(const protobuf::Map<string, string>& parent_ret, const protobuf::Map<string, string>& second_function_ret, protobuf::Map<string, string>* fused_ret)>; using SetNodesFn = std::function<void( const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library)>; void MergeNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library); bool CanCompose(const OpDef& first_signature, const OpDef& second_signature); void ComposeSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature); string ComposeInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num); void ComposeOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret); void CombineSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature); void CombineOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret); bool HasSameSignature(const OpDef& first_signature, const OpDef& second_signature); void SameSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature); string SameInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num); void LazyConjunctionOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret); void LazyConjunctionNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library); FunctionDef* FuseFunctions( const FunctionDef& first_function, const FunctionDef& second_function, StringPiece fused_name_prefix, const SetFunctionSignatureFn& set_signature, const SetInputFn& set_input, const SetOutputFn& set_output, const SetNodesFn& set_nodes, FunctionDefLibrary* library); } } } #endif #include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/strip.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace fusion_utils { namespace { constexpr char kControlInputPrefix[] = "^"; bool IsControlInput(const string& node_input) { return absl::StartsWith(node_input, kControlInputPrefix); } string StripControlInputNotation(const string& node_input) { return string(absl::StripPrefix(node_input, kControlInputPrefix)); } string AddControlInputNotation(const string& node_input) { return absl::StrCat(kControlInputPrefix, node_input); } string ParseNodeConnection(const string& name) { return name.substr(0, name.find(':')); } string ParseOutputNode(const string& name) { if (name.find(':') == string::npos) return {}; return name.substr(name.find(':'), string::npos); } string GetOutputNode(const FunctionDef& function, int output_idx) { const auto& ret_output_name = function.signature().output_arg(output_idx).name(); return function.ret().at(ret_output_name); } string& GetMutableOutputNode(FunctionDef* function, int output_idx) { const auto& ret_output_name = function->signature().output_arg(output_idx).name(); return function->mutable_ret()->at(ret_output_name); } template <typename Iterable> StringCollection GetNames(const Iterable& iterable, int allocate_size) { StringCollection names; names.reserve(allocate_size); for (auto& arg : iterable) names.push_back(arg.name()); return names; } template <typename Iterable> gtl::FlatSet<string> GetNodeNamesSet(const Iterable& nodes) { gtl::FlatSet<string> names; for (const auto& node : nodes) { CHECK(gtl::InsertIfNotPresent(&names, node.name())) << "Functions should have unique node names. Node with name " << node.name() << " already exists"; } return names; } template <typename Iterable> gtl::FlatMap<string, string> GetUniqueNames(const Iterable& first_iterable, const Iterable& second_iterable) { gtl::FlatMap<string, string> changed_node_names; const auto first_names = GetNodeNamesSet(first_iterable); auto second_names = GetNodeNamesSet(first_iterable); int id = second_iterable.size(); for (const auto& node : second_iterable) { string name_before = node.name(); string name = name_before; bool changed_name = false; while (first_names.count(name) || (changed_name && second_names.count(name))) { name = strings::StrCat(name_before, "/_", id); changed_name = true; ++id; } if (changed_name) { changed_node_names[name_before] = name; second_names.insert(std::move(name)); } } return changed_node_names; } void RenameFunctionNodes( const FunctionDef& first_function, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse, protobuf::Map<string, string>* rets_to_fuse, protobuf::Map<string, string>* control_rets_to_fuse, protobuf::RepeatedPtrField<string>* control_outputs_to_fuse) { const gtl::FlatMap<string, string> changed_node_names = GetUniqueNames(first_function.node_def(), *nodes_to_fuse); auto updated_name = [&changed_node_names](const string& input) { string input_node = ParseNodeConnection(input); auto iter = changed_node_names.find(input_node); if (iter != changed_node_names.end()) { return iter->second + ParseOutputNode(input); } return input; }; for (NodeDef& function_node : *nodes_to_fuse) { if (const string* new_name = gtl::FindOrNull(changed_node_names, function_node.name())) { function_node.set_name(*new_name); } for (string& input : *function_node.mutable_input()) { input = updated_name(input); } } for (auto& [unused, ret_node] : *rets_to_fuse) { ret_node = updated_name(ret_node); } protobuf::Map<string, string> new_control_rets_to_fuse; protobuf::RepeatedPtrField<string> new_control_outputs_to_fuse; for (const auto& [unused, control_ret_node] : *control_rets_to_fuse) { string updated_control_ret_node = updated_name(control_ret_node); new_control_rets_to_fuse.insert( {updated_control_ret_node, updated_control_ret_node}); *new_control_outputs_to_fuse.Add() = updated_control_ret_node; } *control_rets_to_fuse = new_control_rets_to_fuse; *control_outputs_to_fuse = new_control_outputs_to_fuse; } StringCollection GetFunctionInputs(const FunctionDef& function) { return GetNames(function.signature().input_arg(), function.signature().input_arg_size()); } OpDef GetUniqueSignature(const OpDef& first_signature, const OpDef& second_signature, protobuf::Map<string, string>* rets_to_fuse, protobuf::Map<string, string>* control_rets_to_fuse, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse) { const gtl::FlatMap<string, string> changed_input_names = GetUniqueNames(first_signature.input_arg(), second_signature.input_arg()); OpDef signature; signature.set_name(second_signature.name()); for (const auto& input_arg : second_signature.input_arg()) { auto& input = *signature.add_input_arg(); input = input_arg; if (const string* new_name = gtl::FindOrNull(changed_input_names, input.name())) { input.set_name(*new_name); } } const gtl::FlatMap<string, string> changed_output_names = GetUniqueNames( first_signature.output_arg(), second_signature.output_arg()); for (const auto& output_arg : second_signature.output_arg()) { auto& output = *signature.add_output_arg(); output = output_arg; if (const string* new_name = gtl::FindOrNull(changed_output_names, output.name())) { output.set_name(*new_name); } } auto new_rets = [&](const protobuf::Map<string, string>& old_rets) { protobuf::Map<string, string> new_rets; for (const auto& ret : old_rets) { const auto& key = changed_output_names.count(ret.first) ? changed_output_names.at(ret.first) : ret.first; const auto& input = ParseNodeConnection(ret.second); const auto& value = changed_input_names.count(input) ? changed_input_names.at(input) + ParseOutputNode(ret.second) : ret.second; new_rets[key] = value; } return new_rets; }; *rets_to_fuse = new_rets(*rets_to_fuse); *control_rets_to_fuse = new_rets(*control_rets_to_fuse); for (NodeDef& function_node : *nodes_to_fuse) { for (auto& node_input : *function_node.mutable_input()) { bool is_control_input = IsControlInput(node_input); const auto& input = ParseNodeConnection(StripControlInputNotation(node_input)); if (const string* new_name = gtl::FindOrNull(changed_input_names, input)) { node_input = *new_name + ParseOutputNode(node_input); if (is_control_input) { node_input = AddControlInputNotation(node_input); } } } } if (second_signature.is_stateful()) { signature.set_is_stateful(true); } return signature; } void FuseFunctionNodes(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, const SetInputFn& set_input, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse) { for (NodeDef& function_node : *nodes_to_fuse) { for (auto& node_input : *function_node.mutable_input()) { bool is_control_input = IsControlInput(node_input); auto parsed_name = ParseNodeConnection(StripControlInputNotation(node_input)); auto input_it = std::find(second_inputs.begin(), second_inputs.end(), parsed_name); if (input_it == second_inputs.end()) continue; auto arg_num = std::distance(second_inputs.begin(), input_it); node_input = set_input(first_inputs, second_inputs, first_outputs, arg_num); if (is_control_input) { node_input = AddControlInputNotation(node_input); } } } } void FuseReturns(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, const SetInputFn& set_input, protobuf::Map<string, string>* fused_ret) { for (auto& ret : *fused_ret) { auto return_input = ParseNodeConnection(ret.second); auto input_it = std::find(second_inputs.begin(), second_inputs.end(), return_input); if (input_it == second_inputs.end()) continue; auto input_idx = std::distance(second_inputs.begin(), input_it); ret.second = set_input(first_inputs, second_inputs, first_outputs, input_idx); } } StringCollection GetFunctionOutputs(const FunctionDef& function) { const auto number_of_outputs = function.signature().output_arg_size(); StringCollection outputs; outputs.reserve(number_of_outputs); for (int output_idx = 0; output_idx < number_of_outputs; output_idx++) outputs.push_back(GetOutputNode(function, output_idx)); return outputs; } FunctionDef* CreateFalsePredicate( const protobuf::RepeatedPtrField<OpDef_ArgDef>& fake_args, FunctionDefLibrary* library) { GraphDef graph; MutableGraphView graph_view(&graph); auto* node = graph_utils::AddScalarConstNode(false, &graph_view); auto* false_predicate = library->add_function(); graph_utils::SetUniqueGraphFunctionName("false_predicate", library, false_predicate); int num = 0; for (const auto& fake_arg : fake_args) { auto* arg = false_predicate->mutable_signature()->add_input_arg(); arg->set_type(fake_arg.type()); arg->set_name(strings::StrCat("fake_arg", num)); num++; } auto* output = false_predicate->mutable_signature()->add_output_arg(); output->set_name("false_out"); output->set_type(DT_BOOL); (*false_predicate->mutable_ret())["false_out"] = node->name() + ":output:0"; *false_predicate->mutable_node_def() = std::move(*graph.mutable_node()); return false_predicate; } void CheckIfCanCompose(const OpDef& first_signature, const OpDef& second_signature) { CHECK(CanCompose(first_signature, second_signature)) << "The number of input arguments of function " << second_signature.name() << " should be the same as the number of output arguments of function " << first_signature.name() << "."; } } void MergeNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library) { fused_function->mutable_node_def()->CopyFrom(first_function.node_def()); fused_function->mutable_node_def()->MergeFrom(second_function.node_def()); } bool CanCompose(const OpDef& first_signature, const OpDef& second_signature) { return first_signature.output_arg_size() == second_signature.input_arg_size(); } string ComposeInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num) { return first_outputs.at(arg_num); } void ComposeSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CheckIfCanCompose(first_signature, second_signature); *fused_signature->mutable_input_arg() = first_signature.input_arg(); *fused_signature->mutable_output_arg() = second_signature.output_arg(); if (first_signature.is_stateful() || second_signature.is_stateful()) { if (!(first_signature.is_stateful() && second_signature.is_stateful())) { metrics::RecordTFDataDebug("fused_with_mixed_statefulness"); } fused_signature->set_is_stateful(true); } fused_signature->mutable_control_output()->Add( first_signature.control_output().begin(), first_signature.control_output().end()); fused_signature->mutable_control_output()->Add( second_signature.control_output().begin(), second_signature.control_output().end()); } void ComposeOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { *fused_ret = second_ret; } void CombineSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CheckIfCanCompose(first_signature, second_signature); *fused_signature = first_signature; fused_signature->mutable_output_arg()->MergeFrom( second_signature.output_arg()); } void CombineOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { *fused_ret = first_ret; fused_ret->insert(second_ret.begin(), second_ret.end()); } string SameInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num) { return first_inputs.at(arg_num); } bool HasSameSignature(const OpDef& first_signature, const OpDef& second_signature) { return first_signature.input_arg_size() == second_signature.input_arg_size() && first_signature.output_arg_size() == second_signature.output_arg_size(); } void SameSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CHECK(HasSameSignature(first_signature, second_signature)) << "Functions do not have the same signature"; *fused_signature = first_signature; } void LazyConjunctionNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library) { fused_function->mutable_node_def()->CopyFrom(first_function.node_def()); NodeDefBuilder if_builder("", "If"); if_builder.Input(GetOutputNode(first_function, 0), 0, DT_BOOL); DataTypeVector in_arg_types; std::vector<NodeDefBuilder::NodeOut> inputs; for (const auto& input_arg : first_function.signature().input_arg()) { inputs.push_back({input_arg.name(), 0, input_arg.type()}); in_arg_types.push_back(input_arg.type()); } if_builder.Attr("Tin", in_arg_types); if_builder.Attr("Tcond", DT_BOOL); if_builder.Attr("Tout", DataTypeVector{DT_BOOL}); if_builder.Attr("_lower_using_switch_merge", true); NameAttrList then_branch; then_branch.set_name(second_function.signature().name()); if_builder.Attr("then_branch", then_branch); auto* false_predicate = CreateFalsePredicate(first_function.signature().input_arg(), library); NameAttrList else_branch; else_branch.set_name(false_predicate->signature().name()); if_builder.Attr("else_branch", else_branch); if_builder.Input(inputs); auto* if_node = fused_function->add_node_def(); TF_CHECK_OK(if_builder.Finalize(if_node)); function_utils::SetUniqueFunctionNodeName("cond", fused_function, if_node); GetMutableOutputNode(fused_function, 0) = if_node->name() + ":output:0"; } void LazyConjunctionOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { CHECK_EQ(first_ret.size(), 1); CHECK_EQ(second_ret.size(), 1); *fused_ret = first_ret; } FunctionDef* FuseFunctions( const FunctionDef& first_function, const FunctionDef& second_function, StringPiece fused_name_prefix, const SetFunctionSignatureFn& set_signature, const SetInputFn& set_input, const SetOutputFn& set_output, const SetNodesFn& set_nodes, FunctionDefLibrary* library) { auto has_unknown_attrs = [](const FunctionDef& func) { int known_attribute_size = 0; if (data::IsTFDataFunction(func)) known_attribute_size += 1; if (func.attr().contains("_construction_context")) known_attribute_size += 1; return func.attr_size() > known_attribute_size; }; if (has_unknown_attrs(first_function) || has_unknown_attrs(second_function)) { return nullptr; } FunctionDef setup_function = second_function; *setup_function.mutable_signature() = GetUniqueSignature( first_function.signature(), setup_function.signature(), setup_function.mutable_ret(), setup_function.mutable_control_ret(), setup_function.mutable_node_def()); FunctionDef* fused_function = library->add_function(); RenameFunctionNodes( first_function, setup_function.mutable_node_def(), setup_function.mutable_ret(), setup_function.mutable_control_ret(), setup_function.mutable_signature()->mutable_control_output()); set_output(first_function.ret(), setup_function.ret(), fused_function->mutable_ret()); CombineOutput(first_function.control_ret(), setup_function.control_ret(), fused_function->mutable_control_ret()); set_signature(first_function.signature(), setup_function.signature(), fused_function->mutable_signature()); graph_utils::SetUniqueGraphFunctionName(fused_name_prefix, library, fused_function); CHECK(fused_function->signature().output_arg_size() == fused_function->ret_size()) << "Fused function must have the same number of returns as output " "args. Output size: " << fused_function->signature().output_arg_size() << ", ret size: " << fused_function->ret_size(); const auto first_inputs = GetFunctionInputs(first_function); const auto second_inputs = GetFunctionInputs(setup_function); const auto first_outputs = GetFunctionOutputs(first_function); FuseFunctionNodes(first_inputs, second_inputs, first_outputs, set_input, setup_function.mutable_node_def()); FuseReturns(first_inputs, second_inputs, first_outputs, set_input, fused_function->mutable_ret()); set_nodes(first_function, setup_function, fused_function, library); (*fused_function->mutable_attr())[data::kTFDataFunction].set_b(true); auto get_construction_context = [](const FunctionDef& func) { auto iter = func.attr().find("_construction_context"); if (iter == func.attr().cend()) return std::string(); return iter->second.s(); }; std::string first_construction_context = get_construction_context(first_function); std::string second_construction_context = get_construction_context(second_function); if (first_construction_context != second_construction_context) { LOG(ERROR) << "_construction_context attribute mismatch during fused " "function optimization pass. First function: " << first_construction_context << " Second function: " << first_construction_context; } if (!first_construction_context.empty()) { (*fused_function->mutable_attr())["_construction_context"].set_s( first_construction_context); } return fused_function; } } } }
#include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace fusion_utils { namespace { string ParseNodeConnection(const string& name) { return name.substr(0, name.find(':')); } void CheckUniqueNames(const FunctionDef& function) { std::unordered_set<string> inputs; for (const auto& input_arg : function.signature().input_arg()) inputs.insert(input_arg.name()); EXPECT_EQ(inputs.size(), function.signature().input_arg_size()); std::unordered_set<string> outputs; for (const auto& output_arg : function.signature().output_arg()) outputs.insert(output_arg.name()); EXPECT_EQ(outputs.size(), function.signature().output_arg_size()); std::unordered_set<string> nodes; for (const auto& node : function.node_def()) nodes.insert(node.name()); EXPECT_EQ(nodes.size(), function.node_def_size()); } TEST(FusionUtilsTest, FuseFunctionsByComposition) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_maps"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 1); EXPECT_EQ(fused_function->ret_size(), 1); std::cerr << fused_function->DebugString(); CheckUniqueNames(*fused_function); const NodeDef *parent_mul = nullptr, *output_mul = nullptr; for (const auto& fused_node : fused_function->node_def()) { if (fused_node.op() == "Mul") { if (fused_node.name() == "y") parent_mul = &fused_node; else output_mul = &fused_node; } } ASSERT_NE(parent_mul, nullptr); ASSERT_NE(output_mul, nullptr); EXPECT_EQ(ParseNodeConnection(output_mul->input(0)), parent_mul->name()); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(0).name()); EXPECT_EQ(ParseNodeConnection(output_value), output_mul->name()); } TEST(FusionUtilsTest, FuseFunctionsWithControlInputs) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwoWithControlInput(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwoWithControlInput(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_maps"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 1); EXPECT_EQ(fused_function->ret_size(), 1); CheckUniqueNames(*fused_function); const NodeDef *parent_mul = nullptr, *output_mul = nullptr; for (const auto& fused_node : fused_function->node_def()) { if (fused_node.op() == "Mul") { if (fused_node.name() == "y") parent_mul = &fused_node; else output_mul = &fused_node; } } ASSERT_NE(parent_mul, nullptr); ASSERT_NE(output_mul, nullptr); EXPECT_EQ(ParseNodeConnection(output_mul->input(1)), absl::StrCat("^", parent_mul->name())); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(0).name()); EXPECT_EQ(ParseNodeConnection(output_value), output_mul->name()); } TEST(FusionUtilsTest, FuseFunctionWithControlOutputs) { GraphDef graph; auto *f1 = graph.mutable_library()->add_function(); *f1 = test::function::XTimesTwoWithControlOutput(); f1->mutable_signature()->set_name("f1"); auto *f2 = graph.mutable_library()->add_function(); *f2 = test::function::XTimesTwoWithControlOutput(); f2->mutable_signature()->set_name("f2"); auto *fused_function = FuseFunctions(*f1, *f2, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().control_output_size(), 2); string control_output_1 = fused_function->signature().control_output(0); string control_output_2 = fused_function->signature().control_output(1); EXPECT_NE(control_output_1, control_output_2); EXPECT_EQ(fused_function->control_ret_size(), 2); EXPECT_TRUE(fused_function->control_ret().contains(control_output_1)); EXPECT_TRUE(fused_function->control_ret().contains(control_output_2)); EXPECT_EQ(fused_function->control_ret().at(control_output_1), control_output_1); EXPECT_EQ(fused_function->control_ret().at(control_output_2), control_output_2); } struct StatefulnessTestCase { bool is_stateful_a, is_stateful_b; }; using FusionUtilsTest_Statefulness = ::testing::TestWithParam<StatefulnessTestCase>; TEST_P(FusionUtilsTest_Statefulness, FuseFunctionStatefulness) { const StatefulnessTestCase &test_case = GetParam(); GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); if (test_case.is_stateful_a) { parent_function->mutable_signature()->set_is_stateful(true); } if (test_case.is_stateful_b) { function->mutable_signature()->set_is_stateful(true); } auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().is_stateful(), test_case.is_stateful_a || test_case.is_stateful_b); } INSTANTIATE_TEST_SUITE_P( StatefulnessTests, FusionUtilsTest_Statefulness, ::testing::ValuesIn<StatefulnessTestCase>( {{false, false}, {false, true}, {true, false}, {true, true}})); TEST(FusionUtilsTest, FuseFunctionWithPredicate) { GraphDef graph; auto *xtimes_two = graph.mutable_library()->add_function(); *xtimes_two = test::function::XTimesTwo(); auto *is_zero = graph.mutable_library()->add_function(); *is_zero = test::function::IsZero(); auto *fused_function = FuseFunctions(*xtimes_two, *is_zero, "fused_map_and_filter_function", fusion_utils::CombineSignature, fusion_utils::ComposeInput, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_map_and_filter_function"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); ASSERT_TRUE( function_utils::ContainsFunctionNodeWithOp("Equal", *fused_function)); const auto& equal_node = fused_function->node_def( function_utils::FindFunctionNodeWithOp("Equal", *fused_function)); EXPECT_EQ(xtimes_two->signature().output_arg(0).name(), fused_function->signature().output_arg(0).name()); EXPECT_EQ(fused_function->signature().output_arg(1).name(), equal_node.name()); EXPECT_EQ(ParseNodeConnection(equal_node.input(0)), fused_function->signature().output_arg(0).name()); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(1).name()); EXPECT_EQ(ParseNodeConnection(output_value), equal_node.name()); } TEST(FusionUtilsTest, FuseSameFunctionWithExtraOutput) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::CombineSignature, fusion_utils::ComposeInput, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); } TEST(FusionUtilsTest, ZipFusion) { GraphDef graph; auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto zip_signature = [](const OpDef& parent_function_signature, const OpDef& function_signature, OpDef *fused_function_signature) { *fused_function_signature = parent_function_signature; fused_function_signature->mutable_input_arg()->MergeFrom( function_signature.input_arg()); fused_function_signature->mutable_output_arg()->MergeFrom( function_signature.output_arg()); }; auto zip_input = [](const StringCollection& parent_inputs, const StringCollection& function_inputs, const StringCollection& parent_outputs, int arg_num) { return function_inputs.at(arg_num); }; auto *fused_function = FuseFunctions(*function, *function, "zip_maps", zip_signature, zip_input, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().input_arg_size(), 2); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); } } } } }
222
#ifndef TENSORFLOW_TSL_PLATFORM_STRINGPRINTF_H_ #define TENSORFLOW_TSL_PLATFORM_STRINGPRINTF_H_ #include <stdarg.h> #include <string> #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace tsl { namespace strings { std::string Printf(const char* format, ...) TF_PRINTF_ATTRIBUTE(1, 2); void Appendf(std::string* dst, const char* format, ...) TF_PRINTF_ATTRIBUTE(2, 3); void Appendv(std::string* dst, const char* format, va_list ap); } } #endif #include "tsl/platform/stringprintf.h" #include <errno.h> #include <stdarg.h> #include <stdio.h> namespace tsl { namespace strings { void Appendv(string* dst, const char* format, va_list ap) { static const int kSpaceLength = 1024; char space[kSpaceLength]; va_list backup_ap; va_copy(backup_ap, ap); int result = vsnprintf(space, kSpaceLength, format, backup_ap); va_end(backup_ap); if (result < kSpaceLength) { if (result >= 0) { dst->append(space, result); return; } #ifdef _MSC_VER va_copy(backup_ap, ap); result = vsnprintf(nullptr, 0, format, backup_ap); va_end(backup_ap); #endif if (result < 0) { return; } } int length = result + 1; char* buf = new char[length]; va_copy(backup_ap, ap); result = vsnprintf(buf, length, format, backup_ap); va_end(backup_ap); if (result >= 0 && result < length) { dst->append(buf, result); } delete[] buf; } string Printf(const char* format, ...) { va_list ap; va_start(ap, format); string result; Appendv(&result, format, ap); va_end(ap); return result; } void Appendf(string* dst, const char* format, ...) { va_list ap; va_start(ap, format); Appendv(dst, format, ap); va_end(ap); } } }
#include "tsl/platform/stringprintf.h" #include <string> #include "tsl/platform/test.h" namespace tsl { namespace strings { namespace { TEST(PrintfTest, Empty) { EXPECT_EQ("", Printf("%s", string().c_str())); EXPECT_EQ("", Printf("%s", "")); } TEST(PrintfTest, Misc) { #if !defined(_MSC_VER) EXPECT_EQ("123hello w", Printf("%3$d%2$s %1$c", 'w', "hello", 123)); #endif } TEST(AppendfTest, Empty) { string value("Hello"); const char* empty = ""; Appendf(&value, "%s", empty); EXPECT_EQ("Hello", value); } TEST(AppendfTest, EmptyString) { string value("Hello"); Appendf(&value, "%s", ""); EXPECT_EQ("Hello", value); } TEST(AppendfTest, String) { string value("Hello"); Appendf(&value, " %s", "World"); EXPECT_EQ("Hello World", value); } TEST(AppendfTest, Int) { string value("Hello"); Appendf(&value, " %d", 123); EXPECT_EQ("Hello 123", value); } TEST(PrintfTest, Multibyte) { char* old_locale = setlocale(LC_CTYPE, nullptr); setlocale(LC_CTYPE, "en_US.utf8"); const char kInvalidCodePoint[] = "\375\067s"; string value = Printf("%.*s", 3, kInvalidCodePoint); EXPECT_TRUE(value.empty() || value == kInvalidCodePoint); int n = 2048; char* buf = new char[n + 1]; memset(buf, ' ', n - 3); memcpy(buf + n - 3, kInvalidCodePoint, 4); value = Printf("%.*s", n, buf); EXPECT_TRUE(value.empty() || value == buf); delete[] buf; setlocale(LC_CTYPE, old_locale); } TEST(PrintfTest, NoMultibyte) { char* old_locale = setlocale(LC_CTYPE, nullptr); setlocale(LC_CTYPE, "POSIX"); string value = Printf("%.*s", 3, "\375\067s"); setlocale(LC_CTYPE, old_locale); EXPECT_EQ("\375\067s", value); } TEST(PrintfTest, DontOverwriteErrno) { errno = ECHILD; string value = Printf("Hello, %s!", "World"); EXPECT_EQ(ECHILD, errno); } TEST(PrintfTest, LargeBuf) { int n = 2048; char* buf = new char[n + 1]; memset(buf, ' ', n); buf[n] = 0; string value = Printf("%s", buf); EXPECT_EQ(buf, value); delete[] buf; } } } }
223
#ifndef AROLLA_DECISION_FOREST_EXPR_OPERATOR_DECISION_FOREST_OPERATOR_H_ #define AROLLA_DECISION_FOREST_EXPR_OPERATOR_DECISION_FOREST_OPERATOR_H_ #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator.h" #include "arolla/qtype/qtype.h" namespace arolla { class DecisionForestOperator : public expr::BasicExprOperator, public expr::BuiltinExprOperatorTag { public: DecisionForestOperator(DecisionForestPtr forest, std::vector<TreeFilter> tree_filters); DecisionForestOperator( DecisionForestPtr forest, std::vector<TreeFilter> tree_filters, const absl::flat_hash_map<int, QTypePtr>& required_types); absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const final; DecisionForestPtr forest() const { return forest_; } const std::vector<TreeFilter>& tree_filters() const { return tree_filters_; } absl::string_view py_qvalue_specialization_key() const final { return "::arolla::DecisionForestOperator"; } private: DecisionForestOperator(std::vector<int> required_input_ids, DecisionForestPtr forest, std::vector<TreeFilter> tree_filters); DecisionForestPtr forest_; std::vector<TreeFilter> tree_filters_; std::vector<int> required_input_ids_; }; } #endif #include "arolla/decision_forest/expr_operator/decision_forest_operator.h" #include <algorithm> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { std::vector<int> GetRequiredInputIds( const absl::flat_hash_map<int, QTypePtr>& required_types) { std::vector<int> result; result.reserve(required_types.size()); for (const auto& [id, _] : required_types) { result.push_back(id); } return result; } } DecisionForestOperator::DecisionForestOperator( DecisionForestPtr forest, std::vector<TreeFilter> tree_filters) : DecisionForestOperator(GetRequiredInputIds(forest->GetRequiredQTypes()), forest, std::move(tree_filters)) {} DecisionForestOperator::DecisionForestOperator( DecisionForestPtr forest, std::vector<TreeFilter> tree_filters, const absl::flat_hash_map<int, QTypePtr>& required_types) : DecisionForestOperator(GetRequiredInputIds(required_types), std::move(forest), std::move(tree_filters)) {} DecisionForestOperator::DecisionForestOperator( std::vector<int> required_input_ids, DecisionForestPtr forest, std::vector<TreeFilter> tree_filters) : BasicExprOperator( "anonymous.decision_forest_operator", expr::ExprOperatorSignature::MakeVariadicArgs(), "Evaluates decision forest stored in the operator state.", FingerprintHasher("::arolla::DecisionForestOperator") .Combine(forest->fingerprint()) .CombineSpan(tree_filters) .Finish()), forest_(std::move(forest)), tree_filters_(std::move(tree_filters)), required_input_ids_(std::move(required_input_ids)) { std::sort(required_input_ids_.begin(), required_input_ids_.end()); } absl::StatusOr<QTypePtr> DecisionForestOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { int last_forest_input_id = required_input_ids_.empty() ? -1 : required_input_ids_.back(); if (last_forest_input_id >= static_cast<int>(input_qtypes.size())) { return absl::InvalidArgumentError(absl::StrFormat( "not enough arguments for the decision forest: expected at least %d, " "got %d", last_forest_input_id + 1, input_qtypes.size())); } bool batched = !input_qtypes.empty() && !required_input_ids_.empty() && IsArrayLikeQType(input_qtypes[required_input_ids_[0]]); for (int id : required_input_ids_) { if (IsArrayLikeQType(input_qtypes[id]) != batched) { DCHECK(!required_input_ids_.empty()); return absl::InvalidArgumentError(absl::StrFormat( "either all forest inputs must be scalars or all forest inputs " "must be arrays, but arg[%d] is %s and arg[%d] is %s", required_input_ids_[0], input_qtypes[required_input_ids_[0]]->name(), id, input_qtypes[id]->name())); } } QTypePtr output_type; if (batched) { DCHECK(!required_input_ids_.empty()); ASSIGN_OR_RETURN(const ArrayLikeQType* array_type, ToArrayLikeQType(input_qtypes[required_input_ids_[0]])); ASSIGN_OR_RETURN(output_type, array_type->WithValueQType(GetQType<float>())); } else { output_type = GetQType<float>(); } return MakeTupleQType( std::vector<QTypePtr>(tree_filters_.size(), output_type)); } }
#include "arolla/decision_forest/expr_operator/decision_forest_operator.h" #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla { namespace { using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; constexpr float inf = std::numeric_limits<float>::infinity(); constexpr auto S = DecisionTreeNodeId::SplitNodeId; constexpr auto A = DecisionTreeNodeId::AdjustmentId; absl::StatusOr<DecisionForestPtr> CreateForest() { std::vector<DecisionTree> trees(2); trees[0].adjustments = {0.5, 1.5, 2.5, 3.5}; trees[0].tag.submodel_id = 0; trees[0].split_nodes = { {S(1), S(2), IntervalSplit(0, 1.5, inf)}, {A(0), A(1), SetOfValuesSplit<int64_t>(1, {5}, false)}, {A(2), A(3), IntervalSplit(0, -inf, 10)}}; trees[1].adjustments = {5}; trees[1].tag.submodel_id = 1; return DecisionForest::FromTrees(std::move(trees)); } class DecisionForestOperatorTest : public ::testing::Test { void SetUp() override { CHECK_OK(InitArolla()); } }; TEST_F(DecisionForestOperatorTest, GetOutputQType) { ASSERT_OK_AND_ASSIGN(const DecisionForestPtr forest, CreateForest()); { auto forest_op = std::make_shared<DecisionForestOperator>( forest, std::vector<TreeFilter>{}); EXPECT_THAT(forest_op->GetOutputQType({GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not enough arguments for the decision " "forest: expected at least 2, got 1"))); EXPECT_THAT( forest_op->GetOutputQType( {GetQType<float>(), GetDenseArrayQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("either all forest inputs must be scalars or all " "forest inputs must be arrays, but arg[0] is " "FLOAT32 and arg[1] is DENSE_ARRAY_FLOAT32"))); EXPECT_THAT( forest_op->GetOutputQType({GetQType<float>(), GetQType<float>()}), IsOkAndHolds(MakeTupleQType({}))); } { auto forest_op = std::make_shared<DecisionForestOperator>( forest, std::vector<TreeFilter>{TreeFilter{.submodels = {0}}, TreeFilter{.submodels = {1, 2}}}); EXPECT_THAT(forest_op->GetOutputQType({GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not enough arguments for the decision " "forest: expected at least 2, got 1"))); EXPECT_THAT( forest_op->GetOutputQType( {GetQType<float>(), GetDenseArrayQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("either all forest inputs must be scalars or all " "forest inputs must be arrays, but arg[0] is " "FLOAT32 and arg[1] is DENSE_ARRAY_FLOAT32"))); EXPECT_THAT( forest_op->GetOutputQType({GetQType<float>(), GetQType<float>()}), IsOkAndHolds(MakeTupleQType({GetQType<float>(), GetQType<float>()}))); } } } }
224
#ifndef XLA_SERVICE_GPU_MODEL_GPU_COLLECTIVE_PERFORMANCE_MODEL_H_ #define XLA_SERVICE_GPU_MODEL_GPU_COLLECTIVE_PERFORMANCE_MODEL_H_ #include <array> #include <cstdint> #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/stream_executor/device_description.h" #if GOOGLE_CUDA #include <dlfcn.h> #include "third_party/gpus/cuda/nvml/include/nvml.h" #define NVML_FUNCTOR(name, rettype, args) \ inline rettype(*xla_##name) args = nullptr; NVML_FUNCTOR(nvmlInit, nvmlReturn_t, ()) NVML_FUNCTOR(nvmlShutdown, nvmlReturn_t, ()) NVML_FUNCTOR(nvmlDeviceGetHandleByIndex, nvmlReturn_t, (unsigned int index, nvmlDevice_t* device)) NVML_FUNCTOR(nvmlDeviceGetNvLinkCapability, nvmlReturn_t, (nvmlDevice_t device, unsigned int link, nvmlNvLinkCapability_t capability, unsigned int* capResult)) #endif namespace xla { namespace gpu { class GpuPerformanceWithCollectiveModel : public GpuPerformanceModelBase { public: enum CollectiveAlgo { RING = 0, TREE, }; static constexpr std::array<double, 3> kLowLatencyMaxBandwidths = { 39.0 , 87.7 , 87.7 }; static constexpr std::array<double, 3> kPerChannelMaxRingLL128Bandwidths = { 20.0 , 20.0 , 36.7 , }; static constexpr double kSm60NvlinkBandwidth = 18.0; static constexpr double kSm70NvlinkBandwidth = 20.0; static constexpr double kSm80NvlinkBandwidth = 20.0; static constexpr double kSm90NvlinkBandwidth = 20.0; static constexpr double kPciBandwidth = 12.0; static constexpr double kRingAlgorithmDiscountFactor = 0.92; static constexpr std::array<double, 13> kIntraNodeSpeeds = { 40.0, 30.0, 20.0, 18.0, 15.0, 12.0, 10.0, 9.0, 7.0, 6.0, 5.0, 4.0, 3.0}; static constexpr std::array<double, 9> kIntraNodeSpeedsSm90 = { 60.0, 40.0, 30.0, 24.0, 20.0, 15.0, 12.0, 6.0, 3.0}; static constexpr int64_t kMaxNumChannelsRing = 16; static constexpr int64_t kLL128NumThreads = 640; static constexpr absl::Duration kNcclKernelLaunchOverhead = absl::Microseconds(5); static absl::Duration ComputeCollectiveTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info); static float GetNvlinkBw(se::CudaComputeCapability compute_capability); static bool InitNvml(); static bool ShutdownNvml(); static uint32_t CheckIfNvlinkSupportsP2P(); private: static absl::Duration ComputeAllreduceTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info); }; } } #endif #include "xla/service/gpu/model/gpu_collective_performance_model.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/numbers.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/nvml/include/nvml.h" #endif namespace xla { namespace gpu { namespace { int64_t GetNcclMaxNumChannels( GpuPerformanceWithCollectiveModel::CollectiveAlgo algorithm) { int64_t max_nchannels = 0; switch (algorithm) { case GpuPerformanceWithCollectiveModel::RING: case GpuPerformanceWithCollectiveModel::TREE: max_nchannels = GpuPerformanceWithCollectiveModel::kMaxNumChannelsRing; break; } const char* env = std::getenv("NCCL_MAX_NCHANNELS"); if (env != nullptr) { int64_t max_nchannels_from_env; if (absl::SimpleAtoi(env, &max_nchannels_from_env)) { max_nchannels = std::min(max_nchannels_from_env, max_nchannels); } } return max_nchannels; } int64_t GetMinNumberOfChannels( GpuPerformanceWithCollectiveModel::CollectiveAlgo algorithm) { int64_t min_nchannels = 0; switch (algorithm) { case GpuPerformanceWithCollectiveModel::RING: case GpuPerformanceWithCollectiveModel::TREE: min_nchannels = 1; break; } const char* env = std::getenv("NCCL_MIN_NCHANNELS"); if (env != nullptr) { int64_t min_nchannels_from_env; if (absl::SimpleAtoi(env, &min_nchannels_from_env)) { min_nchannels = std::min(min_nchannels_from_env, min_nchannels); } } return min_nchannels; } int GetNumThreads(int warp_size, int min_num_threads, int max_num_threads, int default_num_threads) { int threads_from_env = default_num_threads; const char* env = std::getenv("NCCL_NTHREADS"); if (env != nullptr) { CHECK(absl::SimpleAtoi(env, &threads_from_env)); } int num_threads = threads_from_env; if (num_threads > 0) { if (num_threads % warp_size != 0) { num_threads = max_num_threads; } else if (num_threads > max_num_threads) { num_threads = max_num_threads; } else if (num_threads < min_num_threads) { num_threads = min_num_threads; } } else { num_threads = default_num_threads; } return num_threads; } float GetMaxSysBwFromGpu(const se::CudaComputeCapability cc, const double* bandwidths_table) { switch (cc.major) { case se::CudaComputeCapability::VOLTA: return bandwidths_table[0]; case se::CudaComputeCapability::AMPERE: return bandwidths_table[1]; case se::CudaComputeCapability::HOPPER: return bandwidths_table[2]; } return -1; } } float GpuPerformanceWithCollectiveModel::GetNvlinkBw( se::CudaComputeCapability compute_capability) { return compute_capability.IsAtLeast(se::CudaComputeCapability::HOPPER) ? kSm90NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::AMPERE) ? kSm80NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::VOLTA) ? kSm70NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::PASCAL_) ? kSm60NvlinkBandwidth : kSm80NvlinkBandwidth; } bool GpuPerformanceWithCollectiveModel::InitNvml() { #if GOOGLE_CUDA void* libhandle = dlopen("libnvidia-ml.so.1", RTLD_NOW); CHECK(libhandle != nullptr) << "Failed to open libnvidia-ml.so.1"; struct SymbolEntry { void** functor; char const* name; }; std::vector<SymbolEntry> symbols = { {(void**)&xla_nvmlInit, "nvmlInit_v2"}, {(void**)&xla_nvmlShutdown, "nvmlShutdown"}, {(void**)&xla_nvmlDeviceGetHandleByIndex, "nvmlDeviceGetHandleByIndex"}, {(void**)&xla_nvmlDeviceGetNvLinkCapability, "nvmlDeviceGetNvLinkCapability"}, }; for (SymbolEntry se : symbols) { *se.functor = dlsym(libhandle, se.name); } nvmlReturn_t init_result = xla_nvmlInit(); return init_result == NVML_SUCCESS; #else return false; #endif } bool GpuPerformanceWithCollectiveModel::ShutdownNvml() { #if GOOGLE_CUDA nvmlReturn_t shutdown_result = xla_nvmlShutdown(); return shutdown_result == NVML_SUCCESS; #else return false; #endif } uint32_t GpuPerformanceWithCollectiveModel::CheckIfNvlinkSupportsP2P() { #if GOOGLE_CUDA CHECK(InitNvml()) << "NVML init failed."; nvmlDevice_t nvml_device; nvmlReturn_t get_device_result = xla_nvmlDeviceGetHandleByIndex(0, &nvml_device); CHECK(get_device_result == NVML_SUCCESS); uint32_t supported_p2p = 0; nvmlReturn_t nvlink_cap_result = xla_nvmlDeviceGetNvLinkCapability( nvml_device, 0, NVML_NVLINK_CAP_P2P_SUPPORTED, &supported_p2p); CHECK(nvlink_cap_result == NVML_SUCCESS); CHECK(ShutdownNvml()) << "NVML shutdown failed."; return supported_p2p; #else return 0; #endif } absl::Duration GpuPerformanceWithCollectiveModel::ComputeAllreduceTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info) { absl::Duration total_time = kNcclKernelLaunchOverhead; stream_executor::CudaComputeCapability compute_cap = gpu_device_info.cuda_compute_capability(); int64_t size_of_speed_array = kIntraNodeSpeeds.size(); int64_t size_of_sm90_speed_array = kIntraNodeSpeedsSm90.size(); int num_speeds = compute_cap.major >= se::CudaComputeCapability::HOPPER ? size_of_sm90_speed_array : size_of_speed_array; const double* speeds = compute_cap.major >= se::CudaComputeCapability::HOPPER ? kIntraNodeSpeedsSm90.data() : kIntraNodeSpeeds.data(); int speed_index = 0; float max_sys_bw = GetMaxSysBwFromGpu(compute_cap, kLowLatencyMaxBandwidths.data()); CHECK_GT(max_sys_bw, 0); while ((speed_index < num_speeds - 1) && speeds[speed_index] > max_sys_bw) { speed_index++; } float bw_intra_node = speeds[speed_index]; int64_t num_devices = cost_analysis->NumOfDevices(instr); int64_t min_nchannels = std::max(num_devices, GetMinNumberOfChannels(CollectiveAlgo::RING)); int64_t num_channels = std::max(min_nchannels, GetNcclMaxNumChannels(CollectiveAlgo::RING)); int default_threads = (bw_intra_node * num_channels <= kPciBandwidth) ? 256 : kLL128NumThreads; int warp_size = gpu_device_info.threads_per_warp(); int num_threads = GetNumThreads(warp_size, kLL128NumThreads / 4, kLL128NumThreads, default_threads); absl::Duration compute_time_per_channel = ComputeTime( gpu_device_info, cost_analysis->flop_count(instr) / num_channels, num_channels, num_threads); total_time += compute_time_per_channel; uint32_t supported_p2p = CheckIfNvlinkSupportsP2P(); if (supported_p2p == 0) { VLOG(8) << "Nvlink doesn't support p2p communication. Model will " "continue using default system bandwidth."; } else { VLOG(8) << "Nvlink supports p2p communication, setting intra node " "bandwidth to nvlink bw."; bw_intra_node = GetNvlinkBw(compute_cap); } double bus_bandwidth = bw_intra_node * num_channels; double per_channel_ring_ll128_Bw = GetMaxSysBwFromGpu(compute_cap, kPerChannelMaxRingLL128Bandwidths.data()); bus_bandwidth = std::min(bus_bandwidth * kRingAlgorithmDiscountFactor, num_channels * per_channel_ring_ll128_Bw); double actual_bandwidth = bus_bandwidth * cost_analysis->ScalingRatio(instr); absl::Duration communication_time = absl::Milliseconds( cost_analysis->bytes_accessed(instr) / (1e6 * actual_bandwidth)); total_time += communication_time; return total_time; } absl::Duration GpuPerformanceWithCollectiveModel::ComputeCollectiveTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info) { if (cost_analysis->NumOfDevices(instr) == 1) { VLOG(8) << "Returning only kernel launch overhead for a single partition."; return kNcclKernelLaunchOverhead; } if (HloDataflowAnalysis::IsAsynchronousOperationDone(instr.opcode())) { VLOG(8) << "Returning 0 cost for async done op " << instr.name(); return absl::ZeroDuration(); } switch (instr.opcode()) { case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: return ComputeAllreduceTime(instr, cost_analysis, gpu_device_info); default: { LOG(WARNING) << "Runtime estimate for " << instr.name() << " not implemented. Returning only the kernel launch time."; return kNcclKernelLaunchOverhead; } } } } }
#include <gtest/gtest.h> #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using GpuPerformanceWithCollectiveModelTest = HloTestBase; TEST_F(GpuPerformanceWithCollectiveModelTest, TestNvmlLibraryLoading) { #if GOOGLE_CUDA EXPECT_TRUE(GpuPerformanceWithCollectiveModel::InitNvml()); nvmlDevice_t nvml_device; nvmlReturn_t get_device_result = xla_nvmlDeviceGetHandleByIndex(0, &nvml_device); EXPECT_TRUE(get_device_result == NVML_SUCCESS); EXPECT_TRUE(GpuPerformanceWithCollectiveModel::InitNvml()); #endif } } } }
225
#ifndef GLOG_INTERNAL_SYMBOLIZE_H #define GLOG_INTERNAL_SYMBOLIZE_H #include <cstddef> #include <cstdint> #include <type_traits> #include "config.h" #include "glog/platform.h" #if defined(HAVE_LINK_H) # include <link.h> #elif defined(HAVE_ELF_H) # include <elf.h> #elif defined(HAVE_SYS_EXEC_ELF_H) # include <sys/exec_elf.h> #endif #if defined(GLOG_USE_GLOG_EXPORT) # include "glog/export.h" #endif #if !defined(GLOG_NO_EXPORT) # error "symbolize.h" was not included correctly. #endif #ifndef GLOG_NO_SYMBOLIZE_DETECTION # ifndef HAVE_SYMBOLIZE # if defined(HAVE_ELF_H) || defined(HAVE_SYS_EXEC_ELF_H) # define HAVE_SYMBOLIZE # elif defined(GLOG_OS_MACOSX) && defined(HAVE_DLADDR) # define HAVE_SYMBOLIZE # elif defined(GLOG_OS_WINDOWS) # define HAVE_SYMBOLIZE # endif # endif #endif #ifdef HAVE_SYMBOLIZE # if !defined(SIZEOF_VOID_P) && defined(__SIZEOF_POINTER__) # define SIZEOF_VOID_P __SIZEOF_POINTER__ # endif # if defined(HAVE_ELF_H) || defined(HAVE_SYS_EXEC_ELF_H) # ifndef ElfW # if SIZEOF_VOID_P == 4 # define ElfW(type) Elf32_##type # elif SIZEOF_VOID_P == 8 # define ElfW(type) Elf64_##type # else # error "Unknown sizeof(void *)" # endif # endif namespace google { inline namespace glog_internal_namespace_ { GLOG_NO_EXPORT bool GetSectionHeaderByName(int fd, const char* name, size_t name_len, ElfW(Shdr) * out); } } # endif namespace google { inline namespace glog_internal_namespace_ { using SymbolizeCallback = int (*)(int, void*, char*, size_t, uint64_t); GLOG_NO_EXPORT void InstallSymbolizeCallback(SymbolizeCallback callback); using SymbolizeOpenObjectFileCallback = int (*)(uint64_t, uint64_t&, uint64_t&, char*, size_t); GLOG_NO_EXPORT void InstallSymbolizeOpenObjectFileCallback( SymbolizeOpenObjectFileCallback callback); } } #endif namespace google { inline namespace glog_internal_namespace_ { #if defined(HAVE_SYMBOLIZE) enum class SymbolizeOptions { kNone = 0, kNoLineNumbers = 1 }; constexpr SymbolizeOptions operator&(SymbolizeOptions lhs, SymbolizeOptions rhs) noexcept { return static_cast<SymbolizeOptions>( static_cast<std::underlying_type_t<SymbolizeOptions>>(lhs) & static_cast<std::underlying_type_t<SymbolizeOptions>>(rhs)); } constexpr SymbolizeOptions operator|(SymbolizeOptions lhs, SymbolizeOptions rhs) noexcept { return static_cast<SymbolizeOptions>( static_cast<std::underlying_type_t<SymbolizeOptions>>(lhs) | static_cast<std::underlying_type_t<SymbolizeOptions>>(rhs)); } GLOG_NO_EXPORT bool Symbolize( void* pc, char* out, size_t out_size, SymbolizeOptions options = SymbolizeOptions::kNone); #endif } } #endif #ifdef GLOG_BUILD_CONFIG_INCLUDE # include GLOG_BUILD_CONFIG_INCLUDE #endif #include "symbolize.h" #include "utilities.h" #if defined(HAVE_SYMBOLIZE) # include <algorithm> # include <cstdlib> # include <cstring> # include <limits> # include "demangle.h" # define GLOG_SAFE_ASSERT(expr) ((expr) ? 0 : (std::abort(), 0)) namespace google { inline namespace glog_internal_namespace_ { namespace { SymbolizeCallback g_symbolize_callback = nullptr; SymbolizeOpenObjectFileCallback g_symbolize_open_object_file_callback = nullptr; ATTRIBUTE_NOINLINE void DemangleInplace(char* out, size_t out_size) { char demangled[256]; if (Demangle(out, demangled, sizeof(demangled))) { size_t len = strlen(demangled); if (len + 1 <= out_size) { GLOG_SAFE_ASSERT(len < sizeof(demangled)); memmove(out, demangled, len + 1); } } } } void InstallSymbolizeCallback(SymbolizeCallback callback) { g_symbolize_callback = callback; } void InstallSymbolizeOpenObjectFileCallback( SymbolizeOpenObjectFileCallback callback) { g_symbolize_open_object_file_callback = callback; } } } # if defined(HAVE_LINK_H) # if defined(HAVE_DLFCN_H) # include <dlfcn.h> # endif # include <fcntl.h> # include <sys/stat.h> # include <sys/types.h> # include <unistd.h> # include <cerrno> # include <climits> # include <cstddef> # include <cstdint> # include <cstdio> # include <cstdlib> # include <cstring> # include "config.h" # include "glog/raw_logging.h" # include "symbolize.h" namespace google { inline namespace glog_internal_namespace_ { namespace { template <class Functor> auto FailureRetry(Functor run, int error = EINTR) noexcept(noexcept(run())) { decltype(run()) result; while ((result = run()) == -1 && errno == error) { } return result; } } static ssize_t ReadFromOffset(const int fd, void* buf, const size_t count, const size_t offset) { GLOG_SAFE_ASSERT(fd >= 0); GLOG_SAFE_ASSERT(count <= static_cast<size_t>(std::numeric_limits<ssize_t>::max())); char* buf0 = reinterpret_cast<char*>(buf); size_t num_bytes = 0; while (num_bytes < count) { ssize_t len = FailureRetry([fd, p = buf0 + num_bytes, n = count - num_bytes, m = static_cast<off_t>(offset + num_bytes)] { return pread(fd, p, n, m); }); if (len < 0) { return -1; } if (len == 0) { break; } num_bytes += static_cast<size_t>(len); } GLOG_SAFE_ASSERT(num_bytes <= count); return static_cast<ssize_t>(num_bytes); } static bool ReadFromOffsetExact(const int fd, void* buf, const size_t count, const size_t offset) { ssize_t len = ReadFromOffset(fd, buf, count, offset); return static_cast<size_t>(len) == count; } static int FileGetElfType(const int fd) { ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return -1; } if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { return -1; } return elf_header.e_type; } static ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(const int fd, ElfW(Half) sh_num, const size_t sh_offset, ElfW(Word) type, ElfW(Shdr) * out) { ElfW(Shdr) buf[16]; for (size_t i = 0; i < sh_num;) { const size_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); const size_t num_bytes_to_read = (sizeof(buf) > num_bytes_left) ? num_bytes_left : sizeof(buf); const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, sh_offset + i * sizeof(buf[0])); if (len == -1) { return false; } GLOG_SAFE_ASSERT(static_cast<size_t>(len) % sizeof(buf[0]) == 0); const size_t num_headers_in_buf = static_cast<size_t>(len) / sizeof(buf[0]); GLOG_SAFE_ASSERT(num_headers_in_buf <= sizeof(buf) / sizeof(buf[0])); for (size_t j = 0; j < num_headers_in_buf; ++j) { if (buf[j].sh_type == type) { *out = buf[j]; return true; } } i += num_headers_in_buf; } return false; } const int kMaxSectionNameLen = 64; bool GetSectionHeaderByName(int fd, const char* name, size_t name_len, ElfW(Shdr) * out) { ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return false; } ElfW(Shdr) shstrtab; size_t shstrtab_offset = (elf_header.e_shoff + static_cast<size_t>(elf_header.e_shentsize) * static_cast<size_t>(elf_header.e_shstrndx)); if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { return false; } for (size_t i = 0; i < elf_header.e_shnum; ++i) { size_t section_header_offset = (elf_header.e_shoff + elf_header.e_shentsize * i); if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { return false; } char header_name[kMaxSectionNameLen]; if (sizeof(header_name) < name_len) { RAW_LOG(WARNING, "Section name '%s' is too long (%zu); " "section will not be found (even if present).", name, name_len); return false; } size_t name_offset = shstrtab.sh_offset + out->sh_name; ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); if (n_read == -1) { return false; } else if (static_cast<size_t>(n_read) != name_len) { continue; } if (memcmp(header_name, name, name_len) == 0) { return true; } } return false; } static ATTRIBUTE_NOINLINE bool FindSymbol(uint64_t pc, const int fd, char* out, size_t out_size, uint64_t symbol_offset, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab) { if (symtab == nullptr) { return false; } const size_t num_symbols = symtab->sh_size / symtab->sh_entsize; for (unsigned i = 0; i < num_symbols;) { size_t offset = symtab->sh_offset + i * symtab->sh_entsize; # if defined(__WORDSIZE) && __WORDSIZE == 64 const size_t NUM_SYMBOLS = 32U; # else const size_t NUM_SYMBOLS = 64U; # endif ElfW(Sym) buf[NUM_SYMBOLS]; size_t num_symbols_to_read = std::min(NUM_SYMBOLS, num_symbols - i); const ssize_t len = ReadFromOffset(fd, &buf, sizeof(buf[0]) * num_symbols_to_read, offset); GLOG_SAFE_ASSERT(static_cast<size_t>(len) % sizeof(buf[0]) == 0); const size_t num_symbols_in_buf = static_cast<size_t>(len) / sizeof(buf[0]); GLOG_SAFE_ASSERT(num_symbols_in_buf <= num_symbols_to_read); for (unsigned j = 0; j < num_symbols_in_buf; ++j) { const ElfW(Sym)& symbol = buf[j]; uint64_t start_address = symbol.st_value; start_address += symbol_offset; uint64_t end_address = start_address + symbol.st_size; if (symbol.st_value != 0 && symbol.st_shndx != 0 && start_address <= pc && pc < end_address) { ssize_t len1 = ReadFromOffset(fd, out, out_size, strtab->sh_offset + symbol.st_name); if (len1 <= 0 || memchr(out, '\0', out_size) == nullptr) { memset(out, 0, out_size); return false; } return true; } } i += num_symbols_in_buf; } return false; } static bool GetSymbolFromObjectFile(const int fd, uint64_t pc, char* out, size_t out_size, uint64_t base_address) { ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return false; } ElfW(Shdr) symtab, strtab; if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, SHT_SYMTAB, &symtab)) { if (!ReadFromOffsetExact( fd, &strtab, sizeof(strtab), elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { return false; } if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { return true; } } if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, SHT_DYNSYM, &symtab)) { if (!ReadFromOffsetExact( fd, &strtab, sizeof(strtab), elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { return false; } if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { return true; } } return false; } namespace { class LineReader { public: explicit LineReader(int fd, char* buf, size_t buf_len, size_t offset) : fd_(fd), buf_(buf), buf_len_(buf_len), offset_(offset), bol_(buf), eol_(buf), eod_(buf) {} bool ReadLine(const char** bol, const char** eol) { if (BufferIsEmpty()) { const ssize_t num_bytes = ReadFromOffset(fd_, buf_, buf_len_, offset_); if (num_bytes <= 0) { return false; } offset_ += static_cast<size_t>(num_bytes); eod_ = buf_ + num_bytes; bol_ = buf_; } else { bol_ = eol_ + 1; GLOG_SAFE_ASSERT(bol_ <= eod_); if (!HasCompleteLine()) { const auto incomplete_line_length = static_cast<size_t>(eod_ - bol_); memmove(buf_, bol_, incomplete_line_length); char* const append_pos = buf_ + incomplete_line_length; const size_t capacity_left = buf_len_ - incomplete_line_length; const ssize_t num_bytes = ReadFromOffset(fd_, append_pos, capacity_left, offset_); if (num_bytes <= 0) { return false; } offset_ += static_cast<size_t>(num_bytes); eod_ = append_pos + num_bytes; bol_ = buf_; } } eol_ = FindLineFeed(); if (eol_ == nullptr) { return false; } *eol_ = '\0'; *bol = bol_; *eol = eol_; return true; } const char* bol() { return bol_; } const char* eol() { return eol_; } private: LineReader(const LineReader&) = delete; void operator=(const LineReader&) = delete; char* FindLineFeed() { return reinterpret_cast<char*>( memchr(bol_, '\n', static_cast<size_t>(eod_ - bol_))); } bool BufferIsEmpty() { return buf_ == eod_; } bool HasCompleteLine() { return !BufferIsEmpty() && FindLineFeed() != nullptr; } const int fd_; char* const buf_; const size_t buf_len_; size_t offset_; char* bol_; char* eol_; const char* eod_; }; } static char* GetHex(const char* start, const char* end, uint64_t* hex) { *hex = 0; const char* p; for (p = start; p < end; ++p) { int ch = *p; if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || (ch >= 'a' && ch <= 'f')) { *hex = (*hex << 4U) | (ch < 'A' ? static_cast<uint64_t>(ch - '0') : (ch & 0xF) + 9U); } else { break; } } GLOG_SAFE_ASSERT(p <= end); return const_cast<char*>(p); } static ATTRIBUTE_NOINLINE FileDescriptor OpenObjectFileContainingPcAndGetStartAddress(uint64_t pc, uint64_t& start_address, uint64_t& base_address, char* out_file_name, size_t out_file_name_size) { FileDescriptor maps_fd{ FailureRetry([] { return open("/proc/self/maps", O_RDONLY); })}; if (!maps_fd) { return nullptr; } FileDescriptor mem_fd{ FailureRetry([] { return open("/proc/self/mem", O_RDONLY); })}; if (!mem_fd) { return nullptr; } char buf[1024]; LineReader reader(maps_fd.get(), buf, sizeof(buf), 0); while (true) { const char* cursor; const char* eol; if (!reader.ReadLine(&cursor, &eol)) { return nullptr; } cursor = GetHex(cursor, eol, &start_address); if (cursor == eol || *cursor != '-') { return nullptr; } ++cursor; uint64_t end_address; cursor = GetHex(cursor, eol, &end_address); if (cursor == eol || *cursor != ' ') { return nullptr; } ++cursor; const char* const flags_start = cursor; while (cursor < eol && *cursor != ' ') { ++cursor; } if (cursor == eol || cursor < flags_start + 4) { return nullptr; } ElfW(Ehdr) ehdr; if (flags_start[0] == 'r' && ReadFromOffsetExact(mem_fd.get(), &ehdr, sizeof(ElfW(Ehdr)), start_address) && memcmp(ehdr.e_ident, ELFMAG, SELFMAG) == 0) { switch (ehdr.e_type) { case ET_EXEC: base_address = 0; break; case ET_DYN: base_address = start_address; for (unsigned i = 0; i != ehdr.e_phnum; ++i) { ElfW(Phdr) phdr; if (ReadFromOffsetExact( mem_fd.get(), &phdr, sizeof(phdr), start_address + ehdr.e_phoff + i * sizeof(phdr)) && phdr.p_type == PT_LOAD && phdr.p_offset == 0) { base_address = start_address - phdr.p_vaddr; break; } } break; default: break; } } if (start_address > pc || pc >= end_address) { continue; } if (flags_start[0] != 'r' || flags_start[2] != 'x') { continue; } ++cursor; uint64_t file_offset; cursor = GetHex(cursor, eol, &file_offset); if (cursor == eol || *cursor != ' ') { return nullptr; } ++cursor; int num_spaces = 0; while (cursor < eol) { if (*cursor == ' ') { ++num_spaces; } else if (num_spaces >= 2) { break; } ++cursor; } if (cursor == eol) { return nullptr; } strncpy(out_file_name, cursor, out_file_name_size); out_file_name[out_file_name_size - 1] = '\0'; return FileDescriptor{ FailureRetry([cursor] { return open(cursor, O_RDONLY); })}; } } static char* itoa_r(uintptr_t i, char* buf, size_t sz, unsigned base, size_t padding) { size_t n = 1; if (n > sz) { return nullptr; } if (base < 2 || base > 16) { buf[0] = '\000'; return nullptr; } char* start = buf; char* ptr = start; do { if (++n > sz) { buf[0] = '\000'; return nullptr; } *ptr++ = "0123456789abcdef"[i % base]; i /= base; if (padding > 0) { padding--; } } while (i > 0 || padding > 0); *ptr = '\000'; while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } static void SafeAppendString(const char* source, char* dest, size_t dest_size) { size_t
#include "symbolize.h" #include <csignal> #include <iostream> #include "config.h" #include "glog/logging.h" #include "googletest.h" #include "utilities.h" #include "stacktrace.h" #ifdef GLOG_USE_GFLAGS # include <gflags/gflags.h> using namespace GFLAGS_NAMESPACE; #endif using namespace std; using namespace google; #if defined(__GNUG__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" #endif #if defined(HAVE_STACKTRACE) # define always_inline # if defined(HAVE_ELF_H) || defined(HAVE_SYS_EXEC_ELF_H) || \ defined(GLOG_OS_WINDOWS) || defined(GLOG_OS_CYGWIN) static const char* TrySymbolize(void* pc, google::SymbolizeOptions options = google::SymbolizeOptions::kNone) { static char symbol[4096]; if (Symbolize(pc, symbol, sizeof(symbol), options)) { return symbol; } else { return nullptr; } } # endif # if defined(HAVE_ELF_H) || defined(HAVE_SYS_EXEC_ELF_H) # if defined(__GNUC__) && !defined(__OPENCC__) # if __GNUC__ >= 4 # define TEST_WITH_MODERN_GCC # if defined(__i386__) && __i386__ # undef always_inline # define always_inline __attribute__((always_inline)) # define HAVE_ALWAYS_INLINE # endif # else # endif # define TEST_WITH_LABEL_ADDRESSES # endif extern "C" { void nonstatic_func(); void nonstatic_func() { volatile int a = 0; a = a + 1; } static void static_func() { volatile int a = 0; a = a + 1; } } TEST(Symbolize, Symbolize) { EXPECT_STREQ("nonstatic_func", TrySymbolize((void*)(&nonstatic_func))); const char* static_func_symbol = TrySymbolize(reinterpret_cast<void*>(&static_func)); # if !defined(_MSC_VER) || !defined(NDEBUG) CHECK(nullptr != static_func_symbol); EXPECT_TRUE(strcmp("static_func", static_func_symbol) == 0 || strcmp("static_func()", static_func_symbol) == 0); # endif EXPECT_TRUE(nullptr == TrySymbolize(nullptr)); } struct Foo { static void func(int x); }; void ATTRIBUTE_NOINLINE Foo::func(int x) { volatile int a = x; a = a + 1; } # ifdef TEST_WITH_MODERN_GCC TEST(Symbolize, SymbolizeWithDemangling) { Foo::func(100); # if !defined(_MSC_VER) || !defined(NDEBUG) # if defined(HAVE___CXA_DEMANGLE) EXPECT_STREQ("Foo::func(int)", TrySymbolize((void*)(&Foo::func))); # else EXPECT_STREQ("Foo::func()", TrySymbolize((void*)(&Foo::func))); # endif # endif } # endif static void* g_pc_to_symbolize; static char g_symbolize_buffer[4096]; static char* g_symbolize_result; static void EmptySignalHandler(int ) {} static void SymbolizeSignalHandler(int ) { if (Symbolize(g_pc_to_symbolize, g_symbolize_buffer, sizeof(g_symbolize_buffer))) { g_symbolize_result = g_symbolize_buffer; } else { g_symbolize_result = nullptr; } } const int kAlternateStackSize = 8096; const char kAlternateStackFillValue = 0x55; static ATTRIBUTE_NOINLINE bool StackGrowsDown(int* x) { int y; return &y < x; } static int GetStackConsumption(const char* alt_stack) { int x; if (StackGrowsDown(&x)) { for (int i = 0; i < kAlternateStackSize; i++) { if (alt_stack[i] != kAlternateStackFillValue) { return (kAlternateStackSize - i); } } } else { for (int i = (kAlternateStackSize - 1); i >= 0; i--) { if (alt_stack[i] != kAlternateStackFillValue) { return i; } } } return -1; } # ifdef HAVE_SIGALTSTACK static const char* SymbolizeStackConsumption(void* pc, int* stack_consumed) { g_pc_to_symbolize = pc; char altstack[kAlternateStackSize]; memset(altstack, kAlternateStackFillValue, kAlternateStackSize); stack_t sigstk; memset(&sigstk, 0, sizeof(stack_t)); stack_t old_sigstk; sigstk.ss_sp = altstack; sigstk.ss_size = kAlternateStackSize; sigstk.ss_flags = 0; CHECK_ERR(sigaltstack(&sigstk, &old_sigstk)); struct sigaction sa; memset(&sa, 0, sizeof(struct sigaction)); struct sigaction old_sa1, old_sa2; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_ONSTACK; sa.sa_handler = EmptySignalHandler; CHECK_ERR(sigaction(SIGUSR1, &sa, &old_sa1)); sa.sa_handler = SymbolizeSignalHandler; CHECK_ERR(sigaction(SIGUSR2, &sa, &old_sa2)); CHECK_ERR(kill(getpid(), SIGUSR1)); int stack_consumption1 = GetStackConsumption(altstack); CHECK_ERR(kill(getpid(), SIGUSR2)); int stack_consumption2 = GetStackConsumption(altstack); if (stack_consumption1 != -1 && stack_consumption2 != -1) { *stack_consumed = stack_consumption2 - stack_consumption1; } else { *stack_consumed = -1; } LOG(INFO) << "Stack consumption of empty signal handler: " << stack_consumption1; LOG(INFO) << "Stack consumption of symbolize signal handler: " << stack_consumption2; LOG(INFO) << "Stack consumption of Symbolize: " << *stack_consumed; CHECK_ERR(sigaltstack(&old_sigstk, nullptr)); CHECK_ERR(sigaction(SIGUSR1, &old_sa1, nullptr)); CHECK_ERR(sigaction(SIGUSR2, &old_sa2, nullptr)); return g_symbolize_result; } # if !defined(HAVE___CXA_DEMANGLE) # ifdef __ppc64__ constexpr int kStackConsumptionUpperLimit = 4096; # else constexpr int kStackConsumptionUpperLimit = 2048; # endif # endif TEST(Symbolize, SymbolizeStackConsumption) { int stack_consumed; const char* symbol; symbol = SymbolizeStackConsumption(reinterpret_cast<void*>(&nonstatic_func), &stack_consumed); EXPECT_STREQ("nonstatic_func", symbol); EXPECT_GT(stack_consumed, 0); # if !defined(HAVE___CXA_DEMANGLE) EXPECT_LT(stack_consumed, kStackConsumptionUpperLimit); # endif symbol = SymbolizeStackConsumption(reinterpret_cast<void*>(&static_func), &stack_consumed); CHECK(nullptr != symbol); EXPECT_TRUE(strcmp("static_func", symbol) == 0 || strcmp("static_func()", symbol) == 0); EXPECT_GT(stack_consumed, 0); # if !defined(HAVE___CXA_DEMANGLE) EXPECT_LT(stack_consumed, kStackConsumptionUpperLimit); # endif } # if defined(TEST_WITH_MODERN_GCC) && !defined(HAVE___CXA_DEMANGLE) TEST(Symbolize, SymbolizeWithDemanglingStackConsumption) { Foo::func(100); int stack_consumed; const char* symbol; symbol = SymbolizeStackConsumption(reinterpret_cast<void*>(&Foo::func), &stack_consumed); # if defined(HAVE___CXA_DEMANGLE) EXPECT_STREQ("Foo::func(int)", symbol); # else EXPECT_STREQ("Foo::func()", symbol); # endif EXPECT_GT(stack_consumed, 0); EXPECT_LT(stack_consumed, kStackConsumptionUpperLimit); } # endif # endif extern "C" { inline void* always_inline inline_func() { void* pc = nullptr; # ifdef TEST_WITH_LABEL_ADDRESSES pc = &&curr_pc; curr_pc: # endif return pc; } void* ATTRIBUTE_NOINLINE non_inline_func(); void* ATTRIBUTE_NOINLINE non_inline_func() { void* pc = nullptr; # ifdef TEST_WITH_LABEL_ADDRESSES pc = &&curr_pc; curr_pc: # endif return pc; } static void ATTRIBUTE_NOINLINE TestWithPCInsideNonInlineFunction() { # if defined(TEST_WITH_LABEL_ADDRESSES) && defined(HAVE_ATTRIBUTE_NOINLINE) void* pc = non_inline_func(); const char* symbol = TrySymbolize(pc); # if !defined(_MSC_VER) || !defined(NDEBUG) CHECK(symbol != nullptr); CHECK_STREQ(symbol, "non_inline_func"); # endif cout << "Test case TestWithPCInsideNonInlineFunction passed." << endl; # endif } static void ATTRIBUTE_NOINLINE TestWithPCInsideInlineFunction() { # if defined(TEST_WITH_LABEL_ADDRESSES) && defined(HAVE_ALWAYS_INLINE) void* pc = inline_func(); const char* symbol = TrySymbolize(pc); # if !defined(_MSC_VER) || !defined(NDEBUG) CHECK(symbol != nullptr); CHECK_STREQ(symbol, __FUNCTION__); # endif cout << "Test case TestWithPCInsideInlineFunction passed." << endl; # endif } } static void ATTRIBUTE_NOINLINE TestWithReturnAddress() { # if defined(HAVE_ATTRIBUTE_NOINLINE) void* return_address = __builtin_return_address(0); const char* symbol = TrySymbolize(return_address, google::SymbolizeOptions::kNoLineNumbers); # if !defined(_MSC_VER) || !defined(NDEBUG) CHECK(symbol != nullptr); CHECK_STREQ(symbol, "main"); # endif cout << "Test case TestWithReturnAddress passed." << endl; # endif } # elif defined(GLOG_OS_WINDOWS) || defined(GLOG_OS_CYGWIN) # ifdef _MSC_VER # include <intrin.h> # pragma intrinsic(_ReturnAddress) # endif struct Foo { static void func(int x); }; __declspec(noinline) void Foo::func(int x) { volatile int a = x; a = a + 1; } TEST(Symbolize, SymbolizeWithDemangling) { Foo::func(100); const char* ret = TrySymbolize((void*)(&Foo::func)); # if defined(HAVE_DBGHELP) && !defined(NDEBUG) EXPECT_STREQ("public: static void __cdecl Foo::func(int)", ret); # endif } __declspec(noinline) void TestWithReturnAddress() { void* return_address = # ifdef __GNUC__ __builtin_return_address(0) # else _ReturnAddress() # endif ; const char* symbol = TrySymbolize(return_address, google::SymbolizeOptions::kNoLineNumbers); # if !defined(_MSC_VER) || !defined(NDEBUG) CHECK(symbol != nullptr); CHECK_STREQ(symbol, "main"); # endif cout << "Test case TestWithReturnAddress passed." << endl; } # endif #endif int main(int argc, char** argv) { FLAGS_logtostderr = true; InitGoogleLogging(argv[0]); InitGoogleTest(&argc, argv); #if defined(HAVE_SYMBOLIZE) && defined(HAVE_STACKTRACE) # if defined(HAVE_ELF_H) || defined(HAVE_SYS_EXEC_ELF_H) InstallSymbolizeCallback(nullptr); TestWithPCInsideInlineFunction(); TestWithPCInsideNonInlineFunction(); TestWithReturnAddress(); return RUN_ALL_TESTS(); # elif defined(GLOG_OS_WINDOWS) || defined(GLOG_OS_CYGWIN) TestWithReturnAddress(); return RUN_ALL_TESTS(); # else printf("PASS (no symbolize_unittest support)\n"); return 0; # endif #else printf("PASS (no symbolize support)\n"); return 0; #endif } #if defined(__GNUG__) # pragma GCC diagnostic pop #endif
226
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_CC_CONVERT_ASSET_ARGS_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_CC_CONVERT_ASSET_ARGS_H_ #include "mlir/IR/BuiltinOps.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace mlir::quant { FailureOr<SmallVector<tensorflow::AssetFileDef>> ConvertAssetArgs( ModuleOp module_op); } #endif #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include "absl/algorithm/container.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/common/func.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace mlir::quant { namespace { using ::mlir::tf_saved_model::AssetOp; using ::mlir::tf_saved_model::kTfSavedModelIndexPathAttr; using ::mlir::tf_saved_model::LookupBoundInputOfType; using ::tensorflow::AssetFileDef; SmallVector<NamedAttribute> ReplaceBoundInputAttrWithIndexPathAttr( const ArrayRef<NamedAttribute> arg_attrs, const StringRef index_path, Builder& builder) { SmallVector<NamedAttribute> new_arg_attrs; for (auto arg_attr : arg_attrs) { if (arg_attr.getName() == "tf_saved_model.bound_input") continue; new_arg_attrs.emplace_back(arg_attr); } const NamedAttribute index_path_attr( builder.getStringAttr(kTfSavedModelIndexPathAttr), builder.getStrArrayAttr({index_path})); new_arg_attrs.emplace_back(index_path_attr); return new_arg_attrs; } StringRef MaybeStripAssetDirectoryPrefix(const StringRef filename) { if (filename.find("assets/") == 0) { return filename.drop_front(7); } else { return filename; } } AssetFileDef CreateAssetFileDef(const StringRef filename, const StringRef tensor_name) { AssetFileDef asset_file_def{}; asset_file_def.set_filename(MaybeStripAssetDirectoryPrefix(filename).str()); tensorflow::TensorInfo tensor_info{}; tensor_info.set_name(tensor_name.str()); *asset_file_def.mutable_tensor_info() = tensor_info; return asset_file_def; } SmallVector<StringRef> GetEntryFunctionInputs(func::FuncOp func_op) { auto entry_function_attr = func_op->getAttrOfType<DictionaryAttr>("tf.entry_function"); SmallVector<StringRef> inputs; mlir::dyn_cast_or_null<StringAttr>(entry_function_attr.get("inputs")) .strref() .split(inputs, ","); return inputs; } void ConvertMainArgAttrs(func::FuncOp main_func_op, const int arg_idx, const StringRef index_path) { const ArrayRef<NamedAttribute> arg_attrs = main_func_op.getArgAttrDict(arg_idx).getValue(); Builder builder(main_func_op.getContext()); SmallVector<NamedAttribute> new_arg_attrs = ReplaceBoundInputAttrWithIndexPathAttr(arg_attrs, index_path, builder); main_func_op.setArgAttrs(arg_idx, new_arg_attrs); } } FailureOr<SmallVector<AssetFileDef>> ConvertAssetArgs(ModuleOp module_op) { func::FuncOp main_func_op = FindMainFuncOp(module_op); if (!main_func_op) return failure(); SmallVector<StringRef> input_names = GetEntryFunctionInputs(main_func_op); SymbolTable symbol_table(module_op); SmallVector<AssetFileDef> asset_file_defs; for (BlockArgument argument : main_func_op.getArguments()) { const int arg_idx = argument.getArgNumber(); auto asset_op = LookupBoundInputOfType<AssetOp>(main_func_op, arg_idx, symbol_table); if (!asset_op) continue; const StringRef input_name = input_names[arg_idx]; ConvertMainArgAttrs(main_func_op, arg_idx, input_name); asset_file_defs.emplace_back(CreateAssetFileDef( asset_op.getFilenameAttr(), input_name)); } return asset_file_defs; } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include <gmock/gmock.h> #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace mlir::quant { namespace { using ::tensorflow::AssetFileDef; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::NotNull; using ::testing::SizeIs; class ConvertAssetArgsTest : public ::testing::Test { protected: ConvertAssetArgsTest() { ctx_.loadDialect<func::FuncDialect, TF::TensorFlowDialect, tf_saved_model::TensorFlowSavedModelDialect>(); } OwningOpRef<ModuleOp> ParseModuleOpString( const absl::string_view module_op_str) { auto module_op_ref = parseSourceString<ModuleOp>(module_op_str, &ctx_); EXPECT_TRUE(module_op_ref); return module_op_ref; } mlir::MLIRContext ctx_{}; }; func::FuncOp GetMainFuncOp(ModuleOp module_op) { for (auto func_op : module_op.getOps<func::FuncOp>()) { if (func_op.getSymName() == "main") { return func_op; } } return {}; } TEST_F(ConvertAssetArgsTest, ConvertsSingleAssetArg) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { "tf_saved_model.asset"() {filename = "assets/file_0.txt", sym_name = "__tf_saved_model_asset0"} : () -> () func.func @main(%arg_0: tensor<!tf_type.string> {tf_saved_model.bound_input = @__tf_saved_model_asset0}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, SizeIs(1)); const AssetFileDef& asset_file_def = *asset_file_defs->begin(); EXPECT_THAT(asset_file_def.filename(), Eq("file_0.txt")); EXPECT_THAT(asset_file_def.tensor_info().name(), Eq("arg_0:0")); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), IsNull()); const ArrayRef<Attribute> index_path_attrs = mlir::cast<ArrayAttr>(arg_attrs.get("tf_saved_model.index_path")) .getValue(); EXPECT_THAT(index_path_attrs, SizeIs(1)); StringAttr index_path = mlir::dyn_cast_or_null<StringAttr>(index_path_attrs[0]); EXPECT_THAT(index_path, NotNull()); EXPECT_THAT(index_path, Eq("arg_0:0")); } TEST_F(ConvertAssetArgsTest, NonBoundedArgsNotModified) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { func.func @main(%arg_0: tensor<!tf_type.string> {tf_saved_model.index_path = ["arg_0:0"]}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, IsEmpty()); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), IsNull()); const ArrayRef<Attribute> index_path_attrs = mlir::cast<ArrayAttr>(arg_attrs.get("tf_saved_model.index_path")) .getValue(); EXPECT_THAT(index_path_attrs, SizeIs(1)); StringAttr index_path = mlir::dyn_cast_or_null<StringAttr>(index_path_attrs[0]); EXPECT_THAT(index_path, NotNull()); EXPECT_THAT(index_path, Eq("arg_0:0")); } TEST_F(ConvertAssetArgsTest, ArgsBoundedToGlobalTensorNotModified) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir( module { "tf_saved_model.global_tensor"() {type = tensor<2xi32>, value = dense<2> : tensor<2xi32>, sym_name = "__tf_saved_model_x"} : () -> () func.func @main(%arg_0: tensor<!tf_type.resource<tensor<2xi32>>> {tf_saved_model.bound_input = @__tf_saved_model_x}) -> () attributes {tf.entry_function = {inputs = "arg_0:0", outputs = ""}} { return } } )mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(succeeded(asset_file_defs)); EXPECT_THAT(*asset_file_defs, IsEmpty()); func::FuncOp main_func_op = GetMainFuncOp(*module_op); DictionaryAttr arg_attrs = main_func_op.getArgAttrDict(0); EXPECT_THAT(arg_attrs.get("tf_saved_model.bound_input"), NotNull()); } TEST_F(ConvertAssetArgsTest, FailsWhenNoMain) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(R"mlir(module {})mlir"); FailureOr<SmallVector<AssetFileDef>> asset_file_defs = ConvertAssetArgs(*module_op); EXPECT_TRUE(failed(asset_file_defs)); } } }
227
#ifndef TENSORFLOW_LITE_CORE_ASYNC_BACKEND_ASYNC_KERNEL_INTERFACE_H_ #define TENSORFLOW_LITE_CORE_ASYNC_BACKEND_ASYNC_KERNEL_INTERFACE_H_ #include "tensorflow/lite/async/backend_async_kernel_interface.h" #endif #include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <vector> #include "tensorflow/lite/async/c/async_kernel.h" #include "tensorflow/lite/async/c/types.h" namespace tflite { namespace delegates { namespace internal { TfLiteStatus RegisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBuffer(context, io_type, buffer, attrs, handle); } TfLiteStatus RegisterBufferSlice(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteBufferHandle buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBufferSlice(context, buffer, attrs, handle); } TfLiteStatus UnregisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, const TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->UnregisterBuffer(context, handle); } void SupportedBufferTypes(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& buf_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedBufferTypes(io_type); *types = buf_types.data(); *n_types = buf_types.size(); } void SupportedSynchronizations(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& sync_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedSynchronizations(io_type); *types = sync_types.data(); *n_types = sync_types.size(); } bool ReconcileRestrictions(const TfLiteAsyncKernel* async_kernel, const TfLiteOpaqueContext* context, const TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { return reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->ReconcileRestrictions(context, node, tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus SetAttributes(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetAttributes(context, node, tensor_index, attrs); } TfLiteStatus Prepare(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Prepare(context, node); } TfLiteStatus Eval(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Eval(context, node, task); } TfLiteStatus Wait(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Wait(context, task); } TfLiteStatus Finish(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Finish(context, task); } TfLiteStatus SetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetBufferAttributes(buffer, attrs); } TfLiteStatus GetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->GetBufferAttributes(buffer, attrs); } } BackendAsyncKernelInterface::BackendAsyncKernelInterface() { kernel_ = TfLiteAsyncKernelCreate(this); TfLiteAsyncKernelSetRegisterBuffer(kernel_, internal::RegisterBuffer); TfLiteAsyncKernelSetRegisterBufferSlice(kernel_, internal::RegisterBufferSlice); TfLiteAsyncKernelSetUnregisterBuffer(kernel_, internal::UnregisterBuffer); TfLiteAsyncKernelSetSupportedBufferTypes(kernel_, internal::SupportedBufferTypes); TfLiteAsyncKernelSetSupportedSynchronizations( kernel_, internal::SupportedSynchronizations); TfLiteAsyncKernelSetReconcileRestrictions(kernel_, internal::ReconcileRestrictions); TfLiteAsyncKernelSetSetAttributes(kernel_, internal::SetAttributes); TfLiteAsyncKernelSetSetBufferAttributes(kernel_, internal::SetBufferAttributes); TfLiteAsyncKernelSetGetBufferAttributes(kernel_, internal::GetBufferAttributes); TfLiteAsyncKernelSetPrepare(kernel_, internal::Prepare); TfLiteAsyncKernelSetEval(kernel_, internal::Eval); TfLiteAsyncKernelSetWait(kernel_, internal::Wait); TfLiteAsyncKernelSetFinish(kernel_, internal::Finish); } } }
#include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/async/c/types.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" using ::testing::_; namespace tflite::delegates { namespace { TEST(BackendAsyncKernelInterfaceTest, BasicTest) { testing::StrictMock<async::testing::MockAsyncKernel> kernel; EXPECT_CALL(kernel, RegisterBuffer(_, _, _, _, _)); EXPECT_CALL(kernel, RegisterBufferSlice(_, _, _, _)); EXPECT_CALL(kernel, UnregisterBuffer(_, _)); EXPECT_CALL(kernel, ReconcileRestrictions(_, _, _, _, _, _)); EXPECT_CALL(kernel, SetAttributes(_, _, _, _)); EXPECT_CALL(kernel, SetBufferAttributes(_, _)); EXPECT_CALL(kernel, GetBufferAttributes(_, _)); EXPECT_CALL(kernel, Prepare(_, _)); EXPECT_CALL(kernel, Eval(_, _, _)); EXPECT_CALL(kernel, Wait(_, _)); EXPECT_CALL(kernel, Finish(_, _)); auto* tflite_kernel = kernel.kernel(); tflite_kernel->register_buffer(tflite_kernel, nullptr, kTfLiteIoTypeInput, nullptr, nullptr, 0); tflite_kernel->register_buffer_slice(tflite_kernel, nullptr, 0, nullptr, 0); tflite_kernel->unregister_buffer(tflite_kernel, nullptr, 0); tflite_kernel->reconcile_restrictions(tflite_kernel, nullptr, nullptr, 0, nullptr, nullptr, nullptr); tflite_kernel->set_attributes(tflite_kernel, nullptr, nullptr, 0, nullptr); tflite_kernel->set_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->get_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->prepare(tflite_kernel, nullptr, nullptr); tflite_kernel->eval(tflite_kernel, nullptr, nullptr, nullptr); tflite_kernel->wait(tflite_kernel, nullptr, nullptr); tflite_kernel->finish(tflite_kernel, nullptr, nullptr); } } }
228
#ifndef TENSORFLOW_COMPILER_AOT_BENCHMARK_H_ #define TENSORFLOW_COMPILER_AOT_BENCHMARK_H_ #include <functional> #include <string> #include <vector> #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace tfcompile { namespace benchmark { struct Options { static constexpr int64_t kDefaultMicros = 3000000; int64_t max_iters = 0; int64_t max_micros = 0; }; struct Stats { std::vector<int64_t> per_iter_us; int64_t total_us; Stats() : total_us(0) { per_iter_us.reserve(5000); } }; void DumpStatsToStdout(const Stats& stats); typedef std::function<void()> BenchmarkFn; void Benchmark(const Options& options, const BenchmarkFn& fn, Stats* stats); } } } #endif #include "tensorflow/compiler/aot/benchmark.h" #include <sys/time.h> #include <algorithm> #include <string> #include <utility> #include <vector> #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace tfcompile { namespace benchmark { static uint64 NowMicros() { struct timeval tv; gettimeofday(&tv, nullptr); return static_cast<uint64>(tv.tv_sec) * 1000000 + tv.tv_usec; } void DumpStatsToStdout(const Stats& stats) { std::vector<int64_t> sorted_us(stats.per_iter_us); std::sort(sorted_us.begin(), sorted_us.end()); const size_t count_us = sorted_us.size(); double sum_us = 0; size_t count_us_trimmed = 0; double sum_us_trimmed = 0; size_t count_us_best = 0; double sum_us_best = 0; static constexpr float trim_ratio = 0.25; static constexpr float best_ratio = 0.1; const size_t count_trimmed = count_us * trim_ratio; const size_t count_best = count_us * best_ratio; for (size_t i = 0; i < sorted_us.size(); ++i) { const int64_t us = sorted_us[i]; sum_us += us; if (i >= count_trimmed && i < count_us - count_trimmed) { sum_us_trimmed += us; ++count_us_trimmed; } if (i < count_best) { sum_us_best += us; ++count_us_best; } } const int kBufSize = 1000; char buf[kBufSize]; snprintf(buf, kBufSize, "Mean with %2.0f%% trimmed:", trim_ratio * 100); std::string label_trimmed(buf); snprintf(buf, kBufSize, "Mean of %2.0f%% best:", best_ratio * 100); std::string label_best(buf); std::vector<std::pair<std::string, double>> groups = { {"Best:", sorted_us.front()}, {"Worst:", sorted_us.back()}, {"Median:", sorted_us[count_us / 2]}, {"Mean:", sum_us / count_us}, {std::move(label_trimmed), sum_us_trimmed / count_us_trimmed}, {std::move(label_best), sum_us_best / count_us_best}, }; int max_label_size = 0; double max_us = 0; for (const auto& g : groups) { if (g.first.size() > max_label_size) { max_label_size = g.first.size(); } if (g.second > max_us) { max_us = g.second; } } int max_digits = 1; while (max_us >= 10.0) { max_us /= 10.0; ++max_digits; } printf("Benchmark ran %zu iterations over %lld us\n", count_us, static_cast<long long>(stats.total_us)); for (const auto& g : groups) { printf(" %-*s %*.3f us\n", max_label_size, g.first.c_str(), max_digits + 4, g.second); } } void Benchmark(const Options& options, const BenchmarkFn& fn, Stats* stats) { const int64_t max_us = (options.max_micros <= 0 && options.max_iters <= 0) ? Options::kDefaultMicros : options.max_micros; printf("Running benchmark for %lld us\n", static_cast<long long>(max_us)); const int64_t start_us = NowMicros(); int64_t iters = 0; while (true) { const int64_t iter_start_us = NowMicros(); fn(); const int64_t end_us = NowMicros(); stats->per_iter_us.push_back(end_us - iter_start_us); const int64_t total_us = end_us - start_us; ++iters; if ((max_us > 0 && total_us >= max_us) || (options.max_iters > 0 && iters >= options.max_iters)) { stats->total_us = total_us; break; } } } } } }
#include "tensorflow/compiler/aot/benchmark.h" #include "tensorflow/compiler/aot/test_graph_tfadd.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfcompile { namespace benchmark { namespace { TEST(Benchmark, Benchmark) { AddComp add; Options options; options.max_iters = 1; Stats stats1; Benchmark(options, [&] { add.Run(); }, &stats1); EXPECT_EQ(stats1.per_iter_us.size(), 1); options.max_iters = 5; Stats stats5; Benchmark(options, [&] { add.Run(); }, &stats5); EXPECT_EQ(stats5.per_iter_us.size(), 5); } } } } }
229
#ifndef TENSORFLOW_TSL_PLATFORM_STRCAT_H_ #define TENSORFLOW_TSL_PLATFORM_STRCAT_H_ #include <string> #include "tsl/platform/macros.h" #include "tsl/platform/numbers.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace strings { enum PadSpec { kNoPad = 1, kZeroPad2, kZeroPad3, kZeroPad4, kZeroPad5, kZeroPad6, kZeroPad7, kZeroPad8, kZeroPad9, kZeroPad10, kZeroPad11, kZeroPad12, kZeroPad13, kZeroPad14, kZeroPad15, kZeroPad16 }; struct Hex { uint64 value; enum PadSpec spec; template <class Int> explicit Hex(Int v, PadSpec s = kNoPad) : spec(s) { static_assert( sizeof(v) == 1 || sizeof(v) == 2 || sizeof(v) == 4 || sizeof(v) == 8, "Unknown integer type"); value = sizeof(v) == 1 ? static_cast<uint8>(v) : sizeof(v) == 2 ? static_cast<uint16>(v) : sizeof(v) == 4 ? static_cast<uint32>(v) : static_cast<uint64>(v); } }; class AlphaNum { public: AlphaNum(int i32) : piece_(digits_, FastInt32ToBufferLeft(i32, digits_)) {} AlphaNum(unsigned int u32) : piece_(digits_, FastUInt32ToBufferLeft(u32, digits_)) {} AlphaNum(long x) : piece_(digits_, FastInt64ToBufferLeft(x, digits_)) {} AlphaNum(unsigned long x) : piece_(digits_, FastUInt64ToBufferLeft(x, digits_)) {} AlphaNum(long long int i64) : piece_(digits_, FastInt64ToBufferLeft(i64, digits_)) {} AlphaNum(unsigned long long int u64) : piece_(digits_, FastUInt64ToBufferLeft(u64, digits_)) {} AlphaNum(float f) : piece_(digits_, FloatToBuffer(f, digits_)) {} AlphaNum(double f) : piece_(digits_, DoubleToBuffer(f, digits_)) {} AlphaNum(bfloat16 bf) : piece_(digits_, FloatToBuffer(static_cast<float>(bf), digits_)) {} AlphaNum(Hex hex); AlphaNum(const char *c_str) : piece_(c_str) {} AlphaNum(const StringPiece &pc) : piece_(pc) {} AlphaNum(const std::string &str) : piece_(str) {} AlphaNum(const tstring &str) : piece_(str) {} template <typename A> AlphaNum(const std::basic_string<char, std::char_traits<char>, A> &str) : piece_(str) {} StringPiece::size_type size() const { return piece_.size(); } const char *data() const { return piece_.data(); } StringPiece Piece() const { return piece_; } private: StringPiece piece_; char digits_[kFastToBufferSize]; AlphaNum(char c); AlphaNum(const AlphaNum &) = delete; void operator=(const AlphaNum &) = delete; }; std::string StrCat(const AlphaNum &a) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) TF_MUST_USE_RESULT; std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) TF_MUST_USE_RESULT; namespace internal { std::string CatPieces(std::initializer_list<StringPiece> pieces); void AppendPieces(std::string *dest, std::initializer_list<StringPiece> pieces); } template <typename... AV> std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) TF_MUST_USE_RESULT; template <typename... AV> std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) { return internal::CatPieces({a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(), static_cast<const AlphaNum &>(args).Piece()...}); } void StrAppend(std::string *dest, const AlphaNum &a); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c); void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d); template <typename... AV> inline void StrAppend(std::string *dest, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d, const AlphaNum &e, const AV &...args) { internal::AppendPieces(dest, {a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(), static_cast<const AlphaNum &>(args).Piece()...}); } } } #endif #include "tsl/platform/strcat.h" #include <stdarg.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <algorithm> #include "absl/meta/type_traits.h" #include "tsl/platform/logging.h" namespace tsl { namespace strings { AlphaNum::AlphaNum(Hex hex) { char *const end = &digits_[kFastToBufferSize]; char *writer = end; uint64 value = hex.value; uint64 width = hex.spec; uint64 mask = (static_cast<uint64>(1) << (width - 1) * 4) | value; static const char hexdigits[] = "0123456789abcdef"; do { *--writer = hexdigits[value & 0xF]; value >>= 4; mask >>= 4; } while (mask != 0); piece_ = StringPiece(writer, end - writer); } static char *Append1(char *out, const AlphaNum &x) { if (x.data() == nullptr) return out; memcpy(out, x.data(), x.size()); return out + x.size(); } static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) { if (x1.data() != nullptr) { memcpy(out, x1.data(), x1.size()); out += x1.size(); } if (x2.data() == nullptr) return out; memcpy(out, x2.data(), x2.size()); return out + x2.size(); } static char *Append4(char *out, const AlphaNum &x1, const AlphaNum &x2, const AlphaNum &x3, const AlphaNum &x4) { if (x1.data() != nullptr) { memcpy(out, x1.data(), x1.size()); out += x1.size(); } if (x2.data() != nullptr) { memcpy(out, x2.data(), x2.size()); out += x2.size(); } if (x3.data() != nullptr) { memcpy(out, x3.data(), x3.size()); out += x3.size(); } if (x4.data() == nullptr) return out; memcpy(out, x4.data(), x4.size()); return out + x4.size(); } string StrCat(const AlphaNum &a) { return string(a.data(), a.size()); } string StrCat(const AlphaNum &a, const AlphaNum &b) { string result(a.size() + b.size(), '\0'); char *const begin = &*result.begin(); char *out = Append2(begin, a, b); DCHECK_EQ(out, begin + result.size()); return result; } string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) { string result(a.size() + b.size() + c.size(), '\0'); char *const begin = &*result.begin(); char *out = Append2(begin, a, b); out = Append1(out, c); DCHECK_EQ(out, begin + result.size()); return result; } string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) { string result(a.size() + b.size() + c.size() + d.size(), '\0'); char *const begin = &*result.begin(); char *out = Append4(begin, a, b, c, d); DCHECK_EQ(out, begin + result.size()); return result; } namespace { template <typename string_type, typename = void> struct ResizeUninitializedTraits { using HasMember = std::false_type; static void Resize(string_type *s, size_t new_size) { s->resize(new_size); } }; template <typename string_type> struct ResizeUninitializedTraits< string_type, absl::void_t<decltype(std::declval<string_type &>() .__resize_default_init(237))> > { using HasMember = std::true_type; static void Resize(string_type *s, size_t new_size) { s->__resize_default_init(new_size); } }; static inline void STLStringResizeUninitialized(string *s, size_t new_size) { ResizeUninitializedTraits<string>::Resize(s, new_size); } template <typename string_type> void STLStringReserveAmortized(string_type *s, size_t new_size) { const size_t cap = s->capacity(); if (new_size > cap) { s->reserve((std::max)(new_size, 2 * cap)); } } template <typename string_type> void STLStringResizeUninitializedAmortized(string_type *s, size_t new_size) { STLStringReserveAmortized(s, new_size); STLStringResizeUninitialized(s, new_size); } } namespace internal { string CatPieces(std::initializer_list<StringPiece> pieces) { size_t total_size = 0; for (const StringPiece piece : pieces) total_size += piece.size(); string result(total_size, '\0'); char *const begin = &*result.begin(); char *out = begin; for (const StringPiece piece : pieces) { const size_t this_size = piece.size(); memcpy(out, piece.data(), this_size); out += this_size; } DCHECK_EQ(out, begin + result.size()); return result; } #define DCHECK_NO_OVERLAP(dest, src) \ DCHECK_GE(uintptr_t((src).data() - (dest).data()), uintptr_t((dest).size())) void AppendPieces(string *result, std::initializer_list<StringPiece> pieces) { size_t old_size = result->size(); size_t total_size = old_size; for (const StringPiece piece : pieces) { DCHECK_NO_OVERLAP(*result, piece); total_size += piece.size(); } STLStringResizeUninitializedAmortized(result, total_size); char *const begin = &*result->begin(); char *out = begin + old_size; for (const StringPiece piece : pieces) { const size_t this_size = piece.size(); memcpy(out, piece.data(), this_size); out += this_size; } DCHECK_EQ(out, begin + result->size()); } } void StrAppend(string *result, const AlphaNum &a) { DCHECK_NO_OVERLAP(*result, a); result->append(a.data(), a.size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized(result, old_size + a.size() + b.size()); char *const begin = &*result->begin(); char *out = Append2(begin + old_size, a, b); DCHECK_EQ(out, begin + result->size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); DCHECK_NO_OVERLAP(*result, c); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized( result, old_size + a.size() + b.size() + c.size()); char *const begin = &*result->begin(); char *out = Append2(begin + old_size, a, b); out = Append1(out, c); DCHECK_EQ(out, begin + result->size()); } void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, const AlphaNum &d) { DCHECK_NO_OVERLAP(*result, a); DCHECK_NO_OVERLAP(*result, b); DCHECK_NO_OVERLAP(*result, c); DCHECK_NO_OVERLAP(*result, d); string::size_type old_size = result->size(); STLStringResizeUninitializedAmortized( result, old_size + a.size() + b.size() + c.size() + d.size()); char *const begin = &*result->begin(); char *out = Append4(begin + old_size, a, b, c, d); DCHECK_EQ(out, begin + result->size()); } } }
#include "tsl/platform/strcat.h" #include <string> #include "absl/strings/string_view.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #ifdef _MSC_VER typedef ptrdiff_t ssize_t; #endif namespace tsl { namespace strings { TEST(StrCat, Ints) { const int16_t s = -1; const uint16 us = 2; const int i = -3; const unsigned int ui = 4; const int32_t l = -5; const uint32 ul = 6; const int64_t ll = -7; const uint64 ull = 8; const ptrdiff_t ptrdiff = -9; const size_t size = 10; const ssize_t ssize = -11; const intptr_t intptr = -12; const uintptr_t uintptr = 13; string answer; answer = StrCat(s, us); EXPECT_EQ(answer, "-12"); answer = StrCat(i, ui); EXPECT_EQ(answer, "-34"); answer = StrCat(l, ul); EXPECT_EQ(answer, "-56"); answer = StrCat(ll, ull); EXPECT_EQ(answer, "-78"); answer = StrCat(ptrdiff, size); EXPECT_EQ(answer, "-910"); answer = StrCat(ssize, intptr); EXPECT_EQ(answer, "-11-12"); answer = StrCat(uintptr, 0); EXPECT_EQ(answer, "130"); } TEST(StrCat, Floats) { const int s = 0; const float f = 1.5f; const double d = 1.5; const bfloat16 bf(1.5f); string answer; answer = StrCat(s, f); EXPECT_EQ(answer, "01.5"); answer = StrCat(s, d); EXPECT_EQ(answer, "01.5"); answer = StrCat(s, bf); EXPECT_EQ(answer, "01.5"); } TEST(StrCat, Nulls) { string result; absl::string_view v; string strs[] = {"Hello", "Cruel", "World"}; result = StrCat(v); EXPECT_EQ(result, ""); result = StrCat(strs[0], v); EXPECT_EQ(result, "Hello"); result = StrCat(v, strs[0]); EXPECT_EQ(result, "Hello"); result = StrCat(v, strs[0], strs[1]); EXPECT_EQ(result, "HelloCruel"); result = StrCat(strs[0], v, strs[1]); EXPECT_EQ(result, "HelloCruel"); result = StrCat(strs[0], strs[1], v); EXPECT_EQ(result, "HelloCruel"); result = StrCat(v, strs[0], strs[1], strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], v, strs[1], strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], strs[1], v, strs[2]); EXPECT_EQ(result, "HelloCruelWorld"); result = StrCat(strs[0], strs[1], strs[2], v); EXPECT_EQ(result, "HelloCruelWorld"); } TEST(StrCat, Basics) { string result; string strs[] = {"Hello", "Cruel", "World"}; StringPiece pieces[] = {"Hello", "Cruel", "World"}; const char *c_strs[] = {"Hello", "Cruel", "World"}; int32 i32s[] = {'H', 'C', 'W'}; uint64 ui64s[] = {12345678910LL, 10987654321LL}; result = StrCat(false, true, 2, 3); EXPECT_EQ(result, "0123"); result = StrCat(-1); EXPECT_EQ(result, "-1"); result = StrCat(0.5); EXPECT_EQ(result, "0.5"); result = StrCat(strs[1], pieces[2]); EXPECT_EQ(result, "CruelWorld"); result = StrCat(strs[0], ", ", pieces[2]); EXPECT_EQ(result, "Hello, World"); result = StrCat(strs[0], ", ", strs[1], " ", strs[2], "!"); EXPECT_EQ(result, "Hello, Cruel World!"); result = StrCat(pieces[0], ", ", pieces[1], " ", pieces[2]); EXPECT_EQ(result, "Hello, Cruel World"); result = StrCat(c_strs[0], ", ", c_strs[1], " ", c_strs[2]); EXPECT_EQ(result, "Hello, Cruel World"); result = StrCat("ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!"); EXPECT_EQ(result, "ASCII 72, 67 87!"); result = StrCat(ui64s[0], ", ", ui64s[1], "!"); EXPECT_EQ(result, "12345678910, 10987654321!"); string one = "1"; result = StrCat("And a ", one.size(), " and a ", &result[2] - &result[0], " and a ", one, " 2 3 4", "!"); EXPECT_EQ(result, "And a 1 and a 2 and a 1 2 3 4!"); result = StrCat("To output a char by ASCII/numeric value, use +: ", '!' + 0); EXPECT_EQ(result, "To output a char by ASCII/numeric value, use +: 33"); float f = 100000.5; result = StrCat("A hundred K and a half is ", f); EXPECT_EQ(result, "A hundred K and a half is 100000.5"); double d = f; d *= d; result = StrCat("A hundred K and a half squared is ", d); EXPECT_EQ(result, "A hundred K and a half squared is 10000100000.25"); result = StrCat(1, 2, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999); EXPECT_EQ(result, "12333444455555666666777777788888888999999999"); } TEST(StrCat, MaxArgs) { string result; result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a"); EXPECT_EQ(result, "123456789a"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b"); EXPECT_EQ(result, "123456789ab"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c"); EXPECT_EQ(result, "123456789abc"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d"); EXPECT_EQ(result, "123456789abcd"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e"); EXPECT_EQ(result, "123456789abcde"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f"); EXPECT_EQ(result, "123456789abcdef"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g"); EXPECT_EQ(result, "123456789abcdefg"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h"); EXPECT_EQ(result, "123456789abcdefgh"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i"); EXPECT_EQ(result, "123456789abcdefghi"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j"); EXPECT_EQ(result, "123456789abcdefghij"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"); EXPECT_EQ(result, "123456789abcdefghijk"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l"); EXPECT_EQ(result, "123456789abcdefghijkl"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"); EXPECT_EQ(result, "123456789abcdefghijklm"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n"); EXPECT_EQ(result, "123456789abcdefghijklmn"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o"); EXPECT_EQ(result, "123456789abcdefghijklmno"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"); EXPECT_EQ(result, "123456789abcdefghijklmnop"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"); EXPECT_EQ(result, "123456789abcdefghijklmnopq"); result = StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"); EXPECT_EQ(result, "12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"); } TEST(StrAppend, Basics) { string result = "existing text"; string strs[] = {"Hello", "Cruel", "World"}; StringPiece pieces[] = {"Hello", "Cruel", "World"}; const char *c_strs[] = {"Hello", "Cruel", "World"}; int32 i32s[] = {'H', 'C', 'W'}; uint64 ui64s[] = {12345678910LL, 10987654321LL}; string::size_type old_size = result.size(); StrAppend(&result, strs[0]); EXPECT_EQ(result.substr(old_size), "Hello"); old_size = result.size(); StrAppend(&result, strs[1], pieces[2]); EXPECT_EQ(result.substr(old_size), "CruelWorld"); old_size = result.size(); StrAppend(&result, strs[0], ", ", pieces[2]); EXPECT_EQ(result.substr(old_size), "Hello, World"); old_size = result.size(); StrAppend(&result, strs[0], ", ", strs[1], " ", strs[2], "!"); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World!"); old_size = result.size(); StrAppend(&result, pieces[0], ", ", pieces[1], " ", pieces[2]); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World"); old_size = result.size(); StrAppend(&result, c_strs[0], ", ", c_strs[1], " ", c_strs[2]); EXPECT_EQ(result.substr(old_size), "Hello, Cruel World"); old_size = result.size(); StrAppend(&result, "ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!"); EXPECT_EQ(result.substr(old_size), "ASCII 72, 67 87!"); old_size = result.size(); StrAppend(&result, ui64s[0], ", ", ui64s[1], "!"); EXPECT_EQ(result.substr(old_size), "12345678910, 10987654321!"); string one = "1"; old_size = result.size(); StrAppend(&result, "And a ", one.size(), " and a ", &result[2] - &result[0], " and a ", one, " 2 3 4", "!"); EXPECT_EQ(result.substr(old_size), "And a 1 and a 2 and a 1 2 3 4!"); old_size = result.size(); StrAppend(&result, "To output a char by ASCII/numeric value, use +: ", '!' + 0); EXPECT_EQ(result.substr(old_size), "To output a char by ASCII/numeric value, use +: 33"); float f = 100000.5; old_size = result.size(); StrAppend(&result, "A hundred K and a half is ", f); EXPECT_EQ(result.substr(old_size), "A hundred K and a half is 100000.5"); double d = f; d *= d; old_size = result.size(); StrAppend(&result, "A hundred K and a half squared is ", d); EXPECT_EQ(result.substr(old_size), "A hundred K and a half squared is 10000100000.25"); old_size = result.size(); StrAppend(&result, 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 9); EXPECT_EQ(result.substr(old_size), "1223334444555556666667777777888888889"); old_size = result.size(); StrAppend(&result, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "No limit thanks to C++11's variadic templates"); EXPECT_EQ(result.substr(old_size), "12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" "No limit thanks to C++11's variadic templates"); } TEST(StrAppend, Death) { string s = "self"; EXPECT_DEBUG_DEATH(StrAppend(&s, s.c_str() + 1), "Check failed:"); EXPECT_DEBUG_DEATH(StrAppend(&s, s), "Check failed:"); } static void CheckHex64(uint64 v) { string actual = StrCat(Hex(v, kZeroPad16)); string expected = Printf("%016llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v, kZeroPad8)); expected = Printf("%08llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%llx", static_cast<unsigned long long>(v)); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void CheckHex32(uint32 v) { string actual = StrCat(Hex(v, kZeroPad8)); string expected = Printf("%08x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void CheckHexSigned32(int32_t v) { string actual = StrCat(Hex(v, kZeroPad8)); string expected = Printf("%08x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; actual = StrCat(Hex(v)); expected = Printf("%x", v); EXPECT_EQ(expected, actual) << " decimal value " << v; } static void TestFastPrints() { for (int i = 0; i < 10000; i++) { CheckHex64(i); CheckHex32(i); CheckHexSigned32(i); CheckHexSigned32(-i); } CheckHex64(0x123456789abcdef0ull); CheckHex32(0x12345678); int8_t minus_one_8bit = -1; EXPECT_EQ("ff", StrCat(Hex(minus_one_8bit))); int16_t minus_one_16bit = -1; EXPECT_EQ("ffff", StrCat(Hex(minus_one_16bit))); } TEST(Numbers, TestFunctionsMovedOverFromNumbersMain) { TestFastPrints(); } } }
230
#ifndef TENSORFLOW_LITE_KERNELS_EIGEN_SUPPORT_H_ #define TENSORFLOW_LITE_KERNELS_EIGEN_SUPPORT_H_ #include "tensorflow/lite/core/c/common.h" namespace EigenForTFLite { struct ThreadPoolDevice; } namespace tflite { namespace eigen_support { void IncrementUsageCounter(TfLiteContext* context); void DecrementUsageCounter(TfLiteContext* context); const EigenForTFLite::ThreadPoolDevice* GetThreadPoolDevice( TfLiteContext* context); } } #endif #include "tensorflow/lite/kernels/eigen_support.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" #include "tensorflow/lite/kernels/op_macros.h" #ifndef EIGEN_DONT_ALIGN #include "tensorflow/lite/util.h" #endif namespace tflite { namespace eigen_support { namespace { const int kDefaultNumThreadpoolThreads = 4; bool IsValidNumThreads(int num_threads) { return num_threads >= -1; } int GetNumThreads(int num_threads) { return num_threads > -1 ? num_threads : kDefaultNumThreadpoolThreads; } #ifndef EIGEN_DONT_ALIGN static_assert( kDefaultTensorAlignment % EIGEN_MAX_ALIGN_BYTES == 0, "kDefaultTensorAlignment doesn't comply with Eigen alignment requirement."); #endif void SetEigenNbThreads(int threads) { #if defined(EIGEN_HAS_OPENMP) Eigen::setNbThreads(threads); #endif } class EigenThreadPoolWrapper : public Eigen::ThreadPoolInterface { public: explicit EigenThreadPoolWrapper(int num_threads) { if (num_threads > 1) { pool_ = std::make_unique<Eigen::ThreadPool>(num_threads); } } ~EigenThreadPoolWrapper() override {} void Schedule(std::function<void()> fn) override { if (pool_) { pool_->Schedule(std::move(fn)); } else { fn(); } } int NumThreads() const override { return pool_ ? pool_->NumThreads() : 1; } int CurrentThreadId() const override { return pool_ ? pool_->CurrentThreadId() : 0; } private: std::unique_ptr<Eigen::ThreadPool> pool_; }; class LazyEigenThreadPoolHolder { public: explicit LazyEigenThreadPoolHolder(int num_threads) { SetNumThreads(num_threads); } const Eigen::ThreadPoolDevice* GetThreadPoolDevice() { if (!device_) { thread_pool_wrapper_ = std::make_unique<EigenThreadPoolWrapper>(target_num_threads_); device_ = std::make_unique<Eigen::ThreadPoolDevice>( thread_pool_wrapper_.get(), target_num_threads_); } return device_.get(); } void SetNumThreads(int num_threads) { const int target_num_threads = GetNumThreads(num_threads); if (target_num_threads_ != target_num_threads) { target_num_threads_ = target_num_threads; device_.reset(); thread_pool_wrapper_.reset(); } } private: int target_num_threads_ = kDefaultNumThreadpoolThreads; std::unique_ptr<Eigen::ThreadPoolDevice> device_; std::unique_ptr<Eigen::ThreadPoolInterface> thread_pool_wrapper_; }; struct RefCountedEigenContext : public TfLiteExternalContext { std::unique_ptr<LazyEigenThreadPoolHolder> thread_pool_holder; int num_references = 0; }; RefCountedEigenContext* GetEigenContext(TfLiteContext* context) { return reinterpret_cast<RefCountedEigenContext*>( context->GetExternalContext(context, kTfLiteEigenContext)); } TfLiteStatus Refresh(TfLiteContext* context) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(GetNumThreads(context->recommended_num_threads)); } auto* ptr = GetEigenContext(context); if (ptr != nullptr) { ptr->thread_pool_holder->SetNumThreads(context->recommended_num_threads); } return kTfLiteOk; } } void IncrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(context->recommended_num_threads); } ptr = new RefCountedEigenContext; ptr->type = kTfLiteEigenContext; ptr->Refresh = Refresh; ptr->thread_pool_holder = std::make_unique<LazyEigenThreadPoolHolder>( context->recommended_num_threads); ptr->num_references = 0; context->SetExternalContext(context, kTfLiteEigenContext, ptr); } ptr->num_references++; } void DecrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to DecrementUsageCounter() not preceded by " "IncrementUsageCounter()"); } if (--ptr->num_references == 0) { delete ptr; context->SetExternalContext(context, kTfLiteEigenContext, nullptr); } } const Eigen::ThreadPoolDevice* GetThreadPoolDevice(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to GetFromContext() not preceded by IncrementUsageCounter()"); } return ptr->thread_pool_holder->GetThreadPoolDevice(); } } }
#include "tensorflow/lite/kernels/eigen_support.h" #include <utility> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" namespace tflite { namespace eigen_support { struct TestTfLiteContext : public TfLiteContext { TestTfLiteContext() { recommended_num_threads = -1; external_context = nullptr; GetExternalContext = GetExternalContextImpl; SetExternalContext = SetExternalContextImpl; } static void SetExternalContextImpl(TfLiteContext* context, TfLiteExternalContextType type, TfLiteExternalContext* external_context) { static_cast<TestTfLiteContext*>(context)->external_context = external_context; } static TfLiteExternalContext* GetExternalContextImpl( TfLiteContext* context, TfLiteExternalContextType type) { return static_cast<TestTfLiteContext*>(context)->external_context; } TfLiteExternalContext* external_context; }; TEST(EigenSupport, Default) { TestTfLiteContext context; IncrementUsageCounter(&context); ASSERT_NE(context.external_context, nullptr); EXPECT_EQ(context.external_context->type, kTfLiteEigenContext); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, SingleThreaded) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); EXPECT_EQ(thread_pool_device->numThreadsInPool(), 1); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, MultiThreaded) { TestTfLiteContext context; context.recommended_num_threads = 2; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 2); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, NumThreadsChanged) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -1; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); context.recommended_num_threads = 0; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 0); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -5; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, RefCounting) { TestTfLiteContext context; EXPECT_EQ(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_EQ(context.external_context, nullptr); } } }
231
#ifndef AROLLA_EXPR_OPERATORS_STD_FUNCTION_OPERATOR_H_ #define AROLLA_EXPR_OPERATORS_STD_FUNCTION_OPERATOR_H_ #include <functional> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" namespace arolla::expr_operators { class StdFunctionOperator : public expr::BasicExprOperator, public expr::BuiltinExprOperatorTag { public: using OutputQTypeFn = std::function<absl::StatusOr<QTypePtr>(absl::Span<const QTypePtr>)>; using EvalFn = std::function<absl::StatusOr<TypedValue>(absl::Span<const TypedRef>)>; StdFunctionOperator(absl::string_view name, expr::ExprOperatorSignature signature, absl::string_view doc, OutputQTypeFn output_qtype_fn, EvalFn eval_fn); absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const final; const OutputQTypeFn& GetOutputQTypeFn() const; const EvalFn& GetEvalFn() const; private: OutputQTypeFn output_qtype_fn_; EvalFn eval_fn_; }; } #endif #include "arolla/expr/operators/std_function_operator.h" #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" namespace arolla::expr_operators { using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; StdFunctionOperator::StdFunctionOperator(absl::string_view name, ExprOperatorSignature signature, absl::string_view doc, OutputQTypeFn output_qtype_fn, EvalFn eval_fn) : BasicExprOperator(name, signature, doc, RandomFingerprint()), output_qtype_fn_(std::move(output_qtype_fn)), eval_fn_(std::move(eval_fn)) {} absl::StatusOr<QTypePtr> StdFunctionOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return output_qtype_fn_(input_qtypes); } const StdFunctionOperator::OutputQTypeFn& StdFunctionOperator::GetOutputQTypeFn() const { return output_qtype_fn_; } const StdFunctionOperator::EvalFn& StdFunctionOperator::GetEvalFn() const { return eval_fn_; } }
#include "arolla/expr/operators/std_function_operator.h" #include <cstdint> #include <functional> #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/array/qtype/types.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; class StdFunctionOperatorTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } }; absl::StatusOr<TypedValue> GetFirst(absl::Span<const TypedRef> inputs) { return TypedValue(inputs[0]); } absl::StatusOr<QTypePtr> FirstQType(absl::Span<const QTypePtr> input_qtypes) { return input_qtypes[0]; } absl::StatusOr<TypedValue> Add(absl::Span<const TypedRef> inputs) { ASSIGN_OR_RETURN(int32_t x, inputs[0].As<int32_t>()); ASSIGN_OR_RETURN(int32_t y, inputs[1].As<int32_t>()); return TypedValue::FromValue(x + y); } TEST_F(StdFunctionOperatorTest, GetName) { StdFunctionOperator op("get_first_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); ASSERT_THAT(op.display_name(), "get_first_fn"); } TEST_F(StdFunctionOperatorTest, GetDoc) { StdFunctionOperator op("get_first_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); ASSERT_THAT(op.GetDoc(), IsOkAndHolds("dummy op docstring")); } TEST_F(StdFunctionOperatorTest, GetEvalFn) { StdFunctionOperator op("add_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, Add); int32_t x = 1; int32_t y = 2; auto res = op.GetEvalFn()({TypedRef::FromValue(x), TypedRef::FromValue(y)}); EXPECT_OK(res); EXPECT_THAT(res.value().As<int32_t>(), IsOkAndHolds(x + y)); } TEST_F(StdFunctionOperatorTest, GetOutputQTypeFn) { StdFunctionOperator op("add_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, Add); auto output_qtype_fn = op.GetOutputQTypeFn(); auto res = output_qtype_fn({GetArrayQType<int32_t>(), GetQType<int32_t>()}); EXPECT_THAT(res, IsOkAndHolds(GetArrayQType<int32_t>())); } TEST_F(StdFunctionOperatorTest, GetOutputQType) { { StdFunctionOperator op("get_first_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); EXPECT_THAT( op.GetOutputQType({GetArrayQType<int32_t>(), GetQType<int32_t>()}), IsOkAndHolds(GetArrayQType<int32_t>())); } { auto get_snd = [](absl::Span<const QTypePtr> inputs) -> absl::StatusOr<QTypePtr> { return inputs[1]; }; StdFunctionOperator op("add_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(get_snd), Add); EXPECT_THAT( op.GetOutputQType({GetArrayQType<int32_t>(), GetQType<float>()}), IsOkAndHolds(GetQType<float>())); } { auto status_fn = [](absl::Span<const QTypePtr> inputs) -> absl::StatusOr<QTypePtr> { return absl::InvalidArgumentError("foo bar"); }; StdFunctionOperator op("add_fn", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(status_fn), Add); EXPECT_THAT( op.GetOutputQType({GetArrayQType<int32_t>(), GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("foo bar"))); } } TEST_F(StdFunctionOperatorTest, QTypeInference) { { auto op = std::make_shared<StdFunctionOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1.5f), Literal(kUnit)})); EXPECT_EQ(expr->qtype(), GetQType<float>()); } { auto get_snd = [](absl::Span<const QTypePtr> inputs) -> absl::StatusOr<QTypePtr> { return inputs[1]; }; auto op = std::make_shared<StdFunctionOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", std::move(get_snd), GetFirst); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1.5f), Literal(kUnit)})); EXPECT_EQ(expr->qtype(), GetQType<Unit>()); } { auto op = std::make_shared<StdFunctionOperator>( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("x"), Leaf("y")})); EXPECT_EQ(expr->qtype(), nullptr); } } TEST_F(StdFunctionOperatorTest, Eval) { { auto op = std::make_shared<StdFunctionOperator>( "get_first", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1), Literal(2)})); auto res = Invoke(expr, {}); EXPECT_OK(res.status()); EXPECT_THAT(res.value().As<int32_t>(), IsOkAndHolds(1)); } { auto op = std::make_shared<StdFunctionOperator>( "add", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, Add); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1), Literal(2)})); auto res = Invoke(expr, {}); EXPECT_OK(res.status()); EXPECT_THAT(res.value().As<int32_t>(), IsOkAndHolds(3)); } { auto op = std::make_shared<StdFunctionOperator>( "add", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, Add); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("x"), Leaf("y")})); auto res = Invoke(expr, {{"x", TypedValue::FromValue(1)}, {"y", TypedValue::FromValue(2)}}); EXPECT_OK(res.status()); EXPECT_THAT(res.value().As<int32_t>(), IsOkAndHolds(3)); } } TEST_F(StdFunctionOperatorTest, VariadicInput) { ASSERT_OK_AND_ASSIGN(auto signature, ExprOperatorSignature::Make("*args")); auto op = std::make_shared<StdFunctionOperator>( "add", signature, "dummy op docstring", FirstQType, Add); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1), Literal(2)})); auto res = Invoke(expr, {}); EXPECT_OK(res.status()); EXPECT_THAT(res.value().As<int32_t>(), IsOkAndHolds(3)); } TEST_F(StdFunctionOperatorTest, IncorrectFnOutput) { auto op = std::make_shared<StdFunctionOperator>( "get_first", ExprOperatorSignature{{"x"}}, "dummy op docstring", [](absl::Span<const QTypePtr> input_qtypes) { return GetQType<int32_t>(); }, GetFirst); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1.0)})); EXPECT_THAT( Invoke(expr, {}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("expected the result to have qtype INT32, got FLOAT64"))); } TEST_F(StdFunctionOperatorTest, FnRaises) { auto op = std::make_shared<StdFunctionOperator>( "get_first", ExprOperatorSignature{{"x"}}, "dummy op docstring", FirstQType, [](absl::Span<const TypedRef> inputs) { return absl::InvalidArgumentError("foo bar"); }); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Literal(1)})); EXPECT_THAT(Invoke(expr, {}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("foo bar"))); } TEST_F(StdFunctionOperatorTest, Fingerprint) { StdFunctionOperator op1("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); { StdFunctionOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { StdFunctionOperator op2("another_name", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, GetFirst); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { StdFunctionOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}}, "dummy op docstring", FirstQType, GetFirst); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { StdFunctionOperator op2("my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "another docstring", FirstQType, GetFirst); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { StdFunctionOperator op2( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", [](absl::Span<const QTypePtr> input_qtypes) { return GetQType<float>(); }, GetFirst); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } { StdFunctionOperator op2( "my_dummy_op", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", FirstQType, [](absl::Span<const TypedRef> inputs) -> absl::StatusOr<TypedValue> { return TypedValue(inputs[1]); }); EXPECT_NE(op1.fingerprint(), op2.fingerprint()); } } } }
232
#ifndef XLA_SERVICE_GPU_GPU_SPMD_PIPELINE_H_ #define XLA_SERVICE_GPU_GPU_SPMD_PIPELINE_H_ #include <optional> #include "absl/functional/function_ref.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_pass_pipeline.h" namespace xla { namespace gpu { void AddSPMDPasses( const HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, const se::GpuComputeCapability& compute_capability, HloPassPipeline& spmd_pipeline, std::optional<const absl::FunctionRef<void(HloPassPipeline&)>> auto_sharding_func = std::nullopt); } } #endif #include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <optional> #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/transforms/hlo_constant_splitter.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/conditional_simplifier.h" #include "xla/service/gather_expander.h" #include "xla/service/gpu/gpu_algebraic_simplifier.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/reshape_mover.h" #include "xla/service/scatter_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/sort_simplifier.h" #include "xla/service/spmd/collective_permute_motion.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_constant_sinking.h" #include "xla/service/while_loop_simplifier.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { void AddSPMDPasses( const HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, const se::GpuComputeCapability& compute_capability, HloPassPipeline& spmd_pipeline, std::optional<const absl::FunctionRef<void(HloPassPipeline&)>> auto_sharding_func) { const int64_t num_partitions = hlo_module->config().num_partitions(); CHECK_GE(num_partitions, 1); HloPassPipeline& spmd_simplify = spmd_pipeline.AddPass<HloPassFix<HloPassPipeline>>("spmd-simplify"); spmd_simplify.AddPass<GpuAlgebraicSimplifier>(layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<SortSimplifier>(); spmd_simplify.AddPass<TupleSimplifier>(); spmd_simplify.AddPass<ScatterExpander>( ScatterExpander::kEliminateSimpleScatters); spmd_simplify.AddPass<GatherExpander>( GatherExpander::kEliminateSimpleGathers); spmd_simplify.AddPass<WhileLoopConstantSinking>(); spmd_simplify.AddPass<WhileLoopSimplifier>(); ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; spmd_simplify.AddPass<ReshapeMover>(reshape_mover_options); spmd_simplify.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<HloConstantFolding>(); spmd_simplify.AddPass<ConditionalSimplifier>(); spmd_pipeline.AddPass<HloConstantSplitter>(); spmd_simplify.AddPass<HloDCE>(); if (auto_sharding_func.has_value()) { (*auto_sharding_func)(spmd_pipeline); } spmd_pipeline.AddPass<ShardingPropagation>( true, false, hlo_module->config().allow_spmd_sharding_propagation_to_output()); spmd_pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( num_partitions, hlo_module->config().replica_count(), hlo_module->config() .debug_options() .xla_gpu_threshold_for_windowed_einsum_mib(), hlo_module->config() .debug_options() .xla_gpu_multi_streamed_windowed_einsum(), true, true); spmd_pipeline.AddPass<CollectivePermuteMotion>(); } } }
#include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "xla/client/executable_build_options.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuSpmdPartitioningTest : public HloTestBase, public ::testing::WithParamInterface<bool> { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( const char* hlo_module, int64_t num_devices) { HloModuleConfig config = GetModuleConfigForTest( 1, num_devices); config.set_num_partitions(num_devices); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); EXPECT_FALSE(config.debug_options().xla_use_shardonnay()) << "Shardonnay not supported yet"; HloPassPipeline spmd_pipeline("spmd-partitioner"); se::CudaComputeCapability ampere(8, 0); AlgebraicSimplifierOptions alg_simplifier_options; AddSPMDPasses(module.get(), alg_simplifier_options, ampere, spmd_pipeline, std::nullopt); TF_RETURN_IF_ERROR(spmd_pipeline.Run(module.get()).status()); XLA_VLOG_LINES(10, module->ToString()); return module; } protected: bool UseShardonnay() const { return GetParam(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_use_shardonnay(UseShardonnay()); return debug_options; } }; TEST_P(GpuSpmdPartitioningTest, DotWithEntryComputationLayout) { if (UseShardonnay()) { GTEST_SKIP() << "Shardonnay not supported yet"; } const char* const kHloModule = R"( HloModule module, entry_computation_layout={(f32[8,16]{0,1}, f32[16,24]{1,0}) ->f32[8,24]{1,0}} ENTRY main { %p0 = f32[8,16] parameter(0), sharding={devices=[1,8]<=[8]} %p1 = f32[16,24] parameter(1), sharding={devices=[8,1]<=[8]} ROOT %dot = f32[8,24] dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(kHloModule, 8)); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(0), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 2}, {0, 1})); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(1), ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 24}, {1, 0})); EXPECT_EQ(module->config().entry_computation_layout().result_shape(), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 24}, {1, 0})); } std::string TestParamToString( const ::testing::TestParamInfo<bool>& param_info) { return param_info.param ? "Shardonnay" : "GSPMD"; } INSTANTIATE_TEST_SUITE_P(All, GpuSpmdPartitioningTest, ::testing::Values(true, false), TestParamToString); } } }
233
#ifndef XLA_TSL_UTIL_PROTO_PROTO_UTILS_H_ #define XLA_TSL_UTIL_PROTO_PROTO_UTILS_H_ #include "google/protobuf/duration.pb.h" #include "absl/time/time.h" namespace tsl { namespace proto_utils { inline google::protobuf::Duration ToDurationProto(absl::Duration duration) { google::protobuf::Duration proto; proto.set_seconds(absl::IDivDuration(duration, absl::Seconds(1), &duration)); proto.set_nanos( absl::IDivDuration(duration, absl::Nanoseconds(1), &duration)); return proto; } inline absl::Duration FromDurationProto(google::protobuf::Duration proto) { return absl::Seconds(proto.seconds()) + absl::Nanoseconds(proto.nanos()); } } } #endif #include "tensorflow/core/util/proto/proto_utils.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace proto_utils { using tensorflow::protobuf::FieldDescriptor; using tensorflow::protobuf::internal::WireFormatLite; bool IsCompatibleType(FieldDescriptor::Type field_type, DataType dtype) { switch (field_type) { case WireFormatLite::TYPE_DOUBLE: return dtype == tensorflow::DT_DOUBLE; case WireFormatLite::TYPE_FLOAT: return dtype == tensorflow::DT_FLOAT || dtype == tensorflow::DT_DOUBLE; case WireFormatLite::TYPE_INT64: return dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_UINT64: return dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_INT32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_FIXED64: return dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_FIXED32: return dtype == tensorflow::DT_UINT32 || dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_BOOL: return dtype == tensorflow::DT_BOOL; case WireFormatLite::TYPE_STRING: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_GROUP: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_MESSAGE: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_BYTES: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_UINT32: return dtype == tensorflow::DT_UINT32 || dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_ENUM: return dtype == tensorflow::DT_INT32; case WireFormatLite::TYPE_SFIXED32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SFIXED64: return dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SINT32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SINT64: return dtype == tensorflow::DT_INT64; } } Status ParseTextFormatFromString(absl::string_view input, protobuf::Message* output) { DCHECK(output != nullptr) << "output must be non NULL"; if (output == nullptr) { LOG(ERROR) << "output must be non NULL"; return Status(absl::StatusCode::kInvalidArgument, "output must be non NULL"); } string err; StringErrorCollector err_collector(&err, true); protobuf::TextFormat::Parser parser; parser.RecordErrorsTo(&err_collector); if (!parser.ParseFromString(string(input), output)) { return Status(absl::StatusCode::kInvalidArgument, err); } return absl::OkStatus(); } StringErrorCollector::StringErrorCollector(string* error_text) : StringErrorCollector(error_text, false) {} StringErrorCollector::StringErrorCollector(string* error_text, bool one_indexing) : error_text_(error_text), index_offset_(one_indexing ? 1 : 0) { DCHECK(error_text_ != nullptr) << "error_text must be non NULL"; if (error_text_ == nullptr) { LOG(ERROR) << "error_text must be non NULL"; } } void StringErrorCollector::AddError(int line, int column, const string& message) { if (error_text_ != nullptr) { absl::SubstituteAndAppend(error_text_, "$0($1): $2\n", line + index_offset_, column + index_offset_, message); } } void StringErrorCollector::AddWarning(int line, int column, const string& message) { AddError(line, column, message); } } }
#include "tensorflow/core/util/proto/proto_utils.h" #include <gmock/gmock.h> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { using proto_utils::ParseTextFormatFromString; using proto_utils::StringErrorCollector; using ::testing::ContainsRegex; TEST(ParseTextFormatFromStringTest, Success) { protobuf::DescriptorProto output; TF_ASSERT_OK(ParseTextFormatFromString("name: \"foo\"", &output)); EXPECT_EQ(output.name(), "foo"); } TEST(ParseTextFormatFromStringTest, ErrorOnInvalidSyntax) { protobuf::DescriptorProto output; Status status = ParseTextFormatFromString("name: foo", &output); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("foo")); EXPECT_FALSE(output.has_name()); } TEST(ParseTextFormatFromStringTest, ErrorOnUnknownFieldName) { protobuf::DescriptorProto output; Status status = ParseTextFormatFromString("badname: \"foo\"", &output); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("badname")); EXPECT_FALSE(output.has_name()); } TEST(ParseTextFormatFromStringTest, DiesOnNullOutputPointer) { #ifndef NDEBUG ASSERT_DEATH(ParseTextFormatFromString("foo", nullptr).IgnoreError(), "output.*non NULL"); #else Status status = ParseTextFormatFromString("foo", nullptr); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("output.*non NULL")); #endif } TEST(StringErrorCollectorTest, AppendsError) { string err; StringErrorCollector collector(&err); collector.AddError(1, 2, "foo"); EXPECT_EQ("1(2): foo\n", err); } TEST(StringErrorCollectorTest, AppendsWarning) { string err; StringErrorCollector collector(&err); collector.AddWarning(1, 2, "foo"); EXPECT_EQ("1(2): foo\n", err); } TEST(StringErrorCollectorTest, AppendsMultipleError) { string err; StringErrorCollector collector(&err); collector.AddError(1, 2, "foo"); collector.AddError(3, 4, "bar"); EXPECT_EQ("1(2): foo\n3(4): bar\n", err); } TEST(StringErrorCollectorTest, AppendsMultipleWarning) { string err; StringErrorCollector collector(&err); collector.AddWarning(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); EXPECT_EQ("1(2): foo\n3(4): bar\n", err); } TEST(StringErrorCollectorTest, OffsetWorks) { string err; StringErrorCollector collector(&err, true); collector.AddError(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); EXPECT_EQ("2(3): foo\n4(5): bar\n", err); } TEST(StringErrorCollectorTest, DiesOnNullErrorText) { #ifndef NDEBUG ASSERT_DEATH(StringErrorCollector(nullptr), "error_text.*non NULL"); #else StringErrorCollector collector(nullptr); collector.AddError(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); #endif } }
234
#ifndef TENSORFLOW_CORE_GRAPPLER_UTILS_TPU_H_ #define TENSORFLOW_CORE_GRAPPLER_UTILS_TPU_H_ #include "tensorflow/core/framework/graph.pb.h" namespace tensorflow { namespace grappler { bool IsLegacyTPUBridgeGraphDef(const GraphDef& def); } } #endif #include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" namespace tensorflow { namespace grappler { bool IsLegacyTPUBridgeGraphDef(const GraphDef& def) { for (const auto& node : def.node()) { if (node.op() == "TPUCompile" || node.op() == "TPUPartitionedCall") { return true; } } if (!def.has_library()) return false; for (const auto& function_def : def.library().function()) { for (const auto& node : function_def.node_def()) { if (node.op() == "TPUCompile" || node.op() == "TPUPartitionedCall") { return true; } } } return false; } } }
#include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class TpuTest : public ::testing::Test {}; TEST_F(TpuTest, NotTpuGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("Add"); FunctionDefLibrary* library = tpu_graph.mutable_library(); FunctionDef* function_def = library->add_function(); function_def->add_node_def()->set_op("Mul"); EXPECT_FALSE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } TEST_F(TpuTest, TpuMainGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("TPUPartitionedCall"); EXPECT_TRUE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } TEST_F(TpuTest, TpuLibraryGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("BatchFunction"); FunctionDefLibrary* library = tpu_graph.mutable_library(); FunctionDef* function_def = library->add_function(); function_def->add_node_def()->set_op("TPUPartitionedCall"); EXPECT_TRUE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } } }
235
#ifndef ABSL_BASE_INTERNAL_SCOPED_SET_ENV_H_ #define ABSL_BASE_INTERNAL_SCOPED_SET_ENV_H_ #include <string> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { class ScopedSetEnv { public: ScopedSetEnv(const char* var_name, const char* new_value); ~ScopedSetEnv(); private: std::string var_name_; std::string old_value_; bool was_unset_; }; } ABSL_NAMESPACE_END } #endif #include "absl/base/internal/scoped_set_env.h" #ifdef _WIN32 #include <windows.h> #endif #include <cstdlib> #include "absl/base/internal/raw_logging.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { #ifdef _WIN32 const int kMaxEnvVarValueSize = 1024; #endif void SetEnvVar(const char* name, const char* value) { #ifdef _WIN32 SetEnvironmentVariableA(name, value); #else if (value == nullptr) { ::unsetenv(name); } else { ::setenv(name, value, 1); } #endif } } ScopedSetEnv::ScopedSetEnv(const char* var_name, const char* new_value) : var_name_(var_name), was_unset_(false) { #ifdef _WIN32 char buf[kMaxEnvVarValueSize]; auto get_res = GetEnvironmentVariableA(var_name_.c_str(), buf, sizeof(buf)); ABSL_INTERNAL_CHECK(get_res < sizeof(buf), "value exceeds buffer size"); if (get_res == 0) { was_unset_ = (GetLastError() == ERROR_ENVVAR_NOT_FOUND); } else { old_value_.assign(buf, get_res); } SetEnvironmentVariableA(var_name_.c_str(), new_value); #else const char* val = ::getenv(var_name_.c_str()); if (val == nullptr) { was_unset_ = true; } else { old_value_ = val; } #endif SetEnvVar(var_name_.c_str(), new_value); } ScopedSetEnv::~ScopedSetEnv() { SetEnvVar(var_name_.c_str(), was_unset_ ? nullptr : old_value_.c_str()); } } ABSL_NAMESPACE_END }
#ifdef _WIN32 #include <windows.h> #endif #include "gtest/gtest.h" #include "absl/base/internal/scoped_set_env.h" namespace { using absl::base_internal::ScopedSetEnv; std::string GetEnvVar(const char* name) { #ifdef _WIN32 char buf[1024]; auto get_res = GetEnvironmentVariableA(name, buf, sizeof(buf)); if (get_res >= sizeof(buf)) { return "TOO_BIG"; } if (get_res == 0) { return "UNSET"; } return std::string(buf, get_res); #else const char* val = ::getenv(name); if (val == nullptr) { return "UNSET"; } return val; #endif } TEST(ScopedSetEnvTest, SetNonExistingVarToString) { EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value"); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value"); } EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); } TEST(ScopedSetEnvTest, SetNonExistingVarToNull) { EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", nullptr); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); } EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); } TEST(ScopedSetEnvTest, SetExistingVarToString) { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value"); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value"); { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "new_value"); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "new_value"); } EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value"); } TEST(ScopedSetEnvTest, SetExistingVarToNull) { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value"); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value"); { ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", nullptr); EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET"); } EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value"); } }
236
#ifndef TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_PIN_TO_HOST_OPTIMIZER_H_ #define TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_PIN_TO_HOST_OPTIMIZER_H_ #include <unordered_set> #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace grappler { namespace internal { string TryFindHostDevice(const gtl::FlatSet<string>& devices, bool has_device_cpu, const string& device); } class PinToHostOptimizer : public GraphOptimizer { public: PinToHostOptimizer() {} explicit PinToHostOptimizer(RewriterConfig::Toggle opt_level) {} ~PinToHostOptimizer() override {} string name() const override { return "pin_to_host_optimizer"; }; bool UsesFunctionLibrary() const override { return false; } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override; }; } } #endif #include "tensorflow/core/grappler/optimizers/pin_to_host_optimizer.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/grappler/graph_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace grappler { namespace internal { constexpr int64_t kTensorMaxSize = 64; bool IsDenylisted(const NodeDef& node) { return IsCollective(node) || IsControlFlow(node) || IsNoOp(node); } bool IsTensorSmall(const OpInfo::TensorProperties& prop) { if (prop.dtype() == DataType::DT_STRING) { return true; } if (prop.dtype() != DataType::DT_INT32 && prop.dtype() != DataType::DT_INT64 && prop.dtype() != DataType::DT_FLOAT) { return false; } const int64_t size = NumCoefficients(prop.shape()); if (size < 0 || size > kTensorMaxSize) { return false; } return true; } Status TryFindKernelDef(const std::vector<DeviceType>& devices, const NodeDef& node, const KernelDef** kdef) { for (const DeviceType& device : devices) { const KernelDef* kernel = nullptr; Status s = FindKernelDef(device, node, &kernel, nullptr); if (s.ok()) { if (kdef) { *kdef = kernel; } return absl::OkStatus(); } } return errors::NotFound("Could not find KernelDef for op: ", node.op()); } Status IsNodeOutputPortHostFriendly(const GraphView& graph, GraphProperties* properties, const NodeDef& node, int port_id, bool* is_candidate) { *is_candidate = false; if (IsDenylisted(node)) { return absl::OkStatus(); } if (!properties->has_properties()) { TF_RETURN_IF_ERROR(properties->InferStatically( false, false, false)); } const auto& output_properties = properties->GetOutputProperties(node.name()); int output_properties_size = output_properties.size(); if (port_id >= output_properties_size) { LOG(WARNING) << "port_id=" << port_id << " but output_properties.size()=" << output_properties.size() << "\n" << node.DebugString(); return absl::OkStatus(); } if (!IsTensorSmall(output_properties[port_id])) { return absl::OkStatus(); } if (IsIdentity(node) || IsIdentityNSingleInput(node)) { for (const auto& fanin : graph.GetFanins(node, false)) { bool fanin_candidate = false; TF_RETURN_IF_ERROR(IsNodeOutputPortHostFriendly( graph, properties, *fanin.node, fanin.port_id, &fanin_candidate)); if (!fanin_candidate) { return absl::OkStatus(); } } *is_candidate = true; return absl::OkStatus(); } if (absl::StrContains(node.device(), DEVICE_CPU)) { *is_candidate = true; return absl::OkStatus(); } const OpDef* op = nullptr; Status s = OpRegistry::Global()->LookUpOpDef(node.op(), &op); if (!s.ok()) { LOG(WARNING) << "Could not find OpDef for : " << node.op(); return absl::OkStatus(); } const int output_arg_id = OpOutputPortIdToArgId(node, *op, port_id); if (output_arg_id < 0) { LOG(WARNING) << "Invalid port: " << port_id << "!\n" << node.DebugString() << "\n" << op->DebugString(); return absl::OkStatus(); } const KernelDef* kernel = nullptr; s = TryFindKernelDef({node.device().c_str(), DEVICE_GPU, DEVICE_CPU}, node, &kernel); if (!s.ok()) { LOG(INFO) << "Could not find KernelDef for: " << node.op(); return absl::OkStatus(); } for (const string& host_memory_arg : kernel->host_memory_arg()) { if (op->output_arg(output_arg_id).name() == host_memory_arg) { *is_candidate = true; break; } } return absl::OkStatus(); } bool IsNodeInputPortHostFriendly(const NodeDef& node, int port_id) { if (absl::StrContains(node.device(), DEVICE_CPU)) { return true; } const OpDef* op = nullptr; Status s = OpRegistry::Global()->LookUpOpDef(node.op(), &op); if (!s.ok()) { LOG(WARNING) << "Could not find OpDef for : " << node.op(); return false; } const int input_arg_id = OpInputPortIdToArgId(node, *op, port_id); const KernelDef* kernel = nullptr; s = internal::TryFindKernelDef( {node.device().c_str(), DEVICE_GPU, DEVICE_CPU}, node, &kernel); if (!s.ok()) { LOG(INFO) << "Could not find KernelDef for: " << node.op(); return false; } for (const string& host_memory_arg : kernel->host_memory_arg()) { if (op->input_arg(input_arg_id).name() == host_memory_arg) { return true; } } return false; } Status IsNodeHostCandidate(const GraphView& graph, GraphProperties* properties, const NodeDef& node, bool* is_candidate) { *is_candidate = false; if (absl::StrContains(node.device(), DEVICE_CPU)) { *is_candidate = true; return absl::OkStatus(); } if (IsDenylisted(node)) { return absl::OkStatus(); } Status s = TryFindKernelDef({DEVICE_CPU}, node, nullptr); if (!s.ok()) { return absl::OkStatus(); } for (const GraphView::OutputPort& fanin : graph.GetFanins(node, false)) { bool fanin_candidate = false; TF_RETURN_IF_ERROR(IsNodeOutputPortHostFriendly( graph, properties, *fanin.node, fanin.port_id, &fanin_candidate)); if (!fanin_candidate) { return absl::OkStatus(); } } if (!properties->has_properties()) { TF_RETURN_IF_ERROR(properties->InferStatically( false, false, false)); } for (const auto& prop : properties->GetOutputProperties(node.name())) { if (!IsTensorSmall(prop)) { return absl::OkStatus(); } } *is_candidate = true; return absl::OkStatus(); } string TryFindHostDevice(const gtl::FlatSet<string>& devices, bool has_device_cpu, const string& device) { if (device.empty() && has_device_cpu) { return "/device:CPU:0"; } else if (absl::StrContains(device, DEVICE_GPU)) { for (const auto& device_match : {std::pair<string, string>("GPU", "CPU:0"), std::pair<string, string>("/device", "/device:CPU:0")}) { const string device_host = strings::StrCat(device.substr(0, device.rfind(device_match.first)), device_match.second); if (devices.find(device_host) != devices.end()) { return device_host; } } } return ""; } } Status PinToHostOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { *optimized_graph = item.graph; if (IsLegacyTPUBridgeGraphDef(*optimized_graph)) { return absl::OkStatus(); } GraphProperties properties(item); GraphView graph(optimized_graph); gtl::FlatSet<string> devices; if (cluster) { const std::vector<string> device_names = cluster->GetDeviceNames(); devices.insert(device_names.begin(), device_names.end()); } else { devices = {"/device:CPU:0"}; } const bool has_device_cpu = devices.find("/device:CPU:0") != devices.end(); TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph)); std::vector<std::pair<NodeDef*, string>> const_nodes; for (auto& node : *optimized_graph->mutable_node()) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); bool is_candidate = false; TF_RETURN_IF_ERROR( internal::IsNodeHostCandidate(graph, &properties, node, &is_candidate)); if (!is_candidate) { continue; } string device = internal::TryFindHostDevice(devices, has_device_cpu, node.device()); if (!device.empty()) { if (IsConstant(node)) { const_nodes.emplace_back(&node, node.device()); } VLOG(2) << "Moving node " << node.name() << " to device " << device; *node.mutable_device() = std::move(device); } } for (auto& it : const_nodes) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); NodeDef* node = it.first; const string& device = it.second; for (const GraphView::InputPort& fanout : graph.GetFanouts(*node, false)) { if (!internal::IsNodeInputPortHostFriendly(*fanout.node, fanout.port_id)) { VLOG(2) << "Swapping node " << node->name() << " back to device " << device; node->set_device(device); break; } } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/pin_to_host_optimizer.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class PinToHostOptimizerTest : public GrapplerTest {}; TEST_F(PinToHostOptimizerTest, TryFindHostDeviceNoDevices) { gtl::FlatSet<string> devices = {}; EXPECT_EQ(internal::TryFindHostDevice(devices, false, "ABC"), ""); } TEST_F(PinToHostOptimizerTest, TryFindHostDeviceCpuXlaGpu) { gtl::FlatSet<string> devices = {"/device:CPU:0", "/device:XLA_GPU:0"}; EXPECT_EQ(internal::TryFindHostDevice(devices, true, ""), "/device:CPU:0"); EXPECT_EQ(internal::TryFindHostDevice(devices, true, "/device:XLA_GPU:0"), "/device:CPU:0"); EXPECT_EQ(internal::TryFindHostDevice(devices, true, "/device:XLA_GPU:*"), "/device:CPU:0"); } TEST_F(PinToHostOptimizerTest, OptimizeSmallOpsToHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1024, 1024}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); Output e = ops::ReduceProd(s.WithOpName("e"), c, d); int num_int32 = 4; Output f = ops::Const(s.WithOpName("f"), {"test"}); GrapplerItem item; item.fetch = {"a", "c", "d", "e", "f"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { if (i < num_int32) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } else { test::ExpectTensorEqual<tstring>(tensors[i], tensors_expected[i]); } } int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_TRUE(node.device().empty()); } else if (node.name() == "d" || node.name() == "e" || node.name() == "f") { EXPECT_EQ(node.device(), "/device:CPU:0"); } ++found; } EXPECT_EQ(found, 5); } TEST_F(PinToHostOptimizerTest, OptimizeSmallFloatOpsToHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {1024, 1024}); Output input_min = ops::Const(s.WithOpName("input_min"), 0.0f); Output input_max = ops::Const(s.WithOpName("input_max"), 6.0f); Output b = ops::QuantizeAndDequantizeV2(s.WithOpName("b"), a, input_min, input_max); GrapplerItem item; item.fetch = {"b"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<float>(tensors[i], tensors_expected[i]); } for (const NodeDef& node : output.node()) { if (node.name() == "input_min" || node.name() == "input_max") { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM EXPECT_EQ(node.device(), "/device:CPU:0"); #else EXPECT_TRUE(node.device().empty()); #endif } } } TEST_F(PinToHostOptimizerTest, TopologicalSort) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1024, 1024}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); Output e = ops::ReduceProd(s.WithOpName("e"), c, d); GrapplerItem item; item.fetch = {"a", "c", "d", "e"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); std::reverse(item.graph.mutable_node()->begin(), item.graph.mutable_node()->end()); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_TRUE(node.device().empty()); } else if (node.name() == "d" || node.name() == "e") { EXPECT_EQ(node.device(), "/device:CPU:0"); } ++found; } EXPECT_EQ(found, 4); } TEST_F(PinToHostOptimizerTest, NoSwap) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1, 1}); Output b = ops::Const(s.WithOpName("b"), 1, {1, 1024 * 1024}); Output c = ops::MatMul(s.WithOpName("c"), a, b); GrapplerItem item; item.fetch = {"a", "b", "c"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { EXPECT_TRUE(node.device().empty()); ++found; } EXPECT_EQ(found, 3); } TEST_F(PinToHostOptimizerTest, Identity) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a").WithDevice("/device:GPU:0"), 1, {64, 64}); Output b = ops::Const(s.WithOpName("b"), {0, 1}, {2}); Output c = ops::ReduceProd(s.WithOpName("c").WithDevice("/device:GPU:0"), a, b); Output d = ops::Identity(s.WithDevice("/device:CPU:0").WithOpName("d"), c); Output e = ops::Multiply(s.WithOpName("e"), d, d); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_EQ(node.device(), "/device:GPU:0"); } else if (node.name() == "b") { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM EXPECT_EQ(node.device(), "/device:CPU:0"); #else EXPECT_TRUE(node.device().empty()); #endif } else if (node.name() == "d") { EXPECT_EQ(node.device(), "/device:CPU:0"); } else if (node.name() == "e") { EXPECT_TRUE(node.device().empty()); } ++found; } EXPECT_EQ(found, 5); } TEST_F(PinToHostOptimizerTest, PortIdToArgId) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1, 2, 3}); ops::ShapeN b(s.WithOpName("b"), {a, a, a}); GrapplerItem item; item.fetch = {"a", "b"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { EXPECT_EQ(node.device(), "/device:CPU:0"); ++found; } EXPECT_EQ(found, 2); } } } }
237
#ifndef AROLLA_EXPR_EVAL_SIDE_OUTPUT_H_ #define AROLLA_EXPR_EVAL_SIDE_OUTPUT_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "arolla/expr/expr_node.h" #include "arolla/io/slot_listener.h" namespace arolla::expr { struct ExprWithSideOutputs { ExprNodePtr expr; absl::flat_hash_map<std::string, ExprNodePtr> side_outputs; }; absl::StatusOr<ExprWithSideOutputs> ExtractSideOutputs(ExprNodePtr expr); absl::StatusOr<absl::flat_hash_map<std::string, ExprNodePtr>> PrepareSideOutputsForListener( const absl::flat_hash_map<std::string, ExprNodePtr>& side_outputs, const SlotListenerBase& slot_listener); } #endif #include "arolla/expr/eval/side_output.h" #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "arolla/expr/annotation_utils.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/operators/bootstrap_operators.h" #include "arolla/io/slot_listener.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { absl::StatusOr<ExprWithSideOutputs> ExtractSideOutputs(ExprNodePtr expr) { ExprWithSideOutputs result; ASSIGN_OR_RETURN( result.expr, Transform(expr, [&](ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { if (!IsExportAnnotation(node)) { return node; } DCHECK_GE(node->node_deps().size(), 2); auto unwrapped_node = node->node_deps()[0]; auto tag = ReadExportAnnotationTag(node); auto value_expr = ReadExportAnnotationValue(node); DCHECK_NE(unwrapped_node, nullptr); DCHECK_NE(value_expr, nullptr); if (auto [it, inserted] = result.side_outputs.emplace(tag, value_expr); !inserted) { return absl::FailedPreconditionError(absl::StrCat( "duplicated export name ", tag, ": ", GetDebugSnippet(value_expr), " vs ", GetDebugSnippet(it->second))); } return unwrapped_node; })); return result; } absl::StatusOr<absl::flat_hash_map<std::string, ExprNodePtr>> PrepareSideOutputsForListener( const absl::flat_hash_map<std::string, ExprNodePtr>& side_outputs, const SlotListenerBase& slot_listener) { absl::flat_hash_map<std::string, ExprNodePtr> result; for (auto [name, expr] : side_outputs) { if (auto qtype = slot_listener.GetQTypeOf(name); qtype != nullptr) { ASSIGN_OR_RETURN(expr, expr_operators::CoreCast(expr, Literal(qtype))); } result.emplace(name, std::move(expr)); } return result; } }
#include "arolla/expr/eval/side_output.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "arolla/expr/expr.h" #include "arolla/expr/testing/testing.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla::expr { namespace { using ::arolla::testing::EqualsExpr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::WithExportAnnotation; using ::arolla::testing::WithExportValueAnnotation; using ::testing::Field; using ::testing::MatchesRegex; using ::testing::Pair; using ::testing::UnorderedElementsAre; class SideOutputTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(SideOutputTest, ExtractSideOutputs) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {WithExportAnnotation( CallOp("math.add", {WithExportValueAnnotation( Leaf("x"), "out_z", Leaf("z")), Leaf("y")}), "out_xpy"), Leaf("y")})); ASSERT_OK_AND_ASSIGN( auto expected_expr, CallOp("math.add", {CallOp("math.add", {Leaf("x"), Leaf("y")}), Leaf("y")})); auto expected_out_z = Leaf("z"); ASSERT_OK_AND_ASSIGN(auto expected_out_xpy, CallOp("math.add", {Leaf("x"), Leaf("y")})); EXPECT_THAT(ExtractSideOutputs(expr), IsOkAndHolds(AllOf( Field(&ExprWithSideOutputs::expr, EqualsExpr(expected_expr)), Field(&ExprWithSideOutputs::side_outputs, UnorderedElementsAre( Pair("out_z", EqualsExpr(expected_out_z)), Pair("out_xpy", EqualsExpr(expected_out_xpy))))))); } TEST_F(SideOutputTest, ExtractSideOutputsExportValueDuplicateNamesError) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {WithExportValueAnnotation(Leaf("x"), "out_z", Leaf("z")), WithExportValueAnnotation(Leaf("y"), "out_z", Leaf("x"))})); EXPECT_THAT( ExtractSideOutputs(expr), testing::StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex("duplicated export name.*out_z.*"))); } TEST_F(SideOutputTest, ExtractSideOutputsExportDuplicateNamesError) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {WithExportAnnotation(Leaf("x"), "out_z"), WithExportAnnotation(Leaf("y"), "out_z")})); EXPECT_THAT( ExtractSideOutputs(expr), testing::StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex("duplicated export name.*out_z.*"))); } TEST_F(SideOutputTest, ExtractSideOutputsExportVsExportValueDuplicateNamesError) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {WithExportValueAnnotation(Leaf("x"), "out_z", Leaf("z")), WithExportAnnotation(Leaf("y"), "out_z")})); EXPECT_THAT( ExtractSideOutputs(expr), testing::StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex("duplicated export name.*out_z.*"))); } TEST_F(SideOutputTest, ExtractSideOutputsExportVsExportValueDuplicateNamesSameExprError) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {WithExportValueAnnotation(Leaf("x"), "out_z", Leaf("z")), WithExportAnnotation(Leaf("z"), "out_z")})); ASSERT_OK_AND_ASSIGN(auto expected_expr, CallOp("math.add", {Leaf("x"), Leaf("z")})); EXPECT_THAT( ExtractSideOutputs(expr), testing::StatusIs(absl::StatusCode::kFailedPrecondition, MatchesRegex("duplicated export name.*out_z.*"))); } } }
238
#ifndef TENSORSTORE_INTERNAL_OAUTH2_OAUTH_UTILS_H_ #define TENSORSTORE_INTERNAL_OAUTH2_OAUTH_UTILS_H_ #include <stdint.h> #include <string> #include <string_view> #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_oauth2 { Result<std::string> SignWithRSA256(std::string_view private_key, std::string_view to_sign); std::string BuildJWTHeader(std::string_view key_id); std::string BuildJWTClaimBody(std::string_view client_email, std::string_view scope, std::string_view audience, absl::Time now, int64_t lifetime = 3600); Result<std::string> BuildSignedJWTRequest(std::string_view private_key, std::string_view header, std::string_view body); struct GoogleServiceAccountCredentials { std::string private_key_id; std::string private_key; std::string token_uri; std::string client_email; }; Result<GoogleServiceAccountCredentials> ParseGoogleServiceAccountCredentialsImpl(const ::nlohmann::json& credentials); Result<GoogleServiceAccountCredentials> ParseGoogleServiceAccountCredentials( std::string_view source); template <typename T> std::enable_if_t<std::is_same_v<T, ::nlohmann::json>, Result<GoogleServiceAccountCredentials>> ParseGoogleServiceAccountCredentials(const T& json) { return ParseGoogleServiceAccountCredentialsImpl(json); } struct RefreshToken { std::string client_id; std::string client_secret; std::string refresh_token; }; Result<RefreshToken> ParseRefreshTokenImpl(const ::nlohmann::json& credentials); Result<RefreshToken> ParseRefreshToken(std::string_view source); template <typename T> std::enable_if_t<std::is_same_v<T, ::nlohmann::json>, Result<RefreshToken>> ParseRefreshToken(const T& json) { return ParseRefreshTokenImpl(json); } struct OAuthResponse { int64_t expires_in; std::string token_type; std::string access_token; }; Result<OAuthResponse> ParseOAuthResponseImpl( const ::nlohmann::json& credentials); Result<OAuthResponse> ParseOAuthResponse(std::string_view source); template <typename T> std::enable_if_t<std::is_same_v<T, ::nlohmann::json>, Result<OAuthResponse>> ParseOAuthResponse(const T& json) { return ParseOAuthResponseImpl(json); } struct ErrorResponse { std::string error; std::string error_description; std::string error_uri; std::string error_subtype; }; Result<ErrorResponse> ParseErrorResponse(const ::nlohmann::json& error); } } #endif #include "tensorstore/internal/oauth2/oauth_utils.h" #include <stddef.h> #include <memory> #include <optional> #include <utility> #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/time/time.h" #include <openssl/bio.h> #include <openssl/evp.h> #include <openssl/pem.h> #include <openssl/rsa.h> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace jb = tensorstore::internal_json_binding; namespace tensorstore { namespace { constexpr char kCryptoAlgorithm[] = "RS256"; constexpr char kJwtType[] = "JWT"; constexpr char kGrantType[] = "urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer"; } namespace internal_oauth2 { Result<std::string> SignWithRSA256(std::string_view private_key, std::string_view to_sign) { if (private_key.empty()) { return absl::InternalError("No private key provided."); } const auto md = EVP_sha256(); assert(md != nullptr); auto md_ctx = std::unique_ptr<EVP_MD_CTX, decltype(&EVP_MD_CTX_free)>( EVP_MD_CTX_create(), &EVP_MD_CTX_free); assert(md_ctx != nullptr); auto pem_buffer = std::unique_ptr<BIO, decltype(&BIO_free)>( BIO_new_mem_buf(static_cast<const char*>(private_key.data()), static_cast<int>(private_key.length())), &BIO_free); if (!pem_buffer) { return absl::InternalError("Could not create the PEM buffer."); } auto key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>( PEM_read_bio_PrivateKey( static_cast<BIO*>(pem_buffer.get()), nullptr, nullptr, nullptr), &EVP_PKEY_free); if (!key) { return absl::InternalError("Could not load the private key."); } if (EVP_DigestSignInit(md_ctx.get(), nullptr, md, nullptr, key.get()) != 1) { return absl::InternalError("DigestInit failed."); } if (EVP_DigestSignUpdate(md_ctx.get(), to_sign.data(), to_sign.size()) != 1) { return absl::InternalError("DigestUpdate failed."); } size_t sig_len = 0; if (EVP_DigestSignFinal(md_ctx.get(), nullptr, &sig_len) != 1) { return absl::InternalError("DigestFinal (get signature length) failed."); } std::unique_ptr<unsigned char[]> sig(new unsigned char[sig_len]); if (EVP_DigestSignFinal(md_ctx.get(), sig.get(), &sig_len) != 1) { return absl::InternalError("DigestFinal (signature compute) failed."); } std::string signature; absl::WebSafeBase64Escape( std::string_view(reinterpret_cast<char*>(sig.get()), sig_len), &signature); return std::move(signature); } std::string BuildJWTHeader(std::string_view key_id) { ::nlohmann::json assertion_header = { {"alg", kCryptoAlgorithm}, {"typ", kJwtType}, {"kid", std::string(key_id)}, }; std::string encoded_header; absl::WebSafeBase64Escape(assertion_header.dump(), &encoded_header); return encoded_header; } std::string BuildJWTClaimBody(std::string_view client_email, std::string_view scope, std::string_view audience, absl::Time now, std::int64_t lifetime) { const std::int64_t request_timestamp_sec = absl::ToUnixSeconds(now); const std::int64_t expiration_timestamp_sec = request_timestamp_sec + lifetime; ::nlohmann::json assertion_payload = { {"iss", std::string(client_email)}, {"scope", std::string(scope)}, {"aud", std::string(audience)}, {"iat", request_timestamp_sec}, {"exp", expiration_timestamp_sec}, }; std::string encoded_payload; absl::WebSafeBase64Escape(assertion_payload.dump(), &encoded_payload); return encoded_payload; } Result<std::string> BuildSignedJWTRequest(std::string_view private_key, std::string_view header, std::string_view body) { auto claim = tensorstore::StrCat(header, ".", body); auto result = SignWithRSA256(private_key, claim); if (!result) { return result.status(); } return tensorstore::StrCat("grant_type=", kGrantType, "&assertion=", claim, ".", *result); } constexpr static auto ErrorResponseBinder = jb::Object( jb::Member("error", jb::Projection(&ErrorResponse::error, jb::NonEmptyStringBinder)), jb::Member("error_description", jb::Projection(&ErrorResponse::error_description, jb::NonEmptyStringBinder)), jb::Member("error_uri", jb::Projection(&ErrorResponse::error_uri, jb::NonEmptyStringBinder)), jb::Member("error_subtype", jb::Projection(&ErrorResponse::error_subtype, jb::NonEmptyStringBinder)), jb::DiscardExtraMembers); Result<ErrorResponse> ParseErrorResponse(const ::nlohmann::json& error) { if (error.is_discarded()) { return absl::InvalidArgumentError("Invalid ErrorResponse"); } return jb::FromJson<ErrorResponse>(error, ErrorResponseBinder); } constexpr static auto GoogleServiceAccountCredentialsBinder = jb::Object( jb::Member("private_key", jb::Projection(&GoogleServiceAccountCredentials::private_key, jb::NonEmptyStringBinder)), jb::Member("private_key_id", jb::Projection(&GoogleServiceAccountCredentials::private_key_id, jb::NonEmptyStringBinder)), jb::Member("client_email", jb::Projection(&GoogleServiceAccountCredentials::client_email, jb::NonEmptyStringBinder)), jb::Member("token_uri", jb::Projection(&GoogleServiceAccountCredentials::token_uri, jb::DefaultInitializedValue())), jb::DiscardExtraMembers); Result<GoogleServiceAccountCredentials> ParseGoogleServiceAccountCredentialsImpl(const ::nlohmann::json& credentials) { if (credentials.is_discarded()) { return absl::InvalidArgumentError( "Invalid GoogleServiceAccountCredentials token"); } auto creds_token = jb::FromJson<GoogleServiceAccountCredentials>( credentials, GoogleServiceAccountCredentialsBinder); if (!creds_token.ok()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GoogleServiceAccountCredentials: ", creds_token.status())); } return creds_token; } Result<GoogleServiceAccountCredentials> ParseGoogleServiceAccountCredentials( std::string_view source) { auto credentials = internal::ParseJson(source); if (credentials.is_discarded()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GoogleServiceAccountCredentials: ", source)); } return ParseGoogleServiceAccountCredentialsImpl(credentials); } constexpr static auto RefreshTokenBinder = jb::Object( jb::Member("client_id", jb::Projection(&RefreshToken::client_id, jb::NonEmptyStringBinder)), jb::Member("client_secret", jb::Projection(&RefreshToken::client_secret, jb::NonEmptyStringBinder)), jb::Member("refresh_token", jb::Projection(&RefreshToken::refresh_token, jb::NonEmptyStringBinder)), jb::DiscardExtraMembers); Result<RefreshToken> ParseRefreshTokenImpl( const ::nlohmann::json& credentials) { if (credentials.is_discarded()) { return absl::UnauthenticatedError("Invalid RefreshToken token"); } auto refresh_token = jb::FromJson<RefreshToken>(credentials, RefreshTokenBinder); if (!refresh_token.ok()) { return absl::UnauthenticatedError( tensorstore::StrCat("Invalid RefreshToken: ", credentials.dump())); } return refresh_token; } Result<RefreshToken> ParseRefreshToken(std::string_view source) { auto credentials = internal::ParseJson(source); if (credentials.is_discarded()) { return absl::UnauthenticatedError( tensorstore::StrCat("Invalid RefreshToken: ", source)); } return ParseRefreshTokenImpl(credentials); } constexpr static auto OAuthResponseBinder = jb::Object( jb::Member("token_type", jb::Projection(&OAuthResponse::token_type, jb::NonEmptyStringBinder)), jb::Member("access_token", jb::Projection(&OAuthResponse::access_token, jb::NonEmptyStringBinder)), jb::Member("expires_in", jb::Projection(&OAuthResponse::expires_in, jb::LooseInteger<int64_t>(1))), jb::DiscardExtraMembers); Result<OAuthResponse> ParseOAuthResponseImpl( const ::nlohmann::json& credentials) { if (credentials.is_discarded()) { return absl::UnauthenticatedError("Invalid OAuthResponse token"); } auto response_token = jb::FromJson<OAuthResponse>(credentials, OAuthResponseBinder); if (!response_token.ok()) { return absl::UnauthenticatedError( tensorstore::StrCat("Invalid OAuthResponse: ", credentials.dump())); } return response_token; } Result<OAuthResponse> ParseOAuthResponse(std::string_view source) { auto credentials = internal::ParseJson(source); if (credentials.is_discarded()) { return absl::UnauthenticatedError( tensorstore::StrCat("Invalid OAuthResponse: ", source)); } return ParseOAuthResponseImpl(credentials); } } }
#include "tensorstore/internal/oauth2/oauth_utils.h" #include <gtest/gtest.h> #include "absl/strings/escaping.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/oauth2/fake_private_key.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::internal_oauth2::GetFakePrivateKey; using ::tensorstore::internal_oauth2::ParseGoogleServiceAccountCredentials; using ::tensorstore::internal_oauth2::ParseOAuthResponse; using ::tensorstore::internal_oauth2::ParseRefreshToken; std::string GetJsonKeyFileContents() { constexpr char kJsonKeyfilePrefix[] = R"""({ "type": "service_account", "project_id": "foo-project", "private_key_id": "a1a111aa1111a11a11a11aa111a111a1a1111111", "client_email": "[email protected]", "client_id": "100000000000000000001", "auth_uri": "https: "token_uri": "https: "auth_provider_x509_cert_url": "https: "client_x509_cert_url": "https: )"""; return tensorstore::StrCat(kJsonKeyfilePrefix, " \"private_key\": \"", absl::CEscape(GetFakePrivateKey()), "\" }"); } TEST(OAuthUtilTest, GoogleServiceAccountCredentials_Invalid) { EXPECT_FALSE(ParseGoogleServiceAccountCredentials("{ }").ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "", "private_key_id": "", "client_email": "", "token_uri": "" })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "", "private_key_id": "abc", "client_email": "456" })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "", "client_email": "456" })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "abc", "client_email": "" })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "abc", "client_email": "456" "token_uri": "" })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key_id": "abc", "client_email": "456", })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "client_email": "456", })") .ok()); EXPECT_FALSE(ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "abc", })") .ok()); } TEST(OAuthUtilTest, GoogleServiceAccountCredentials) { auto result = ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "abc", "client_email": "456", "token_uri": "wxy" })"); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("123", result.value().private_key); EXPECT_EQ("abc", result.value().private_key_id); EXPECT_EQ("456", result.value().client_email); EXPECT_EQ("wxy", result.value().token_uri); result = ParseGoogleServiceAccountCredentials(R"({ "private_key" : "123", "private_key_id": "abc", "client_email": "456" })"); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("123", result.value().private_key); EXPECT_EQ("abc", result.value().private_key_id); EXPECT_EQ("456", result.value().client_email); EXPECT_EQ("", result.value().token_uri); } TEST(OAuthUtilTest, GoogleServiceAccountCredentialsFile) { auto result = ParseGoogleServiceAccountCredentials(GetJsonKeyFileContents()); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("[email protected]", result->client_email); } TEST(OAuthUtilTest, ParseRefreshToken_Invalid) { EXPECT_FALSE(ParseRefreshToken("{ }").ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "", "client_secret": "", "refresh_token": "" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "", "client_secret": "abc", "refresh_token": "456" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "123", "client_secret": "", "refresh_token": "456" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "123", "client_secret": "abc", "refresh_token": "" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "123", "client_secret": "abc", "refresh_token": 456 })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_secret": "abc", "refresh_token": "456" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "123", "refresh_token": "456" })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"({ "client_id" : "123", "client_secret": "abc", })") .ok()); EXPECT_FALSE(ParseRefreshToken(R"json({ "error": "invalid_grant", "error_description": "reauth related error (invalid_rapt)", "error_uri": "https: "error_subtype": "invalid_rapt" })json") .ok()); } TEST(OAuthUtilTest, ParseRefreshToken) { auto result = ParseRefreshToken(R"({ "client_id" : "123", "client_secret": "abc", "refresh_token": "456" })"); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("123", result.value().client_id); EXPECT_EQ("abc", result.value().client_secret); EXPECT_EQ("456", result.value().refresh_token); } TEST(OAuthUtilTest, ParseOAuthResponse_Invalid) { EXPECT_FALSE(ParseOAuthResponse("{ }").ok()); EXPECT_FALSE(ParseOAuthResponse(R"json({ "token_type" : "", "access_token": "abc", "expires_in": 456 })json") .ok()); EXPECT_FALSE(ParseOAuthResponse(R"json({ "token_type" : "123", "access_token": "", "expires_in": 456 })json") .ok()); EXPECT_FALSE(ParseOAuthResponse(R"json({ "token_type" : "123", "access_token": "abc", })json") .ok()); EXPECT_FALSE(ParseOAuthResponse(R"json({ "error": "invalid_grant", "error_description": "reauth related error (invalid_rapt)", "error_uri": "https: "error_subtype": "invalid_rapt" })json") .ok()); } TEST(OAuthUtilTest, ParseOAuthResponse) { EXPECT_TRUE(ParseOAuthResponse(R"({ "token_type" : "123", "access_token": "abc", "expires_in": "456" })") .ok()); auto result = ParseOAuthResponse(R"({ "token_type" : "123", "access_token": "abc", "expires_in": 456 })"); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("123", result.value().token_type); EXPECT_EQ("abc", result.value().access_token); EXPECT_EQ(456, result.value().expires_in); result = ParseOAuthResponse(R"({ "token_type" : "123", "access_token": "abc", "expires_in": 456, "extra_fields": "are ignored" })"); ASSERT_TRUE(result.ok()) << result.status(); } TEST(OAuthUtilTest, BuildJWTClaimTest) { using ::tensorstore::internal_oauth2::BuildJWTClaimBody; using ::tensorstore::internal_oauth2::BuildJWTHeader; EXPECT_EQ("eyJhbGciOiJSUzI1NiIsImtpZCI6ImEiLCJ0eXAiOiJKV1QifQ", BuildJWTHeader("a")); EXPECT_EQ( "eyJhdWQiOiI0IiwiZXhwIjoxNTQ3NjY5NzAzLCJpYXQiOjE1NDc2NjYxMDMsImlzcyI6ImIi" "LCJzY29wZSI6ImMifQ", BuildJWTClaimBody("b", "c", "4", absl::FromUnixSeconds(1547666103), 3600)); } TEST(OAuthUtilTest, Sign) { using ::tensorstore::internal_oauth2::SignWithRSA256; { auto result = SignWithRSA256("", "something"); EXPECT_FALSE(result.ok()); } { constexpr char kBadKey[] = "-----BEGIN PRIVATE KEY-----\n" "Z23x2ZUyar6i0BQ8eJFAEN+IiUapEeCVazuxJSt4RjYfwSa/" "p117jdZGEWD0GxMC\nlUtj+/nH3HDQjM4ltYfTPUg=\n" "-----END PRIVATE KEY-----\n"; auto result = SignWithRSA256(kBadKey, "something"); EXPECT_FALSE(result.ok()); } auto creds = ParseGoogleServiceAccountCredentials(GetJsonKeyFileContents()); ASSERT_TRUE(creds.ok()); { auto result = SignWithRSA256(creds->private_key, "something"); ASSERT_TRUE(result.ok()); EXPECT_EQ( "A-sH4BVqtxu-6LECWJCb0VKGDj46pnpBpZB1KViuhG2CwugRVR6V3-" "w8eBvAUbIRewSnXp_lWkxdy_rZBMau9VuILnLOC0t692-" "L8WEqHsoFYBWvTZGCT5XkslVXhxt4d8jgM6U_8If4Cf3fGA4XAxpP-pyrbPGz-" "VXn6R7jcLGOLsFtcuAXpJ9zkwYE72pGUtI_hiU-" "tquIEayOQW9frXJlxt2oR4ld1l3p0FWibkNY8OfYPdTlRS0WcsgpWngTamHEBplJ5xNLD5" "Ye5bG1DFqBJn0evxW0btbcfKCYuyirvgvHPsTt-" "YMcPGo1xtlhT5c4ycEHOObFUGDpKPjljw", *result); } } TEST(OAuthUtilTest, BuildJWTRequestBody) { using ::tensorstore::internal_oauth2::BuildSignedJWTRequest; auto creds = ParseGoogleServiceAccountCredentials(GetJsonKeyFileContents()); ASSERT_TRUE(creds.ok()); auto result = BuildSignedJWTRequest(creds->private_key, "header", "something"); ASSERT_TRUE(result.ok()); EXPECT_EQ( "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&" "assertion=header.something.LyvY9ZVG6tL34g5Wji--3G5JGQP-" "fza47yBQIrRHJqecVUTVGuEXti_deBjSbB36gvpBOE67-U9h1wgD2VR_" "MDx8JaQHGct04gVZdKC7m4uqu5lI8u0jqXGG4UbRwfUMZ0UCjxJfyUbg6KUR7iyiqoH5szZv" "31rJISnM4RQvH-lQFrE6BuXpvB09Hve4T3q5mtq7E9pd5rXz_" "vlqL5ib5tkdBEg2cbydDZHeCx5uA9qcg3hGidrU1fLgreFKu3dSvzu4qFZL3-" "0Pnt4XMqwslx2vBbFQB7_K8Dnz10F1TA5njOvwFRWNjKM1I0cRZ5N3O1CnGv1wyAz-" "FIcKdk5_7Q", *result); } }
239
#ifndef XLA_SERVICE_REDUCE_SCATTER_DECOMPOSER_H_ #define XLA_SERVICE_REDUCE_SCATTER_DECOMPOSER_H_ #include <functional> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ReduceScatterDecomposer : public HloModulePass { public: explicit ReduceScatterDecomposer( std::function<void(Shape&)> update_layout = nullptr, std::function<bool(const HloInstruction*)> should_decompose = nullptr) : update_layout_(update_layout), should_decompose_(should_decompose) {} absl::string_view name() const override { return "reduce-scatter-decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; std::function<void(Shape&)> update_layout_; std::function<bool(const HloInstruction*)> should_decompose_; }; } #endif #include "xla/service/reduce_scatter_decomposer.h" #include <sys/types.h> #include <limits> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> ReduceScatterDecomposer::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { bool changed = false; int64_t next_channel_id = hlo_query::NextChannelId(*module); for (HloComputation *computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction *instruction : computation->MakeInstructionPostOrder()) { auto *rs = DynCast<HloReduceScatterInstruction>(instruction); if (!rs || !rs->shape().IsArray()) { continue; } std::optional<int64_t> channel_id; if (rs->channel_id()) { channel_id = next_channel_id++; } if (should_decompose_ && !should_decompose_(rs)) { continue; } VLOG(2) << "Decompose: " << rs->ToString(); HloComputation *apply_clone = module->AddComputationAndUnifyNamesAndIds( rs->to_apply()->Clone(), false); HloInstruction *ar = computation->AddInstruction(HloInstruction::CreateAllReduce( rs->operand(0)->shape(), rs->operands(), apply_clone, rs->device_list(), rs->constrain_layout(), channel_id, rs->use_global_device_ids())); apply_clone->SetCollectiveCallInstruction(ar); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(rs->channel_id().has_value(), rs->use_global_device_ids())); TF_ASSIGN_OR_RETURN( std::vector<HloInstruction *> start_indices, CreateStartIndicesForCollectiveDecomposition( group_mode, rs->replica_groups(), rs->shape(), rs->scatter_dimension(), computation, update_layout_)); HloInstruction *ds = computation->AddInstruction(HloInstruction::CreateDynamicSlice( rs->shape(), ar, start_indices, rs->shape().dimensions())); TF_RETURN_IF_ERROR(rs->ReplaceAllUsesWith(ds)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs)); changed = true; } } return changed; } }
#include "xla/service/reduce_scatter_decomposer.h" #include <utility> #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ReduceScatterDecomposerTest : public HloTestBase { public: enum class PassAction { kNoChange, kTrivialGroups, kTableLookup, }; void RunPass( absl::string_view hlo_module, PassAction action, CollectiveOpGroupMode mode = CollectiveOpGroupMode::kCrossReplica, int64_t shard_size = 0, int64_t shard_dimension = 0, int64_t replica_count = 2, std::function<bool(const HloInstruction *)> should_decompose = [](const HloInstruction *) { return true; }) { const int64_t partition_count = 2; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(hlo_module, replica_count, partition_count)); TF_ASSERT_OK_AND_ASSIGN( bool changed, ReduceScatterDecomposer(nullptr, should_decompose) .Run(module.get())); if (action == PassAction::kNoChange) { ASSERT_FALSE(changed); return; } ASSERT_TRUE(changed); Literal multiplier = LiteralUtil::CreateR0<uint32_t>(shard_size); ::testing::Matcher<const ::xla::HloInstruction *> id_matcher = [&]() { switch (mode) { case CollectiveOpGroupMode::kCrossPartition: return op::PartitionId(); case CollectiveOpGroupMode::kCrossReplica: return op::ReplicaId(); case CollectiveOpGroupMode::kCrossReplicaAndPartition: return op::ReplicaId(); case CollectiveOpGroupMode::kFlattenedID: { return op::Add( op::Multiply(op::ReplicaId(), op::Constant(LiteralUtil::CreateR0<uint32_t>( partition_count))), op::PartitionId()); } } }(); auto root = module->entry_computation()->root_instruction(); const Shape &shape = root->shape(); ::testing::Matcher<const ::xla::HloInstruction *> slice_index = id_matcher; if (action == PassAction::kTableLookup) { slice_index = op::Reshape(op::DynamicSlice(op::Constant(), id_matcher)); } if (mode == CollectiveOpGroupMode::kCrossReplicaAndPartition) { slice_index = op::Add( op::Multiply( slice_index, op::Constant(LiteralUtil::CreateR0<uint32_t>(partition_count))), op::PartitionId()); } auto zero_matcher = op::Constant(LiteralUtil::Zero(U32)); std::vector<::testing::Matcher<const ::xla::HloInstruction *>> ds_operands( shape.rank() + 1, zero_matcher); ds_operands[0] = op::AllReduce(op::Parameter(0)); ds_operands[shard_dimension + 1] = op::Multiply(slice_index, op::Constant(std::move(multiplier))); EXPECT_THAT(root, op::DynamicSlice(ds_operands)); } }; TEST_F(ReduceScatterDecomposerTest, TrivialReplicaID) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TableLookupReplicaId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{1, 0}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{0, 1}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplicaAndPartition, 2, 1); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition_SingleReplica) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossPartition, 4, 1, 1); } TEST_F(ReduceScatterDecomposerTest, TableLookupFlattenedId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kFlattenedID, 2, 1); } TEST_F(ReduceScatterDecomposerTest, NoChange) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = (f32[4, 2], f32[4,2]) reduce-scatter(p0, p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange); } TEST_F(ReduceScatterDecomposerTest, NoChangeWithShouldDecompose) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0,1}, {2,3}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange, CollectiveOpGroupMode::kCrossReplica, 0, 0, 2, [](const HloInstruction *) { return false; }); } } }
240
#ifndef TENSORFLOW_TSL_LIB_CORE_BITMAP_H_ #define TENSORFLOW_TSL_LIB_CORE_BITMAP_H_ #include <string> #include "tsl/platform/logging.h" namespace tsl { namespace core { class Bitmap { public: Bitmap(); explicit Bitmap(size_t n); ~Bitmap(); Bitmap(const Bitmap&) = delete; Bitmap& operator=(const Bitmap&) = delete; size_t bits() const; void Reset(size_t n); bool get(size_t i) const; void set(size_t i); void clear(size_t i); size_t FirstUnset(size_t start) const; std::string ToString() const; private: typedef uint32_t Word; static constexpr size_t kBits = 32; static size_t NumWords(size_t n) { return (n + kBits - 1) / kBits; } static Word Mask(size_t i) { return 1ull << i; } size_t nbits_; Word* word_; }; inline Bitmap::Bitmap() : nbits_(0), word_(nullptr) {} inline Bitmap::Bitmap(size_t n) : Bitmap() { Reset(n); } inline Bitmap::~Bitmap() { delete[] word_; } inline size_t Bitmap::bits() const { return nbits_; } inline bool Bitmap::get(size_t i) const { DCHECK_LT(i, nbits_); return word_[i / kBits] & Mask(i % kBits); } inline void Bitmap::set(size_t i) { DCHECK_LT(i, nbits_); word_[i / kBits] |= Mask(i % kBits); } inline void Bitmap::clear(size_t i) { DCHECK_LT(i, nbits_); word_[i / kBits] &= ~Mask(i % kBits); } } } #endif #include "tsl/lib/core/bitmap.h" #include <cstddef> #include <cstdint> #include <cstring> #include <string> #include "absl/numeric/bits.h" namespace tsl { namespace core { void Bitmap::Reset(size_t n) { const size_t num_words = NumWords(n); if (num_words != NumWords(nbits_)) { Word* w = new Word[num_words]; delete[] word_; word_ = w; } memset(word_, 0, sizeof(word_[0]) * num_words); nbits_ = n; } static size_t FindFirstSet(uint32_t w) { return w == 0 ? 0 : absl::countr_zero(w) + 1; } size_t Bitmap::FirstUnset(size_t start) const { if (start >= nbits_) { return nbits_; } size_t mask = (1ull << (start % kBits)) - 1; const size_t nwords = NumWords(nbits_); for (size_t i = start / kBits; i < nwords; i++) { Word word = word_[i] | mask; mask = 0; size_t r = FindFirstSet(~word); if (r) { size_t result = i * kBits + (r - 1); if (result > nbits_) result = nbits_; return result; } } return nbits_; } std::string Bitmap::ToString() const { std::string result; result.resize(bits()); for (size_t i = 0; i < nbits_; i++) { result[i] = get(i) ? '1' : '0'; } return result; } } }
#include "tsl/lib/core/bitmap.h" #include "tsl/lib/random/simple_philox.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" namespace tsl { namespace core { namespace { size_t NextSize(size_t n) { return n + ((n < 75) ? 1 : 25); } static void MakeRandomBitmap(random::SimplePhilox* rnd, Bitmap* bitmap) { size_t n = rnd->Uniform(200); bitmap->Reset(n); for (size_t i = 0; i < n; i++) { if (rnd->OneIn(2)) bitmap->set(i); } } TEST(BitmapTest, Basic) { for (size_t n = 0; n < 200; n = NextSize(n)) { Bitmap bits(n); for (size_t i = 0; i < n; i++) { EXPECT_FALSE(bits.get(i)) << n << " " << i << " " << bits.ToString(); bits.set(i); EXPECT_TRUE(bits.get(i)) << n << " " << i << " " << bits.ToString(); bits.clear(i); EXPECT_FALSE(bits.get(i)) << n << " " << i << " " << bits.ToString(); } } } TEST(BitmapTest, ToString) { Bitmap bits(10); bits.set(1); bits.set(3); EXPECT_EQ(bits.ToString(), "0101000000"); } TEST(BitmapTest, FirstUnset) { for (size_t n = 0; n < 200; n = NextSize(n)) { for (size_t p = 0; p <= 100; p++) { for (size_t q = 0; q <= 100; q++) { Bitmap bitmap(n); int one_count = 0; size_t i = 0; while (i < p && i < n) { one_count++; bitmap.set(i); i++; } while (i < n) { i++; for (size_t j = 0; j < q && i < n; j++, i++) { one_count++; bitmap.set(i); } } int seen = 0; size_t pos = 0; while (true) { pos = bitmap.FirstUnset(pos); if (pos == n) break; ASSERT_FALSE(bitmap.get(pos)) << pos << " " << bitmap.ToString(); seen++; pos++; } EXPECT_EQ(seen, n - one_count) << " " << bitmap.ToString(); } } } } TEST(BitmapTest, FirstUnsetRandom) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int iter = 0; iter < 10000; iter++) { Bitmap bitmap; MakeRandomBitmap(&rnd, &bitmap); size_t zero_bits = 0; for (size_t i = 0; i < bitmap.bits(); i++) { if (!bitmap.get(i)) zero_bits++; } int seen = 0; size_t pos = 0; while (true) { pos = bitmap.FirstUnset(pos); if (pos == bitmap.bits()) break; ASSERT_FALSE(bitmap.get(pos)) << pos << " " << bitmap.ToString(); seen++; pos++; } EXPECT_EQ(seen, zero_bits) << " " << bitmap.ToString(); } } } } }
241
#ifndef XLA_SERVICE_ALL_GATHER_DECOMPOSER_H_ #define XLA_SERVICE_ALL_GATHER_DECOMPOSER_H_ #include <cstdint> #include <functional> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" namespace xla { class AllGatherDecomposer : public HloModulePass { public: explicit AllGatherDecomposer( std::function<bool(const HloAllGatherInstruction&)> should_decompose) : should_decompose_(std::move(should_decompose)) {} AllGatherDecomposer() : should_decompose_( [](const HloAllGatherInstruction& ag) { return true; }) {} absl::string_view name() const override { return "all_gather_decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; protected: virtual HloInstruction* TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim); virtual bool ShouldDecompose(const HloAllGatherInstruction& ag) const { return should_decompose_(ag); } absl::Status DecomposeAllGather(HloAllGatherInstruction* ag, HloComputation* comp); private: std::function<bool(const HloAllGatherInstruction&)> should_decompose_; }; } #endif #include "xla/service/all_gather_decomposer.h" #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloComputation* MakeBinaryAdd(PrimitiveType type, HloModule* module) { HloComputation::Builder sum_b("add"); auto x = sum_b.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = sum_b.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); if (type == PRED) { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kOr, x, y)); } else { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kAdd, x, y)); } HloComputation* reduction = module->AddEmbeddedComputation(sum_b.Build()); return reduction; } } HloInstruction* AllGatherDecomposer::TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim) { std::vector<HloInstruction*> start_indices = CreateStartIndicesForCollectiveDecomposition( group_mode, ag.replica_groups(), operand->shape(), ag_dim, comp) .value(); auto zero = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(output_shape.element_type()))); zero = comp->AddInstruction( HloInstruction::CreateBroadcast(output_shape, zero, {})); auto dus = comp->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( zero->shape(), zero, operand, start_indices)); auto ar = comp->AddInstruction(HloInstruction::CreateAllReduce( dus->shape(), {dus}, MakeBinaryAdd(dus->shape().element_type(), comp->parent()), ag.device_list(), ag.constrain_layout(), ag.channel_id(), ag.use_global_device_ids())); return ar; } absl::Status AllGatherDecomposer::DecomposeAllGather( HloAllGatherInstruction* ag, HloComputation* comp) { TF_ASSIGN_OR_RETURN(CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(ag->channel_id().has_value(), ag->use_global_device_ids())); if (ag->operand_count() > 1) { std::vector<HloInstruction*> tuple_inputs; for (int i = 0; i < ag->operand_count(); ++i) { auto* input_operand = ag->mutable_operand(i); const auto& output_shape = ag->shape().tuple_shapes(i); auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, output_shape, input_operand, comp, ag->all_gather_dimension()); tuple_inputs.push_back(ar); } auto tup = comp->AddInstruction(HloInstruction::CreateTuple(tuple_inputs)); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(tup)); } else { auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, ag->shape(), ag->mutable_operand(0), comp, ag->all_gather_dimension()); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(ar)); } TF_RETURN_IF_ERROR(comp->RemoveInstructionAndUnusedOperands(ag)); return absl::OkStatus(); } absl::StatusOr<bool> AllGatherDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto comp : module->MakeNonfusionComputations(execution_threads)) { for (auto hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kAllGather) { continue; } auto ag = Cast<HloAllGatherInstruction>(hlo); if (ShouldDecompose(*ag)) { TF_RETURN_IF_ERROR(DecomposeAllGather(ag, comp)); changed = true; } } } return changed; } }
#include "xla/service/all_gather_decomposer.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; using AllGatherDecomposerTest = HloTestBase; TEST_F(AllGatherDecomposerTest, CrossReplicaAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAndPartitionAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0}}, channel_id=1, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::PartitionId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTrivialGroup) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0,1,2,3}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroups) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), op::ReplicaId()))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroupsGlobalIds) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1}, channel_id=1, use_global_device_ids=true } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto global_id = op::Add(op::Multiply(op::ReplicaId(), op::Constant()), op::PartitionId()); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), global_id))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTuple) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) param1 = f32[10,16] parameter(1) ROOT ag = (f32[10,80], f32[10,64]) all-gather(param0, param1), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(1), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))))); } } }
242
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TF_OP_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TF_OP_H_ #include "tensorflow/lite/kernels/shim/test_op/tmpl_op.h" #include "tensorflow/lite/kernels/shim/tf_op_shim.h" namespace tflite { namespace shim { template <typename AType, typename BType> class TmplOpKernel : public TfOpKernel<TmplOp, AType, BType> { public: using TfOpKernel<TmplOp, AType, BType>::TfOpKernel; }; } } #endif #include "tensorflow/lite/kernels/shim/test_op/tmpl_tf_op.h" #include <cstdint> #include "tensorflow/core/framework/types.h" namespace tflite { namespace shim { using TmplOpKernelInstance = TmplOpKernel<float, int32_t>; REGISTER_TF_OP_SHIM(TmplOpKernelInstance); REGISTER_KERNEL_BUILDER(Name(TmplOpKernelInstance::OpName()) .Device(::tensorflow::DEVICE_CPU) .TypeConstraint<float>("AType") .TypeConstraint<int32_t>("BType"), TmplOpKernel<float, int32_t>); REGISTER_KERNEL_BUILDER(Name(TmplOpKernelInstance::OpName()) .Device(::tensorflow::DEVICE_CPU) .TypeConstraint<int32_t>("AType") .TypeConstraint<int64_t>("BType"), TmplOpKernel<int32_t, int64_t>); } }
#include <cstdint> #include <gtest/gtest.h> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" namespace tflite { namespace shim { namespace { using ::tensorflow::DT_FLOAT; using ::tensorflow::DT_INT32; using ::tensorflow::DT_INT64; using ::tensorflow::FakeInput; using ::tensorflow::NodeDefBuilder; using ::tensorflow::TensorShape; using ::tensorflow::test::AsTensor; using ::tensorflow::test::ExpectTensorEqual; class TmplOpTfTest : public ::tensorflow::OpsTestBase {}; TEST_F(TmplOpTfTest, float_int32) { TF_ASSERT_OK(NodeDefBuilder("tmpl_op", "TemplatizedOperation") .Attr("AType", DT_FLOAT) .Attr("BType", DT_INT32) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {10.5}); AddInputFromArray<int32_t>(TensorShape({}), {20}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<float>(*GetOutput(0), AsTensor<float>({30.5}, {})); } TEST_F(TmplOpTfTest, int32_int64) { TF_ASSERT_OK(NodeDefBuilder("tmpl_op", "TemplatizedOperation") .Attr("AType", DT_INT32) .Attr("BType", DT_INT64) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<int32_t>(TensorShape({}), {10}); AddInputFromArray<int64_t>(TensorShape({}), {20}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<float>(*GetOutput(0), AsTensor<float>({30}, {})); } } } }
243
#ifndef TENSORFLOW_CORE_GRAPPLER_GRAPH_TOPOLOGY_VIEW_H_ #define TENSORFLOW_CORE_GRAPPLER_GRAPH_TOPOLOGY_VIEW_H_ #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/graph_view.h" namespace tensorflow { namespace grappler { class GraphTopologyView { public: GraphTopologyView() = default; explicit GraphTopologyView(bool skip_invalid_edges) : skip_invalid_edges_(skip_invalid_edges) {} Status InitializeFromGraph(const GraphDef& graph, absl::Span<const GraphView::Edge> ephemeral_edges, bool ignore_control_edges); Status InitializeFromGraph(const GraphDef& graph, absl::Span<const GraphView::Edge> ephemeral_edges); Status InitializeFromGraph(const GraphDef& graph, bool ignore_control_edges); Status InitializeFromGraph(const GraphDef& graph); bool is_initialized() const { return graph_ != nullptr; } int num_nodes() const { return num_nodes_; } const GraphDef* graph() const { return graph_; } bool HasNode(absl::string_view node_name) const; const NodeDef* GetNode(absl::string_view node_name) const; const NodeDef* GetNode(int node_idx) const; const absl::optional<int> GetNodeIndex(absl::string_view node_name) const; const absl::optional<int> GetNodeIndex(const NodeDef& node) const; const absl::InlinedVector<int, 4>& GetFanin(int node_idx) const; const absl::InlinedVector<int, 2>& GetFanout(int node_idx) const; private: bool skip_invalid_edges_ = false; const GraphDef* graph_ = nullptr; int num_nodes_ = 0; std::vector<absl::string_view> index_to_node_name_; absl::flat_hash_map<absl::string_view, int> node_name_to_index_; std::vector<absl::InlinedVector<int, 4>> fanins_; std::vector<absl::InlinedVector<int, 2>> fanouts_; absl::InlinedVector<int, 4> empty_fanin_; absl::InlinedVector<int, 2> empty_fanout_; }; } } #endif #include "tensorflow/core/grappler/graph_topology_view.h" #include <algorithm> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" namespace tensorflow { namespace grappler { namespace { template <typename T> inline void SortAndRemoveDuplicates(T* v) { std::sort(v->begin(), v->end()); v->erase(std::unique(v->begin(), v->end()), v->end()); } } Status GraphTopologyView::InitializeFromGraph( const GraphDef& graph, const absl::Span<const GraphView::Edge> ephemeral_edges, bool ignore_control_edges) { if (graph_ != nullptr) { return errors::InvalidArgument("GraphTopologyView is already initialized."); } graph_ = &graph; num_nodes_ = graph.node_size(); index_to_node_name_.resize(num_nodes_); node_name_to_index_.rehash(num_nodes_); fanins_.resize(num_nodes_); fanouts_.resize(num_nodes_); for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { const NodeDef& node = graph.node(node_idx); node_name_to_index_.emplace(node.name(), node_idx); index_to_node_name_.emplace_back(node.name()); } for (const GraphView::Edge& edge : ephemeral_edges) { const auto src = node_name_to_index_.find(edge.src.node->name()); const bool valid_src = src != node_name_to_index_.end(); if (!valid_src) { const string error_message = absl::StrCat("Non-existent src node: ", edge.src.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } const auto dst = node_name_to_index_.find(edge.dst.node->name()); const bool valid_dst = dst != node_name_to_index_.end(); if (!valid_dst) { const string error_message = absl::StrCat("Non-existent dst node: ", edge.dst.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_dst && valid_src) { const int src_idx = src->second; const int dst_idx = dst->second; if (ignore_control_edges && (src_idx < 0 || dst_idx < 0)) { continue; } fanins_[dst_idx].push_back(src_idx); fanouts_[src_idx].push_back(dst_idx); } } for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { const NodeDef& node = graph.node(node_idx); fanins_[node_idx].reserve(node.input_size()); for (const string& input : node.input()) { TensorId tensor = ParseTensorName(input); if (ignore_control_edges && IsTensorIdControl(tensor)) { continue; } const auto it = node_name_to_index_.find(tensor.node()); const bool valid_input = it != node_name_to_index_.end(); if (!valid_input) { const string error_message = absl::StrCat("Non-existent input ", input, " in node ", node.name()); if (skip_invalid_edges_) { VLOG(3) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_input) { const int input_idx = it->second; fanins_[node_idx].push_back(input_idx); fanouts_[input_idx].push_back(node_idx); } } SortAndRemoveDuplicates(&fanins_[node_idx]); } for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { SortAndRemoveDuplicates(&fanouts_[node_idx]); } return absl::OkStatus(); } Status GraphTopologyView::InitializeFromGraph( const GraphDef& graph, const absl::Span<const GraphView::Edge> ephemeral_edges) { return InitializeFromGraph(graph, ephemeral_edges, false); } Status GraphTopologyView::InitializeFromGraph(const GraphDef& graph, bool ignore_control_edges) { return InitializeFromGraph(graph, absl::Span<GraphView::Edge>(), ignore_control_edges); } Status GraphTopologyView::InitializeFromGraph(const GraphDef& graph) { return InitializeFromGraph(graph, absl::Span<GraphView::Edge>(), false); } bool GraphTopologyView::HasNode(const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); return it != node_name_to_index_.end(); } const NodeDef* GraphTopologyView::GetNode( const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); return it == node_name_to_index_.end() ? nullptr : &graph_->node(it->second); } const NodeDef* GraphTopologyView::GetNode(int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; DCHECK(node_idx >= 0 && node_idx < num_nodes_) << "node_idx is out of range"; return &graph_->node(node_idx); } const absl::optional<int> GraphTopologyView::GetNodeIndex( const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); DCHECK(it != node_name_to_index_.end()) << "Node doesn't exist in a graph"; return it == node_name_to_index_.end() ? absl::nullopt : absl::make_optional(it->second); } const absl::optional<int> GraphTopologyView::GetNodeIndex( const NodeDef& node) const { return GetNodeIndex(node.name()); } const absl::InlinedVector<int, 4>& GraphTopologyView::GetFanin( int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanins_[node_idx] : empty_fanin_; } const absl::InlinedVector<int, 2>& GraphTopologyView::GetFanout( int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanouts_[node_idx] : empty_fanout_; } } }
#include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class GraphTopologyViewTest : public ::testing::Test { protected: using NodeConfig = std::pair<string, std::vector<string>>; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { const auto& node_name = node.first; const auto& node_inputs = node.second; NodeDef node_def; node_def.set_name(node_name); for (const string& input : node_inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(GraphTopologyViewTest, SimpleGraph) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b"}}, {"d", {"a", "c"}}, }); GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); const NodeDef* a_by_name = graph_view.GetNode("a"); const NodeDef* a_by_idx = graph_view.GetNode(0); ASSERT_TRUE(a_by_name); ASSERT_TRUE(a_by_idx); EXPECT_EQ(a_by_name, a_by_idx); const NodeDef* b_by_name = graph_view.GetNode("b"); const NodeDef* b_by_idx = graph_view.GetNode(1); ASSERT_TRUE(b_by_name); ASSERT_TRUE(b_by_idx); EXPECT_EQ(b_by_name, b_by_idx); const absl::optional<int> b_idx = graph_view.GetNodeIndex(*b_by_name); ASSERT_TRUE(b_idx.has_value()); EXPECT_EQ(b_idx.value(), 1); const absl::optional<int> c_idx = graph_view.GetNodeIndex("c"); ASSERT_TRUE(c_idx.has_value()); EXPECT_EQ(c_idx.value(), 2); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(0), Fanin()); EXPECT_EQ(graph_view.GetFanin(1), Fanin()); EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(0), Fanout({2, 3})); EXPECT_EQ(graph_view.GetFanout(1), Fanout({2})); EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout()); } TEST_F(GraphTopologyViewTest, GraphWithALoop) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b", "d"}}, {"d", {"a", "c"}}, }); GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1, 3})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({2})); } TEST_F(GraphTopologyViewTest, GraphWithControls) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b", "^d"}}, {"d", {"a", "c"}}, }); { GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1, 3})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({2})); } { GraphTopologyView graph_view; TF_CHECK_OK( graph_view.InitializeFromGraph(graph, true)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({})); } } } }
244
#ifndef TENSORSTORE_DRIVER_JSON_JSON_CHANGE_MAP_H_ #define TENSORSTORE_DRIVER_JSON_JSON_CHANGE_MAP_H_ #include <string> #include <string_view> #include "absl/container/btree_map.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_pointer.h" namespace tensorstore { namespace internal_json_driver { class JsonChangeMap { private: struct MapCompare { using is_transparent = void; bool operator()(std::string_view a, std::string_view b) const { return json_pointer::Compare(a, b) < json_pointer::kEqual; } }; public: using Map = absl::btree_map<std::string, ::nlohmann::json, MapCompare>; Result<::nlohmann::json> Apply(const ::nlohmann::json& existing, std::string_view sub_value_pointer = {}) const; bool CanApplyUnconditionally(std::string_view sub_value_pointer) const; absl::Status AddChange(std::string_view sub_value_pointer, ::nlohmann::json sub_value); const Map& underlying_map() const { return map_; } private: Map map_; }; } } #endif #include "tensorstore/driver/json/json_change_map.h" #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_pointer.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_json_driver { Result<::nlohmann::json> JsonChangeMap::Apply( const ::nlohmann::json& existing, std::string_view sub_value_pointer) const { Map::const_iterator changes_it = map_.lower_bound(sub_value_pointer), changes_end = map_.end(); if (changes_it != changes_end && changes_it->first == sub_value_pointer) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, changes_it->second}; } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { TENSORSTORE_ASSIGN_OR_RETURN( auto* modified_value, json_pointer::Dereference( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), json_pointer::kMustExist)); TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, prev_it->first, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, *modified_value}; } } ::nlohmann::json new_value; { TENSORSTORE_ASSIGN_OR_RETURN( const ::nlohmann::json* restricted_existing, json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate)); if (restricted_existing) { new_value = *restricted_existing; } else { new_value = ::nlohmann::json(::nlohmann::json::value_t::discarded); } } for (; changes_it != changes_end && json_pointer::Compare(changes_it->first, sub_value_pointer) == json_pointer::kContainedIn; ++changes_it) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Replace(new_value, std::string_view(changes_it->first) .substr(sub_value_pointer.size()), changes_it->second), internal::ConvertInvalidArgumentToFailedPrecondition(_)); } return new_value; } bool JsonChangeMap::CanApplyUnconditionally( std::string_view sub_value_pointer) const { Map::const_iterator changes_it; if (sub_value_pointer.empty()) { changes_it = map_.begin(); } else { changes_it = map_.lower_bound(sub_value_pointer); } if (changes_it != map_.end()) { if (changes_it->first == sub_value_pointer) { return true; } } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); return json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains; } return false; } absl::Status JsonChangeMap::AddChange(std::string_view sub_value_pointer, ::nlohmann::json sub_value) { auto it = map_.lower_bound(sub_value_pointer); if (it != map_.end()) { auto compare_result = json_pointer::Compare(sub_value_pointer, it->first); assert(compare_result <= json_pointer::kEqual); if (compare_result == json_pointer::kEqual) { it->second = std::move(sub_value); return absl::OkStatus(); } while (compare_result == json_pointer::kContains) { it = map_.erase(it); if (it == map_.end()) break; compare_result = json_pointer::Compare(sub_value_pointer, it->first); } } if (it != map_.begin()) { auto prev_it = std::prev(it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { return json_pointer::Replace( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), std::move(sub_value)); } } map_.try_emplace(it, std::string(sub_value_pointer), std::move(sub_value)); return absl::OkStatus(); } } }
#include "tensorstore/driver/json/json_change_map.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_json_driver::JsonChangeMap; using ::testing::ElementsAre; using ::testing::Optional; using ::testing::Pair; TEST(JsonChangeMapTest, AddChangeValid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(false)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", true)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(true)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}, {"a", false}})))); } TEST(JsonChangeMapTest, AddChangeValidIndependent) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/e", "xx")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/a", "yy")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/a", MatchesJson("yy")), Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})), Pair("/a/e", MatchesJson("xx")))); } TEST(JsonChangeMapTest, AddChangeInvalid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.AddChange("/a/b", 43), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyEmptyChangeMap) { JsonChangeMap changes; EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}), Optional(MatchesJson(::nlohmann::json{{"x", "y"}, {"z", "w"}}))); EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}, "/x"), Optional(MatchesJson(::nlohmann::json("y")))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", {{"b", {{"c", 42}}}}}})); EXPECT_THAT(changes.Apply("old", "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyInvalidContainingChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply(false, "/a/b/c"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyChangeMapPriorNonContaining) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 10)); EXPECT_THAT(changes.Apply({{"b", 42}}, "/b"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply({{"e", "f"}}, "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply({{"x", "y"}, {"e", "f"}}), Optional(MatchesJson(::nlohmann::json{ {"a", {{"b", {{"c", 42}}}}}, {"e", 42}, {"x", "y"}}))); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply(42), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/4", 42)); EXPECT_THAT(changes.Apply({1, 2, 3}), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointer) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointerNoChanges) { JsonChangeMap changes; EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestNewMember) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(::nlohmann::json::object_t{}, "/a"), Optional(MatchesJson(::nlohmann::json{{"b", 42}}))); } TEST(JsonChangeMapTest, ApplyIncompatibleChangeExactRequest) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, AddIncompatibleChanges) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", 42)); EXPECT_THAT(changes.AddChange("/a", 50), MatchesStatus(absl::StatusCode::kFailedPrecondition, "JSON Pointer reference \"/a\" cannot be applied " "to number value: 42")); } TEST(JsonChangeMapTest, CanApplyUnconditionally) { JsonChangeMap changes; EXPECT_FALSE(changes.CanApplyUnconditionally("")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/b/c")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"c", 42}})); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/c")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/d")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/x")); EXPECT_FALSE(changes.CanApplyUnconditionally("")); TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", false}})); EXPECT_TRUE(changes.CanApplyUnconditionally("")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a")); } }
245
#ifndef QUICHE_SPDY_CORE_HPACK_HPACK_ENTRY_H_ #define QUICHE_SPDY_CORE_HPACK_HPACK_ENTRY_H_ #include <cstddef> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_export.h" namespace spdy { inline constexpr size_t kHpackEntrySizeOverhead = 32; struct QUICHE_EXPORT HpackLookupEntry { absl::string_view name; absl::string_view value; bool operator==(const HpackLookupEntry& other) const { return name == other.name && value == other.value; } template <typename H> friend H AbslHashValue(H h, const HpackLookupEntry& entry) { return H::combine(std::move(h), entry.name, entry.value); } }; class QUICHE_EXPORT HpackEntry { public: HpackEntry(std::string name, std::string value); HpackEntry(const HpackEntry&) = delete; HpackEntry& operator=(const HpackEntry&) = delete; HpackEntry(HpackEntry&&) = default; HpackEntry& operator=(HpackEntry&&) = default; absl::string_view name() const { return name_; } absl::string_view value() const { return value_; } static size_t Size(absl::string_view name, absl::string_view value); size_t Size() const; std::string GetDebugString() const; private: std::string name_; std::string value_; }; } #endif #include "quiche/spdy/core/hpack/hpack_entry.h" #include <cstddef> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace spdy { HpackEntry::HpackEntry(std::string name, std::string value) : name_(std::move(name)), value_(std::move(value)) {} size_t HpackEntry::Size(absl::string_view name, absl::string_view value) { return name.size() + value.size() + kHpackEntrySizeOverhead; } size_t HpackEntry::Size() const { return Size(name(), value()); } std::string HpackEntry::GetDebugString() const { return absl::StrCat("{ name: \"", name_, "\", value: \"", value_, "\" }"); } }
#include "quiche/spdy/core/hpack/hpack_entry.h" #include "absl/hash/hash.h" #include "quiche/common/platform/api/quiche_test.h" namespace spdy { namespace { TEST(HpackLookupEntryTest, EntryNamesDiffer) { HpackLookupEntry entry1{"header", "value"}; HpackLookupEntry entry2{"HEADER", "value"}; EXPECT_FALSE(entry1 == entry2); EXPECT_NE(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackLookupEntryTest, EntryValuesDiffer) { HpackLookupEntry entry1{"header", "value"}; HpackLookupEntry entry2{"header", "VALUE"}; EXPECT_FALSE(entry1 == entry2); EXPECT_NE(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackLookupEntryTest, EntriesEqual) { HpackLookupEntry entry1{"name", "value"}; HpackLookupEntry entry2{"name", "value"}; EXPECT_TRUE(entry1 == entry2); EXPECT_EQ(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackEntryTest, BasicEntry) { HpackEntry entry("header-name", "header value"); EXPECT_EQ("header-name", entry.name()); EXPECT_EQ("header value", entry.value()); EXPECT_EQ(55u, entry.Size()); EXPECT_EQ(55u, HpackEntry::Size("header-name", "header value")); } } }
246
#ifndef TENSORFLOW_TSL_LIB_RANDOM_WEIGHTED_PICKER_H_ #define TENSORFLOW_TSL_LIB_RANDOM_WEIGHTED_PICKER_H_ #include <assert.h> #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace tsl { namespace random { class SimplePhilox; class WeightedPicker { public: explicit WeightedPicker(int N); ~WeightedPicker(); int Pick(SimplePhilox* rnd) const; int PickAt(int32_t weight_index) const; int32 get_weight(int index) const; void set_weight(int index, int32_t weight); int32 total_weight() const; int num_elements() const; void SetAllWeights(int32_t weight); void SetWeightsFromArray(int N, const int32* weights); void Resize(int N); void Append(int32_t weight); private: int N_; int num_levels_; int32** level_; static int LevelSize(int level) { return 1 << level; } void RebuildTreeWeights(); WeightedPicker(const WeightedPicker&) = delete; void operator=(const WeightedPicker&) = delete; }; inline int32 WeightedPicker::get_weight(int index) const { DCHECK_GE(index, 0); DCHECK_LT(index, N_); return level_[num_levels_ - 1][index]; } inline int32 WeightedPicker::total_weight() const { return level_[0][0]; } inline int WeightedPicker::num_elements() const { return N_; } } } #endif #include "tsl/lib/random/weighted_picker.h" #include <string.h> #include <algorithm> #include "tsl/lib/random/simple_philox.h" namespace tsl { namespace random { WeightedPicker::WeightedPicker(int N) { CHECK_GE(N, 0); N_ = N; num_levels_ = 1; while (LevelSize(num_levels_ - 1) < N) { num_levels_++; } level_ = new int32*[num_levels_]; for (int l = 0; l < num_levels_; l++) { level_[l] = new int32[LevelSize(l)]; } SetAllWeights(1); } WeightedPicker::~WeightedPicker() { for (int l = 0; l < num_levels_; l++) { delete[] level_[l]; } delete[] level_; } static int32 UnbiasedUniform(SimplePhilox* r, int32_t n) { CHECK_LE(0, n); const uint32 range = ~static_cast<uint32>(0); if (n == 0) { return r->Rand32() * n; } else if (0 == (n & (n - 1))) { return r->Rand32() & (n - 1); } else { uint32 rem = (range % n) + 1; uint32 rnd; do { rnd = r->Rand32(); } while (rnd < rem); return rnd % n; } } int WeightedPicker::Pick(SimplePhilox* rnd) const { if (total_weight() == 0) return -1; return PickAt(UnbiasedUniform(rnd, total_weight())); } int WeightedPicker::PickAt(int32_t weight_index) const { if (weight_index < 0 || weight_index >= total_weight()) return -1; int32_t position = weight_index; int index = 0; for (int l = 1; l < num_levels_; l++) { const int32_t left_weight = level_[l][2 * index]; if (position < left_weight) { index = 2 * index; } else { index = 2 * index + 1; position -= left_weight; } } CHECK_GE(index, 0); CHECK_LT(index, N_); CHECK_LE(position, level_[num_levels_ - 1][index]); return index; } void WeightedPicker::set_weight(int index, int32_t weight) { assert(index >= 0); assert(index < N_); const int32_t delta = weight - get_weight(index); for (int l = num_levels_ - 1; l >= 0; l--) { level_[l][index] += delta; index >>= 1; } } void WeightedPicker::SetAllWeights(int32_t weight) { int32* leaves = level_[num_levels_ - 1]; for (int i = 0; i < N_; i++) leaves[i] = weight; for (int i = N_; i < LevelSize(num_levels_ - 1); i++) leaves[i] = 0; RebuildTreeWeights(); } void WeightedPicker::SetWeightsFromArray(int N, const int32* weights) { Resize(N); int32* leaves = level_[num_levels_ - 1]; for (int i = 0; i < N_; i++) leaves[i] = weights[i]; for (int i = N_; i < LevelSize(num_levels_ - 1); i++) leaves[i] = 0; RebuildTreeWeights(); } void WeightedPicker::RebuildTreeWeights() { for (int l = num_levels_ - 2; l >= 0; l--) { int32* level = level_[l]; int32* children = level_[l + 1]; for (int i = 0; i < LevelSize(l); i++) { level[i] = children[2 * i] + children[2 * i + 1]; } } } void WeightedPicker::Append(int32_t weight) { Resize(num_elements() + 1); set_weight(num_elements() - 1, weight); } void WeightedPicker::Resize(int new_size) { CHECK_GE(new_size, 0); if (new_size <= LevelSize(num_levels_ - 1)) { for (int i = new_size; i < N_; i++) { set_weight(i, 0); } N_ = new_size; return; } assert(new_size > N_); WeightedPicker new_picker(new_size); int32* dst = new_picker.level_[new_picker.num_levels_ - 1]; int32* src = this->level_[this->num_levels_ - 1]; memcpy(dst, src, sizeof(dst[0]) * N_); memset(dst + N_, 0, sizeof(dst[0]) * (new_size - N_)); new_picker.RebuildTreeWeights(); std::swap(new_picker.N_, this->N_); std::swap(new_picker.num_levels_, this->num_levels_); std::swap(new_picker.level_, this->level_); assert(this->N_ == new_size); } } }
#include "tsl/lib/random/weighted_picker.h" #include <string.h> #include <vector> #include "tsl/lib/random/simple_philox.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace random { static void TestPicker(SimplePhilox* rnd, int size); static void CheckUniform(SimplePhilox* rnd, WeightedPicker* picker, int trials); static void CheckSkewed(SimplePhilox* rnd, WeightedPicker* picker, int trials); static void TestPickAt(int items, const int32* weights); TEST(WeightedPicker, Simple) { PhiloxRandom philox(testing::RandomSeed(), 17); SimplePhilox rnd(&philox); { VLOG(0) << "======= Zero-length picker"; WeightedPicker picker(0); EXPECT_EQ(picker.Pick(&rnd), -1); } { VLOG(0) << "======= Singleton picker"; WeightedPicker picker(1); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); } { VLOG(0) << "======= Grown picker"; WeightedPicker picker(0); for (int i = 0; i < 10; i++) { picker.Append(1); } CheckUniform(&rnd, &picker, 100000); } { VLOG(0) << "======= Grown picker with zero weights"; WeightedPicker picker(1); picker.Resize(10); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); } { VLOG(0) << "======= Shrink picker and check weights"; WeightedPicker picker(1); picker.Resize(10); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); EXPECT_EQ(picker.Pick(&rnd), 0); for (int i = 0; i < 10; i++) { picker.set_weight(i, i); } EXPECT_EQ(picker.total_weight(), 45); picker.Resize(5); EXPECT_EQ(picker.total_weight(), 10); picker.Resize(2); EXPECT_EQ(picker.total_weight(), 1); picker.Resize(1); EXPECT_EQ(picker.total_weight(), 0); } } TEST(WeightedPicker, BigWeights) { PhiloxRandom philox(testing::RandomSeed() + 1, 17); SimplePhilox rnd(&philox); VLOG(0) << "======= Check uniform with big weights"; WeightedPicker picker(2); picker.SetAllWeights(2147483646L / 3); CheckUniform(&rnd, &picker, 100000); } TEST(WeightedPicker, Deterministic) { VLOG(0) << "======= Testing deterministic pick"; static const int32 weights[] = {1, 0, 200, 5, 42}; TestPickAt(TF_ARRAYSIZE(weights), weights); } TEST(WeightedPicker, Randomized) { PhiloxRandom philox(testing::RandomSeed() + 10, 17); SimplePhilox rnd(&philox); TestPicker(&rnd, 1); TestPicker(&rnd, 2); TestPicker(&rnd, 3); TestPicker(&rnd, 4); TestPicker(&rnd, 7); TestPicker(&rnd, 8); TestPicker(&rnd, 9); TestPicker(&rnd, 10); TestPicker(&rnd, 100); } static void TestPicker(SimplePhilox* rnd, int size) { VLOG(0) << "======= Testing size " << size; { WeightedPicker picker(size); picker.SetAllWeights(0); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), -1); } std::vector<int32> weights(size); for (int elem = 0; elem < size; elem++) { weights[elem] = 0; } for (int elem = 0; elem < size; elem++) { WeightedPicker picker(size); picker.SetAllWeights(0); picker.set_weight(elem, elem + 1); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), elem); weights[elem] = 10; picker.SetWeightsFromArray(size, &weights[0]); for (int i = 0; i < 100; i++) EXPECT_EQ(picker.Pick(rnd), elem); weights[elem] = 0; } { WeightedPicker picker(size); CheckUniform(rnd, &picker, 100000); } if (size / 3 > 0) { WeightedPicker picker(size / 3); while (picker.num_elements() != size) { picker.Append(1); } CheckUniform(rnd, &picker, 100000); } if (size <= 10) { WeightedPicker picker(size); int32_t weight = 1; for (int elem = 0; elem < size; elem++) { picker.set_weight(elem, weight); weights[elem] = weight; weight *= 2; } CheckSkewed(rnd, &picker, 1000000); WeightedPicker array_picker(0); array_picker.SetWeightsFromArray(size, &weights[0]); CheckSkewed(rnd, &array_picker, 1000000); } } static void CheckUniform(SimplePhilox* rnd, WeightedPicker* picker, int trials) { const int size = picker->num_elements(); int* count = new int[size]; memset(count, 0, sizeof(count[0]) * size); for (int i = 0; i < size * trials; i++) { const int elem = picker->Pick(rnd); EXPECT_GE(elem, 0); EXPECT_LT(elem, size); count[elem]++; } const int expected_min = int(0.9 * trials); const int expected_max = int(1.1 * trials); for (int i = 0; i < size; i++) { EXPECT_GE(count[i], expected_min); EXPECT_LE(count[i], expected_max); } delete[] count; } static void CheckSkewed(SimplePhilox* rnd, WeightedPicker* picker, int trials) { const int size = picker->num_elements(); int* count = new int[size]; memset(count, 0, sizeof(count[0]) * size); for (int i = 0; i < size * trials; i++) { const int elem = picker->Pick(rnd); EXPECT_GE(elem, 0); EXPECT_LT(elem, size); count[elem]++; } for (int i = 0; i < size - 1; i++) { LOG(INFO) << i << ": " << count[i]; const float ratio = float(count[i + 1]) / float(count[i]); EXPECT_GE(ratio, 1.6f); EXPECT_LE(ratio, 2.4f); } delete[] count; } static void TestPickAt(int items, const int32* weights) { WeightedPicker picker(items); picker.SetWeightsFromArray(items, weights); int weight_index = 0; for (int i = 0; i < items; ++i) { for (int j = 0; j < weights[i]; ++j) { int pick = picker.PickAt(weight_index); EXPECT_EQ(pick, i); ++weight_index; } } EXPECT_EQ(weight_index, picker.total_weight()); } static void BM_Create(::testing::benchmark::State& state) { int arg = state.range(0); for (auto s : state) { WeightedPicker p(arg); } } BENCHMARK(BM_Create)->Range(1, 1024); static void BM_CreateAndSetWeights(::testing::benchmark::State& state) { int arg = state.range(0); std::vector<int32> weights(arg); for (int i = 0; i < arg; i++) { weights[i] = i * 10; } for (auto s : state) { WeightedPicker p(arg); p.SetWeightsFromArray(arg, &weights[0]); } } BENCHMARK(BM_CreateAndSetWeights)->Range(1, 1024); static void BM_Pick(::testing::benchmark::State& state) { int arg = state.range(0); PhiloxRandom philox(301, 17); SimplePhilox rnd(&philox); WeightedPicker p(arg); int result = 0; for (auto s : state) { result += p.Pick(&rnd); } VLOG(4) << result; } BENCHMARK(BM_Pick)->Range(1, 1024); } }
247
#ifndef AROLLA_EXPR_OPERATORS_STRINGS_REGISTER_OPERATORS_H_ #define AROLLA_EXPR_OPERATORS_STRINGS_REGISTER_OPERATORS_H_ #include "absl/status/status.h" #include "arolla/expr/operators/registration.h" namespace arolla::expr_operators { absl::Status InitStrings(); AROLLA_DECLARE_EXPR_OPERATOR(StringsCompileRegex); AROLLA_DECLARE_EXPR_OPERATOR(StringsContainsRegex); AROLLA_DECLARE_EXPR_OPERATOR(StringsExtractRegex); AROLLA_DECLARE_EXPR_OPERATOR(StringsJoin); AROLLA_DECLARE_EXPR_OPERATOR(StringsJoinWithSeparator); } #endif #include "arolla/expr/operators/strings/register_operators.h" #include <memory> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/expr/backend_wrapping_operator.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/dynamic_lifting.h" #include "arolla/expr/operators/register_operators.h" #include "arolla/expr/operators/registration.h" #include "arolla/expr/operators/strings/string_operators.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/strings/regex.h" #include "arolla/util/indestructible.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::RegisterOperator; namespace tm = ::arolla::expr_operators::type_meta; using tm::Binary; using tm::CallableStrategy; using tm::Chain; using tm::Is; using tm::LiftNthType; using tm::Nth; using tm::NthMatch; using tm::Returns; using tm::ScalarOrOptional; using tm::ScalarTypeIs; using tm::String; using tm::ToOptional; using tm::ToTestResult; using tm::Unary; } AROLLA_DEFINE_EXPR_OPERATOR(StringsCompileRegex, RegisterBackendOperator("strings._compile_regex", Chain(Unary, Is<Text>, Returns<Regex>))); AROLLA_DEFINE_EXPR_OPERATOR( StringsJoinWithSeparator, RegisterOperator( "strings._join_with_separator", LiftDynamically(std::make_shared<expr::BackendWrappingOperator>( "strings._join_with_separator", ExprOperatorSignature::MakeVariadicArgs(), CallableStrategy(Chain(ScalarOrOptional, String, LiftNthType(0))))))); AROLLA_DEFINE_EXPR_OPERATOR( StringsContainsRegex, []() -> absl::StatusOr<expr::ExprOperatorPtr> { RETURN_IF_ERROR( RegisterOperator( "strings._contains_regex", LiftDynamically(std::make_shared<expr::BackendWrappingOperator>( "strings._contains_regex", ExprOperatorSignature{{"s"}, {"regex"}}, CallableStrategy(Chain(Binary, NthMatch(1, Is<Regex>), Nth(0), ScalarOrOptional, ScalarTypeIs<Text>, ToTestResult))))) .status()); return RegisterOperator("strings.contains_regex", MakeContainsRegexOp()); }()); AROLLA_DEFINE_EXPR_OPERATOR( StringsExtractRegex, []() -> absl::StatusOr<expr::ExprOperatorPtr> { RETURN_IF_ERROR( RegisterOperator( "strings._extract_regex", LiftDynamically(std::make_shared<expr::BackendWrappingOperator>( "strings._extract_regex", ExprOperatorSignature{{"s"}, {"regex"}}, CallableStrategy(Chain(Binary, NthMatch(1, Is<Regex>), Nth(0), ScalarOrOptional, ScalarTypeIs<Text>, ToOptional))))) .status()); return RegisterOperator("strings.extract_regex", MakeExtractRegexOp()); }()); AROLLA_DEFINE_EXPR_OPERATOR(StringsJoin, RegisterOperator("strings.join", MakeJoinOp())); absl::Status InitStrings() { static Indestructible<absl::Status> init_status([]() -> absl::Status { RETURN_IF_ERROR(InitCore()); RETURN_IF_ERROR(InitArray()); RETURN_IF_ERROR(RegisterStringsCompileRegex()); RETURN_IF_ERROR(RegisterStringsJoinWithSeparator()); RETURN_IF_ERROR(RegisterStringsContainsRegex()); RETURN_IF_ERROR(RegisterStringsExtractRegex()); RETURN_IF_ERROR(RegisterStringsJoin()); return absl::OkStatus(); }()); return *init_status; } }
#include <cstdint> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprAttributes; using ::arolla::expr::ExprOperatorPtr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; absl::StatusOr<QTypePtr> GetOutputQType( const ExprOperatorPtr& op, absl::Span<const QTypePtr> input_qtypes) { std::vector<ExprAttributes> inputs; inputs.reserve(input_qtypes.size()); for (auto* input_qtype : input_qtypes) { inputs.emplace_back(input_qtype); } ASSIGN_OR_RETURN(auto output, op->InferAttributes(inputs)); return output.qtype(); } class RegisterOperatorsTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(RegisterOperatorsTest, PresenceAndOr) { ASSERT_OK_AND_ASSIGN(auto pand_or, expr::LookupOperator("core._presence_and_or")); auto f64 = GetQType<double>(); auto i64 = GetQType<int64_t>(); auto i32 = GetQType<int32_t>(); EXPECT_THAT(GetOutputQType(pand_or, {i64, GetQType<OptionalUnit>(), i64}), IsOkAndHolds(i64)); EXPECT_THAT(GetOutputQType(pand_or, {i64, GetQType<OptionalUnit>(), i32}), IsOkAndHolds(i64)); EXPECT_THAT(GetOutputQType(pand_or, {i32, GetQType<OptionalUnit>(), i64}), IsOkAndHolds(i64)); EXPECT_THAT(GetOutputQType(pand_or, {i32, GetQType<OptionalUnit>(), i32}), IsOkAndHolds(i32)); auto oi64 = GetOptionalQType<int64_t>(); auto oi32 = GetOptionalQType<int32_t>(); EXPECT_THAT(GetOutputQType(pand_or, {oi32, GetQType<OptionalUnit>(), i64}), IsOkAndHolds(i64)); EXPECT_THAT(GetOutputQType(pand_or, {oi64, GetQType<OptionalUnit>(), i32}), IsOkAndHolds(i64)); EXPECT_THAT(GetOutputQType(pand_or, {i32, GetQType<OptionalUnit>(), oi64}), IsOkAndHolds(oi64)); auto daunit = GetDenseArrayQType<Unit>(); auto dai64 = GetDenseArrayQType<int64_t>(); EXPECT_THAT( GetOutputQType(pand_or, {oi32, daunit, dai64}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be scalar or optional scalar, " "but got DENSE_ARRAY_UNIT for 1-th argument"))); EXPECT_THAT(GetOutputQType(pand_or, {GetQType<Unit>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected 3 but got 1"))); EXPECT_THAT(GetOutputQType(pand_or, {i64, GetQType<OptionalUnit>(), f64}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("no common QType for (INT64,FLOAT64)"))); } TEST_F(RegisterOperatorsTest, PresenceAnd) { ASSERT_OK_AND_ASSIGN(auto presence_and, expr::LookupOperator("core.presence_and")); EXPECT_THAT( GetOutputQType(presence_and, {GetQType<int32_t>(), GetQType<bool>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected scalar type to be UNIT"))); } TEST_F(RegisterOperatorsTest, ShortCircuitWhere) { ASSERT_OK_AND_ASSIGN(auto where, expr::LookupOperator("core._short_circuit_where")); EXPECT_THAT(GetOutputQType(where, {GetQType<OptionalUnit>(), GetQType<int64_t>(), GetQType<int64_t>()}), IsOkAndHolds(GetQType<int64_t>())); EXPECT_THAT(GetOutputQType(where, {GetQType<OptionalUnit>(), GetQType<float>(), GetQType<double>()}), IsOkAndHolds(GetQType<double>())); EXPECT_THAT(GetOutputQType(where, {GetQType<OptionalUnit>(), GetQType<int64_t>(), GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("no common QType for (INT64,FLOAT32)"))); } } }
248
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_NUMERICAL_UTILS_H_ #define TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_NUMERICAL_UTILS_H_ #include <cstdint> #include <optional> #include <utility> #include "absl/types/optional.h" namespace mlir { namespace quant { using QuantizedMultiplier = std::pair<int32_t, int32_t>; using QuantizedRange = std::pair<int32_t, int32_t>; QuantizedMultiplier QuantizeMultiplier(double double_multiplier); QuantizedRange CalculateQuantizedRange(double scale, int32_t zero_point, std::optional<double> rmin, std::optional<double> rmax, int32_t qmin, int32_t qmax); } } #endif #include "tensorflow/compiler/mlir/lite/quantization/numerical_utils.h" #include <assert.h> #include <algorithm> #include <cmath> #include <limits> #include <optional> #include "absl/types/optional.h" namespace mlir { namespace quant { QuantizedMultiplier QuantizeMultiplier(double double_multiplier) { if (double_multiplier < 1e-6) { return {0, 0}; } int32_t shift; const double q = frexp(double_multiplier, &shift); int64_t quantized_multiplier = round(q * (1LL << 31)); assert(quantized_multiplier <= (1LL << 31)); if (quantized_multiplier == (1LL << 31)) { quantized_multiplier /= 2; ++shift; } assert(quantized_multiplier <= std::numeric_limits<int32_t>::max()); if (shift > 31 || shift < -31) { return {0, 0}; } return {static_cast<int32_t>(quantized_multiplier), shift}; } QuantizedRange CalculateQuantizedRange(double scale, int32_t zero_point, std::optional<double> rmin, std::optional<double> rmax, int32_t qmin, int32_t qmax) { auto quantize = [scale, zero_point](float f) { return zero_point + static_cast<int32_t>(std::round(f / scale)); }; if (rmin.has_value() && rmax.has_value()) { return {std::max(qmin, quantize(rmin.value())), std::min(qmax, quantize(rmax.value()))}; } else if (rmin.has_value()) { return {std::max(qmin, quantize(rmin.value())), qmax}; } else if (rmax.has_value()) { return {qmin, std::min(qmax, quantize(rmax.value()))}; } else { return {qmin, qmax}; } } } }
#include "tensorflow/compiler/mlir/lite/quantization/numerical_utils.h" #include <cmath> #include <optional> #include <gtest/gtest.h> #include "absl/types/optional.h" namespace mlir { namespace quant { namespace { double ComposeScale(const QuantizedMultiplier& input) { return input.first * exp2(-31 + input.second); } TEST(NumericalUtils, QuantizeMultiplier) { ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e6)), 1.0e6); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e3)), 1.0e3); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(10.)), 10.); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(5.)), 5.); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(2.)), 2.); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(0.0)), 0.0); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0)), 1.0); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-1)), 1.0e-1); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-2)), 1.0e-2); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-3)), 1.0e-3); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-4)), 1.0e-4); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-5)), 1.0e-5); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-6)), 1.0e-6); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-7)), 0.0); ASSERT_FLOAT_EQ(ComposeScale(QuantizeMultiplier(1.0e-8)), 0.0); } TEST(NumericalUtils, ActivationRange) { auto a = CalculateQuantizedRange(1e-6, 0, std::nullopt, std::nullopt, -128, 127); ASSERT_EQ(a.first, -128); ASSERT_EQ(a.second, 127); auto b = CalculateQuantizedRange(1e-6, 0, 0.0, std::nullopt, -128, 127); ASSERT_EQ(b.first, 0); ASSERT_EQ(b.second, 127); auto c = CalculateQuantizedRange(1e-6, 0, -1.0, 1.0, -128, 127); ASSERT_EQ(c.first, -128); ASSERT_EQ(c.second, 127); auto d = CalculateQuantizedRange(1e-6, 0, 0.0, 6.0, -128, 127); ASSERT_EQ(d.first, 0); ASSERT_EQ(d.second, 127); auto e = CalculateQuantizedRange(1e-6, 100, std::nullopt, std::nullopt, -128, 127); ASSERT_EQ(e.first, -128); ASSERT_EQ(e.second, 127); auto f = CalculateQuantizedRange(1e-6, 100, 0.0, std::nullopt, -128, 127); ASSERT_EQ(f.first, 100); ASSERT_EQ(f.second, 127); auto g = CalculateQuantizedRange(1e-6, 100, -1.0, 1.0, -128, 127); ASSERT_EQ(g.first, -128); ASSERT_EQ(g.second, 127); auto h = CalculateQuantizedRange(1e-6, 100, 0.0, 6.0, -128, 127); ASSERT_EQ(h.first, 100); ASSERT_EQ(h.second, 127); auto i = CalculateQuantizedRange(1e-6, -100, std::nullopt, std::nullopt, -128, 127); ASSERT_EQ(i.first, -128); ASSERT_EQ(i.second, 127); auto j = CalculateQuantizedRange(1e-6, -100, 0.0, std::nullopt, -128, 127); ASSERT_EQ(j.first, -100); ASSERT_EQ(j.second, 127); auto k = CalculateQuantizedRange(1e-6, -100, -1.0, 1.0, -128, 127); ASSERT_EQ(k.first, -128); ASSERT_EQ(k.second, 127); auto l = CalculateQuantizedRange(1e-6, -100, 0.0, 6.0, -128, 127); ASSERT_EQ(l.first, -100); ASSERT_EQ(l.second, 127); } } } }
249
#ifndef XLA_SERVICE_CONSTANT_VALUE_H_ #define XLA_SERVICE_CONSTANT_VALUE_H_ #include <string> #include "absl/status/statusor.h" #include "xla/literal.h" #include "xla/util.h" namespace xla { class ConstantValue { public: ConstantValue(uint64_t value, int32_t bitwidth, bool is_signed) : value_(is_signed ? absl::bit_cast<uint64_t>( absl::bit_cast<int64_t>( value << (8 * sizeof(uint64_t) - bitwidth)) >> (8 * sizeof(uint64_t) - bitwidth)) : KeepLowerBits(value, bitwidth)), bitwidth_(bitwidth), is_signed_(is_signed) {} static ConstantValue GetZero(int32_t bitwidth, bool is_signed) { return ConstantValue(0, bitwidth, is_signed); } static ConstantValue GetOne(int32_t bitwidth, bool is_signed) { return ConstantValue(1, bitwidth, is_signed); } static ConstantValue GetSigned(int64_t value, int32_t bitwidth) { return ConstantValue(absl::bit_cast<uint64_t>(value), bitwidth, true); } static ConstantValue GetUnsigned(uint64_t value, int32_t bitwidth) { return ConstantValue(value, bitwidth, false); } static absl::StatusOr<ConstantValue> FromLiteral(const Literal& literal); ConstantValue add(const ConstantValue& other) const { return ConstantValue(value_ + other.value_, bitwidth_, is_signed_); } ConstantValue sub(const ConstantValue& other) const { return ConstantValue(value_ - other.value_, bitwidth_, is_signed_); } ConstantValue div(const ConstantValue& other) const; ConstantValue mod(const ConstantValue& other) const; ConstantValue mul(const ConstantValue& other) const; bool lt(const ConstantValue& other) const; bool gt(const ConstantValue& other) const; bool eq(const ConstantValue& other) const { return *this == other; } int64_t GetSignedValue() const { return absl::bit_cast<int64_t>(value_); } uint64_t GetUnsignedValue() const { return value_; } int32_t GetBitwidth() const { return bitwidth_; } bool IsSigned() const { return is_signed_; } bool operator==(const ConstantValue& other) const { return value_ == other.value_ && bitwidth_ == other.bitwidth_ && is_signed_ == other.is_signed_; } std::string ToString() const; private: uint64_t value_; int32_t bitwidth_; bool is_signed_; }; } #endif #include "xla/service/constant_value.h" #include <string> namespace xla { absl::StatusOr<ConstantValue> ConstantValue::FromLiteral( const Literal& literal) { CHECK_EQ(literal.shape().dimensions_size(), 0) << "Expected scalar literal"; return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<ConstantValue>>( [&](auto primitive_type_constant) -> absl::StatusOr<ConstantValue> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return ConstantValue( static_cast<uint64_t>( literal.GetFirstElement< primitive_util::NativeTypeOf<primitive_type_constant>>()), primitive_util::BitWidth(primitive_type_constant), primitive_util::IsSignedIntegralType(primitive_type_constant)); } return InvalidArgument("Unsupported type"); }, literal.shape().element_type()); } ConstantValue ConstantValue::div(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ / other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) / absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } ConstantValue ConstantValue::mod(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ % other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) % absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } ConstantValue ConstantValue::mul(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ * other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) * absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } bool ConstantValue::lt(const ConstantValue& other) const { if (!is_signed_) { return value_ < other.value_; } return absl::bit_cast<int64_t>(value_) < absl::bit_cast<int64_t>(other.value_); } bool ConstantValue::gt(const ConstantValue& other) const { if (!is_signed_) { return value_ > other.value_; } return absl::bit_cast<int64_t>(value_) > absl::bit_cast<int64_t>(other.value_); } std::string ConstantValue::ToString() const { return is_signed_ ? absl::StrCat(GetSignedValue()) : absl::StrCat(GetUnsignedValue()); } }
#include "xla/service/constant_value.h" #include <gtest/gtest.h> #include "xla/literal_util.h" namespace xla { namespace { class ConstantValueTest : public ::testing::Test {}; TEST_F(ConstantValueTest, ZeroTest32) { ConstantValue zero = ConstantValue::GetZero(32, false); EXPECT_EQ(zero.GetSignedValue(), 0); EXPECT_EQ(zero.GetUnsignedValue(), 0); EXPECT_EQ(zero.GetBitwidth(), 32); EXPECT_FALSE(zero.IsSigned()); ConstantValue zero_s = ConstantValue::GetZero(32, true); EXPECT_EQ(zero_s.GetSignedValue(), 0); EXPECT_EQ(zero_s.GetUnsignedValue(), 0); EXPECT_EQ(zero_s.GetBitwidth(), 32); EXPECT_TRUE(zero_s.IsSigned()); } TEST_F(ConstantValueTest, OneTest32) { ConstantValue one = ConstantValue::GetOne(32, false); EXPECT_EQ(one.GetSignedValue(), 1); EXPECT_EQ(one.GetUnsignedValue(), 1); EXPECT_EQ(one.GetBitwidth(), 32); EXPECT_FALSE(one.IsSigned()); ConstantValue one_s = ConstantValue::GetOne(32, true); EXPECT_EQ(one_s.GetSignedValue(), 1); EXPECT_EQ(one_s.GetUnsignedValue(), 1); EXPECT_EQ(one_s.GetBitwidth(), 32); EXPECT_TRUE(one_s.IsSigned()); } TEST_F(ConstantValueTest, Signed23) { ConstantValue signed_number = ConstantValue::GetSigned(4194303, 23); EXPECT_EQ(signed_number.GetSignedValue(), 4194303); EXPECT_EQ(signed_number.GetBitwidth(), 23); EXPECT_TRUE(signed_number.IsSigned()); ConstantValue signed_number_of = ConstantValue::GetSigned(4194304, 23); EXPECT_EQ(signed_number_of.GetSignedValue(), -4194304); EXPECT_EQ(signed_number_of.GetBitwidth(), 23); EXPECT_TRUE(signed_number_of.IsSigned()); } TEST_F(ConstantValueTest, Unsigned23) { ConstantValue unsigned_number = ConstantValue::GetUnsigned(8388607, 23); EXPECT_EQ(unsigned_number.GetUnsignedValue(), 8388607); EXPECT_EQ(unsigned_number.GetBitwidth(), 23); EXPECT_FALSE(unsigned_number.IsSigned()); ConstantValue unsigned_number_of = ConstantValue::GetUnsigned(8388608, 23); EXPECT_EQ(unsigned_number_of.GetUnsignedValue(), 0); EXPECT_EQ(unsigned_number_of.GetBitwidth(), 23); EXPECT_FALSE(unsigned_number_of.IsSigned()); } TEST_F(ConstantValueTest, FromLiteral) { auto cv_8 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int8_t>(-32))); EXPECT_TRUE(cv_8.ok()); EXPECT_TRUE(cv_8->IsSigned()); EXPECT_EQ(cv_8->GetBitwidth(), 8); EXPECT_EQ(cv_8->GetSignedValue(), -32); auto cv_u8 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int8_t>(32))); EXPECT_TRUE(cv_u8.ok()); EXPECT_TRUE(cv_u8->IsSigned()); EXPECT_EQ(cv_u8->GetBitwidth(), 8); EXPECT_EQ(cv_u8->GetUnsignedValue(), 32); auto cv_16 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int16_t>(32000))); EXPECT_TRUE(cv_16.ok()); EXPECT_TRUE(cv_16->IsSigned()); EXPECT_EQ(cv_16->GetBitwidth(), 16); EXPECT_EQ(cv_16->GetSignedValue(), 32000); auto cv_u16 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint16_t>(33000))); EXPECT_TRUE(cv_u16.ok()); EXPECT_FALSE(cv_u16->IsSigned()); EXPECT_EQ(cv_u16->GetBitwidth(), 16); EXPECT_EQ(cv_u16->GetUnsignedValue(), 33000); auto cv_32 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int32_t>(-2000000000))); EXPECT_TRUE(cv_32.ok()); EXPECT_TRUE(cv_32->IsSigned()); EXPECT_EQ(cv_32->GetBitwidth(), 32); EXPECT_EQ(cv_32->GetSignedValue(), -2000000000); auto cv_u32 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint32_t>(3000000000))); EXPECT_TRUE(cv_u32.ok()); EXPECT_FALSE(cv_u32->IsSigned()); EXPECT_EQ(cv_u32->GetBitwidth(), 32); EXPECT_EQ(cv_u32->GetUnsignedValue(), 3000000000); auto cv_64 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int64_t>(3000000000))); EXPECT_TRUE(cv_64.ok()); EXPECT_TRUE(cv_64->IsSigned()); EXPECT_EQ(cv_64->GetBitwidth(), 64); EXPECT_EQ(cv_64->GetSignedValue(), 3000000000); auto cv_u64 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint64_t>(6000000000))); EXPECT_TRUE(cv_u64.ok()); EXPECT_FALSE(cv_u64->IsSigned()); EXPECT_EQ(cv_u64->GetBitwidth(), 64); EXPECT_EQ(cv_u64->GetUnsignedValue(), 6000000000); } TEST_F(ConstantValueTest, Add) { ConstantValue lhs = ConstantValue::GetUnsigned(8388607, 23); ConstantValue rhs = ConstantValue::GetUnsigned(1, 23); ConstantValue result = lhs.add(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(8388600, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388607); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetSignedValue(), -6); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(-1, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetSignedValue(), 4194303); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Sub) { ConstantValue lhs = ConstantValue::GetUnsigned(8388607, 23); ConstantValue rhs = ConstantValue::GetUnsigned(1, 23); ConstantValue result = lhs.sub(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388606); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388607); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetSignedValue(), -14); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(1, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetSignedValue(), 4194303); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Div) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.div(rhs); EXPECT_EQ(result.GetUnsignedValue(), 2); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetSignedValue(), -2); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetSignedValue(), -2097152); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Mod) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.mod(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetUnsignedValue(), 6); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), -1); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(1, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Mul) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.mul(rhs); EXPECT_EQ(result.GetUnsignedValue(), 4418); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(8388607, 23); rhs = ConstantValue::GetUnsigned(2, 23); result = lhs.mul(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388606); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); result = lhs.mul(rhs); EXPECT_EQ(result.GetSignedValue(), -30); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, LtGtEq) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); EXPECT_FALSE(lhs.lt(rhs)); EXPECT_TRUE(lhs.gt(rhs)); lhs = ConstantValue::GetUnsigned(8388607, 23); rhs = ConstantValue::GetUnsigned(2, 23); EXPECT_FALSE(lhs.lt(rhs)); EXPECT_TRUE(lhs.gt(rhs)); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); EXPECT_TRUE(lhs.lt(rhs)); EXPECT_FALSE(lhs.gt(rhs)); lhs = ConstantValue::GetUnsigned(43, 23); rhs = ConstantValue::GetUnsigned(43, 23); EXPECT_TRUE(lhs.eq(rhs)); EXPECT_TRUE(rhs.eq(lhs)); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(-10, 23); EXPECT_TRUE(lhs.eq(rhs)); EXPECT_TRUE(rhs.eq(lhs)); lhs = ConstantValue::GetUnsigned(4194304, 23); rhs = ConstantValue::GetUnsigned(2, 23); EXPECT_FALSE(lhs.eq(rhs)); EXPECT_FALSE(rhs.eq(lhs)); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); EXPECT_FALSE(lhs.eq(rhs)); EXPECT_FALSE(rhs.eq(lhs)); } } }
250
#ifndef TENSORFLOW_COMPILER_TF2XLA_TF2XLA_H_ #define TENSORFLOW_COMPILER_TF2XLA_TF2XLA_H_ #include "absl/strings/string_view.h" #include "tensorflow/compiler/tf2xla/tf2xla.pb.h" #include "xla/client/client.h" #include "xla/client/xla_computation.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { Status ConvertGraphDefToXla(GraphDef graph_def, const tf2xla::Config& config, xla::Client* client, xla::XlaComputation* computation); Status ConvertGraphDefToXlaViaMlir( GraphDef graph_def, const tf2xla::Config& config, xla::XlaComputation* computation, absl::string_view debug_info_filename, absl::string_view debug_info_path_begin_marker); } #endif #include "tensorflow/compiler/tf2xla/tf2xla.h" #include <map> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/compiler/aot/aot_only_var_handle_op.h" #include "tensorflow/compiler/tf2xla/graph_compiler_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/xla_computation.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { Status ConvertGraphToXla(std::unique_ptr<Graph> graph, const tf2xla::Config& config, xla::Client* client, xla::XlaComputation* computation) { XlaOpRegistry::RegisterCompilationKernels(); for (Node* node : graph->nodes()) { node->set_assigned_device_name( absl::StrCat("/device:", DEVICE_CPU_XLA_JIT)); } std::vector<XlaCompiler::Argument> xla_args; TF_RETURN_IF_ERROR(CreateXlaArgs(*graph, &xla_args)); PopulateXlaArgs(config, &xla_args); XlaCompiler::Options compiler_options; compiler_options.client = client; compiler_options.device_type = DeviceType(DEVICE_CPU_XLA_JIT); compiler_options.flib_def = &graph->flib_def(); compiler_options.graph_def_version = graph->versions().producer(); compiler_options.allow_cpu_custom_calls = true; XlaCompiler compiler(compiler_options); XlaCompiler::CompilationResult result; XlaCompiler::CompileOptions options; options.alias_resource_update = true; TF_RETURN_IF_ERROR(compiler.CompileGraph( options, "tfcompile", std::move(graph), xla_args, &result)); *computation = std::move(*result.computation); int num_const_results = 0; for (int i = 0, end = result.outputs.size(); i < end; ++i) { if (result.outputs[i].is_constant) { ++num_const_results; LOG(ERROR) << "ConstRetVal index:" << i << " value:" << result.outputs[i].constant_value.DebugString(); } } if (num_const_results > 0) { return errors::Unimplemented( "Conversion from TensorFlow graph to XLA resulted in ", num_const_results, " constant results. The configuration of " "the output args (i.e. fetch ids) is probably wrong."); } { std::vector<bool> updated_inputs(xla_args.size()); for (const XlaCompiler::ResourceUpdate& update : result.resource_updates) { updated_inputs[update.input_index] = true; } int64_t input_index = xla_args.size() - config.variable_size(); for (const tf2xla::Variable& variable : config.variable()) { if (variable.readonly() == updated_inputs[input_index]) { return errors::InvalidArgument( "Variable \"", variable.node_name(), "\" is marked as ", variable.readonly() ? "" : "not ", "readonly, but is ", updated_inputs[input_index] ? "" : "not ", "modified by the computation."); } ++input_index; } } return absl::OkStatus(); } Status ConvertVarHandlesToAotVarHandles(GraphDef* graph_def) { auto update_var_handle_op_node = [](NodeDef& node) -> Status { if (node.op() == "VarHandleOp") { node.set_op(tfcompile::kXlaAotOnlyVarHandleOp); const auto& it = node.attr().find("allowed_devices"); if (it != node.attr().end()) { if (!it->second.list().s().empty()) { return errors::InvalidArgument( "VarHandleOp with non-empty allowed devices is not supported."); } node.mutable_attr()->erase("allowed_devices"); } } return absl::OkStatus(); }; for (auto& node : *graph_def->mutable_node()) { TF_RETURN_IF_ERROR(update_var_handle_op_node(node)); } for (auto& fn : *graph_def->mutable_library()->mutable_function()) { for (auto& node : *fn.mutable_node_def()) { TF_RETURN_IF_ERROR(update_var_handle_op_node(node)); } } return absl::OkStatus(); } } Status ConvertGraphDefToXla(GraphDef graph_def, const tf2xla::Config& config, xla::Client* client, xla::XlaComputation* computation) { std::unique_ptr<Graph> graph; TF_RETURN_IF_ERROR(ConvertVarHandlesToAotVarHandles(&graph_def)); TF_RETURN_IF_ERROR(InitGraph(graph_def, config, &graph)); TF_RETURN_IF_ERROR( ConvertGraphToXla(std::move(graph), config, client, computation)); return absl::OkStatus(); } }
#include "tensorflow/compiler/tf2xla/tf2xla.h" #include <vector> #include "tensorflow/compiler/tf2xla/tf2xla.pb.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/client/xla_computation.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/tensor_float_32_utils.h" namespace tensorflow { namespace { class ConvertGraphDefToXlaWithTF32Disabled : public ::testing::Test { public: ConvertGraphDefToXlaWithTF32Disabled() { tsl::enable_tensor_float_32_execution(false); } ~ConvertGraphDefToXlaWithTF32Disabled() override { tsl::enable_tensor_float_32_execution(true); } }; AttrValue TypeAttrValue(DataType type) { AttrValue attr_value; SetAttrValue(type, &attr_value); return attr_value; } AttrValue StringAttrValue(StringPiece str) { AttrValue attr_value; SetAttrValue(str, &attr_value); return attr_value; } AttrValue IntAttrValue(int i) { AttrValue attr_value; SetAttrValue(i, &attr_value); return attr_value; } AttrValue IntVectorAttrValue(const std::vector<int>& ints) { AttrValue attr_value; SetAttrValue(ints, &attr_value); return attr_value; } TensorShapeProto TensorShape(const std::vector<int>& dims) { TensorShapeProto shape; for (int i = 0; i < dims.size(); ++i) { shape.add_dim(); shape.mutable_dim(i)->set_size(dims[i]); } return shape; } GraphDef SumGraph() { GraphDef graph_def; NodeDef* x = graph_def.add_node(); x->set_name("x"); x->set_op("Placeholder"); (*x->mutable_attr())["dtype"] = TypeAttrValue(DT_INT32); NodeDef* y = graph_def.add_node(); y->set_name("y"); y->set_op("Placeholder"); (*y->mutable_attr())["dtype"] = TypeAttrValue(DT_INT32); NodeDef* sum = graph_def.add_node(); sum->set_name("sum"); sum->set_op("Add"); sum->add_input("x"); sum->add_input("y"); (*sum->mutable_attr())["T"] = TypeAttrValue(DT_INT32); return graph_def; } tf2xla::Config SumConfig() { tf2xla::Config config; config.add_feed()->mutable_id()->set_node_name("x"); config.add_feed()->mutable_id()->set_node_name("y"); config.add_fetch()->mutable_id()->set_node_name("sum"); return config; } TEST(ConvertGraphDefToXla, Sum) { GraphDef graph_def = SumGraph(); tf2xla::Config config = SumConfig(); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); auto x_literal = xla::LiteralUtil::CreateR0<int32>(10); auto y_literal = xla::LiteralUtil::CreateR0<int32>(32); auto x_global_or = client->TransferToServer(x_literal); auto y_global_or = client->TransferToServer(y_literal); TF_EXPECT_OK(x_global_or.status()); TF_EXPECT_OK(y_global_or.status()); std::unique_ptr<xla::GlobalData> x_global = std::move(x_global_or.value()); std::unique_ptr<xla::GlobalData> y_global = std::move(y_global_or.value()); auto result_or = client->ExecuteAndTransfer(computation, {x_global.get(), y_global.get()}); TF_EXPECT_OK(result_or.status()); xla::Literal result = std::move(result_or.value()); EXPECT_EQ("(\ns32[] 42\n)", result.ToString()); config.mutable_feed(0)->mutable_id()->set_output_index( 123); EXPECT_TRUE(errors::IsInvalidArgument( ConvertGraphDefToXla(graph_def, config, client, &computation))); } GraphDef EinsumGraph() { GraphDef graph_def; NodeDef* x = graph_def.add_node(); x->set_name("x"); x->set_op("Placeholder"); (*x->mutable_attr())["dtype"] = TypeAttrValue(DT_FLOAT); NodeDef* y = graph_def.add_node(); y->set_name("y"); y->set_op("Placeholder"); (*y->mutable_attr())["dtype"] = TypeAttrValue(DT_FLOAT); NodeDef* einsum = graph_def.add_node(); einsum->set_name("einsum"); einsum->set_op("Einsum"); einsum->add_input("x"); einsum->add_input("y"); (*einsum->mutable_attr())["equation"] = StringAttrValue("ij,jk->ik"); (*einsum->mutable_attr())["T"] = TypeAttrValue(DT_FLOAT); (*einsum->mutable_attr())["N"] = IntAttrValue(2); return graph_def; } tf2xla::Config EinsumConfig() { tf2xla::Config config; tf2xla::Feed* x_feed = config.add_feed(); x_feed->mutable_id()->set_node_name("x"); *x_feed->mutable_shape() = TensorShape({2, 2}); tf2xla::Feed* y_feed = config.add_feed(); y_feed->mutable_id()->set_node_name("y"); *y_feed->mutable_shape() = TensorShape({2, 2}); config.add_fetch()->mutable_id()->set_node_name("einsum"); return config; } TEST(ConvertGraphDefToXla, EinsumIsConvertedToDotWithDefaultPrecision) { GraphDef graph_def = EinsumGraph(); tf2xla::Config config = EinsumConfig(); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); int num_dots = 0; const xla::HloModuleProto& module_proto = computation.proto(); for (const xla::HloComputationProto& computation_proto : module_proto.computations()) { for (const xla::HloInstructionProto& instruction_proto : computation_proto.instructions()) { if (instruction_proto.opcode() == "dot") { num_dots++; ASSERT_EQ(instruction_proto.precision_config().operand_precision_size(), 2); EXPECT_EQ(instruction_proto.precision_config().operand_precision(0), xla::PrecisionConfig::DEFAULT); EXPECT_EQ(instruction_proto.precision_config().operand_precision(1), xla::PrecisionConfig::DEFAULT); } } } EXPECT_EQ(num_dots, 1); } TEST_F(ConvertGraphDefToXlaWithTF32Disabled, EinsumIsConvertedToDotWithHighestPrecision) { GraphDef graph_def = EinsumGraph(); tf2xla::Config config = EinsumConfig(); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); int num_dots = 0; const xla::HloModuleProto& module_proto = computation.proto(); for (const xla::HloComputationProto& computation_proto : module_proto.computations()) { for (const xla::HloInstructionProto& instruction_proto : computation_proto.instructions()) { if (instruction_proto.opcode() == "dot") { num_dots++; ASSERT_EQ(instruction_proto.precision_config().operand_precision_size(), 2); EXPECT_EQ(instruction_proto.precision_config().operand_precision(0), xla::PrecisionConfig::HIGHEST); EXPECT_EQ(instruction_proto.precision_config().operand_precision(1), xla::PrecisionConfig::HIGHEST); } } } EXPECT_EQ(num_dots, 1); } GraphDef Conv2DGraph() { GraphDef graph_def; NodeDef* x = graph_def.add_node(); x->set_name("x"); x->set_op("Placeholder"); (*x->mutable_attr())["dtype"] = TypeAttrValue(DT_FLOAT); NodeDef* y = graph_def.add_node(); y->set_name("y"); y->set_op("Placeholder"); (*y->mutable_attr())["dtype"] = TypeAttrValue(DT_FLOAT); NodeDef* einsum = graph_def.add_node(); einsum->set_name("conv2d"); einsum->set_op("Conv2D"); einsum->add_input("x"); einsum->add_input("y"); (*einsum->mutable_attr())["T"] = TypeAttrValue(DT_FLOAT); (*einsum->mutable_attr())["padding"] = StringAttrValue("VALID"); (*einsum->mutable_attr())["strides"] = IntVectorAttrValue({1, 1, 1, 1}); return graph_def; } tf2xla::Config Conv2DConfig() { tf2xla::Config config; tf2xla::Feed* x_feed = config.add_feed(); x_feed->mutable_id()->set_node_name("x"); *x_feed->mutable_shape() = TensorShape({1, 1, 2, 2}); tf2xla::Feed* y_feed = config.add_feed(); y_feed->mutable_id()->set_node_name("y"); *y_feed->mutable_shape() = TensorShape({1, 1, 2, 2}); config.add_fetch()->mutable_id()->set_node_name("conv2d"); return config; } TEST(ConvertGraphDefToXla, Conv2DIsConvertedToConvolutionWithDefaultPrecision) { GraphDef graph_def = Conv2DGraph(); tf2xla::Config config = Conv2DConfig(); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); int num_convolutions = 0; const xla::HloModuleProto& module_proto = computation.proto(); for (const xla::HloComputationProto& computation_proto : module_proto.computations()) { for (const xla::HloInstructionProto& instruction_proto : computation_proto.instructions()) { if (instruction_proto.opcode() == "convolution") { num_convolutions++; ASSERT_EQ(instruction_proto.precision_config().operand_precision_size(), 2); EXPECT_EQ(instruction_proto.precision_config().operand_precision(0), xla::PrecisionConfig::DEFAULT); EXPECT_EQ(instruction_proto.precision_config().operand_precision(1), xla::PrecisionConfig::DEFAULT); } } } EXPECT_EQ(num_convolutions, 1); } TEST_F(ConvertGraphDefToXlaWithTF32Disabled, Conv2DIsConvertedToConvolutionWithHighestPrecision) { GraphDef graph_def = Conv2DGraph(); tf2xla::Config config = Conv2DConfig(); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); int num_convolutions = 0; const xla::HloModuleProto& module_proto = computation.proto(); for (const xla::HloComputationProto& computation_proto : module_proto.computations()) { for (const xla::HloInstructionProto& instruction_proto : computation_proto.instructions()) { if (instruction_proto.opcode() == "convolution") { num_convolutions++; ASSERT_EQ(instruction_proto.precision_config().operand_precision_size(), 2); EXPECT_EQ(instruction_proto.precision_config().operand_precision(0), xla::PrecisionConfig::HIGHEST); EXPECT_EQ(instruction_proto.precision_config().operand_precision(1), xla::PrecisionConfig::HIGHEST); } } } EXPECT_EQ(num_convolutions, 1); } TEST(ConvertGraphDefToXla, SumWithUnusedArgument) { GraphDef graph_def = SumGraph(); tf2xla::Config config = SumConfig(); NodeDef* unused = graph_def.add_node(); unused->set_name("unused"); unused->set_op("Placeholder"); (*unused->mutable_attr())["dtype"] = TypeAttrValue(DT_INT32); config.add_feed()->mutable_id()->set_node_name("unused"); xla::LocalClient* client = xla::ClientLibrary::LocalClientOrDie(); xla::XlaComputation computation; TF_EXPECT_OK(ConvertGraphDefToXla(graph_def, config, client, &computation)); auto x_literal = xla::LiteralUtil::CreateR0<int32>(10); auto y_literal = xla::LiteralUtil::CreateR0<int32>(32); auto x_global_or = client->TransferToServer(x_literal); auto y_global_or = client->TransferToServer(y_literal); auto unused_global_or = client->TransferToServer(y_literal); TF_EXPECT_OK(x_global_or.status()); TF_EXPECT_OK(y_global_or.status()); TF_EXPECT_OK(unused_global_or.status()); std::unique_ptr<xla::GlobalData> x_global = std::move(x_global_or.value()); std::unique_ptr<xla::GlobalData> y_global = std::move(y_global_or.value()); std::unique_ptr<xla::GlobalData> unused_global = std::move(unused_global_or.value()); auto result_or = client->ExecuteAndTransfer( computation, {x_global.get(), y_global.get(), unused_global.get()}); TF_EXPECT_OK(result_or.status()); xla::Literal result = std::move(result_or.value()); EXPECT_EQ("(\ns32[] 42\n)", result.ToString()); } } }
251
#ifndef TENSORFLOW_CORE_KERNELS_GATHER_ND_OP_H_ #define TENSORFLOW_CORE_KERNELS_GATHER_ND_OP_H_ #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/bad_indices_policy.h" #include "tensorflow/core/util/util.h" namespace tensorflow { class OpKernelContext; class Tensor; namespace functor { template <typename Device, typename T, typename Index, int IXDIM> struct GatherNdSlice { Index operator()(const Device& d, const Index slice_size, typename TTypes<int32>::Scalar Tscratch, typename TTypes<T, IXDIM + 1>::ConstTensor Tparams, typename TTypes<Index>::ConstMatrix Tindices, typename TTypes<T>::Matrix Tout); }; template <typename Device, typename T, typename Index> Status DoGatherNd( OpKernelContext* c, const Tensor& params, const Tensor& indices, Tensor* out, BadIndicesPolicy bad_indices_policy = BadIndicesPolicy::kDefault) { if (!TensorShapeUtils::IsVectorOrHigher(params.shape())) { return errors::InvalidArgument("params must be at least a vector"); } if (!TensorShapeUtils::IsVectorOrHigher(indices.shape())) { return errors::InvalidArgument("indices must be at least a vector"); } if (indices.dim_size(indices.dims() - 1) > params.dims()) { return errors::InvalidArgument( "index innermost dimension length must be <= params rank; saw: ", indices.dim_size(indices.dims() - 1), " vs. ", params.dims()); } const TensorShape& indices_shape(indices.shape()); const int64_t indices_nd = indices_shape.dim_size(indices_shape.dims() - 1); int64_t N_big = 1; for (int i = 0; i < indices_shape.dims() - 1; ++i) { N_big *= indices_shape.dim_size(i); } if (N_big > std::numeric_limits<int>::max()) { return errors::InvalidArgument( "indices has too many elements for int indexing: ", N_big, " > ", std::numeric_limits<int>::max()); } if (params.NumElements() > std::numeric_limits<Index>::max()) { return errors::InvalidArgument("params.NumElements() too large for ", DataTypeString(DataTypeToEnum<Index>::v()), " indexing: ", params.NumElements(), " > ", std::numeric_limits<Index>::max()); } Index N_result = 1; for (int i = 0; i < indices_shape.dims() - 1; ++i) { N_result *= indices_shape.dim_size(i); } const TensorShape& params_shape(params.shape()); Index total_nd = params_shape.dims(); TensorShape result_shape(indices_shape); result_shape.RemoveLastDims(1); int64_t slice_size_big = 1; for (Index i = indices_nd; i < total_nd; ++i) { slice_size_big *= params_shape.dim_size(i); TF_RETURN_IF_ERROR(result_shape.AddDimWithStatus(params_shape.dim_size(i))); } if (slice_size_big > std::numeric_limits<Index>::max()) { return errors::InvalidArgument( "slice size is too large for indexing: ", slice_size_big, " > ", std::numeric_limits<Index>::max()); } const Index slice_size = static_cast<Index>(slice_size_big); TF_RETURN_IF_ERROR( c->allocate_temp(DataTypeToEnum<T>::value, result_shape, out)); if (N_result > 0) { if (params_shape.num_elements() == 0) { return errors::InvalidArgument( "Requested more than 0 entries, but " "params is empty. Params shape: ", params_shape.DebugString()); } auto indices_mat = indices.flat_inner_dims<Index>(); Index bad_i = -1; auto out_mat = out->shaped<T, 2>({N_result, slice_size}); Tensor scratch; TF_RETURN_IF_ERROR(c->allocate_temp(DT_INT32, TensorShape(), &scratch)); auto scratch_scalar = scratch.scalar<int32>(); switch (indices_nd) { #define PARAMS_CASE(IXDIM) \ case IXDIM: { \ functor::GatherNdSlice<Device, T, Index, IXDIM> func; \ auto params_flat = params.flat_outer_dims<T, IXDIM + 1>(); \ bad_i = func(c->eigen_device<Device>(), slice_size, scratch_scalar, \ params_flat, indices_mat, out_mat); \ } break PARAMS_CASE(0); PARAMS_CASE(1); PARAMS_CASE(2); PARAMS_CASE(3); PARAMS_CASE(4); PARAMS_CASE(5); PARAMS_CASE(6); PARAMS_CASE(7); #undef PARAMS_CASE default: return errors::InvalidArgument( "Only indices.shape[-1] values between 1 and 7 " "are currently supported. Requested rank: ", indices_nd); } using CPUDevice = Eigen::ThreadPoolDevice; const bool check_bad_indices = ((std::is_same<Device, CPUDevice>::value && bad_indices_policy == BadIndicesPolicy::kDefault) || bad_indices_policy == BadIndicesPolicy::kError); if (check_bad_indices && bad_i >= 0) { auto shape = indices.shape(); shape.RemoveLastDims(1); return errors::InvalidArgument( "indices", SliceDebugString(shape, bad_i), " = [", str_util::Join( gtl::ArraySlice<Index>(&indices_mat(bad_i, 0), indices_nd), ", "), "] does not index into param shape ", params.shape().DebugString(), ", node name: ", c->op_kernel().name()); } } return absl::OkStatus(); } } } #endif #define EIGEN_USE_THREADS #include "tensorflow/core/kernels/gather_nd_op.h" #include <string> #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/bad_indices_policy.h" namespace tensorflow { namespace { constexpr char kBadIndicesPolicyAtrr[] = "bad_indices_policy"; } typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; template <typename Device, typename T, typename Index> class GatherNdOp : public OpKernel { public: explicit GatherNdOp(OpKernelConstruction* c) : OpKernel(c) { const DataType dt = DataTypeToEnum<T>::v(); const DataType index_t = DataTypeToEnum<Index>::v(); OP_REQUIRES_OK(c, c->MatchSignature({dt, index_t}, {dt})); if (c->HasAttr(kBadIndicesPolicyAtrr)) { std::string bad_indices_policy_str; OP_REQUIRES_OK( c, c->GetAttr(kBadIndicesPolicyAtrr, &bad_indices_policy_str)); absl::StatusOr<BadIndicesPolicy> bad_indices_policy = BadIndicesPolicyFromString(bad_indices_policy_str); OP_REQUIRES_OK(c, bad_indices_policy.status()); bad_indices_policy_ = *bad_indices_policy; } } void Compute(OpKernelContext* c) override { const Tensor& params = c->input(0); const Tensor& indices = c->input(1); Tensor out; OP_REQUIRES_OK(c, functor::DoGatherNd<Device, T, Index>( c, params, indices, &out, bad_indices_policy_)); c->set_output(0, out); } private: BadIndicesPolicy bad_indices_policy_ = BadIndicesPolicy::kDefault; }; #define REGISTER_GATHER_ND_FULL(dev, type, index_type) \ REGISTER_KERNEL_BUILDER( \ Name("GatherNd") \ .Device(DEVICE_##dev) \ .TypeConstraint<type>("Tparams") \ .TypeConstraint<index_type>("Tindices") \ .AttrConstraint<std::string>( \ "bad_indices_policy", \ {"", "DEFAULT", "ERROR", "IGNORE"}), \ GatherNdOp<dev##Device, type, index_type>) #define REGISTER_GATHER_ND_CPU(type) \ REGISTER_GATHER_ND_FULL(CPU, type, int16); \ REGISTER_GATHER_ND_FULL(CPU, type, int32); \ REGISTER_GATHER_ND_FULL(CPU, type, int64_t) TF_CALL_ALL_TYPES(REGISTER_GATHER_ND_CPU); TF_CALL_QUANTIZED_TYPES(REGISTER_GATHER_ND_CPU); TF_CALL_float8_e5m2(REGISTER_GATHER_ND_CPU); TF_CALL_float8_e4m3fn(REGISTER_GATHER_ND_CPU); #undef REGISTER_GATHER_ND_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace functor { #define DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, NDIM) \ template <> \ Index GatherNdSlice<GPUDevice, T, Index, NDIM>::operator()( \ const GPUDevice& d, const Index slice_size, \ typename TTypes<int32>::Scalar Tscratch, \ typename TTypes<T, NDIM + 1>::ConstTensor Tparams, \ typename TTypes<Index>::ConstMatrix Tindices, \ typename TTypes<T>::Matrix Tout); \ extern template struct GatherNdSlice<GPUDevice, T, Index, NDIM>; #define DECLARE_GPU_SPECS_INDEX(T, Index) \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 0); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 1); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 2); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 3); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 4); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 5); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 6); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 7); #define DECLARE_GPU_SPECS(T) \ DECLARE_GPU_SPECS_INDEX(T, int32); \ DECLARE_GPU_SPECS_INDEX(T, int64_t) TF_CALL_int32(DECLARE_GPU_SPECS); TF_CALL_int64(DECLARE_GPU_SPECS); TF_CALL_GPU_NUMBER_TYPES(DECLARE_GPU_SPECS); TF_CALL_COMPLEX_TYPES(DECLARE_GPU_SPECS); #undef DECLARE_GPU_SPECS #undef DECLARE_GPU_SPECS_INDEX } #undef REGISTER_GATHER_ND_FULL #define REGISTER_GATHER_ND_FULL(dev, type, index_type) \ REGISTER_KERNEL_BUILDER( \ Name("GatherNd") \ .Device(DEVICE_##dev) \ .TypeConstraint<type>("Tparams") \ .TypeConstraint<index_type>("Tindices") \ .AttrConstraint<std::string>("bad_indices_policy", \ {"", "DEFAULT", "IGNORE"}), \ GatherNdOp<dev##Device, type, index_type>) #define REGISTER_GATHER_ND_GPU(type) \ REGISTER_GATHER_ND_FULL(GPU, type, int32); \ REGISTER_GATHER_ND_FULL(GPU, type, int64_t) TF_CALL_int32(REGISTER_GATHER_ND_GPU); TF_CALL_int64(REGISTER_GATHER_ND_GPU); TF_CALL_GPU_NUMBER_TYPES(REGISTER_GATHER_ND_GPU); TF_CALL_COMPLEX_TYPES(REGISTER_GATHER_ND_GPU); #undef REGISTER_GATHER_ND_GPU #endif #undef REGISTER_GATHER_ND_FULL }
#include <functional> #include <memory> #include <vector> #include "absl/strings/match.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace test { namespace graph { class Node* GatherNd(Graph* g, class Node* in0, class Node* in1) { class Node* ret; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "GatherNd") .Input(in0) .Input(in1) .Finalize(g, &ret)); return ret; } } } namespace { class GatherNdOpTest : public OpsTestBase { protected: void MakeOp(DataType param_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(param_type)) .Input(FakeInput(index_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(GatherNdOpTest, Simple) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected, {8, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(GatherNdOpTest, Error_OutOfRange) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 5}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains( s.message(), "indices[1] = [5] does not index into param shape [5]")) << s.message(); } TEST_F(GatherNdOpTest, Quantized_UINT8) { MakeOp(DT_QUINT8, DT_INT32); AddInputFromArray<quint8>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({2})); test::FillValues<quint8>(&expected, {8, 4}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); } TEST_F(GatherNdOpTest, Quantized_INT8) { MakeOp(DT_QINT8, DT_INT32); AddInputFromArray<qint8>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT8, TensorShape({2})); test::FillValues<qint8>(&expected, {8, 4}); test::ExpectTensorEqual<qint8>(expected, *GetOutput(0)); } class GatherNdOpIgnoreBadIndicesTest : public OpsTestBase { protected: void MakeOp(DataType param_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(param_type)) .Input(FakeInput(index_type)) .Attr("bad_indices_policy", "IGNORE") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(GatherNdOpIgnoreBadIndicesTest, IgnoreOutOfRange) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {9, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({3, 1}), {3, 5, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {8, 0, 1}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } class GatherNdOpConstructionTest : public OpsTestBase {}; TEST_F(GatherNdOpConstructionTest, Error_BadIndicesPolicyInvalid) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("bad_indices_policy", "AN_UNRECOGNIZED_POLICY") .Finalize(node_def())); EXPECT_NE(InitOp(), absl::OkStatus()); } constexpr int kLookups = 2000; template <typename Index> static Graph* GatherNd(int dim) { Graph* g = new Graph(OpRegistry::Global()); Tensor params(DT_FLOAT, TensorShape({dim, 8, 16, 32})); params.flat<float>().setRandom(); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); Tensor indices(DataTypeToEnum<Index>::value, TensorShape({kLookups, 4})); auto indices_mat = indices.matrix<Index>(); for (int i = 0; i < kLookups; i++) { indices_mat(i, 0) = rnd.Uniform(dim); indices_mat(i, 1) = rnd.Uniform(8); indices_mat(i, 2) = rnd.Uniform(16); indices_mat(i, 3) = rnd.Uniform(32); } test::graph::GatherNd(g, test::graph::Constant(g, params), test::graph::Constant(g, indices)); return g; } #define BM_GATHER_ND(DEVICE, INDEX) \ static void BM_##DEVICE##_gather_nd_##INDEX( \ ::testing::benchmark::State& state) { \ const int dim = state.range(0); \ test::Benchmark(#DEVICE, GatherNd<INDEX>(dim), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * kLookups * 4; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_gather_nd_##INDEX) \ ->UseRealTime() \ ->Arg(10) \ ->Arg(100) \ ->Arg(1000) \ ->Arg(10000) BM_GATHER_ND(cpu, int32); BM_GATHER_ND(gpu, int32); BM_GATHER_ND(cpu, int64_t); BM_GATHER_ND(gpu, int64_t); } }
252
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RESIZE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RESIZE_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewResizeNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/resize.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class Resize : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const Resize2DAttributes&>(ctx.op_attr); if (ctx.input_shapes[0][2] > ctx.output_shapes[0][2] || ctx.input_shapes[0][1] > ctx.output_shapes[0][1]) { return absl::UnimplementedError( "Downsampling is currently not supported by the resize op on GPU."); } if (ctx.output_shapes[0][2] != attr.new_shape.w || ctx.output_shapes[0][1] != attr.new_shape.h) { return absl::InvalidArgumentError( "Output size does not match new_size in attributes."); } if (ctx.input_shapes[0][3] != ctx.output_shapes[0][3]) { return absl::InvalidArgumentError("Input/output channels mismatch."); } if (ctx.input_shapes[0][1] == 1 && ctx.input_shapes[0][2] == 1) { *generated_code = { {}, {}, {}, uint3(), uint3(), "value_0 = $input_data_0[0, 0, gid.z]$;", IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"scale_factor", float2(CalculateResizeScale(ctx.input_shapes[0][2], ctx.output_shapes[0][2], attr), CalculateResizeScale(ctx.input_shapes[0][1], ctx.output_shapes[0][1], attr))}, }; std::string source; if (attr.type == SamplingType::BILINEAR) { if (attr.half_pixel_centers) { source = "vec2 coord = (vec2(gid.xy) + 0.5) * $scale_factor$ - 0.5;"; } else { source = "vec2 coord = vec2(gid.xy) * $scale_factor$;"; } source += R"( vec2 coord_floor = floor(coord); ivec2 icoord_floor = ivec2(coord_floor); ivec2 borders = ivec2($input_data_0_w$, $input_data_0_h$) - ivec2(1, 1); ivec4 st; st.xy = max(icoord_floor, ivec2(0, 0)); st.zw = min(icoord_floor + ivec2(1, 1), borders); vec2 t = coord - coord_floor; vec4 tex11 = $input_data_0[st.x, st.y, gid.z]$; vec4 tex21 = $input_data_0[st.z, st.y, gid.z]$; vec4 tex12 = $input_data_0[st.x, st.w, gid.z]$; vec4 tex22 = $input_data_0[st.z, st.w, gid.z]$; value_0 = mix(mix(tex11, tex21, t.x), mix(tex12, tex22, t.x), t.y);)"; } else if (attr.type == SamplingType::NEAREST) { std::string fxc; std::string fyc; if (attr.half_pixel_centers) { fxc = "(float(gid.x) + 0.5) * $scale_factor.x$"; fyc = "(float(gid.y) + 0.5) * $scale_factor.y$"; } else { fxc = "float(gid.x) * $scale_factor.x$"; fyc = "float(gid.y) * $scale_factor.y$"; } if (attr.align_corners) { fxc += " + 0.5"; fyc += " + 0.5"; } source += " ivec2 coord;\n"; source += " coord.x = int(" + fxc + ");\n"; source += " coord.y = int(" + fyc + ");\n"; source += " coord.x = max(0, coord.x);\n"; source += " coord.y = max(0, coord.y);\n"; source += " coord.x = min(coord.x, $input_data_0_w$ - 1);\n"; source += " coord.y = min(coord.y, $input_data_0_h$ - 1);\n"; source += R"( value_0 = $input_data_0[coord.x, coord.y, gid.z]$; )"; } else { return absl::InvalidArgumentError("Unknown sampling type"); } *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewResizeNodeShader() { return std::make_unique<Resize>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/resize.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(ResizeTest, Bilinear1x1x2To2x2x2) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 1, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 2, 2, 2); Resize2DAttributes attr; attr.align_corners = true; attr.new_shape = HW(2, 2); attr.type = SamplingType::BILINEAR; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0})); } TEST(ResizeTest, Bilinear1x2x1To1x4x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 1, 4, 1); Resize2DAttributes attr; attr.align_corners = false; attr.new_shape = HW(1, 4); attr.type = SamplingType::BILINEAR; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 4.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 2.5, 4.0, 4.0})); } TEST(ResizeTest, Bilinear2x2x1To4x4x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 4, 4, 1); Resize2DAttributes attr; attr.align_corners = false; attr.new_shape = HW(4, 4); attr.type = SamplingType::BILINEAR; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 4.0, 6.0, 8.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 2.5, 4.0, 4.0, 3.5, 4.75, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 6.0, 7.0, 8.0, 8.0})); } TEST(ResizeTest, Bilinear2x2x1To3x3x1WithoutHalfPixel) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 3, 1); Resize2DAttributes attr; attr.align_corners = false; attr.half_pixel_centers = false; attr.new_shape = HW(3, 3); attr.type = SamplingType::BILINEAR; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 1.666666, 2.0, 2.333333, 3.0, 3.333333, 3.0, 3.666666, 4.0})); } TEST(ResizeTest, Bilinear2x2x1To3x3x1WithHalfPixel) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 3, 1); Resize2DAttributes attr; attr.align_corners = false; attr.half_pixel_centers = true; attr.new_shape = HW(3, 3); attr.type = SamplingType::BILINEAR; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.5, 4.0})); } TEST(ResizeTest, Nearest1x2x1To2x4x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 4, 1); Resize2DAttributes attr; attr.align_corners = false; attr.new_shape = HW(2, 4); attr.type = SamplingType::NEAREST; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0})); } TEST(ResizeTest, NearestAlignCorners) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 3, 3, 1); Resize2DAttributes attr; attr.align_corners = true; attr.half_pixel_centers = false; attr.new_shape = HW(3, 3); attr.type = SamplingType::NEAREST; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {3.0f, 6.0f, 9.0f, 12.0f})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {3.0f, 6.0f, 6.0f, 9.0f, 12.0f, 12.0f, 9.0f, 12.0f, 12.0f})); } TEST(ResizeTest, NearestHalfPixelCenters) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 3, 3, 1); Resize2DAttributes attr; attr.align_corners = false; attr.half_pixel_centers = true; attr.new_shape = HW(3, 3); attr.type = SamplingType::NEAREST; SingleOpModel model({ToString(OperationType::RESIZE), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {3.0f, 6.0f, 9.0f, 12.0f})); ASSERT_OK(model.Invoke(*NewResizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {3.0f, 6.0f, 6.0f, 9.0f, 12.0f, 12.0f, 9.0f, 12.0f, 12.0f})); } } } } }
253
#ifndef ABSL_LOG_INTERNAL_FLAGS_H_ #define ABSL_LOG_INTERNAL_FLAGS_H_ #include <string> #include "absl/flags/declare.h" ABSL_DECLARE_FLAG(int, stderrthreshold); ABSL_DECLARE_FLAG(int, minloglevel); ABSL_DECLARE_FLAG(std::string, log_backtrace_at); ABSL_DECLARE_FLAG(bool, log_prefix); ABSL_DECLARE_FLAG(int, v); ABSL_DECLARE_FLAG(std::string, vmodule); #endif #include "absl/log/internal/flags.h" #include <stddef.h> #include <algorithm> #include <cstdlib> #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/log_severity.h" #include "absl/flags/flag.h" #include "absl/flags/marshalling.h" #include "absl/log/globals.h" #include "absl/log/internal/config.h" #include "absl/log/internal/vlog_config.h" #include "absl/strings/numbers.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace log_internal { namespace { void SyncLoggingFlags() { absl::SetFlag(&FLAGS_minloglevel, static_cast<int>(absl::MinLogLevel())); absl::SetFlag(&FLAGS_log_prefix, absl::ShouldPrependLogPrefix()); } bool RegisterSyncLoggingFlags() { log_internal::SetLoggingGlobalsListener(&SyncLoggingFlags); return true; } ABSL_ATTRIBUTE_UNUSED const bool unused = RegisterSyncLoggingFlags(); template <typename T> T GetFromEnv(const char* varname, T dflt) { const char* val = ::getenv(varname); if (val != nullptr) { std::string err; ABSL_INTERNAL_CHECK(absl::ParseFlag(val, &dflt, &err), err.c_str()); } return dflt; } constexpr absl::LogSeverityAtLeast StderrThresholdDefault() { return absl::LogSeverityAtLeast::kError; } } } ABSL_NAMESPACE_END } ABSL_FLAG(int, stderrthreshold, static_cast<int>(absl::log_internal::StderrThresholdDefault()), "Log messages at or above this threshold level are copied to stderr.") .OnUpdate([] { absl::log_internal::RawSetStderrThreshold( static_cast<absl::LogSeverityAtLeast>( absl::GetFlag(FLAGS_stderrthreshold))); }); ABSL_FLAG(int, minloglevel, static_cast<int>(absl::LogSeverityAtLeast::kInfo), "Messages logged at a lower level than this don't actually " "get logged anywhere") .OnUpdate([] { absl::log_internal::RawSetMinLogLevel( static_cast<absl::LogSeverityAtLeast>( absl::GetFlag(FLAGS_minloglevel))); }); ABSL_FLAG(std::string, log_backtrace_at, "", "Emit a backtrace when logging at file:linenum.") .OnUpdate([] { const std::string log_backtrace_at = absl::GetFlag(FLAGS_log_backtrace_at); if (log_backtrace_at.empty()) { absl::ClearLogBacktraceLocation(); return; } const size_t last_colon = log_backtrace_at.rfind(':'); if (last_colon == log_backtrace_at.npos) { absl::ClearLogBacktraceLocation(); return; } const absl::string_view file = absl::string_view(log_backtrace_at).substr(0, last_colon); int line; if (!absl::SimpleAtoi( absl::string_view(log_backtrace_at).substr(last_colon + 1), &line)) { absl::ClearLogBacktraceLocation(); return; } absl::SetLogBacktraceLocation(file, line); }); ABSL_FLAG(bool, log_prefix, true, "Prepend the log prefix to the start of each log line") .OnUpdate([] { absl::log_internal::RawEnableLogPrefix(absl::GetFlag(FLAGS_log_prefix)); }); ABSL_FLAG(int, v, 0, "Show all VLOG(m) messages for m <= this. Overridable by --vmodule.") .OnUpdate([] { absl::log_internal::UpdateGlobalVLogLevel(absl::GetFlag(FLAGS_v)); }); ABSL_FLAG( std::string, vmodule, "", "per-module log verbosity level." " Argument is a comma-separated list of <module name>=<log level>." " <module name> is a glob pattern, matched against the filename base" " (that is, name ignoring .cc/.h./-inl.h)." " A pattern without slashes matches just the file name portion, otherwise" " the whole file path below the workspace root" " (still without .cc/.h./-inl.h) is matched." " ? and * in the glob pattern match any single or sequence of characters" " respectively including slashes." " <log level> overrides any value given by --v.") .OnUpdate([] { absl::log_internal::UpdateVModule(absl::GetFlag(FLAGS_vmodule)); });
#include "absl/log/internal/flags.h" #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/log_severity.h" #include "absl/flags/flag.h" #include "absl/flags/reflection.h" #include "absl/log/globals.h" #include "absl/log/internal/test_helpers.h" #include "absl/log/internal/test_matchers.h" #include "absl/log/log.h" #include "absl/log/scoped_mock_log.h" #include "absl/strings/str_cat.h" namespace { using ::absl::log_internal::TextMessage; using ::testing::HasSubstr; using ::testing::Not; auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment( new absl::log_internal::LogTestEnvironment); constexpr static absl::LogSeverityAtLeast DefaultStderrThreshold() { return absl::LogSeverityAtLeast::kError; } class LogFlagsTest : public ::testing::Test { protected: absl::FlagSaver flag_saver_; }; TEST_F(LogFlagsTest, DISABLED_StderrKnobsDefault) { EXPECT_EQ(absl::StderrThreshold(), DefaultStderrThreshold()); } TEST_F(LogFlagsTest, SetStderrThreshold) { absl::SetFlag(&FLAGS_stderrthreshold, static_cast<int>(absl::LogSeverityAtLeast::kInfo)); EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kInfo); absl::SetFlag(&FLAGS_stderrthreshold, static_cast<int>(absl::LogSeverityAtLeast::kError)); EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kError); } TEST_F(LogFlagsTest, SetMinLogLevel) { absl::SetFlag(&FLAGS_minloglevel, static_cast<int>(absl::LogSeverityAtLeast::kError)); EXPECT_EQ(absl::MinLogLevel(), absl::LogSeverityAtLeast::kError); absl::log_internal::ScopedMinLogLevel scoped_min_log_level( absl::LogSeverityAtLeast::kWarning); EXPECT_EQ(absl::GetFlag(FLAGS_minloglevel), static_cast<int>(absl::LogSeverityAtLeast::kWarning)); } TEST_F(LogFlagsTest, PrependLogPrefix) { absl::SetFlag(&FLAGS_log_prefix, false); EXPECT_EQ(absl::ShouldPrependLogPrefix(), false); absl::EnableLogPrefix(true); EXPECT_EQ(absl::GetFlag(FLAGS_log_prefix), true); } TEST_F(LogFlagsTest, EmptyBacktraceAtFlag) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, ""); LOG(INFO) << "hello world"; } TEST_F(LogFlagsTest, BacktraceAtNonsense) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, "gibberish"); LOG(INFO) << "hello world"; } TEST_F(LogFlagsTest, BacktraceAtWrongFile) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO) << "hello world"; }; absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat("some_other_file.cc:", log_line)); do_log(); } TEST_F(LogFlagsTest, BacktraceAtWrongLine) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO) << "hello world"; }; absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat("flags_test.cc:", log_line + 1)); do_log(); } TEST_F(LogFlagsTest, BacktraceAtWholeFilename) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO) << "hello world"; }; absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat(__FILE__, ":", log_line)); do_log(); } TEST_F(LogFlagsTest, BacktraceAtNonmatchingSuffix) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO) << "hello world"; }; absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat("flags_test.cc:", log_line, "gibberish")); do_log(); } TEST_F(LogFlagsTest, LogsBacktrace) { absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO) << "hello world"; }; absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); testing::InSequence seq; EXPECT_CALL(test_sink, Send(TextMessage(HasSubstr("(stacktrace:")))); EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:"))))); test_sink.StartCapturingLogs(); absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat("flags_test.cc:", log_line)); do_log(); absl::SetFlag(&FLAGS_log_backtrace_at, ""); do_log(); } }
254
#ifndef ABSL_DEBUGGING_LEAK_CHECK_H_ #define ABSL_DEBUGGING_LEAK_CHECK_H_ #include <cstddef> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN bool HaveLeakSanitizer(); bool LeakCheckerIsActive(); void DoIgnoreLeak(const void* ptr); template <typename T> T* IgnoreLeak(T* ptr) { DoIgnoreLeak(ptr); return ptr; } bool FindAndReportLeaks(); class LeakCheckDisabler { public: LeakCheckDisabler(); LeakCheckDisabler(const LeakCheckDisabler&) = delete; LeakCheckDisabler& operator=(const LeakCheckDisabler&) = delete; ~LeakCheckDisabler(); }; void RegisterLivePointers(const void* ptr, size_t size); void UnRegisterLivePointers(const void* ptr, size_t size); ABSL_NAMESPACE_END } #endif #include "absl/debugging/leak_check.h" #include "absl/base/attributes.h" #include "absl/base/config.h" #if defined(ABSL_HAVE_LEAK_SANITIZER) #include <sanitizer/lsan_interface.h> #if ABSL_HAVE_ATTRIBUTE_WEAK extern "C" ABSL_ATTRIBUTE_WEAK int __lsan_is_turned_off(); #endif namespace absl { ABSL_NAMESPACE_BEGIN bool HaveLeakSanitizer() { return true; } #if ABSL_HAVE_ATTRIBUTE_WEAK bool LeakCheckerIsActive() { return !(&__lsan_is_turned_off && __lsan_is_turned_off()); } #else bool LeakCheckerIsActive() { return true; } #endif bool FindAndReportLeaks() { return __lsan_do_recoverable_leak_check(); } void DoIgnoreLeak(const void* ptr) { __lsan_ignore_object(ptr); } void RegisterLivePointers(const void* ptr, size_t size) { __lsan_register_root_region(ptr, size); } void UnRegisterLivePointers(const void* ptr, size_t size) { __lsan_unregister_root_region(ptr, size); } LeakCheckDisabler::LeakCheckDisabler() { __lsan_disable(); } LeakCheckDisabler::~LeakCheckDisabler() { __lsan_enable(); } ABSL_NAMESPACE_END } #else namespace absl { ABSL_NAMESPACE_BEGIN bool HaveLeakSanitizer() { return false; } bool LeakCheckerIsActive() { return false; } void DoIgnoreLeak(const void*) { } void RegisterLivePointers(const void*, size_t) { } void UnRegisterLivePointers(const void*, size_t) { } LeakCheckDisabler::LeakCheckDisabler() = default; LeakCheckDisabler::~LeakCheckDisabler() = default; ABSL_NAMESPACE_END } #endif
#include <string> #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/debugging/leak_check.h" #include "absl/log/log.h" namespace { TEST(LeakCheckTest, IgnoreLeakSuppressesLeakedMemoryErrors) { if (!absl::LeakCheckerIsActive()) { GTEST_SKIP() << "LeakChecker is not active"; } auto foo = absl::IgnoreLeak(new std::string("some ignored leaked string")); LOG(INFO) << "Ignoring leaked string " << foo; } TEST(LeakCheckTest, LeakCheckDisablerIgnoresLeak) { if (!absl::LeakCheckerIsActive()) { GTEST_SKIP() << "LeakChecker is not active"; } absl::LeakCheckDisabler disabler; auto foo = new std::string("some string leaked while checks are disabled"); LOG(INFO) << "Ignoring leaked string " << foo; } }
255
#ifndef QUICHE_QUIC_QBONE_QBONE_STREAM_H_ #define QUICHE_QUIC_QBONE_QBONE_STREAM_H_ #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_stream.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { class QboneSessionBase; class QUIC_EXPORT_PRIVATE QboneWriteOnlyStream : public QuicStream { public: QboneWriteOnlyStream(QuicStreamId id, QuicSession* session); void OnDataAvailable() override {} void WritePacketToQuicStream(absl::string_view packet); }; class QUIC_EXPORT_PRIVATE QboneReadOnlyStream : public QuicStream { public: QboneReadOnlyStream(QuicStreamId id, QboneSessionBase* session); ~QboneReadOnlyStream() override = default; void OnDataAvailable() override; private: std::string buffer_; QboneSessionBase* session_; }; } #endif #include "quiche/quic/qbone/qbone_stream.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/qbone/qbone_constants.h" #include "quiche/quic/qbone/qbone_session_base.h" #include "quiche/common/platform/api/quiche_command_line_flags.h" DEFINE_QUICHE_COMMAND_LINE_FLAG(int, qbone_stream_ttl_secs, 3, "The QBONE Stream TTL in seconds."); namespace quic { QboneWriteOnlyStream::QboneWriteOnlyStream(QuicStreamId id, QuicSession* session) : QuicStream(id, session, false, WRITE_UNIDIRECTIONAL) { MaybeSetTtl(QuicTime::Delta::FromSeconds( quiche::GetQuicheCommandLineFlag(FLAGS_qbone_stream_ttl_secs))); } void QboneWriteOnlyStream::WritePacketToQuicStream(absl::string_view packet) { WriteOrBufferData(packet, true, nullptr); } QboneReadOnlyStream::QboneReadOnlyStream(QuicStreamId id, QboneSessionBase* session) : QuicStream(id, session, false, READ_UNIDIRECTIONAL), session_(session) { MaybeSetTtl(QuicTime::Delta::FromSeconds( quiche::GetQuicheCommandLineFlag(FLAGS_qbone_stream_ttl_secs))); } void QboneReadOnlyStream::OnDataAvailable() { sequencer()->Read(&buffer_); if (sequencer()->IsClosed()) { session_->ProcessPacketFromPeer(buffer_); OnFinRead(); return; } if (buffer_.size() > QboneConstants::kMaxQbonePacketBytes) { if (!rst_sent()) { Reset(QUIC_BAD_APPLICATION_PAYLOAD); } StopReading(); } } }
#include "quiche/quic/qbone/qbone_stream.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_stream_priority.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/qbone/qbone_constants.h" #include "quiche/quic/qbone/qbone_session_base.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/mock_connection_id_generator.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/simple_buffer_allocator.h" namespace quic { namespace { using ::testing::_; using ::testing::StrictMock; class MockQuicSession : public QboneSessionBase { public: MockQuicSession(QuicConnection* connection, const QuicConfig& config) : QboneSessionBase(connection, nullptr , config, CurrentSupportedVersions(), nullptr ) {} ~MockQuicSession() override {} QuicConsumedData WritevData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state, TransmissionType type, EncryptionLevel level) override { if (!writable_) { return QuicConsumedData(0, false); } return QuicConsumedData(write_length, state != StreamSendingState::NO_FIN); } QboneReadOnlyStream* CreateIncomingStream(QuicStreamId id) override { return nullptr; } MOCK_METHOD(void, MaybeSendRstStreamFrame, (QuicStreamId stream_id, QuicResetStreamError error, QuicStreamOffset bytes_written), (override)); MOCK_METHOD(void, MaybeSendStopSendingFrame, (QuicStreamId stream_id, QuicResetStreamError error), (override)); void set_writable(bool writable) { writable_ = writable; } void RegisterReliableStream(QuicStreamId stream_id) { write_blocked_streams()->RegisterStream(stream_id, false, QuicStreamPriority()); } void ActivateReliableStream(std::unique_ptr<QuicStream> stream) { ActivateStream(std::move(stream)); } std::unique_ptr<QuicCryptoStream> CreateCryptoStream() override { return std::make_unique<test::MockQuicCryptoStream>(this); } MOCK_METHOD(void, ProcessPacketFromPeer, (absl::string_view), (override)); MOCK_METHOD(void, ProcessPacketFromNetwork, (absl::string_view), (override)); private: bool writable_ = true; }; class DummyPacketWriter : public QuicPacketWriter { public: DummyPacketWriter() {} WriteResult WritePacket(const char* buffer, size_t buf_len, const QuicIpAddress& self_address, const QuicSocketAddress& peer_address, PerPacketOptions* options, const QuicPacketWriterParams& params) override { return WriteResult(WRITE_STATUS_ERROR, 0); } bool IsWriteBlocked() const override { return false; }; void SetWritable() override {} std::optional<int> MessageTooBigErrorCode() const override { return std::nullopt; } QuicByteCount GetMaxPacketSize( const QuicSocketAddress& peer_address) const override { return 0; } bool SupportsReleaseTime() const override { return false; } bool IsBatchMode() const override { return false; } bool SupportsEcn() const override { return false; } QuicPacketBuffer GetNextWriteLocation( const QuicIpAddress& self_address, const QuicSocketAddress& peer_address) override { return {nullptr, nullptr}; } WriteResult Flush() override { return WriteResult(WRITE_STATUS_OK, 0); } }; class QboneReadOnlyStreamTest : public ::testing::Test, public QuicConnectionHelperInterface { public: void CreateReliableQuicStream() { Perspective perspective = Perspective::IS_SERVER; bool owns_writer = true; alarm_factory_ = std::make_unique<test::MockAlarmFactory>(); connection_.reset(new QuicConnection( test::TestConnectionId(0), QuicSocketAddress(TestLoopback(), 0), QuicSocketAddress(TestLoopback(), 0), this , alarm_factory_.get(), new DummyPacketWriter(), owns_writer, perspective, ParsedVersionOfIndex(CurrentSupportedVersions(), 0), connection_id_generator_)); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); session_ = std::make_unique<StrictMock<MockQuicSession>>(connection_.get(), QuicConfig()); session_->Initialize(); stream_ = new QboneReadOnlyStream(kStreamId, session_.get()); session_->ActivateReliableStream( std::unique_ptr<QboneReadOnlyStream>(stream_)); } ~QboneReadOnlyStreamTest() override {} const QuicClock* GetClock() const override { return &clock_; } QuicRandom* GetRandomGenerator() override { return QuicRandom::GetInstance(); } quiche::QuicheBufferAllocator* GetStreamSendBufferAllocator() override { return &buffer_allocator_; } protected: QboneReadOnlyStream* stream_; std::unique_ptr<StrictMock<MockQuicSession>> session_; std::unique_ptr<QuicAlarmFactory> alarm_factory_; std::unique_ptr<QuicConnection> connection_; quiche::SimpleBufferAllocator buffer_allocator_; MockClock clock_; const QuicStreamId kStreamId = QuicUtils::GetFirstUnidirectionalStreamId( CurrentSupportedVersions()[0].transport_version, Perspective::IS_CLIENT); quic::test::MockConnectionIdGenerator connection_id_generator_; }; TEST_F(QboneReadOnlyStreamTest, ReadDataWhole) { std::string packet = "Stuff"; CreateReliableQuicStream(); QuicStreamFrame frame(kStreamId, true, 0, packet); EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); stream_->OnStreamFrame(frame); } TEST_F(QboneReadOnlyStreamTest, ReadBuffered) { CreateReliableQuicStream(); std::string packet = "Stuf"; { QuicStreamFrame frame(kStreamId, false, 0, packet); stream_->OnStreamFrame(frame); } packet = "f"; EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); { QuicStreamFrame frame(kStreamId, true, 4, packet); stream_->OnStreamFrame(frame); } } TEST_F(QboneReadOnlyStreamTest, ReadOutOfOrder) { CreateReliableQuicStream(); std::string packet = "f"; { QuicStreamFrame frame(kStreamId, true, 4, packet); stream_->OnStreamFrame(frame); } packet = "S"; { QuicStreamFrame frame(kStreamId, false, 0, packet); stream_->OnStreamFrame(frame); } packet = "tuf"; EXPECT_CALL(*session_, ProcessPacketFromPeer("Stuff")); { QuicStreamFrame frame(kStreamId, false, 1, packet); stream_->OnStreamFrame(frame); } } TEST_F(QboneReadOnlyStreamTest, ReadBufferedTooLarge) { CreateReliableQuicStream(); std::string packet = "0123456789"; int iterations = (QboneConstants::kMaxQbonePacketBytes / packet.size()) + 2; EXPECT_CALL(*session_, MaybeSendStopSendingFrame( kStreamId, QuicResetStreamError::FromInternal( QUIC_BAD_APPLICATION_PAYLOAD))); EXPECT_CALL( *session_, MaybeSendRstStreamFrame( kStreamId, QuicResetStreamError::FromInternal(QUIC_BAD_APPLICATION_PAYLOAD), _)); for (int i = 0; i < iterations; ++i) { QuicStreamFrame frame(kStreamId, i == (iterations - 1), i * packet.size(), packet); if (!stream_->reading_stopped()) { stream_->OnStreamFrame(frame); } } EXPECT_TRUE(stream_->reading_stopped()); } } }
256
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_DIALECTS_COMPARATORS_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_DIALECTS_COMPARATORS_H_ #include <complex> #include <cstdint> #include <type_traits> #include "llvm/Support/ErrorHandling.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value_util.h" namespace mlir { namespace interpreter { template <int64_t v, bool r, bool nan_result> struct FloatCompare : CwiseAll { template <typename T> static bool Apply(T a, T b) { if (isnan(a) || isnan(b)) return nan_result; if constexpr (v == 0) { return (a == b) == r; } else if constexpr (std::is_floating_point_v<T> || std::is_integral_v<T>) { auto cmp = a > b ? 1 : (a < b ? -1 : 0); return (cmp == v) == r; } else { llvm_unreachable("operation not supported for this type"); } } template <typename T> static bool isnan(T a) { return std::isnan(a); } template <typename T> static bool isnan(std::complex<T> a) { return std::isnan(std::real(a)) || std::isnan(std::imag(a)); } }; using Foeq = FloatCompare<0, true, false>; using Foge = FloatCompare<-1, false, false>; using Fogt = FloatCompare<1, true, false>; using Fole = FloatCompare<1, false, false>; using Folt = FloatCompare<-1, true, false>; using Fone = FloatCompare<0, false, false>; using Ford = FloatCompare<99, false, false>; using Fueq = FloatCompare<0, true, true>; using Fuge = FloatCompare<-1, false, true>; using Fugt = FloatCompare<1, true, true>; using Fule = FloatCompare<1, false, true>; using Fult = FloatCompare<-1, true, true>; using Fune = FloatCompare<0, false, true>; using Funo = FloatCompare<99, true, true>; template <int64_t v, bool r> struct UnsignedCompare : CwiseInt { template <typename T> static bool Apply(T a, T b) { using U = std::make_unsigned_t<T>; auto a_u = static_cast<U>(a); auto b_u = static_cast<U>(b); auto cmp = a_u > b_u ? 1 : (a_u < b_u ? -1 : 0); return (cmp == v) == r; } }; using Iuge = UnsignedCompare<-1, false>; using Iule = UnsignedCompare<1, false>; using Iugt = UnsignedCompare<1, true>; using Iult = UnsignedCompare<-1, true>; struct Iumax { template <typename T> static T apply(T a, T b) { return Iuge::Apply(a, b) ? a : b; } }; struct Iumin { template <typename T> static T apply(T a, T b) { return Iule::Apply(a, b) ? a : b; } }; } } #endif #include "xla/client/lib/comparators.h" #include <limits> #include <optional> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using XlaCompareOp = XlaOp (*)(XlaOp, XlaOp, absl::Span<const int64_t>); XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder, XlaCompareOp generator) { CHECK_NE(operand_types.size(), 0); std::vector<std::optional<XlaCompareOp>> generators(operand_types.size()); generators[0] = generator; return CreateScalarComparisonComputation(name, operand_types, generators, builder); } } XlaComputation CreateScalarComparisonComputation( const std::string& name, const std::vector<PrimitiveType>& operand_types, const std::vector<std::optional<XlaCompareOp>>& generators, XlaBuilder* builder) { auto b = builder->CreateSubBuilder(name); if (operand_types.empty()) { b->ReportError(InvalidArgument("operand_types should not be empty")); return b->BuildAndNoteError(); } CHECK_EQ(operand_types.size(), generators.size()); int parameter_count = 0; int last_generator_index = 0; std::vector<XlaOp> lhs_params; std::vector<XlaOp> rhs_params; for (auto operand_type : operand_types) { auto scalar_shape = ShapeUtil::MakeShape(operand_type, {}); auto lhs_param = Parameter(b.get(), parameter_count * 2, scalar_shape, absl::StrCat("p.", parameter_count, ".lhs")); auto rhs_param = Parameter(b.get(), parameter_count * 2 + 1, scalar_shape, absl::StrCat("p.", parameter_count, ".rhs")); lhs_params.emplace_back(lhs_param); rhs_params.emplace_back(rhs_param); if (generators[parameter_count].has_value()) { last_generator_index = parameter_count; } parameter_count++; } CHECK_NE(parameter_count, 0); XlaOp result; XlaOp prev_equal; for (int i = 0; i < parameter_count; i++) { if (generators[i].has_value()) { XlaOp cmp_op = generators[i].value()(lhs_params[i], rhs_params[i], {}); result = prev_equal.valid() ? Select(prev_equal, cmp_op, result) : cmp_op; if (i != last_generator_index) { XlaOp eq_op = EqTotalOrder(lhs_params[i], rhs_params[i]); prev_equal = prev_equal.valid() ? And(prev_equal, eq_op) : eq_op; } } } CHECK(result.valid()); return b->BuildAndNoteError(); } XlaComputation CreateScalarLtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation("compare-less-than", operand_types, builder, LtTotalOrder); } XlaComputation CreateScalarGtComputation( const std::vector<PrimitiveType>& operand_types, XlaBuilder* builder) { return CreateScalarComparisonComputation( "compare-greater-than", operand_types, builder, GtTotalOrder); } }
#include "xla/client/lib/comparators.h" #include <cmath> #include <limits> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { class ComparatorsTest : public ClientLibraryTestBase { public: ComparatorsTest() : builder_(TestName()) {} XlaBuilder* builder() { return &builder_; } private: XlaBuilder builder_; }; template < PrimitiveType type, typename T = typename primitive_util::PrimitiveTypeToNative<type>::type> void BuildComparatorAndComparisons(ComparatorsTest* test, bool compare_less_than, absl::InlinedVector<bool, 10>* expected) { auto compare = compare_less_than ? CreateScalarLtComputation({type}, test->builder()) : CreateScalarGtComputation({type}, test->builder()); auto negative_nan = ConstantR0<T>( test->builder(), -T(std::numeric_limits<float>::quiet_NaN())); auto positive_nan = ConstantR0<T>(test->builder(), T(std::numeric_limits<float>::quiet_NaN())); auto negative_zero = ConstantR0<T>(test->builder(), T(-0.)); auto positive_zero = ConstantR0<T>(test->builder(), T(0.)); auto negative_infinity = MinValue(test->builder(), type); auto positive_infinity = MaxValue(test->builder(), type); std::vector<XlaOp> all_constants{negative_nan, negative_infinity, negative_zero, positive_zero, positive_infinity, positive_nan}; std::vector<XlaOp> all_comparisons; all_comparisons.reserve(std::pow(all_constants.size(), 2)); for (const XlaOp& lhs_constant : all_constants) { for (const XlaOp& rhs_constant : all_constants) { all_comparisons.push_back(Broadcast( Call(test->builder(), compare, {lhs_constant, rhs_constant}), {1})); } } ConcatInDim(test->builder(), all_comparisons, 0); expected->clear(); for (int i = 0; i < all_constants.size(); ++i) { for (int j = 0; j < all_constants.size(); ++j) { expected->push_back(compare_less_than ? i < j : i > j); } } } XLA_TEST_F(ComparatorsTest, CompareLtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtBF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<BF16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF16) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F16>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF32) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F32>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareLtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, true, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } XLA_TEST_F(ComparatorsTest, CompareGtF64) { absl::InlinedVector<bool, 10> expected; BuildComparatorAndComparisons<F64>(this, false, &expected); ComputeAndCompareR1<bool>(builder(), expected, {}); } const auto kCompareStr = HloOpcodeString(xla::HloOpcode::kCompare); const auto kParameterStr = HloOpcodeString(xla::HloOpcode::kParameter); const auto kSelectStr = HloOpcodeString(xla::HloOpcode::kSelect); void ExpectCompareOp( const xla::HloInstructionProto op, xla::PrimitiveType type, absl::string_view direction, int parameter0_number, int parameter1_number, const tsl::protobuf::RepeatedPtrField<xla::HloInstructionProto>& all_ops) { EXPECT_EQ(op.opcode(), kCompareStr); const auto& operand0 = all_ops.at(op.operand_ids(0) - 1); EXPECT_EQ(operand0.opcode(), kParameterStr); EXPECT_EQ(operand0.parameter_number(), parameter0_number); EXPECT_EQ(operand0.shape().element_type(), type); const auto& operand1 = all_ops.at(op.operand_ids(1) - 1); EXPECT_EQ(operand1.opcode(), kParameterStr); EXPECT_EQ(operand1.parameter_number(), parameter1_number); EXPECT_EQ(operand1.shape().element_type(), type); } TEST(VariadicComparatorTest, OneOperandOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16}, {LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 2); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsOneComparison) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, {}}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); ExpectCompareOp(root, U16, "LT", 0, 1, instr); } TEST(VariadicComparatorTest, TwoOperandsTwoComparisons) { XlaBuilder builder("test"); XlaComputation comp = CreateScalarComparisonComputation( "computation", {U16, U32}, {LtTotalOrder, LtTotalOrder}, &builder); EXPECT_EQ(comp.proto().computations_size(), 1); EXPECT_EQ(comp.proto().computations(0).program_shape().parameters_size(), 4); const auto& instr = comp.proto().computations(0).instructions(); const auto& root = instr.at(comp.proto().computations(0).root_id() - 1); EXPECT_EQ(root.opcode(), HloOpcodeString(xla::HloOpcode::kSelect)); ExpectCompareOp(instr.at(root.operand_ids(0) - 1), U16, "EQ", 0, 1, instr); ExpectCompareOp(instr.at(root.operand_ids(1) - 1), U32, "LT", 2, 3, instr); ExpectCompareOp(instr.at(root.operand_ids(2) - 1), U16, "LT", 0, 1, instr); } } }
257
#ifndef TENSORFLOW_COMPILER_MLIR_TENSORFLOW_UTILS_XLA_SHARDING_UTIL_H_ #define TENSORFLOW_COMPILER_MLIR_TENSORFLOW_UTILS_XLA_SHARDING_UTIL_H_ #include <map> #include <string> #include "absl/status/statusor.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" namespace tensorflow { inline constexpr llvm::StringRef kInputShardingAttr = "input_sharding_configuration"; inline constexpr llvm::StringRef kOutputShardingAttr = "output_sharding_configuration"; mlir::LogicalResult DecodeShardingAttribute(const std::string& shard_str, xla::OpSharding& sharding, bool report_error = true); mlir::LogicalResult DecodeShardingAttribute(mlir::Attribute shard_attr, xla::OpSharding& sharding, bool report_error = true); void EncodeSharding(mlir::Operation* op, llvm::StringRef shard_str); mlir::LogicalResult ExtractInputsForLogicalDevices( int num_cores_per_replica, mlir::tf_device::ClusterFuncOp cluster_func, mlir::OpBuilder* builder, llvm::SmallVectorImpl<llvm::SmallVector<mlir::Value, 4>>* input_list); mlir::LogicalResult ParseAndValidateOutputSharding( int num_cores_per_replica, mlir::tf_device::ClusterFuncOp cluster_func, mlir::SmallVector<xla::OpSharding, 4>* output_sharding_list); mlir::LogicalResult GetOutputTypesForLogicalDeviceComputation( int core_id, llvm::ArrayRef<xla::OpSharding> output_sharding_config, mlir::tf_device::ClusterFuncOp cluster_func, llvm::SmallVectorImpl<mlir::Type>* output_types, llvm::SmallVectorImpl<int>* cluster_to_core_index); mlir::LogicalResult RemapOutputsFromLogicalDevices( const mlir::Location& location, llvm::ArrayRef<xla::OpSharding> output_sharding_config, llvm::SmallVector<llvm::SmallVector<int, 4>, 4> cluster_to_core_index, int num_results_pre_cluster, mlir::tf_device::ParallelExecuteOp old_parallel_execute, int cluster_idx, mlir::tf_device::ParallelExecuteOp new_parallel_execute, mlir::OpBuilder* builder); llvm::SmallVector<llvm::SmallVector<int64_t, 4>, 4> GetMetadataArgumentMapping( const tpu::TPUCompileMetadataProto& metadata); int GetDimsFromXLAShardingTiled(const xla::OpSharding& xla_sharding); bool IsOtherReplicatedSharding(const xla::OpSharding& xla_sharding); bool IsSplitSharding(const xla::OpSharding& sharding); bool IsReplicatedSharding(const xla::OpSharding& sharding); absl::StatusOr<std::map<int, int>> GetDimensionIndicesAndNumSplitsFromSharding( const xla::OpSharding& sharding); } #endif #include "tensorflow/compiler/mlir/tensorflow/utils/xla_sharding_util.h" #include <cstdint> #include <map> #include <numeric> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Location.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "xla/client/sharding_builder.h" #include "xla/service/hlo_parser.h" #include "xla/xla_data.pb.h" namespace tensorflow { namespace { constexpr char kNumSplitAttr[] = "num_split"; mlir::LogicalResult CreateSplitOp(const int num_split, const int split_dimension, const mlir::Location& location, mlir::Value src_input, mlir::OpBuilder* builder, mlir::TF::SplitOp* split_op) { auto split_dim_type = mlir::RankedTensorType::get({}, builder->getIntegerType(32)); auto split_dimension_attr = mlir::DenseElementsAttr::get(split_dim_type, split_dimension); auto split_dimension_op = builder->create<mlir::TF::ConstOp>( location, split_dim_type, split_dimension_attr); mlir::Type output_type; auto input_type = mlir::cast<mlir::TensorType>(src_input.getType()); if (input_type.hasRank()) { if (input_type.getShape()[split_dimension] == mlir::ShapedType::kDynamic) { output_type = input_type; } else { auto shape = llvm::to_vector<4>(input_type.getShape()); if (shape[split_dimension] % num_split != 0) { return mlir::emitError( location, llvm::formatv( "incorrect input sharding configuration received. " "{0}-th dimension of the input must be evenly divisible by {1}", split_dimension, num_split)); } shape[split_dimension] = shape[split_dimension] / num_split; output_type = mlir::RankedTensorType::get(shape, input_type.getElementType()); } } else { output_type = input_type; } llvm::SmallVector<mlir::Type, 4> output_types(num_split, output_type); *split_op = builder->create<mlir::TF::SplitOp>( location, output_types, split_dimension_op.getOutput(), src_input); (*split_op)->setAttr( kNumSplitAttr, builder->getIntegerAttr(builder->getIntegerType(32), num_split)); return mlir::success(); } mlir::TF::ConcatOp CreateConcatOp(const int concat_dimension, const mlir::Location& location, mlir::ArrayRef<mlir::Value> inputs, mlir::OpBuilder* builder) { auto concat_dim_type = mlir::RankedTensorType::get({}, builder->getIntegerType(32)); auto concat_dimension_attr = mlir::DenseElementsAttr::get(concat_dim_type, concat_dimension); auto concat_dimension_op = builder->create<mlir::TF::ConstOp>( location, concat_dim_type, concat_dimension_attr); mlir::Type output_type; auto input_type = mlir::cast<mlir::TensorType>(inputs[0].getType()); if (input_type.hasRank()) { if (input_type.getShape()[concat_dimension] == mlir::ShapedType::kDynamic) { output_type = input_type; } else { auto shape = llvm::to_vector<4>(input_type.getShape()); shape[concat_dimension] = shape[concat_dimension] * inputs.size(); output_type = mlir::RankedTensorType::get(shape, input_type.getElementType()); } } else { output_type = input_type; } return builder->create<mlir::TF::ConcatOp>( location, output_type, concat_dimension_op.getOutput(), inputs); } mlir::LogicalResult HandleTileShardedInputs( const mlir::Location& location, const xla::OpSharding& input_sharding, const mlir::Value& original_source, mlir::OpBuilder* builder, llvm::SmallVectorImpl<mlir::Value>* tiled_inputs) { llvm::SmallVector<mlir::TF::SplitOp, 4> split_ops_for_tiled_input; split_ops_for_tiled_input.reserve( input_sharding.tile_assignment_devices_size()); auto dimension_to_splits_map = GetDimensionIndicesAndNumSplitsFromSharding(input_sharding); if (!dimension_to_splits_map.ok()) { LOG(ERROR) << dimension_to_splits_map.status(); return mlir::failure(); } for (const auto& dimension_and_num_splits : *dimension_to_splits_map) { const int dimension = dimension_and_num_splits.first; const int num_splits = dimension_and_num_splits.second; if (split_ops_for_tiled_input.empty()) { mlir::TF::SplitOp root_split_op; auto result = CreateSplitOp(num_splits, dimension, location, original_source, builder, &root_split_op); if (mlir::failed(result)) return mlir::failure(); split_ops_for_tiled_input.emplace_back(root_split_op); continue; } llvm::SmallVector<mlir::TF::SplitOp, 4> new_split_ops; new_split_ops.reserve(split_ops_for_tiled_input.size() * num_splits); for (auto split_op : split_ops_for_tiled_input) { for (auto parent_split_output_value : split_op.getResults()) { mlir::TF::SplitOp child_split_op; auto result = CreateSplitOp(num_splits, dimension, location, parent_split_output_value, builder, &child_split_op); if (mlir::failed(result)) return mlir::failure(); new_split_ops.emplace_back(child_split_op); } } std::swap(new_split_ops, split_ops_for_tiled_input); } tiled_inputs->clear(); tiled_inputs->reserve(input_sharding.tile_assignment_devices_size()); for (auto split_op : split_ops_for_tiled_input) { for (auto split_op_output : split_op.getResults()) { int64_t repeat_count = input_sharding.replicate_on_last_tile_dim() ? *input_sharding.tile_assignment_dimensions().rbegin() : 1; for (int64_t i = 0; i < repeat_count; ++i) { tiled_inputs->push_back(split_op_output); } } } return mlir::success(); } bool UnsupportedPartitionedShardingType(xla::OpSharding::Type sharding) { return sharding != xla::OpSharding::REPLICATED && sharding != xla::OpSharding::OTHER; } } absl::StatusOr<std::map<int, int>> GetDimensionIndicesAndNumSplitsFromSharding( const xla::OpSharding& sharding) { int64_t tensor_tile_rank = sharding.tile_assignment_dimensions_size(); if (sharding.replicate_on_last_tile_dim()) { tensor_tile_rank--; } std::map<int, int> dimension_to_splits_map; for (int dim_index = 0; dim_index < tensor_tile_rank; ++dim_index) { if (sharding.tile_assignment_dimensions(dim_index) > 1) { dimension_to_splits_map.emplace( dim_index, sharding.tile_assignment_dimensions(dim_index)); } } if (dimension_to_splits_map.empty()) { return absl::InvalidArgumentError(absl::StrCat( "Arg has unnecessary tiled sharding: ", sharding.DebugString())); } return dimension_to_splits_map; } int GetDimsFromXLAShardingTiled(const xla::OpSharding& xla_sharding) { return xla_sharding.tile_assignment_dimensions_size() - (xla_sharding.replicate_on_last_tile_dim() ? 1 : 0) - xla_sharding.last_tile_dims_size(); } bool IsOtherReplicatedSharding(const xla::OpSharding& xla_sharding) { int max_dim = GetDimsFromXLAShardingTiled(xla_sharding); for (int i = 0; i < max_dim; ++i) { if (xla_sharding.tile_assignment_dimensions(i) != 1) { return false; } } return xla_sharding.type() == xla::OpSharding::OTHER && (xla_sharding.replicate_on_last_tile_dim() || !xla_sharding.last_tile_dims().empty()); } bool IsSplitSharding(const xla::OpSharding& sharding) { return sharding.type() == xla::OpSharding::OTHER && !IsOtherReplicatedSharding(sharding); } bool IsReplicatedSharding(const xla::OpSharding& sharding) { return sharding.type() == xla::OpSharding::REPLICATED || IsOtherReplicatedSharding(sharding); } mlir::LogicalResult DecodeShardingAttribute(const std::string& shard_str, xla::OpSharding& sharding, bool report_error) { if (sharding.ParseFromString(shard_str)) return mlir::success(); absl::StatusOr<xla::HloSharding> sharding_hlo = xla::ParseSharding(shard_str); if (sharding_hlo.ok()) { sharding = sharding_hlo->ToProto(); return mlir::success(); } if (report_error) llvm::errs() << std::string(sharding_hlo.status().message()) << "\n"; return mlir::failure(); } mlir::LogicalResult DecodeShardingAttribute(mlir::Attribute shard_attr, xla::OpSharding& sharding, bool report_error) { if (!mlir::isa<mlir::StringAttr>(shard_attr)) return mlir::failure(); auto shard_str = mlir::cast<mlir::StringAttr>(shard_attr).getValue().str(); return DecodeShardingAttribute(shard_str, sharding, report_error); } void EncodeSharding(mlir::Operation* op, llvm::StringRef shard_str) { if (!op->hasAttrOfType<mlir::StringAttr>(shard_str)) return; ::xla::OpSharding sharding; auto sharding_proto_str = op->getAttrOfType<mlir::StringAttr>(shard_str).getValue().str(); if (!sharding.ParseFromString(sharding_proto_str)) return; auto hlosharding = xla::HloSharding::FromProto(sharding); if (!hlosharding.ok()) { op->emitError("Unable to encode sharding to human readable ") << hlosharding.status().message(); return; } op->setAttr(shard_str, mlir::StringAttr::get(op->getContext(), hlosharding->ToString())); } mlir::LogicalResult ExtractInputsForLogicalDevices( const int num_cores_per_replica, mlir::tf_device::ClusterFuncOp cluster_func, mlir::OpBuilder* builder, llvm::SmallVectorImpl<llvm::SmallVector<mlir::Value, 4>>* input_list) { input_list->reserve(num_cores_per_replica); for (int i = 0; i < num_cores_per_replica; ++i) input_list->emplace_back(llvm::SmallVector<mlir::Value, 4>()); llvm::SmallVector<mlir::Value, 4> cluster_func_inputs( cluster_func.getOperands()); auto sharding_attrs = cluster_func.getOperation()->getAttrOfType<mlir::ArrayAttr>( kInputShardingAttr); if (!sharding_attrs) { (*input_list)[0] = cluster_func_inputs; return mlir::success(); } for (const auto& sharding_attr_and_index : llvm::enumerate(sharding_attrs)) { const auto& sharding_attr = sharding_attr_and_index.value(); const auto input_index = sharding_attr_and_index.index(); const auto& input_value = cluster_func_inputs[input_index]; xla::OpSharding sharding; if (DecodeShardingAttribute( mlir::cast<mlir::StringAttr>(sharding_attr).getValue().str(), sharding) .failed()) { return cluster_func.emitError("incorrect sharding format for inputs"); } const auto input_sharding_type = sharding.type(); auto tiled_sharding_mismatched = [&](int tiled_input_size) { return cluster_func.emitError( llvm::formatv("incorrect {0}-th tiled input sharding received. " "Product of tile sharding splits({1}) must be equal to " "number of logical devices : {2}", input_index, tiled_input_size, num_cores_per_replica)); }; if (auto partitioned_input = llvm::dyn_cast_or_null<mlir::TF::TPUPartitionedInputV2Op>( input_value.getDefiningOp())) { if (UnsupportedPartitionedShardingType(input_sharding_type)) return cluster_func->emitOpError() << "unsupported input sharding type " << OpSharding_Type_Name(input_sharding_type) << " for " << input_index << "-th input"; if (input_sharding_type == xla::OpSharding::REPLICATED) { for (const auto& index_and_inputs : llvm::enumerate(*input_list)) { index_and_inputs.value().emplace_back( partitioned_input.getOperand(index_and_inputs.index())); } } else { assert(input_sharding_type == xla::OpSharding::OTHER); if (partitioned_input.getInputs().size() != num_cores_per_replica) return tiled_sharding_mismatched( partitioned_input.getInputs().size()); for (int i = 0; i < sharding.tile_assignment_devices_size(); ++i) { const int assigned_logical_device = sharding.tile_assignment_devices(i); (*input_list)[assigned_logical_device].emplace_back( partitioned_input.getInputs()[i]); } } continue; } if (IsSplitSharding(sharding)) { llvm::SmallVector<mlir::Value, 4> tiled_inputs; auto result = HandleTileShardedInputs( cluster_func.getLoc(), sharding, input_value, builder, &tiled_inputs); if (mlir::failed(result)) return mlir::failure(); const int64_t tiled_inputs_size = tiled_inputs.size(); if (tiled_inputs_size != num_cores_per_replica) return tiled_sharding_mismatched(tiled_inputs.size()); for (int i = 0; i < sharding.tile_assignment_devices_size(); ++i) { const int assigned_logical_device = sharding.tile_assignment_devices(i); (*input_list)[assigned_logical_device].emplace_back(tiled_inputs[i]); } } else if (IsReplicatedSharding(sharding)) { for (auto& inputs : *input_list) inputs.emplace_back(input_value); } else { assert(input_sharding_type == xla::OpSharding::MAXIMAL); const int logical_device_id = sharding.tile_assignment_devices(0); (*input_list)[logical_device_id].emplace_back(input_value); } } return mlir::success(); } mlir::LogicalResult ParseAndValidateOutputSharding( const int num_cores_per_replica, mlir::tf_device::ClusterFuncOp cluster_func, mlir::SmallVector<xla::OpSharding, 4>* output_sharding_list) { output_sharding_list->reserve(cluster_func.getNumResults()); const auto output_sharding_attrs = cluster_func.getOperation()->getAttrOfType<mlir::ArrayAttr>( kOutputShardingAttr); if (!output_sharding_attrs) return cluster_func.emitError( "output_sharding_configuration missing from cluster func"); if (output_sharding_attrs.size() != cluster_func.getNumResults()) return cluster_func.emitError("incorrect number of output sharding"); for (const auto& output_sharding_and_index : llvm::enumerate(output_sharding_attrs)) { const auto& output_sharding = output_sharding_and_index.value(); const int sharding_index = output_sharding_and_index.index(); if (!mlir::isa<mlir::StringAttr>(output_sharding)) return cluster_func.emitError(llvm::formatv( "non-string output sharding at index {0}", sharding_index)); xla::OpSharding sharding; if (DecodeShardingAttribute( mlir::cast<mlir::StringAttr>(output_sharding).getValue().str(), sharding) .failed()) { return cluster_func.emitError("incorrect sharding format for outputs"); } if (sharding.type() == xla::OpSharding::OTHER && sharding.tile_assignment_devices_size() != num_cores_per_replica) return cluster_func.emitError(llvm::formatv( "incorrect sharding format for outputs. Number of " "tiled outputs({0}) must match the number of logical " "devices({1})", sharding.tile_assignment_devices_size(), num_cores_per_replica)); if (sharding.type() == xla::OpSharding::MAXIMAL && ((sharding.tile_assignment_devices(0) >= num_cores_per_replica) || (sharding.tile_assignment_devices(0) < 0))) return cluster_func.emitError(llvm::formatv( "incorrect sharding format for outputs. Maximal " "sharding should be assigned to device id in range " "[0, {0}). Currently assigned to {1}", num_cores_per_replica, sharding.tile_assignment_devices(0))); output_sharding_list->emplace_back(std::move(sharding)); } return mlir::success(); } namespace { bool IsAssignedToLogicalDevice(const int core_id, const xla::OpSharding& sharding) { return sharding.type() == xla::OpSharding::MAXIMAL && sharding.tile_assignment_devices(0) == core_id; } mlir::LogicalResult LookupClusterToCoreIndex( const mlir::Location& location, llvm::SmallVector<llvm::SmallVector<int, 4>, 4> cluster_to_core_index, const int core_id, const int cluster_func_output_index, int* core_output_index) { *core_output_index = cluster_to_core_index[core_id][cluster_func_output_index]; if (*core_output_index == -1) { mlir::emitError( location, llvm::formatv("Attempted to map cluster_func output index {0} to " "program assigned to core {1}. The tensor at this output " "index was not assigned or sharded to this core.", cluster_func_output_index, core_id)); return mlir::failure(); } return mlir::success(); } mlir::LogicalResult GetTileShardedOutputsToMerge( const mlir::Location& location, const int cluster_func_output_index, llvm::ArrayRef<xla::OpSharding> output_sharding_config, llvm::SmallVector<llvm::SmallVector<int, 4>, 4> cluster_to_core_index, int cluster_idx, mlir::tf_device::ParallelExecuteOp new_parallel_execute, llvm::SmallVector<mlir::Value, 4>* outputs_to_merge) { const xla::OpSharding& sharding = output_sharding_config[cluster_func_output_index]; outputs_to_merge->reserve(sharding.tile_assignment_devices_size()); for (const auto& core_id_and_index : llvm::enumerate(sharding.tile_assignment_devices())) { auto core_id = core_id_and_index.value(); auto tile_index = core_id_and_index.index(); int last_tile_dim_size = *sharding.tile_assignment_dimensions().rbegin(); if (sharding.replicate_on_last_tile_dim() && tile_index % last_tile_dim_size != 0) { continue; } int region_output_index; auto status = LookupClusterToCoreIndex(location, cluster_to_core_index, core_id, cluster_func_output_index, &region_output_index); if (failed(status)) return mlir::failure(); const auto output_from_logical_device = new_parallel_execute.GetRegionOutputs(cluster_idx + core_id)[region_output_index]; outputs_to_merge->emplace_back(output_from_logical_device); } return mlir::success(); } mlir::LogicalResult HandleTileShardedOutputs( const int cluster_func_output_index, llvm::ArrayRef<xla::OpSharding> output_sharding_config, llvm::SmallVector<llvm::SmallVector<int, 4>, 4> cluster_to_core_index, const mlir::Location& location, mlir::Value cluster_func_output, int cluster_idx, mlir::tf_device::ParallelExecuteOp new_parallel_execute, mlir::OpBuilder* builder) { builder->setInsertionPointAfter(new_parallel_execute); llvm::SmallVector<mlir::Value, 4> outputs_to_merge; auto status = GetTileShardedOutputsToMerge( location, cluster_func_output_index, output_sharding_config, cluster_to_core_index, cluster_idx, new_parallel_execute, &outputs_to_merge); if (failed(status)) return mlir::failure(); const xla::OpSharding& sharding = output_sharding_config[cluster_func_output_index]; auto dimension_to_splits_map = GetDimensionIndicesAndNumSplitsFromSharding(sharding); if (!dimension_to_splits_map.ok()) { LOG(ERROR) << dimension_to_splits_map.status(); return mlir::failure(); } for (auto it = dimension_to_splits_map->rbegin(); it != dimension_to_splits_map->rend(); ++it) { int concat_dimension = it->first; int num_splits = it->second; llvm::SmallVector<mlir::Value, 4> new_outputs; new_outputs.reserve(num_splits); for (int i = 0, end = outputs_to_merge.size(); i < end; i = i + num_splits) { mlir::TF::ConcatOp concat_op = CreateConcatOp(concat_dimension, location, llvm::ArrayRef<mlir::Value>{ outputs_to_merge.begin() + i, outputs_to_merge.begin() + i + num_splits}, builder); new_outputs.emplace_back(concat_op.getResult()); } std::swap(new_outputs, outputs_to_merge); } assert(outputs_to_merge.size() == 1); cluster_func_output.replaceAllUsesWith(outputs_to_merge[0]); return mlir::success(); } mlir::LogicalResult ValidateAndGetTiledExecuteOutputShape( const mlir::Location& location, const mlir::TensorType cluster_func_output_type, const xla::OpSharding& output_sharding, mlir::Type* tiled_logical_computation_type) { const auto output_shape = cluster_func_output_type.getShape(); auto new_output_shape = llvm::to_vector<4>(output_shape); auto dimension_to_splits_map = GetDimensionIndicesAndNumSplitsFromSharding(output_sharding); if (!dimension_to_splits_map.ok()) { LOG(ERROR) << dimension_to_splits_map.status(); return mlir::failure(); } for (const auto& dimension_and_output_splits : *dimension_to_splits_map) { const auto dimension = dimension_and_output_splits.first; const auto output_splits = dimension_and_output_splits.second; if (output_shape[dimension] == mlir::ShapedType::kDynamic) { *tiled_logical_computation_type = cluster_func_output_type; break; } if (output_shape[dimension] % output_splits != 0) { mlir::emitError( location, llvm::formatv("incorrect output sharding received. " "{0}-th dimension of the output must be " "evenly divisible by {1}, got dimension " "shape {2}", dimension, output_splits, output_shape[dimension])); } new_output_shape[dimension] = output_shape[dimension] / output_splits; } *tiled_l
#include "tensorflow/compiler/mlir/tensorflow/utils/xla_sharding_util.h" #include <string> #include <gtest/gtest.h> #include "mlir/Support/LogicalResult.h" #include "xla/xla_data.pb.h" inline constexpr llvm::StringRef kXlaShardingAttrName = "_XlaSharding"; namespace tensorflow { namespace { TEST(DecodeShardingAttributeTest, CheckInvalidString) { xla::OpSharding sharding; EXPECT_TRUE(DecodeShardingAttribute("", sharding).succeeded()); EXPECT_TRUE(DecodeShardingAttribute("manual", sharding).failed()); } TEST(DecodeShardingAttributeTest, CheckManualShardString) { xla::OpSharding sharding; EXPECT_TRUE(DecodeShardingAttribute("{manual}", sharding).succeeded()); EXPECT_TRUE(sharding.type() == sharding.MANUAL); EXPECT_EQ(0, sharding.tile_assignment_devices_size()); } TEST(DecodeShardingAttributeTest, CheckMaximalShardString) { xla::OpSharding sharding; EXPECT_TRUE( DecodeShardingAttribute("{maximal device=0}", sharding).succeeded()); EXPECT_TRUE(sharding.type() == sharding.MAXIMAL); EXPECT_EQ(1, sharding.tile_assignment_devices_size()); } } }
258
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TRANSFORMATIONS_MAKE_FULLY_CONNECTED_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TRANSFORMATIONS_MAKE_FULLY_CONNECTED_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" namespace tflite { namespace gpu { std::unique_ptr<NodeTransformation> NewMakeFullyConnectedFromConvolution(); } } #endif #include "tensorflow/lite/delegates/gpu/common/transformations/make_fully_connected.h" #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { bool IsConvEquivalentToFullyConnected(const Convolution2DAttributes& attr) { return attr.weights.shape.w == 1 && attr.weights.shape.h == 1 && attr.strides == HW(1, 1) && attr.dilations == HW(1, 1) && attr.padding.prepended == HW(0, 0) && attr.padding.appended == HW(0, 0); } class MakeFullyConnectedFromConvolution : public NodeTransformation { public: TransformResult ApplyToNode(Node* node, GraphFloat32* graph) final { if (node->operation.type != ToString(OperationType::CONVOLUTION_2D)) { return {TransformStatus::SKIPPED, ""}; } auto inputs = graph->FindInputs(node->id); if (inputs.size() != 1) { return {TransformStatus::SKIPPED, ""}; } const auto& input_shape = inputs[0]->tensor.shape; if (input_shape.w != 1 || input_shape.h != 1) { return {TransformStatus::SKIPPED, ""}; } const auto& conv_attr = absl::any_cast<const Convolution2DAttributes&>( node->operation.attributes); if (!IsConvEquivalentToFullyConnected(conv_attr)) { return {TransformStatus::SKIPPED, ""}; } FullyConnectedAttributes fc_attr; fc_attr.weights = conv_attr.weights; fc_attr.bias = conv_attr.bias; node->operation.attributes = fc_attr; node->operation.type = ToString(OperationType::FULLY_CONNECTED); return {TransformStatus::APPLIED, "Replaced convolution with fully connected."}; } }; } std::unique_ptr<NodeTransformation> NewMakeFullyConnectedFromConvolution() { return absl::make_unique<MakeFullyConnectedFromConvolution>(); } } }
#include "tensorflow/lite/delegates/gpu/common/transformations/make_fully_connected.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { TEST(MakeFullyConnected, Smoke) { GraphFloat32 graph; auto input = graph.NewValue(); input->tensor.shape = BHWC(1, 4, 4, 8); Convolution2DAttributes attr0; attr0.padding.prepended = HW(0, 0); attr0.padding.appended = HW(0, 0); attr0.strides = HW(1, 1); attr0.dilations = HW(1, 1); attr0.weights.shape = OHWI(16, 1, 1, 8); attr0.bias.shape = Linear(16); Convolution2DAttributes attr1; attr1.padding.prepended = HW(0, 0); attr1.padding.appended = HW(0, 0); attr1.strides = HW(4, 4); attr1.dilations = HW(1, 1); attr1.weights.shape = OHWI(16, 4, 4, 16); attr1.bias.shape = Linear(16); Convolution2DAttributes attr2; attr2.padding.prepended = HW(0, 0); attr2.padding.appended = HW(0, 0); attr2.strides = HW(1, 1); attr2.dilations = HW(1, 1); attr2.weights.shape = OHWI(32, 1, 1, 16); attr2.bias.shape = Linear(32); auto conv1x1_node0 = graph.NewNode(); conv1x1_node0->operation.type = ToString(OperationType::CONVOLUTION_2D); conv1x1_node0->operation.attributes = attr0; auto conv4x4_node1 = graph.NewNode(); conv4x4_node1->operation.type = ToString(OperationType::CONVOLUTION_2D); conv4x4_node1->operation.attributes = attr1; auto conv1x1_node2 = graph.NewNode(); conv1x1_node2->operation.type = ToString(OperationType::CONVOLUTION_2D); conv1x1_node2->operation.attributes = attr2; ASSERT_TRUE(graph.AddConsumer(conv1x1_node0->id, input->id).ok()); Value* output = nullptr; ASSERT_TRUE(AddOutput(&graph, conv1x1_node2, &output).ok()); output->tensor.shape = BHWC(1, 1, 1, 32); Value* link1 = nullptr; ASSERT_TRUE( ConnectTwoNodes(&graph, conv1x1_node0, conv4x4_node1, &link1).ok()); link1->tensor.shape = BHWC(1, 4, 4, 16); Value* link2 = nullptr; ASSERT_TRUE( ConnectTwoNodes(&graph, conv4x4_node1, conv1x1_node2, &link2).ok()); link2->tensor.shape = BHWC(1, 1, 1, 16); ASSERT_EQ(3, graph.nodes().size()); ASSERT_EQ(4, graph.values().size()); auto transformation = NewMakeFullyConnectedFromConvolution(); ModelTransformer transformer(&graph); transformer.Apply("make_fully_connected", transformation.get()); ASSERT_EQ(3, graph.nodes().size()); ASSERT_EQ(4, graph.values().size()); ASSERT_EQ(ToString(OperationType::CONVOLUTION_2D), graph.nodes()[0]->operation.type); ASSERT_EQ(ToString(OperationType::CONVOLUTION_2D), graph.nodes()[1]->operation.type); ASSERT_EQ(ToString(OperationType::FULLY_CONNECTED), graph.nodes()[2]->operation.type); auto fc_attr = absl::any_cast<FullyConnectedAttributes>( graph.nodes()[2]->operation.attributes); EXPECT_EQ(OHWI(32, 1, 1, 16), fc_attr.weights.shape); EXPECT_EQ(Linear(32), fc_attr.bias.shape); } } } }
259
#ifndef TENSORFLOW_CORE_KERNELS_IMAGE_SAMPLING_KERNELS_H_ #define TENSORFLOW_CORE_KERNELS_IMAGE_SAMPLING_KERNELS_H_ #include <cmath> #include "tensorflow/core/lib/core/stringpiece.h" namespace tensorflow { namespace functor { enum SamplingKernelType { Lanczos1Kernel, Lanczos3Kernel, Lanczos5Kernel, GaussianKernel, BoxKernel, TriangleKernel, KeysCubicKernel, MitchellCubicKernel, SamplingKernelTypeEnd }; SamplingKernelType SamplingKernelTypeFromString(const StringPiece str); struct LanczosKernelFunc { explicit LanczosKernelFunc(float _radius) : radius(_radius) {} float operator()(float x) const { constexpr float kPI = 3.14159265359; x = std::abs(x); if (x > radius) return 0.0; if (x <= 1e-3) { return 1.0; } return radius * std::sin(kPI * x) * std::sin(kPI * x / radius) / (kPI * kPI * x * x); } float Radius() const { return radius; } const float radius; }; struct GaussianKernelFunc { static constexpr float kRadiusMultiplier = 3.0f; explicit GaussianKernelFunc(float _radius = 1.5f) : radius(_radius), sigma(_radius / kRadiusMultiplier) {} float operator()(float x) const { x = std::abs(x); if (x >= radius) return 0.0; return std::exp(-x * x / (2.0 * sigma * sigma)); } float Radius() const { return radius; } const float radius; const float sigma; }; struct BoxKernelFunc { float operator()(float x) const { x = std::abs(x); return x < 0.5f ? 1. : x == 0.5f ? 0.5f : 0.0f; } float Radius() const { return 1.f; } }; struct TriangleKernelFunc { float operator()(float x) const { x = std::abs(x); return x < 1.0f ? 1.0f - x : 0.0f; } float Radius() const { return 1.f; } }; struct KeysCubicKernelFunc { float operator()(float x) const { x = std::abs(x); if (x >= 2.0f) { return 0.0f; } else if (x >= 1.0f) { return ((-0.5f * x + 2.5f) * x - 4.0f) * x + 2.0f; } else { return ((1.5f * x - 2.5f) * x) * x + 1.0f; } } float Radius() const { return 2.f; } }; struct MitchellCubicKernelFunc { float operator()(float x) const { x = std::abs(x); if (x >= 2.0f) { return 0.0f; } else if (x >= 1.0f) { return (((-7.0f / 18.0f) * x + 2.0f) * x - 10.0f / 3.0f) * x + 16.0f / 9.0f; } else { return (((7.0f / 6.0f) * x - 2.0f) * x) * x + 8.0f / 9.0f; } } float Radius() const { return 2.f; } }; inline LanczosKernelFunc CreateLanczos1Kernel() { return LanczosKernelFunc(1.0); } inline LanczosKernelFunc CreateLanczos3Kernel() { return LanczosKernelFunc(3.0); } inline LanczosKernelFunc CreateLanczos5Kernel() { return LanczosKernelFunc(5.0); } inline GaussianKernelFunc CreateGaussianKernel() { return GaussianKernelFunc(1.5); } inline BoxKernelFunc CreateBoxKernel() { return BoxKernelFunc(); } inline TriangleKernelFunc CreateTriangleKernel() { return TriangleKernelFunc(); } inline KeysCubicKernelFunc CreateKeysCubicKernel() { return KeysCubicKernelFunc(); } inline MitchellCubicKernelFunc CreateMitchellCubicKernel() { return MitchellCubicKernelFunc(); } } } #endif #include "tensorflow/core/kernels/image/sampling_kernels.h" #include <string> #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace functor { SamplingKernelType SamplingKernelTypeFromString(const StringPiece str) { const string lower_case = absl::AsciiStrToLower(str); if (lower_case == "lanczos1") return Lanczos1Kernel; if (lower_case == "lanczos3") return Lanczos3Kernel; if (lower_case == "lanczos5") return Lanczos5Kernel; if (lower_case == "gaussian") return GaussianKernel; if (lower_case == "box") return BoxKernel; if (lower_case == "triangle") return TriangleKernel; if (lower_case == "keyscubic") return KeysCubicKernel; if (lower_case == "mitchellcubic") return MitchellCubicKernel; return SamplingKernelTypeEnd; } } }
#include "tensorflow/core/kernels/image/sampling_kernels.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace functor { namespace { class KernelsTest : public ::testing::Test { protected: template <typename KernelType> void TestKernelValues(const KernelType& kernel, const std::vector<float>& x, const std::vector<float>& expected) const { ASSERT_EQ(x.size(), expected.size()); for (int i = 0; i < x.size(); ++i) { constexpr float kTolerance = 1e-3; EXPECT_NEAR(kernel(x[i]), expected[i], kTolerance); EXPECT_NEAR(kernel(-x[i]), expected[i], kTolerance); } } }; TEST_F(KernelsTest, TestKernelValues) { TestKernelValues(CreateLanczos1Kernel(), {0.0f, 0.5f, 1.0f, 1.5}, {1.0f, 0.4052f, 0.0f, 0.0f}); TestKernelValues(CreateLanczos3Kernel(), {0.0f, 0.5f, 1.0f, 1.5f, 2.5f, 3.5}, {1.0f, 0.6079f, 0.0f, -0.1351f, 0.0243f, 0.0f}); TestKernelValues( CreateLanczos5Kernel(), {0.0f, 0.5f, 1.0f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5}, {1.0f, 0.6262f, 0.0f, -0.1822f, 0.0810569f, -0.0334f, 0.0077f, 0.0f}); TestKernelValues(CreateGaussianKernel(), {0.0f, 0.5f, 1.0f, 1.5}, {1.0f, 0.6065f, 0.1353f, 0.0f}); TestKernelValues(CreateBoxKernel(), {0.0f, 0.25f, 0.5f, 1.0f}, {1.0f, 1.0f, 0.5f, 0.0f}); TestKernelValues(CreateTriangleKernel(), {0.0f, 0.5f, 1.0f}, {1.0f, 0.5f, 0.0f}); TestKernelValues(CreateKeysCubicKernel(), {0.0f, 0.5f, 1.0f, 1.5f, 2.5}, {1.0f, 0.5625f, 0.0f, -0.0625f, 0.0f}); TestKernelValues(CreateMitchellCubicKernel(), {0.0f, 0.5f, 1.0f, 1.5f, 2.5}, {0.8889f, 0.5347f, 0.0556f, -0.0347f, 0.0f}); } TEST(SamplingKernelTypeFromStringTest, Works) { EXPECT_EQ(SamplingKernelTypeFromString("lanczos1"), Lanczos1Kernel); EXPECT_EQ(SamplingKernelTypeFromString("lanczos3"), Lanczos3Kernel); EXPECT_EQ(SamplingKernelTypeFromString("lanczos5"), Lanczos5Kernel); EXPECT_EQ(SamplingKernelTypeFromString("gaussian"), GaussianKernel); EXPECT_EQ(SamplingKernelTypeFromString("box"), BoxKernel); EXPECT_EQ(SamplingKernelTypeFromString("triangle"), TriangleKernel); EXPECT_EQ(SamplingKernelTypeFromString("mitchellcubic"), MitchellCubicKernel); EXPECT_EQ(SamplingKernelTypeFromString("keyscubic"), KeysCubicKernel); EXPECT_EQ(SamplingKernelTypeFromString("not a kernel"), SamplingKernelTypeEnd); } } } }
260
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_COLOCATE_PREDECESSOR_TREES_PASS_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_COLOCATE_PREDECESSOR_TREES_PASS_H_ #include "tensorflow/core/common_runtime/optimization_registry.h" namespace tensorflow { class ColocatePredecessorTreesPass : public GraphOptimizationPass { public: Status Run(const GraphOptimizationPassOptions& options) override; }; } #endif #include "tensorflow/core/common_runtime/colocate_predecessor_trees_pass.h" #include <optional> #include <queue> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/tsl/util/device_name_utils.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { constexpr absl::string_view kClassAttr = "_class"; constexpr absl::string_view kFill = "Fill"; bool IsValidFillOp(const Node& node) { if (node.type_string() != kFill) { return false; } if (node.IsArg()) { return false; } if (node.has_assigned_device_name()) { return false; } if (!node.requested_device().empty()) { return false; } if (HasNodeAttr(node.def(), kClassAttr)) { return false; } if (!KernelDefAvailable(DeviceType(DEVICE_CPU), node.def())) { return false; } return true; } bool IsValidIdentityNode(const Node& node) { if (!node.IsIdentity()) { return false; } if (node.requested_device().empty()) { return false; } auto device_name = node.requested_device(); DeviceNameUtils::ParsedName parsed_device_name; DeviceNameUtils::ParseFullName(device_name, &parsed_device_name); if (parsed_device_name.type != DEVICE_CPU) { return false; } if (node.IsArg()) { return false; } if (!KernelDefAvailable(DeviceType(DEVICE_CPU), node.def())) { return false; } return true; } std::optional<std::string> GetColocateStringName(const Node& fill_node) { std::string device = ""; std::string colocation_prefix = "loc:@"; std::string colocation_name = ""; for (auto output_node : fill_node.out_nodes()) { if (!IsValidIdentityNode(*output_node)) return std::nullopt; if (device.empty()) { device = output_node->requested_device(); colocation_name = absl::StrCat(colocation_prefix, output_node->name()); } else if (device != output_node->requested_device()) { return std::nullopt; } } if (colocation_name.empty()) return std::nullopt; return colocation_name; } bool AreAllInNodesQualifiedConst(const Node& node) { for (auto in_node : node.in_nodes()) { if (!in_node->IsConstant()) { return false; } if (in_node->IsArg()) { return false; } if (in_node->has_assigned_device_name()) { return false; } if (!in_node->requested_device().empty()) { return false; } if (HasNodeAttr(in_node->def(), kClassAttr)) { return false; } if (!KernelDefAvailable(DeviceType(DEVICE_CPU), in_node->def())) { return false; } } return true; } } Status ColocatePredecessorTreesPass::Run( const GraphOptimizationPassOptions& options) { if (!flags::Global().enable_tf2min_ici_weight.value()) { return absl::OkStatus(); } if (options.graph == nullptr) { VLOG(1) << "No graph in colocate_predecessor_trees_pass.\n"; return absl::OkStatus(); } Graph* graph = options.graph->get(); if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("before_colocate_predecessor_trees", *graph, options.flib_def); } for (Node* node : graph->nodes()) { if (!IsValidFillOp(*node)) { continue; } auto colocation_name = GetColocateStringName(*node); if (!colocation_name.has_value()) continue; if (!AreAllInNodesQualifiedConst(*node)) continue; node->AddAttr(std::string(kClassAttr), {*colocation_name}); for (auto in_node : node->in_nodes()) { in_node->AddAttr(std::string(kClassAttr), {*colocation_name}); } for (auto out_node : node->out_nodes()) { out_node->AddAttr(std::string(kClassAttr), {*colocation_name}); } } if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("after_colocate_predecessor_trees", *graph, options.flib_def); } return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 50, ColocatePredecessorTreesPass); }
#include "tensorflow/core/common_runtime/colocate_predecessor_trees_pass.h" #include <memory> #include <string> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/test.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace tensorflow { const char kCpu0[] = "/job:tpu_host_worker/replica:0/task:0/device:CPU:0"; const char kCpu1[] = "/job:tpu_host_worker/replica:0/task:0/device:CPU:1"; const char kClassAttr[] = "_class"; Node* GetNode(const Graph& graph, const std::string& name) { for (Node* node : graph.nodes()) { if (node->name() == name) return node; } return nullptr; } TEST(ColocatePredecessorTreesPassTest, ICIFlagFalse) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity_1")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GetNode(*graph, "identity_1")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "const_1")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); } TEST(ColocatePredecessorTreesPassTest, SimpleExample) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity_1")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GetNode(*graph, "identity_1")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_1")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity_1")->def(), kClassAttr)); std::string expected_colocation_info = "loc:@identity"; const AttrValue* input_value; TF_EXPECT_OK( GetNode(*graph, "const_0")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "const_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK(GetNode(*graph, "fill")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "identity")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "identity_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); } TEST(ColocatePredecessorTreesPassTest, PropagateTwoTrees) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); Node* const_2 = ops::SourceOp("Const", builder.opts() .WithName("const_2") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_3 = ops::SourceOp("Const", builder.opts() .WithName("const_3") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill_1 = ops::BinaryOp("Fill", const_2, const_3, builder.opts().WithName("fill_1")); ops::UnaryOp("Identity", fill_1, builder.opts().WithName("identity_1")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GetNode(*graph, "identity_1")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_1")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); std::string expected_colocation_info = "loc:@identity"; const AttrValue* input_value; TF_EXPECT_OK( GetNode(*graph, "const_0")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "const_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK(GetNode(*graph, "fill")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "identity")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_2")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_3")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "fill_1")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity_1")->def(), kClassAttr)); std::string expected_colocation_info_1 = "loc:@identity_1"; TF_EXPECT_OK( GetNode(*graph, "const_2")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info_1); TF_EXPECT_OK( GetNode(*graph, "const_3")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info_1); TF_EXPECT_OK( GetNode(*graph, "fill_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info_1); TF_EXPECT_OK( GetNode(*graph, "identity_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info_1); } TEST(ColocatePredecessorTreesPassTest, RootHasMultipleOutputs) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); Node* identity = ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity_0")); ops::UnaryOp("Identity", identity, builder.opts().WithName("identity_1")); ops::UnaryOp("Identity", identity, builder.opts().WithName("identity_2")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GetNode(*graph, "identity_0")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "const_1")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); EXPECT_TRUE(HasNodeAttr(GetNode(*graph, "identity_0")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "identity_1")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "identity_2")->def(), kClassAttr)); std::string expected_colocation_info = "loc:@identity"; const AttrValue* input_value; TF_EXPECT_OK( GetNode(*graph, "const_0")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "const_1")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK(GetNode(*graph, "fill")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "identity")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); TF_EXPECT_OK( GetNode(*graph, "identity_0")->attrs().Find(kClassAttr, &input_value)); EXPECT_EQ(input_value->list().s().at(0), expected_colocation_info); } TEST(ColocatePredecessorTreesPassTest, ConstHasDeviceAttr) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0))); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GetNode(*graph, "const_0")->set_requested_device(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "const_1")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); } TEST(ColocatePredecessorTreesPassTest, ConstHasColocationInfo) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(1.0)) .WithAttr("_class", {"loc:@fill"})); Node* const_1 = ops::SourceOp("Const", builder.opts() .WithName("const_1") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", const_0, const_1, builder.opts().WithName("fill")); Node* identity = ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_TRUE(HasNodeAttr(const_0->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(const_1->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(fill->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(identity->def(), kClassAttr)); } TEST(ColocatePredecessorTreesPassTest, InputArg) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* arg_0 = ops::SourceOp("_Arg", builder.opts() .WithName("arg_0") .WithAttr("T", DT_INT32) .WithAttr("index", 0)); Node* const_0 = ops::SourceOp("Const", builder.opts() .WithName("const_0") .WithAttr("dtype", DT_INT32) .WithAttr("value", Tensor(2.0))); Node* fill = ops::BinaryOp("Fill", arg_0, const_0, builder.opts().WithName("fill")); ops::UnaryOp("Identity", fill, builder.opts().WithName("identity")); TF_EXPECT_OK(GraphDefBuilderToGraph(builder, graph.get())); GetNode(*graph, "identity")->set_requested_device(kCpu0); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ColocatePredecessorTreesPass pass; TF_ASSERT_OK(pass.Run(options)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "arg_0")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "const_0")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "fill")->def(), kClassAttr)); EXPECT_FALSE(HasNodeAttr(GetNode(*graph, "identity")->def(), kClassAttr)); } }
261
#ifndef TENSORFLOW_TOOLS_PROTO_SPLITTER_MERGE_H_ #define TENSORFLOW_TOOLS_PROTO_SPLITTER_MERGE_H_ #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/records/record_reader.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tsl/platform/protobuf.h" namespace tensorflow::tools::proto_splitter { class Merger { private: enum MergerOp { MERGE, READ }; public: static absl::Status Merge( const std::vector<std::unique_ptr<tsl::protobuf::Message>>& chunks, const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, tsl::protobuf::Message* merged_message); static absl::Status Read(std::string prefix, tsl::protobuf::Message* merged_message); static absl::Status ReadPartial( absl::string_view prefix, const ::tensorflow::proto_splitter::ChunkMetadata& chunk_metadata, tsl::protobuf::Message* merged_message); private: static absl::Status ReadPb(const std::string& pb_file, tsl::protobuf::Message* merged_message); static absl::Status ReadFields( const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info, tsl::protobuf::Message* merged_message); static absl::Status ProcessField( const ::tensorflow::proto_splitter::ChunkedField& chunked_field, tsl::protobuf::Message* merged_message, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info, const std::vector<std::unique_ptr<tsl::protobuf::Message>>& chunks, riegeli::RecordReader<riegeli::FdReader<>>& reader, MergerOp op); }; } #endif #include "tensorflow/tools/proto_splitter/merge.h" #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "riegeli/base/object.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/records/record_reader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace tensorflow::tools::proto_splitter { using ::tensorflow::proto_splitter::ChunkedField; using ::tensorflow::proto_splitter::ChunkedMessage; using ::tensorflow::proto_splitter::ChunkInfo; using ::tensorflow::proto_splitter::ChunkMetadata; using ::tensorflow::proto_splitter::FieldIndex; using tools::proto_splitter::GetChunkMetadata; using tools::proto_splitter::GetRiegeliReader; using tools::proto_splitter::OnlyContainsPb; using tsl::protobuf::FieldDescriptor; using tsl::protobuf::Message; using tsl::protobuf::Reflection; absl::Status Merger::Merge(const std::vector<std::unique_ptr<Message>>& chunks, const ChunkedMessage& chunked_message, Message* merged_message) { riegeli::RecordReader<riegeli::FdReader<>> null_reader{riegeli::kClosed}; if (chunked_message.has_chunk_index()) { merged_message->MergeFrom(*chunks[chunked_message.chunk_index()].get()); } for (const auto& chunked_field : chunked_message.chunked_fields()) { absl::Status s = ProcessField(chunked_field, merged_message, {}, chunks, null_reader, MergerOp::MERGE); if (!s.ok()) return s; } return absl::OkStatus(); } absl::Status Merger::Read(std::string prefix, Message* merged_message) { uint64_t start_time = Env::Default()->NowMicros(); TF_ASSIGN_OR_RETURN(bool only_contains_pb, OnlyContainsPb(prefix)); if (only_contains_pb) { return ReadPb(absl::StrCat(prefix, ".pb"), merged_message); } TF_ASSIGN_OR_RETURN(auto reader, GetRiegeliReader(absl::StrCat(prefix, ".cpb"))); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); return absl::FailedPreconditionError( absl::StrCat("Couldn't read ChunkMetadata from chunked proto.\n", read_metadata.status().ToString())); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); absl::Status s = ReadFields(chunk_metadata.message(), reader, chunks_info, merged_message); reader.Close(); uint64_t end_time = Env::Default()->NowMicros(); LOG(INFO) << "Finished reading and merging chunked proto, took " << HumanReadableDuration(end_time - start_time) << "."; return s; } absl::Status Merger::ReadPartial(absl::string_view prefix, const ChunkMetadata& chunk_metadata, Message* merged_message) { uint64_t start_time = Env::Default()->NowMicros(); TF_ASSIGN_OR_RETURN(bool only_contains_pb, OnlyContainsPb(prefix)); if (only_contains_pb) { return absl::FailedPreconditionError( absl::StrCat("Attempting to read part of a chunked proto .cpb file, " "but only found a regular proto: ", prefix, ".pb")); } TF_ASSIGN_OR_RETURN(auto reader, GetRiegeliReader(absl::StrCat(prefix, ".cpb"))); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); absl::Status s = ReadFields(chunk_metadata.message(), reader, chunks_info, merged_message); reader.Close(); uint64_t end_time = Env::Default()->NowMicros(); LOG(INFO) << "Finished reading and merging chunked proto, took " << HumanReadableDuration(end_time - start_time) << "."; return s; } absl::Status Merger::ReadPb(const std::string& pb_file, Message* merged_message) { uint64_t start_time = Env::Default()->NowMicros(); TF_ASSIGN_OR_RETURN(bool file_exists, internal::FileExists(Env::Default(), pb_file)); if (!file_exists) return absl::NotFoundError(absl::StrCat("File not found: ", pb_file)); LOG(INFO) << "Reading binary proto from " << pb_file; auto ret = ReadBinaryProto(Env::Default(), pb_file, merged_message); uint64_t end_time = Env::Default()->NowMicros(); LOG(INFO) << "Finished reading binary proto, took " << HumanReadableDuration(end_time - start_time) << "."; return ret; } absl::Status Merger::ReadFields( const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info, tsl::protobuf::Message* merged_message) { if (chunked_message.has_chunk_index()) { TF_ASSIGN_OR_RETURN( std::string chunk, ReadChunk(reader, chunks_info[chunked_message.chunk_index()])); if (!merged_message->MergeFromString(chunk)) { return absl::FailedPreconditionError( "Couldn't merge chunk into message."); } } std::vector<ChunkedField> chunked_fields( chunked_message.chunked_fields().begin(), chunked_message.chunked_fields().end()); absl::Status sort_status = absl::OkStatus(); std::sort( chunked_fields.begin(), chunked_fields.end(), [&sort_status](ChunkedField cf1, ChunkedField cf2) { int tag_depth = std::min(cf1.field_tag().size(), cf2.field_tag().size()); for (int depth = 0; depth < tag_depth; ++depth) { FieldIndex tag1 = cf1.field_tag()[depth]; FieldIndex tag2 = cf2.field_tag()[depth]; if (tag1.has_field() && tag2.has_field()) { uint32_t field1 = tag1.field(); uint32_t field2 = tag2.field(); if (field1 != field2) return field1 < field2; } else if (tag1.has_index() && tag2.has_index()) { uint64_t index1 = tag1.index(); uint64_t index2 = tag2.index(); if (index1 != index2) return index1 < index2; } else if (tag1.has_map_key() && tag2.has_map_key()) { return false; } else { sort_status = absl::FailedPreconditionError("Field tag mismatch"); return false; } } if (cf1.field_tag().size() == cf2.field_tag().size()) { return cf1.message().chunk_index() < cf2.message().chunk_index(); } return cf1.field_tag().size() < cf2.field_tag().size(); }); if (!sort_status.ok()) return sort_status; for (const auto& chunked_field : chunked_fields) { absl::Status s = ProcessField(chunked_field, merged_message, chunks_info, {}, reader, MergerOp::READ); if (!s.ok()) return s; } return absl::OkStatus(); } absl::Status Merger::ProcessField( const ChunkedField& chunked_field, Message* merged_message, const std::vector<ChunkInfo>& chunks_info, const std::vector<std::unique_ptr<Message>>& chunks, riegeli::RecordReader<riegeli::FdReader<>>& reader, MergerOp op) { std::string chunk; switch (op) { case MergerOp::READ: { TF_ASSIGN_OR_RETURN( chunk, ReadChunk(reader, chunks_info[chunked_field.message().chunk_index()])); break; } case MergerOp::MERGE: { chunk = chunks[chunked_field.message().chunk_index()]->SerializeAsString(); break; } } if (chunked_field.field_tag().empty()) { merged_message->MergeFromString(chunk); return absl::OkStatus(); } uint64_t field_index; Message* curr_message = merged_message; TF_ASSIGN_OR_RETURN(const std::vector<Field> fields, GetFieldTypes(chunked_field.field_tag())); const FieldDescriptor* field_desc = nullptr; for (const auto& field : fields) { merged_message = curr_message; field_desc = merged_message->GetDescriptor()->FindFieldByNumber( std::get<int>(field.first)); auto res = GetMutableField(merged_message, field); if (!res.ok()) { if (!absl::IsNotFound(res.status())) return res.status(); if (field_desc->is_map()) { TF_RETURN_IF_ERROR( AddMapEntry(curr_message, field_desc, field.second.value())); res = GetMutableField(curr_message, field); } else { curr_message->GetReflection()->AddMessage(curr_message, field_desc); res = GetMutableField(curr_message, field); } } auto [parent, mutable_field, mutable_field_index] = res.value(); if (mutable_field->is_repeated() && mutable_field_index != -1) { field_index = mutable_field_index; curr_message = parent->GetReflection()->MutableRepeatedMessage( parent, mutable_field, std::max(0, mutable_field_index)); if (mutable_field->is_map()) { field_desc = mutable_field->message_type()->FindFieldByNumber(2); merged_message = curr_message; curr_message = curr_message->GetReflection()->MutableMessage( curr_message, field_desc); } } else if (mutable_field->type() == FieldDescriptor::Type::TYPE_MESSAGE) { curr_message = parent->GetReflection()->MutableMessage(parent, mutable_field); } } const Reflection* reflection = merged_message->GetReflection(); if (field_desc->is_repeated()) { auto message_callback = [&reflection, &merged_message, &field_index, &op, &chunks, &chunked_field, &reader, &chunks_info, &field_desc]() -> absl::Status { for (int _ = reflection->FieldSize(*merged_message, field_desc); _ <= field_index; _++) { reflection->AddMessage(merged_message, field_desc); } switch (op) { case MergerOp::MERGE: TF_RETURN_IF_ERROR( Merge(chunks, chunked_field.message(), reflection->MutableRepeatedMessage( merged_message, field_desc, field_index))); break; case MergerOp::READ: TF_RETURN_IF_ERROR( ReadFields(chunked_field.message(), reader, chunks_info, reflection->MutableRepeatedMessage( merged_message, field_desc, field_index))); break; default: return absl::InternalError("Encountered unknown MergerOp."); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(SetRepeatedFieldElement( merged_message, field_desc, field_index, chunk, message_callback)); } else { auto message_callback = [&reflection, &merged_message, &op, &chunks, &chunked_field, &reader, &chunks_info, &field_desc]() -> absl::Status { switch (op) { case MergerOp::MERGE: TF_RETURN_IF_ERROR( Merge(chunks, chunked_field.message(), reflection->MutableMessage(merged_message, field_desc))); break; case MergerOp::READ: TF_RETURN_IF_ERROR(ReadFields( chunked_field.message(), reader, chunks_info, reflection->MutableMessage(merged_message, field_desc))); break; default: return absl::InternalError("Encountered unknown MergerOp."); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR( SetFieldElement(merged_message, field_desc, chunk, message_callback)); } return absl::OkStatus(); } }
#include "tensorflow/tools/proto_splitter/merge.h" #include <array> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/tools/proto_splitter/cc/test_util.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tensorflow/tools/proto_splitter/testdata/test_message.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace tensorflow::tools::proto_splitter { namespace { inline constexpr std::array kDFSplitTreeChunks = { "val: \"0\"", "val: \"010\"", "val: \"01020\"", "val: \"0102030\"", "val: \"0102031\"", "val: \"0102032\"", "val: \"01021\"", "val: \"0102130\"", "val: \"0102131\"", "val: \"0102132\""}; inline constexpr std::array kBFSplitTreeChunks = { "val: \"0\"", "val: \"010\"", "val: \"01020\"", "val: \"01021\"", "val: \"0102030\"", "val: \"0102031\"", "val: \"0102032\"", "val: \"0102130\"", "val: \"0102131\"", "val: \"0102132\""}; TEST(MergeTest, TestReadRiegeliTreeDepthFirst) { const std::string cpb_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "df-split-tree"); ::tensorflow::proto_splitter_testdata::StringNode merged_tree; TF_ASSERT_OK(Merger::Read(cpb_path, &merged_tree)); const std::string pbtxt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-tree"); ::tensorflow::proto_splitter_testdata::StringNode test_proto; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(pbtxt_path, ".pbtxt"), &test_proto)); ASSERT_THAT(merged_tree, EqualsProto(test_proto)); } TEST(MergeTest, TestReadRiegeliTreeBreadthFirst) { const std::string cpb_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "bf-split-tree"); ::tensorflow::proto_splitter_testdata::StringNode merged_tree; TF_ASSERT_OK(Merger::Read(cpb_path, &merged_tree)); const std::string pbtxt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-tree"); ::tensorflow::proto_splitter_testdata::StringNode test_proto; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(pbtxt_path, ".pbtxt"), &test_proto)); ASSERT_THAT(merged_tree, EqualsProto(test_proto)); } TEST(MergeTest, TestMergeTreeChunksDepthFirst) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "df-split-tree"); std::vector<std::unique_ptr<::tsl::protobuf::Message>> chunks; for (const auto& chunk : kDFSplitTreeChunks) { ::tensorflow::proto_splitter_testdata::StringNode string_node; ::tsl::protobuf::TextFormat::ParseFromString(chunk, &string_node); std::unique_ptr<::tsl::protobuf::Message> node = std::make_unique<::tensorflow::proto_splitter_testdata::StringNode>( string_node); chunks.push_back(std::move(node)); } std::string split_tree_metadata; TF_ASSERT_OK(tsl::ReadFileToString( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &split_tree_metadata)); ::tensorflow::proto_splitter::ChunkedMessage chunked_message; ::tsl::protobuf::TextFormat::ParseFromString(split_tree_metadata, &chunked_message); ::tensorflow::proto_splitter_testdata::StringNode merged_tree; TF_ASSERT_OK(Merger::Merge(chunks, chunked_message, &merged_tree)); const std::string pbtxt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-tree"); ::tensorflow::proto_splitter_testdata::StringNode test_proto; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(pbtxt_path, ".pbtxt"), &test_proto)); ASSERT_THAT(merged_tree, EqualsProto(test_proto)); } TEST(MergeTest, TestMergeTreeChunksBreadthFirst) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "bf-split-tree"); std::vector<std::unique_ptr<::tsl::protobuf::Message>> chunks; for (const auto& chunk : kBFSplitTreeChunks) { ::tensorflow::proto_splitter_testdata::StringNode string_node; ::tsl::protobuf::TextFormat::ParseFromString(chunk, &string_node); std::unique_ptr<::tsl::protobuf::Message> node = std::make_unique<::tensorflow::proto_splitter_testdata::StringNode>( string_node); chunks.push_back(std::move(node)); } std::string split_tree_metadata; TF_ASSERT_OK(tsl::ReadFileToString( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &split_tree_metadata)); ::tensorflow::proto_splitter::ChunkedMessage chunked_message; ::tsl::protobuf::TextFormat::ParseFromString(split_tree_metadata, &chunked_message); ::tensorflow::proto_splitter_testdata::StringNode merged_tree; TF_ASSERT_OK(Merger::Merge(chunks, chunked_message, &merged_tree)); const std::string pbtxt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-tree"); ::tensorflow::proto_splitter_testdata::StringNode test_proto; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(pbtxt_path, ".pbtxt"), &test_proto)); ASSERT_THAT(merged_tree, EqualsProto(test_proto)); } TEST(MergeTest, TestReadGraphDefLotsNodes) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-lots-nodes"); GraphDef merged_graph_def; TF_ASSERT_OK(Merger::Read(path, &merged_graph_def)); GraphDef test_graph_def; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_graph_def)); ASSERT_THAT(merged_graph_def, EqualsProto(test_graph_def)); } TEST(MergeTest, TestReadGraphDefLargeNodes) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-large-nodes"); GraphDef merged_graph_def; TF_ASSERT_OK(Merger::Read(path, &merged_graph_def)); GraphDef test_graph_def; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_graph_def)); ASSERT_THAT(merged_graph_def, EqualsProto(test_graph_def)); } TEST(MergeTest, TestReadGraphDefLargeConstant) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-large-constant"); GraphDef merged_graph_def; TF_ASSERT_OK(Merger::Read(path, &merged_graph_def)); GraphDef test_graph_def; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_graph_def)); ASSERT_THAT(merged_graph_def, EqualsProto(test_graph_def)); } TEST(MergeTest, TestReadManyField) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field"); ::tensorflow::proto_splitter_testdata::ManyFields merged_many_field; TF_ASSERT_OK(Merger::Read(path, &merged_many_field)); ::tensorflow::proto_splitter_testdata::ManyFields test_many_field; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_many_field)); ASSERT_THAT(merged_many_field, EqualsProto(test_many_field)); } TEST(MergeTest, TestReadSavedModel) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-standard"); SavedModel merged_saved_model; TF_ASSERT_OK(Merger::Read(path, &merged_saved_model)); SavedModel test_saved_model; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_saved_model)); ASSERT_THAT(merged_saved_model, EqualsProto(test_saved_model)); } TEST(MergeTest, TestReadChunkedModel) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "chunked_saved_model/chunked_model/saved_model"); SavedModel merged_saved_model; TF_ASSERT_OK(Merger::Read(path, &merged_saved_model)); SavedModel test_saved_model; TF_ASSERT_OK(tsl::ReadTextProto( tsl::Env::Default(), absl::StrCat(path, ".pbtxt"), &test_saved_model)); ASSERT_THAT(merged_saved_model, EqualsProto(test_saved_model)); } TEST(MergeTest, TestReadPartial) { const std::string path = io::JoinPath(testing::TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field"); TF_ASSERT_OK_AND_ASSIGN(auto reader, tools::proto_splitter::GetRiegeliReader( absl::StrCat(path, ".cpb"))); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ::tensorflow::proto_splitter::ChunkMetadata chunk_metadata = read_metadata.value(); ::tensorflow::proto_splitter::ChunkMetadata partial_chunk_metadata; partial_chunk_metadata.mutable_chunks()->CopyFrom(chunk_metadata.chunks()); partial_chunk_metadata.mutable_message()->set_chunk_index( chunk_metadata.message().chunk_index()); proto_splitter_testdata::ManyFields merged_many_fields; TF_ASSERT_OK( Merger::ReadPartial(path, partial_chunk_metadata, &merged_many_fields)); ASSERT_THAT(merged_many_fields, EqualsProto(R"pb( map_field_int64 { key: -1345 value: "map_value_-1345" } )pb")); } } }
262
#ifndef TENSORFLOW_TSL_PLATFORM_STACKTRACE_HANDLER_H_ #define TENSORFLOW_TSL_PLATFORM_STACKTRACE_HANDLER_H_ namespace tsl { namespace testing { void InstallStacktraceHandler(); } } #endif #include "tsl/platform/platform.h" #if !defined(IS_MOBILE_PLATFORM) && defined(PLATFORM_POSIX) && \ (defined(__clang__) || defined(__GNUC__)) #define TF_GENERATE_STACKTRACE #endif #if defined(TF_GENERATE_STACKTRACE) #include <errno.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #include <unistd.h> #include <string> #include "tsl/platform/stacktrace.h" #endif namespace tsl { namespace testing { #if defined(TF_GENERATE_STACKTRACE) inline void SafePrintStackTrace() { static const char begin_msg[] = "*** BEGIN MANGLED STACK TRACE ***\n"; (void)!write(STDERR_FILENO, begin_msg, strlen(begin_msg)); int buffer_size = 128; void *trace[128]; buffer_size = backtrace(trace, buffer_size); backtrace_symbols_fd(trace, buffer_size, STDERR_FILENO); static const char end_msg[] = "*** END MANGLED STACK TRACE ***\n\n"; (void)!write(STDERR_FILENO, end_msg, strlen(end_msg)); } static void StacktraceHandler(int sig, siginfo_t *si, void *v) { struct itimerval timer; timer.it_value.tv_sec = 60; timer.it_value.tv_usec = 0; timer.it_interval.tv_sec = 0; timer.it_interval.tv_usec = 0; setitimer(ITIMER_REAL, &timer, 0); struct sigaction sa_timeout; memset(&sa_timeout, 0, sizeof(sa_timeout)); sa_timeout.sa_handler = SIG_DFL; sigaction(SIGALRM, &sa_timeout, 0); char buf[128]; snprintf(buf, sizeof(buf), "*** Received signal %d ***\n", sig); (void)!write(STDERR_FILENO, buf, strlen(buf)); SafePrintStackTrace(); std::string stacktrace = CurrentStackTrace(); (void)!write(STDERR_FILENO, stacktrace.c_str(), stacktrace.length()); struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_DFL; sigaction(SIGABRT, &sa, NULL); abort(); } void InstallStacktraceHandler() { int handled_signals[] = {SIGSEGV, SIGABRT, SIGBUS, SIGILL, SIGFPE}; size_t array_limit = sizeof(handled_signals) / sizeof(int); for (size_t i = 0; i < array_limit; i++) { int sig = handled_signals[i]; struct sigaction sa; struct sigaction osa; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO | SA_RESETHAND; sa.sa_sigaction = &StacktraceHandler; if (sigaction(sig, &sa, &osa) != 0) { char buf[128]; snprintf(buf, sizeof(buf), "Warning, can't install backtrace signal handler for signal %d, " "errno:%d \n", sig, errno); (void)!write(STDERR_FILENO, buf, strlen(buf)); } else if (osa.sa_handler != SIG_DFL) { char buf[128]; snprintf(buf, sizeof(buf), "Warning, backtrace signal handler for signal %d overwrote " "previous handler.\n", sig); (void)!write(STDERR_FILENO, buf, strlen(buf)); } } } #else void InstallStacktraceHandler() {} #endif } }
#include <csignal> #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(StacktraceHandlerTest, GeneratesStacktrace) { EXPECT_DEATH(raise(SIGABRT), "testing::internal::UnitTestImpl::RunAllTests"); } } }
263
#ifndef TENSORFLOW_CORE_IR_TF_OP_WRAPPER_H_ #define TENSORFLOW_CORE_IR_TF_OP_WRAPPER_H_ #include <cstddef> #include "llvm/ADT/iterator_range.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/TypeRange.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/types/dialect.h" #include "tensorflow/core/ir/utility.h" namespace mlir { namespace detail { template <typename ValueIteratorT> class ControlRetIterator final : public llvm::mapped_iterator_base<ControlRetIterator<ValueIteratorT>, ValueIteratorT, Value> { public: using llvm::mapped_iterator_base<ControlRetIterator<ValueIteratorT>, ValueIteratorT, Value>::mapped_iterator_base; Value mapElement(Value value) const { return mlir::isa<tf_type::ControlType>(value.getType()) ? value : tfg::LookupControlDependency(value); } }; } namespace tfg { class TFOp { public: TFOp(Operation *op = nullptr); explicit TFOp(Operation &op) : TFOp(&op) {} static bool classof(Operation *op) { return isa<TFGraphDialect>(op->getDialect()); } Operation *getOperation() { return op_; } TFGraphDialect *getDialect() { return cast<TFGraphDialect>(op_->getDialect()); } std::pair<OperandRange, OperandRange> splitOperands() { ControlType ctl_type = getDialect()->getControlType(); return SplitDataAndControlValues(op_->getOperands(), ctl_type); } OperandRange getNonControlOperands() { return splitOperands().first; } OperandRange getControlOperands() { return splitOperands().second; } Value controlRet() { return op_->getResult(op_->getNumResults() - 1); } ResultRange getNonControlResults() { return op_->getResults().slice(0, op_->getNumResults() - 1); } StringAttr nameAttr(); StringRef name(); void setName(const Twine &name); void setName(StringAttr name); StringAttr requestedDeviceAttr(); StringRef requestedDevice(); void setRequestedDevice(const Twine &requested_device); void setRequestedDevice(StringAttr requested_device); StringAttr assignedDeviceAttr(); StringRef assignedDevice(); void setAssignedDevice(const Twine &assigned_device); void setAssignedDevice(StringAttr assigned_device); StringAttr tpuReplicate(); void setTpuReplicate(StringAttr tpu_replicate); StringAttr deviceAttr() { StringAttr device = assignedDeviceAttr(); if (device) { assert(!device.getValue().empty()); return device; } return requestedDeviceAttr(); } StringRef device() { StringAttr device_attr = deviceAttr(); if (device_attr) return device_attr.getValue(); return ""; } Operation *operator->() { return op_; } Operation &operator*() { return *op_; } explicit operator bool() const { return op_; } private: Operation *op_; }; template <typename ValueRangeT> class ControlRetRange final : public llvm::iterator_range< ::mlir::detail::ControlRetIterator<typename ValueRangeT::iterator>> { public: using Base = llvm::iterator_range< ::mlir::detail::ControlRetIterator<typename ValueRangeT::iterator>>; explicit ControlRetRange(ValueRangeT c) : Base(c.begin(), c.end()) {} Value operator[](size_t index) const { assert(index < size() && "invalid index into value range"); return *(this->begin() + index); } size_t size() const { return llvm::size(*this); } Value front() { return (*this)[0]; } template <typename OtherT> bool operator==(const OtherT &other) const { return llvm::size(*this) == llvm::size(other) && std::equal(this->begin(), this->end(), other.begin()); } template <typename OtherT> bool operator!=(const OtherT &other) const { return !(*this == other); } }; using OperandControlRetRange = ControlRetRange<OperandRange>; using ValueControlRetRange = ControlRetRange<ValueRange>; } } #endif #include "tensorflow/core/ir/tf_op_wrapper.h" #include "mlir/IR/BuiltinAttributes.h" #include "tensorflow/core/ir/dialect.h" namespace mlir { namespace tfg { TFOp::TFOp(Operation *op) : op_(op) { assert(!op || classof(op) && "expected a TFG op"); } StringAttr TFOp::nameAttr() { return op_->getAttrOfType<StringAttr>(getDialect()->getNameAttrIdentifier()); } StringRef TFOp::name() { return nameAttr().getValue(); } void TFOp::setName(const Twine &name) { setName(StringAttr::get(op_->getContext(), name.str())); } void TFOp::setName(StringAttr name) { op_->setAttr(getDialect()->getNameAttrIdentifier(), name); } StringAttr TFOp::requestedDeviceAttr() { return op_->getAttrOfType<StringAttr>( getDialect()->getDeviceAttrIdentifier()); } StringRef TFOp::requestedDevice() { return requestedDeviceAttr().getValue(); } void TFOp::setRequestedDevice(const Twine &device) { setRequestedDevice(StringAttr::get(op_->getContext(), device.str())); } void TFOp::setRequestedDevice(StringAttr device) { op_->setAttr(getDialect()->getDeviceAttrIdentifier(), device); } StringAttr TFOp::assignedDeviceAttr() { return op_->getAttrOfType<StringAttr>( getDialect()->getAssignedDeviceAttrIdentifier()); } StringRef TFOp::assignedDevice() { return assignedDeviceAttr().getValue(); } void TFOp::setAssignedDevice(const Twine &device) { setAssignedDevice(StringAttr::get(op_->getContext(), device.str())); } void TFOp::setAssignedDevice(StringAttr device) { op_->setAttr(getDialect()->getAssignedDeviceAttrIdentifier(), device); } StringAttr TFOp::tpuReplicate() { return op_->getAttrOfType<StringAttr>("_tpu_replicate"); } void TFOp::setTpuReplicate(StringAttr tpu_replicate) { op_->setAttr("_tpu_replicate", tpu_replicate); } } }
#include "tensorflow/core/ir/tf_op_wrapper.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { TEST(TFOpWrapper, LLVMRTTI) { const char *const code = R"mlir( tfg.func @test() -> (tensor<i32>) { %A, %ctlA = A : () -> (tensor<i32>) return(%A) : tensor<i32> } )mlir"; MLIRContext context; context.getOrLoadDialect<TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); Operation *module_op = module.get(); EXPECT_FALSE(isa<TFOp>(module_op)); EXPECT_FALSE(dyn_cast<TFOp>(module_op)); module->walk([&](TFOp op) { EXPECT_TRUE(isa<TFOp>(op.getOperation())); EXPECT_TRUE(dyn_cast<TFOp>(op.getOperation())); }); } TEST(TFOpWrapper, ControlOperands) { const char *const code = R"mlir( tfg.func @test(%a: tensor<i32> {tfg.name = "a"}, %b: tensor<i32> {tfg.name = "b"}) -> (tensor<i32>) { %A, %ctlA = A(%a, %b) [%a.ctl, %b.ctl] : (tensor<i32>, tensor<i32>) -> (tensor<i32>) return(%A) : tensor<i32> } )mlir"; MLIRContext context; context.getOrLoadDialect<TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); TFOp a_op; module->walk([&](TFOp op) { if (op->getName().getStringRef() == "tfg.A") a_op = op; }); ASSERT_TRUE(a_op); EXPECT_EQ(a_op.controlRet().getDefiningOp(), a_op.getOperation()); OperandRange operands = a_op->getOperands(); OperandRange data = a_op.getNonControlOperands(); OperandRange ctls = a_op.getControlOperands(); EXPECT_EQ(operands.size(), 4u); EXPECT_EQ(data.size(), 2u); EXPECT_EQ(ctls.size(), 2u); OperandRange::iterator ctl_it = llvm::find_if(operands, [](Value operand) { return mlir::isa<ControlType>(operand.getType()); }); EXPECT_NE(ctl_it, operands.end()); EXPECT_EQ(data.end(), ctl_it); EXPECT_EQ(*ctls.begin(), *ctl_it); } TEST(TFOpWrapper, AttributeGetterSetters) { MLIRContext context; auto *tfg_dialect = context.getOrLoadDialect<TFGraphDialect>(); OperationState state(UnknownLoc::get(&context), "tfg.A"); state.addTypes(tfg_dialect->getControlType()); TFOp op = Operation::create(state); auto cleanup = llvm::make_scope_exit([&] { op->destroy(); }); { EXPECT_FALSE(op.nameAttr()); StringRef a_name = "a_name"; op.setName(a_name); EXPECT_EQ(op.name(), a_name); StringRef another_name = "another_name"; op.setName(StringAttr::get(&context, another_name)); EXPECT_EQ(op.name(), another_name); } { StringRef a_device = "/some_device"; EXPECT_FALSE(op.requestedDeviceAttr()); op.setRequestedDevice(a_device); EXPECT_EQ(op.requestedDevice(), a_device); StringRef another_device = "/some_other_device"; op.setRequestedDevice(StringAttr::get(&context, another_device)); EXPECT_EQ(op.requestedDevice(), another_device); } { StringRef a_device = "/some_assigned_device"; EXPECT_FALSE(op.assignedDeviceAttr()); op.setAssignedDevice(a_device); EXPECT_EQ(op.assignedDevice(), a_device); StringRef another_device = "/some_other_assigned_device"; op.setAssignedDevice(StringAttr::get(&context, another_device)); EXPECT_EQ(op.assignedDevice(), another_device); } { op->removeAttr(tfg_dialect->getAssignedDeviceAttrIdentifier()); EXPECT_EQ(op.deviceAttr(), op.requestedDeviceAttr()); StringRef device = "/an_assigned_device"; op.setAssignedDevice(device); EXPECT_EQ(op.deviceAttr(), op.assignedDeviceAttr()); EXPECT_EQ(op.device(), device); op->removeAttr(tfg_dialect->getAssignedDeviceAttrIdentifier()); op->removeAttr(tfg_dialect->getDeviceAttrIdentifier()); EXPECT_EQ(op.device(), ""); } { auto tpu_replicate = StringAttr::get(op->getContext(), "a_tpu"); op.setTpuReplicate(tpu_replicate); EXPECT_EQ(op.tpuReplicate(), tpu_replicate); } } TEST(TFOpWrapper, ValueControlRet) { const char *const code = R"mlir( tfg.func @test(%arg: tensor<i32> {tfg.name = "arg"}) -> (tensor<i32>) { %Const, %ctl = Const {dtype = i32, value = dense<0> : tensor<i32>} : () -> (tensor<i32>) %Add, %ctl_2 = Add(%Const, %arg) [%ctl] {T = i32} : (tensor<i32>, tensor<i32>) -> (tensor<i32>) return(%Add) : tensor<i32> } )mlir"; MLIRContext context; context.getOrLoadDialect<TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iterator = func.getBody().begin()->begin(); TFOp const_op = &(*iterator++); TFOp add_op = &(*iterator); OperandControlRetRange ret_range(add_op->getOperands()); EXPECT_EQ(ret_range[0], const_op.controlRet()); EXPECT_EQ(ret_range[1], func.getBody().begin()->getArguments()[1]); EXPECT_EQ(ret_range[2], const_op.controlRet()); for (Value v : ret_range) EXPECT_TRUE(mlir::isa<ControlType>(v.getType())); } } } }
264
#ifndef TENSORFLOW_CORE_TFRT_FALLBACK_COST_RECORDER_H_ #define TENSORFLOW_CORE_TFRT_FALLBACK_COST_RECORDER_H_ #include <utility> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace tfrt_stub { class CostRecorder { public: void RecordCost(int64_t op_key, uint64_t execution_time); uint64_t GetCost(int64_t op_key) const; Status WriteToFile() const; size_t size() const; static const char* MesuredCostPathEnvVarName() { return "TF_TFRT_MEASURED_COST_PATH"; } private: mutable tensorflow::mutex op_cost_map_mutex_; absl::flat_hash_map<int64_t, std::pair<uint64_t, uint64_t>> op_cost_map_ TF_GUARDED_BY(op_cost_map_mutex_); }; } } #endif #include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace tfrt_stub { void CostRecorder::RecordCost(int64_t op_key, uint64_t execution_time) { mutex_lock l(op_cost_map_mutex_); op_cost_map_[op_key].first += execution_time; op_cost_map_[op_key].second += 1; } uint64_t CostRecorder::GetCost(int64_t op_key) const { tf_shared_lock l(op_cost_map_mutex_); const auto iter = op_cost_map_.find(op_key); if (iter == op_cost_map_.end()) return std::numeric_limits<uint32_t>::max(); const auto total_cost = iter->second.first; const auto num_ops = iter->second.second; auto r = std::max(static_cast<uint64_t>(1), static_cast<uint64_t>(total_cost / num_ops)); VLOG(2) << "Get cost for op_key=" << op_key << ", cost=" << r; return r; } Status CostRecorder::WriteToFile() const { OpCostMapProto op_cost_map_proto; { tf_shared_lock l(op_cost_map_mutex_); for (const auto& [op_key, op_cost] : op_cost_map_) { const uint64_t avg_op_cost = op_cost.first / op_cost.second; (*op_cost_map_proto.mutable_op_cost_map())[op_key] = avg_op_cost; } } std::string measured_cost_path; TF_RETURN_IF_ERROR(ReadStringFromEnvVar(MesuredCostPathEnvVarName(), "", &measured_cost_path)); return tensorflow::WriteTextProto(tensorflow::Env::Default(), measured_cost_path, op_cost_map_proto); } size_t CostRecorder::size() const { tf_shared_lock l(op_cost_map_mutex_); return op_cost_map_.size(); } } }
#include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include <gtest/gtest.h> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr int64_t kTestOpKey = 1; constexpr uint64_t kTestCost = 1234; constexpr uint64_t kTestAvgCost = 1851; TEST(CostRecorderTest, RecordCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, kTestCost); EXPECT_EQ(recorder.size(), 1); } TEST(CostRecorderTest, GetCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); EXPECT_EQ(recorder.size(), 1); EXPECT_EQ(recorder.GetCost(kTestOpKey), kTestAvgCost); } TEST(CostRecorderTest, GetCostDefaultValueTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); EXPECT_EQ(recorder.GetCost(kTestOpKey), std::numeric_limits<uint32_t>::max()); } TEST(CostRecorderTest, WriteToFileTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv("TF_TFRT_MEASURED_COST_PATH", measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map_size(), 0); } TEST(CostRecorderTest, ProtoRecordsTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); ASSERT_EQ(recorder.size(), 1); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv(CostRecorder::MesuredCostPathEnvVarName(), measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map().find(kTestOpKey)->second, kTestAvgCost); } } } }
265
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_LITE_QUANTIZE_WEIGHTS_H_ #define TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_LITE_QUANTIZE_WEIGHTS_H_ #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" namespace mlir { namespace lite { enum class BufferType { QUANTIZED_INT8, QUANTIZED_FLOAT16 }; struct CustomOpInfo { std::vector<std::int32_t> quantizable_input_indices; bool is_weight_only = false; bool no_side_effect = true; }; using BuiltinOperatorSet = absl::flat_hash_set<tflite::BuiltinOperator>; using CustomOpMap = std::unordered_map<std::string, CustomOpInfo>; absl::Status QuantizeWeights( flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, const tflite::TensorType& inference_type, const absl::flat_hash_set<std::string>& denylisted_ops, const CustomOpMap& custom_op_map, int64_t minimum_elements_for_weights = 1024, bool disable_per_channel = false, bool weight_only_quantization = false, bool legacy_float_scale = false); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, int64_t weights_min_num_elements, bool use_hybrid_evaluation = true); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, BufferType quant_type = BufferType::QUANTIZED_INT8, bool use_updated_hybrid_scheme = true); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, int64_t weights_min_num_elements, const CustomOpMap& custom_op_map, bool use_updated_hybrid_scheme = true, const BuiltinOperatorSet& op_denylist = {}); } } #endif #define EIGEN_USE_THREADS #include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/threadpool_device.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status QuantizeWeights(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { int32_t minimum_size; TF_RETURN_IF_ERROR( context.GetOneInt32Parameter("minimum_size", 1024, &minimum_size)); TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Const"}, [minimum_size](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& old_const_node = match.node; if (!old_const_node.attr().count("dtype")) { return errors::InvalidArgument("No 'dtype' attribute for Const node ", old_const_node.name()); } if (!old_const_node.attr().count("value")) { return errors::InvalidArgument("No 'value' attribute for Const node ", old_const_node.name()); } const DataType old_dtype = old_const_node.attr().at("dtype").type(); Tensor old_tensor; if (!old_tensor.FromProto(old_const_node.attr().at("value").tensor())) { return errors::InvalidArgument("Decoding Tensor failed for node", old_const_node.name()); } const size_t num_elements = old_tensor.NumElements(); if ((old_dtype != DT_FLOAT) || (num_elements < minimum_size)) { new_nodes->push_back(old_const_node); return OkStatus(); } const float* old_values = old_tensor.flat<float>().data(); float min = std::numeric_limits<float>::max(); float max = std::numeric_limits<float>::min(); for (int i = 0; i < num_elements; ++i) { const float value = old_values[i]; min = std::min(min, value); max = std::max(max, value); } min = std::min(min, 0.0f); max = std::max(0.0f, max); if (min == max) { if (std::abs(min) < 0.000001f) { max = min + 1.0f; } else if (min > 0) { max = 2.0f * min; } else { max = min / 2.0f; } } Tensor quantized_tensor(DT_QUINT8, old_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(old_tensor, min, max, &quantized_tensor); NodeDef quantized_const_node; quantized_const_node.set_op("Const"); quantized_const_node.set_name(old_const_node.name() + "_quantized_const"); SetNodeAttr("dtype", DT_QUINT8, &quantized_const_node); SetNodeTensorAttr<float>("value", quantized_tensor, &quantized_const_node); new_nodes->push_back(quantized_const_node); NodeDef min_node; min_node.set_op("Const"); min_node.set_name(old_const_node.name() + "_quantized_min"); SetNodeAttr("dtype", DT_FLOAT, &min_node); Tensor min_tensor(DT_FLOAT, {}); min_tensor.scalar<float>()() = min; SetNodeTensorAttr<float>("value", min_tensor, &min_node); new_nodes->push_back(min_node); NodeDef max_node; max_node.set_op("Const"); max_node.set_name(old_const_node.name() + "_quantized_max"); SetNodeAttr("dtype", DT_FLOAT, &max_node); Tensor max_tensor(DT_FLOAT, {}); max_tensor.scalar<float>()() = max; SetNodeTensorAttr<float>("value", max_tensor, &max_node); new_nodes->push_back(max_node); NodeDef dequantize_node; dequantize_node.set_op("Dequantize"); dequantize_node.set_name(old_const_node.name()); SetNodeAttr("T", DT_QUINT8, &dequantize_node); SetNodeAttr("mode", "MIN_FIRST", &dequantize_node); AddNodeInput(quantized_const_node.name(), &dequantize_node); AddNodeInput(min_node.name(), &dequantize_node); AddNodeInput(max_node.name(), &dequantize_node); new_nodes->push_back(dequantize_node); return OkStatus(); }, {}, output_graph_def)); return OkStatus(); } REGISTER_GRAPH_TRANSFORM("quantize_weights", QuantizeWeights); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status QuantizeWeights(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class QuantizeWeightsTest : public ::testing::Test { protected: void BuildGraphDef(const TensorShape& input_shape, std::initializer_list<float> input_values, const TensorShape& weight_shape, std::initializer_list<float> weight_values, GraphDef* original_graph_def) { auto root = tensorflow::Scope::DisabledShapeInferenceScope(); Tensor input_data(DT_FLOAT, input_shape); test::FillValues<float>(&input_data, input_values); Output input_op = ops::Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, weight_shape); test::FillValues<float>(&weights_data, weight_values); Output weights_op = ops::Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = ops::Conv2D(root.WithOpName("output"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); TF_ASSERT_OK(root.ToGraphDef(original_graph_def)); } void TestQuantizeWeights() { GraphDef original_graph_def; BuildGraphDef({1, 1, 6, 2}, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}, {1, 2, 2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}, &original_graph_def); TransformFuncContext context; context.output_names = {"output"}; context.params["minimum_size"] = {"16"}; GraphDef quantized_graph_def; TF_ASSERT_OK( QuantizeWeights(original_graph_def, context, &quantized_graph_def)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(quantized_graph_def, &node_lookup); EXPECT_EQ(1, node_lookup.count("input_op")); const NodeDef* q_input_op = node_lookup.at("input_op"); EXPECT_EQ(DT_FLOAT, q_input_op->attr().at("dtype").type()); EXPECT_EQ(1, node_lookup.count("weights_op")); const NodeDef* q_weights_op = node_lookup.at("weights_op"); EXPECT_EQ("Dequantize", q_weights_op->op()); const string& weights_const_name = NodeNameFromInput(q_weights_op->input(0)); EXPECT_EQ(1, node_lookup.count(weights_const_name)); const NodeDef* q_weights_const = node_lookup.at(weights_const_name); EXPECT_EQ("Const", q_weights_const->op()); EXPECT_EQ(DT_QUINT8, q_weights_const->attr().at("dtype").type()); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); std::unique_ptr<Session> quantized_session(NewSession(SessionOptions())); TF_ASSERT_OK(quantized_session->Create(quantized_graph_def)); std::vector<Tensor> quantized_outputs; TF_ASSERT_OK( quantized_session->Run({}, {"output"}, {}, &quantized_outputs)); test::ExpectTensorNear<float>(original_outputs[0], quantized_outputs[0], 0.5); } }; TEST_F(QuantizeWeightsTest, TestQuantizeWeights) { TestQuantizeWeights(); } TEST_F(QuantizeWeightsTest, RangesAlwaysIncludeZero) { GraphDef original_graph_def; BuildGraphDef({1, 1, 4, 4}, {-1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f}, {1, 2, 2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}, &original_graph_def); TransformFuncContext context; context.output_names = {"output"}; context.params["minimum_size"] = {"16"}; GraphDef quantized_graph_def; TF_ASSERT_OK( QuantizeWeights(original_graph_def, context, &quantized_graph_def)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(quantized_graph_def, &node_lookup); auto expected_tensor = [](float value) { Tensor tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&tensor, {value}); return tensor; }; auto existing_tensor = [&node_lookup](string op) { const NodeDef* node_def = node_lookup.at(op); CHECK(node_def); return GetNodeTensorAttr(*node_def, "value"); }; test::ExpectTensorNear<float>( expected_tensor(-5.0), existing_tensor("input_op_quantized_min"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(0.0), existing_tensor("input_op_quantized_max"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(0.0), existing_tensor("weights_op_quantized_min"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(4.0), existing_tensor("weights_op_quantized_max"), 1e-5); } } }
266
#include <algorithm> #include <cassert> #include <cstring> #include <sstream> #include "phonenumbers/stringutil.h" #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "absl/strings/match.h" namespace i18n { namespace phonenumbers { using std::equal; using std::stringstream; string operator+(const string& s, int n) { string result; absl::StrAppend(&result,s,n); return result; } string SimpleItoa(int n) { return absl::StrCat(n); } string SimpleItoa(uint64 n) { return absl::StrCat(n); } string SimpleItoa(int64 n) { return absl::StrCat(n); } bool HasPrefixString(const string& s, const string& prefix) { return absl::StartsWith(s, prefix); } size_t FindNth(const string& s, char c, int n) { size_t pos = string::npos; for (int i = 0; i < n; ++i) { pos = s.find_first_of(c, pos + 1); if (pos == string::npos) { break; } } return pos; } void SplitStringUsing(const string& s, char delimiter, vector<string>* result) { assert(result); for (absl::string_view split_piece : absl::StrSplit( s, absl::ByChar(delimiter), absl::SkipEmpty())) { result->push_back(std::string(split_piece)); } } bool TryStripPrefixString(const string& in, const string& prefix, string* out) { assert(out); const bool has_prefix = in.compare(0, prefix.length(), prefix) == 0; out->assign(has_prefix ? in.substr(prefix.length()) : in); return has_prefix; } bool HasSuffixString(const string& s, const string& suffix) { return absl::EndsWith(s, suffix); } template <typename T> void GenericAtoi(const string& s, T* out) { if (!absl::SimpleAtoi(s, out)) *out = 0; } void safe_strto32(const string& s, int32 *n) { GenericAtoi(s, n); } void safe_strtou64(const string& s, uint64 *n) { GenericAtoi(s, n); } void safe_strto64(const string& s, int64* n) { GenericAtoi(s, n); } void strrmm(string* s, const string& chars) { for (string::iterator it = s->begin(); it != s->end(); ) { const char current_char = *it; if (chars.find(current_char) != string::npos) { it = s->erase(it); } else { ++it; } } } int GlobalReplaceSubstring(const string& substring, const string& replacement, string* s) { return absl::StrReplaceAll({{substring, replacement}}, s);; } StringHolder::StringHolder(const string& s) : absl::AlphaNum(s) {} StringHolder::StringHolder(const char* cp) : absl::AlphaNum(cp) {} StringHolder::StringHolder(uint64 n) : absl::AlphaNum(n) {} StringHolder::~StringHolder() {} string& operator+=(string& lhs, const StringHolder& rhs) { absl::string_view s = rhs.GetString();; if (s.size() != 0) { lhs += s.data(); } else { const char* const cs = rhs.GetCString(); if (cs) lhs.append(cs, rhs.Length()); } return lhs; } string StrCat(const StringHolder& s1, const StringHolder& s2) { return absl::StrCat(s1, s2); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3) { return absl::StrCat(s1, s2, s3); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4) { return absl::StrCat(s1, s2, s3, s4); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5) { return absl::StrCat(s1, s2, s3, s4, s5); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6) { return absl::StrCat(s1, s2, s3, s4, s5, s6); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8) { string result; result.reserve(s1.Length() + s2.Length() + s3.Length() + s4.Length() + s5.Length() + s6.Length() + s7.Length() + s8.Length() + 1); return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11, const StringHolder& s12) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11, const StringHolder& s12, const StringHolder& s13) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11, const StringHolder& s12, const StringHolder& s13, const StringHolder& s14) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11, const StringHolder& s12, const StringHolder& s13, const StringHolder& s14, const StringHolder& s15) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15); } string StrCat(const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5, const StringHolder& s6, const StringHolder& s7, const StringHolder& s8, const StringHolder& s9, const StringHolder& s10, const StringHolder& s11, const StringHolder& s12, const StringHolder& s13, const StringHolder& s14, const StringHolder& s15, const StringHolder& s16) { return absl::StrCat(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16); } void StrAppend(string* dest, const StringHolder& s1) { absl::StrAppend(dest, s1); } void StrAppend(string* dest, const StringHolder& s1, const StringHolder& s2) { absl::StrAppend(dest, s1, s2); } void StrAppend(string* dest, const StringHolder& s1, const StringHolder& s2, const StringHolder& s3) { absl::StrAppend(dest, s1, s2, s3); } void StrAppend(string* dest, const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4) { absl::StrAppend(dest, s1, s2, s3, s4); } void StrAppend(string* dest, const StringHolder& s1, const StringHolder& s2, const StringHolder& s3, const StringHolder& s4, const StringHolder& s5) { absl::StrAppend(dest, s1, s2, s3, s4, s5); } } }
#include "phonenumbers/stringutil.h" #include <string> #include <vector> #include <gtest/gtest.h> using std::string; using std::vector; namespace i18n { namespace phonenumbers { TEST(StringUtilTest, OperatorPlus) { EXPECT_EQ("hello10", string("hello") + 10); } TEST(StringUtilTest, SimpleItoa) { EXPECT_EQ("10", SimpleItoa(10)); } TEST(StringUtilTest, HasPrefixString) { EXPECT_TRUE(HasPrefixString("hello world", "hello")); EXPECT_FALSE(HasPrefixString("hello world", "hellO")); } TEST(StringUtilTest, FindNthWithEmptyString) { EXPECT_EQ(string::npos, FindNth("", 'a', 1)); } TEST(StringUtilTest, FindNthWithNNegative) { EXPECT_EQ(string::npos, FindNth("hello world", 'o', -1)); } TEST(StringUtilTest, FindNthWithNTooHigh) { EXPECT_EQ(string::npos, FindNth("hello world", 'o', 3)); } TEST(StringUtilTest, FindNth) { EXPECT_EQ(7U, FindNth("hello world", 'o', 2)); } TEST(StringUtilTest, SplitStringUsingWithEmptyString) { vector<string> result; SplitStringUsing("", ':', &result); EXPECT_EQ(0U, result.size()); } TEST(StringUtilTest, SplitStringUsing) { vector<string> result; SplitStringUsing(":hello:world:", ':', &result); EXPECT_EQ(2U, result.size()); EXPECT_EQ("hello", result[0]); EXPECT_EQ("world", result[1]); } TEST(StringUtilTest, SplitStringUsingIgnoresEmptyToken) { vector<string> result; SplitStringUsing("hello::world", ':', &result); EXPECT_EQ(2U, result.size()); EXPECT_EQ("hello", result[0]); EXPECT_EQ("world", result[1]); } TEST(StringUtilTest, TryStripPrefixString) { string s; EXPECT_TRUE(TryStripPrefixString("hello world", "hello", &s)); EXPECT_EQ(" world", s); s.clear(); EXPECT_FALSE(TryStripPrefixString("hello world", "helloa", &s)); s.clear(); EXPECT_TRUE(TryStripPrefixString("hello world", "", &s)); EXPECT_EQ("hello world", s); s.clear(); EXPECT_FALSE(TryStripPrefixString("", "hello", &s)); s.clear(); } TEST(StringUtilTest, HasSuffixString) { EXPECT_TRUE(HasSuffixString("hello world", "hello world")); EXPECT_TRUE(HasSuffixString("hello world", "world")); EXPECT_FALSE(HasSuffixString("hello world", "world!")); EXPECT_TRUE(HasSuffixString("hello world", "")); EXPECT_FALSE(HasSuffixString("", "hello")); } TEST(StringUtilTest, safe_strto32) { int32 n; safe_strto32("0", &n); EXPECT_EQ(0, n); safe_strto32("16", &n); EXPECT_EQ(16, n); safe_strto32("2147483647", &n); EXPECT_EQ(2147483647, n); safe_strto32("-2147483648", &n); EXPECT_EQ(-2147483648LL, n); } TEST(StringUtilTest, safe_strtou64) { uint64 n; safe_strtou64("0", &n); EXPECT_EQ(0U, n); safe_strtou64("16", &n); EXPECT_EQ(16U, n); safe_strtou64("18446744073709551615", &n); EXPECT_EQ(18446744073709551615ULL, n); } TEST(StringUtilTest, strrmm) { string input("hello"); strrmm(&input, ""); EXPECT_EQ(input, input); string empty; strrmm(&empty, ""); EXPECT_EQ("", empty); strrmm(&empty, "aa"); EXPECT_EQ("", empty); strrmm(&input, "h"); EXPECT_EQ("ello", input); strrmm(&input, "el"); EXPECT_EQ("o", input); } TEST(StringUtilTest, GlobalReplaceSubstring) { string input("hello"); EXPECT_EQ(0, GlobalReplaceSubstring("aaa", "", &input)); EXPECT_EQ("hello", input); EXPECT_EQ(0, GlobalReplaceSubstring("", "aaa", &input)); EXPECT_EQ("hello", input); EXPECT_EQ(0, GlobalReplaceSubstring("", "", &input)); EXPECT_EQ("hello", input); EXPECT_EQ(0, GlobalReplaceSubstring("aaa", "bbb", &input)); EXPECT_EQ("hello", input); EXPECT_EQ(1, GlobalReplaceSubstring("o", "o world", &input)); ASSERT_EQ("hello world", input); EXPECT_EQ(2, GlobalReplaceSubstring("o", "O", &input)); EXPECT_EQ("hellO wOrld", input); } TEST(StringUtilTest, StringHolder) { static const char cstring[] = "aaa"; StringHolder sh1(cstring); EXPECT_EQ(cstring, sh1.GetCString()); string s = "aaa"; StringHolder sh2(s); EXPECT_EQ(cstring, sh2.GetString()); string s2 = "hello"; StringHolder sh3(s2); EXPECT_EQ(5U, sh3.Length()); StringHolder sh4(42); static const char cstring2[] = "42";; EXPECT_EQ(cstring2, sh4.GetString()); } TEST(StringUtilTest, OperatorPlusEquals) { string s = "h"; static const char append1[] = "ello"; s += StringHolder(append1); EXPECT_EQ("hello", s); s = "h"; string append2 = "ello"; s += StringHolder(append2); EXPECT_EQ("hello", s); } TEST(StringUtilTest, StrCat) { string s; s = StrCat("a", "b"); EXPECT_EQ("ab", s); s = StrCat("a", "b", "c"); EXPECT_EQ("abc", s); s = StrCat("a", "b", "c", "d"); EXPECT_EQ("abcd", s); s = StrCat("a", "b", "c", "d", "e"); EXPECT_EQ("abcde", s); s = StrCat("a", "b", "c", "d", "e", "f"); EXPECT_EQ("abcdef", s); s = StrCat("a", "b", "c", "d", "e", "f", "g"); EXPECT_EQ("abcdefg", s); s = StrCat("a", "b", "c", "d", "e", "f", "g", "h"); EXPECT_EQ("abcdefgh", s); s = StrCat("a", "b", "c", "d", "e", "f", "g", "h", "i"); EXPECT_EQ("abcdefghi", s); s = StrCat("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"); EXPECT_EQ("abcdefghijk", s); } TEST(StringUtilTest, StrAppend) { string s; StrAppend(&s, "a"); ASSERT_EQ("a", s); StrAppend(&s, "b", "c"); ASSERT_EQ("abc", s); StrAppend(&s, "d", "e", "f"); ASSERT_EQ("abcdef", s); StrAppend(&s, "g", "h", "i", "j"); ASSERT_EQ("abcdefghij", s); StrAppend(&s, "k", "l", "m", "n", "o"); ASSERT_EQ("abcdefghijklmno", s); StrAppend(&s, 42); ASSERT_EQ("abcdefghijklmno42", s); } } }
267
#ifndef TENSORFLOW_CORE_GRAPH_TENSOR_ID_H_ #define TENSORFLOW_CORE_GRAPH_TENSOR_ID_H_ #include <string> #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/strcat.h" namespace tensorflow { struct SafeTensorId; struct TensorId : public std::pair<StringPiece, int> { typedef std::pair<StringPiece, int> Base; using Base::pair; TensorId() : Base() {} TensorId(const SafeTensorId& id); const StringPiece node() const { return first; } int index() const { return second; } string ToString() const { if (second == Graph::kControlSlot) return strings::StrCat("^", first); return strings::StrCat(first, ":", second); } struct Hasher { public: std::size_t operator()(const TensorId& x) const { return Hash32(x.first.data(), x.first.size(), x.second); } }; }; TensorId ParseTensorName(const string& name); TensorId ParseTensorName(StringPiece name); bool IsTensorIdControl(const TensorId& tensor_id); struct SafeTensorId : public std::pair<string, int> { typedef std::pair<string, int> Base; SafeTensorId() : Base() {} SafeTensorId(const string& str, int idx) : Base(str, idx) {} SafeTensorId(const TensorId& id); const string& node() const { return first; } int index() const { return second; } string ToString() const { if (second == Graph::kControlSlot) return strings::StrCat("^", first); return strings::StrCat(first, ":", second); } struct Hasher { public: std::size_t operator()(const TensorId& x) const { return Hash32(x.first.data(), x.first.size(), x.second); } }; }; } #endif #include "tensorflow/core/graph/tensor_id.h" #include <string> #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { TensorId::TensorId(const SafeTensorId& id) : TensorId(id.first, id.second) {} SafeTensorId::SafeTensorId(const TensorId& id) : SafeTensorId(string(id.first), id.second) {} TensorId ParseTensorName(const string& name) { return ParseTensorName(StringPiece(name.data(), name.size())); } TensorId ParseTensorName(StringPiece name) { const char* base = name.data(); const char* p = base + name.size() - 1; unsigned int index = 0; unsigned int mul = 1; while (p > base && (*p >= '0' && *p <= '9')) { index += ((*p - '0') * mul); mul *= 10; p--; } TensorId id; if (p > base && *p == ':' && mul > 1) { id.first = StringPiece(base, p - base); id.second = index; } else if (absl::StartsWith(name, "^")) { id.first = StringPiece(base + 1); id.second = Graph::kControlSlot; } else { id.first = name; id.second = 0; } return id; } bool IsTensorIdControl(const TensorId& tensor_id) { return tensor_id.index() == Graph::kControlSlot; } }
#include "tensorflow/core/graph/tensor_id.h" #include <vector> #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { string ParseHelper(const string& n) { return ParseTensorName(n).ToString(); } TEST(TensorIdTest, ParseTensorName) { EXPECT_EQ(ParseHelper("W1"), "W1:0"); EXPECT_EQ(ParseHelper("W1:0"), "W1:0"); EXPECT_EQ(ParseHelper("weights:0"), "weights:0"); EXPECT_EQ(ParseHelper("W1:1"), "W1:1"); EXPECT_EQ(ParseHelper("W1:17"), "W1:17"); EXPECT_EQ(ParseHelper("xyz1_17"), "xyz1_17:0"); EXPECT_EQ(ParseHelper("^foo"), "^foo"); } uint32 Skewed(random::SimplePhilox* rnd, int max_log) { const uint32 space = 1 << (rnd->Rand32() % (max_log + 1)); return rnd->Rand32() % space; } void BM_ParseTensorName(::testing::benchmark::State& state) { const int arg = state.range(0); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); std::vector<string> names; for (int i = 0; i < 100; i++) { string name; switch (arg) { case 0: { size_t len = Skewed(&rnd, 4); while (name.size() < len) { name += rnd.OneIn(4) ? '0' : 'a'; } if (rnd.OneIn(3)) { strings::StrAppend(&name, ":", rnd.Uniform(12)); } break; } case 1: name = "W1"; break; case 2: name = "t0003"; break; case 3: name = "weights"; break; case 4: name = "weights:17"; break; case 5: name = "^weights"; break; default: LOG(FATAL) << "Unexpected arg"; break; } names.push_back(name); } TensorId id; int index = 0; int sum = 0; for (auto s : state) { id = ParseTensorName(names[index++ % names.size()]); sum += id.second; } VLOG(2) << sum; } BENCHMARK(BM_ParseTensorName)->Arg(0)->Arg(1)->Arg(2)->Arg(3)->Arg(4)->Arg(5); TEST(TensorIdTest, IsTensorIdControl) { string input = "^foo"; TensorId tensor_id = ParseTensorName(input); EXPECT_TRUE(IsTensorIdControl(tensor_id)); input = "foo"; tensor_id = ParseTensorName(input); EXPECT_FALSE(IsTensorIdControl(tensor_id)); input = "foo:2"; tensor_id = ParseTensorName(input); EXPECT_FALSE(IsTensorIdControl(tensor_id)); } TEST(TensorIdTest, PortZero) { for (string input : {"foo", "foo:0"}) { TensorId tensor_id = ParseTensorName(input); EXPECT_EQ("foo", tensor_id.node()); EXPECT_EQ(0, tensor_id.index()); } } } }
268
#ifndef TENSORFLOW_TSL_PLATFORM_BFLOAT16_H_ #define TENSORFLOW_TSL_PLATFORM_BFLOAT16_H_ #include "Eigen/Core" namespace tsl { typedef Eigen::bfloat16 bfloat16; } #endif #include "tensorflow/core/framework/bfloat16.h" #include "Eigen/Core" namespace tensorflow { void RoundFloatToBFloat16(const float* src, bfloat16* dst, int64_t size) { Eigen::Map<const Eigen::ArrayXf> src_eigen(src, size); Eigen::Map<Eigen::Array<bfloat16, Eigen::Dynamic, 1>> dst_eigen(dst, size); dst_eigen = src_eigen.cast<bfloat16>(); } void FloatToBFloat16(const float* src, bfloat16* dst, int64_t size) { for (; size != 0; src++, dst++, size--) { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ memcpy(dst, src, sizeof(bfloat16)); #else memcpy( dst, reinterpret_cast<const char*>(src) + sizeof(float) - sizeof(bfloat16), sizeof(bfloat16)); #endif } } void BFloat16ToFloat(const bfloat16* src, float* dst, int64_t size) { Eigen::Map<const Eigen::Array<bfloat16, Eigen::Dynamic, 1>> src_eigen(src, size); Eigen::Map<Eigen::ArrayXf> dst_eigen(dst, size); dst_eigen = src_eigen.cast<float>(); } }
#include <cmath> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/array2d.h" #include "xla/array4d.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/reference_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/util.h" #include "tsl/platform/test.h" namespace xla { namespace { class Bfloat16Test : public ClientLibraryTestBase { protected: const ErrorSpec error_spec_{0.001, 0.001}; }; XLA_TEST_F(Bfloat16Test, ScalarOperation) { XlaBuilder builder(TestName()); auto x = ConstantR0<bfloat16>(&builder, static_cast<bfloat16>(2.0f)); auto y = ConstantR0<bfloat16>(&builder, static_cast<bfloat16>(1.0f)); Add(x, y); ComputeAndCompareR0<bfloat16>(&builder, static_cast<bfloat16>(3.0f), {}, error_spec_); } XLA_TEST_F(Bfloat16Test, LogOperation) { XlaBuilder builder(TestName()); auto x = ConstantR0<bfloat16>(&builder, static_cast<bfloat16>(4.0f)); Log(x); ComputeAndCompareR0<bfloat16>(&builder, static_cast<bfloat16>(1.387f), {}, ErrorSpec(0.01, 0.01)); } XLA_TEST_F(Bfloat16Test, NegateScalarF16) { XlaBuilder builder(TestName()); Neg(ConstantR0<bfloat16>(&builder, static_cast<bfloat16>(2.1f))); ComputeAndCompareR0<bfloat16>(&builder, static_cast<bfloat16>(-2.1f), {}, error_spec_); } XLA_TEST_F(Bfloat16Test, DISABLED_ON_INTERPRETER(BatchNormTraining)) { const int kFeatureIndex = 2; XlaBuilder builder(TestName()); auto operand = ConstantR4FromArray4D<bfloat16>( &builder, {{{{static_cast<bfloat16>(1.f)}, {static_cast<bfloat16>(2.f)}}, {{static_cast<bfloat16>(3.f)}, {static_cast<bfloat16>(4.f)}}}, {{{static_cast<bfloat16>(5.f)}, {static_cast<bfloat16>(6.f)}}, {{static_cast<bfloat16>(7.f)}, {static_cast<bfloat16>(8.f)}}}}); auto scale = ConstantR1<bfloat16>( &builder, {static_cast<bfloat16>(2.0f), static_cast<bfloat16>(3.0f)}); auto offset = ConstantR1<bfloat16>( &builder, {static_cast<bfloat16>(1.0f), static_cast<bfloat16>(2.0f)}); BatchNormTraining(operand, scale, offset, 0.001, kFeatureIndex); auto expected = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR4<bfloat16>( {{{{static_cast<bfloat16>(-1.6875f)}, {static_cast<bfloat16>(-2.04f)}}, {{static_cast<bfloat16>(0.105f)}, {static_cast<bfloat16>(0.66f)}}}, {{{static_cast<bfloat16>(1.89f)}, {static_cast<bfloat16>(3.35f)}}, {{static_cast<bfloat16>(3.7f)}, {static_cast<bfloat16>(6.04f)}}}}), LiteralUtil::CreateR1<bfloat16>( {static_cast<bfloat16>(4), static_cast<bfloat16>(5)}), LiteralUtil::CreateR1<bfloat16>( {static_cast<bfloat16>(5), static_cast<bfloat16>(5)})}); ComputeAndCompareTuple(&builder, expected, {}, ErrorSpec(0.01, 0.02)); } XLA_TEST_F(Bfloat16Test, DISABLED_ON_INTERPRETER(BatchNormGrad)) { const int kFeatureIndex = 2; XlaBuilder builder(TestName()); auto operand = ConstantR4FromArray4D<bfloat16>( &builder, Array4D<bfloat16>(2, 2, 2, 1, static_cast<bfloat16>(0.0f))); auto scale = ConstantR1<bfloat16>( &builder, {static_cast<bfloat16>(1.0f), static_cast<bfloat16>(1.0f)}); auto mean = ConstantR1<bfloat16>( &builder, {static_cast<bfloat16>(0.0f), static_cast<bfloat16>(0.0f)}); auto var = ConstantR1<bfloat16>( &builder, {static_cast<bfloat16>(1.0f), static_cast<bfloat16>(1.0f)}); auto grad_output = ConstantR4FromArray4D<bfloat16>( &builder, {{{{static_cast<bfloat16>(1.f)}, {static_cast<bfloat16>(2.f)}}, {{static_cast<bfloat16>(3.f)}, {static_cast<bfloat16>(4.f)}}}, {{{static_cast<bfloat16>(5.f)}, {static_cast<bfloat16>(6.f)}}, {{static_cast<bfloat16>(7.f)}, {static_cast<bfloat16>(8.f)}}}}); BatchNormGrad(operand, scale, mean, var, grad_output, 0.0, kFeatureIndex); auto expected = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR4<bfloat16>( {{{{static_cast<bfloat16>(-3.f)}, {static_cast<bfloat16>(-3.f)}}, {{static_cast<bfloat16>(-1.f)}, {static_cast<bfloat16>(-1.f)}}}, {{{static_cast<bfloat16>(1.f)}, {static_cast<bfloat16>(1.f)}}, {{static_cast<bfloat16>(3.f)}, {static_cast<bfloat16>(3.f)}}}}), LiteralUtil::CreateR1<bfloat16>( {static_cast<bfloat16>(0), static_cast<bfloat16>(0)}), LiteralUtil::CreateR1<bfloat16>( {static_cast<bfloat16>(16), static_cast<bfloat16>(20)})}); ComputeAndCompareTuple(&builder, expected, {}, ErrorSpec(0.01)); } } }
269
#ifndef TENSORFLOW_CORE_GRAPPLER_UTILS_CANONICALIZER_H_ #define TENSORFLOW_CORE_GRAPPLER_UTILS_CANONICALIZER_H_ #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace grappler { void CanonicalizeNode(NodeDef* node); void CanonicalizeGraph(GraphDef* graph); void CompressConstants(GraphDef* graph); } } #endif #include "tensorflow/core/grappler/utils/canonicalizer.h" #include <algorithm> #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { void CanonicalizeNode(NodeDef* node) { if (node->input_size() < 2) return; int index = 0; for (; index < node->input_size(); ++index) { if (IsControlInput(node->input(index))) { break; } } auto* input = node->mutable_input(); if (IsCommutative(*node) && index > 0) { std::sort(input->begin(), input->begin() + index); } if (index < node->input_size()) { std::sort(input->begin() + index, input->end()); input->erase(std::unique(input->begin() + index, input->end()), input->end()); } } void CanonicalizeGraph(GraphDef* graph) { for (int i = 0; i < graph->node_size(); ++i) { CanonicalizeNode(graph->mutable_node(i)); } } void CompressConstants(GraphDef* graph) { for (int i = 0; i < graph->node_size(); ++i) { NodeDef* node = graph->mutable_node(i); if ((IsConstant(*node) || IsHostConstant(*node)) && HasNodeAttr(*node, "value")) { AttrValue& attr_val = (*node->mutable_attr())["value"]; if (attr_val.has_tensor()) { tensor::CompressTensorProtoInPlace(attr_val.mutable_tensor()); } } } } } }
#include "tensorflow/core/grappler/utils/canonicalizer.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { NodeDef MakeNode(const string& op) { NodeDef node; node.set_name("node"); node.set_op(op); *node.add_input() = "b"; *node.add_input() = "a"; *node.add_input() = "^z"; *node.add_input() = "^y"; *node.add_input() = "^x"; *node.add_input() = "^z"; return node; } void Verify(const NodeDef& node) { EXPECT_EQ(node.name(), "node"); ASSERT_EQ(node.input_size(), 5); if (node.op() == "Div") { EXPECT_EQ(node.input(0), "b"); EXPECT_EQ(node.input(1), "a"); } else { EXPECT_EQ(node.input(0), "a"); EXPECT_EQ(node.input(1), "b"); } EXPECT_EQ(node.input(2), "^x"); EXPECT_EQ(node.input(3), "^y"); EXPECT_EQ(node.input(4), "^z"); } TEST(CanonicalizeNode, NonCommutative) { NodeDef node = MakeNode("Div"); CanonicalizeNode(&node); Verify(node); } TEST(CanonicalizeNode, Commutative) { NodeDef node = MakeNode("Mul"); CanonicalizeNode(&node); Verify(node); } TEST(CanonicalizeGraph, Simple) { GraphDef graph; *graph.add_node() = MakeNode("Div"); *graph.add_node() = MakeNode("Mul"); CanonicalizeGraph(&graph); for (auto node : graph.node()) { Verify(node); } } } } }
270
#ifndef I18N_ADDRESSINPUT_ADDRESS_FORMATTER_H_ #define I18N_ADDRESSINPUT_ADDRESS_FORMATTER_H_ #include <string> #include <vector> namespace i18n { namespace addressinput { struct AddressData; void GetFormattedNationalAddress( const AddressData& address_data, std::vector<std::string>* lines); void GetFormattedNationalAddressLine( const AddressData& address_data, std::string* line); void GetStreetAddressLinesAsSingleLine( const AddressData& address_data, std::string* line); } } #endif #include <libaddressinput/address_formatter.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <algorithm> #include <cassert> #include <cstddef> #include <functional> #include <string> #include <vector> #include "format_element.h" #include "language.h" #include "region_data_constants.h" #include "rule.h" #include "util/cctype_tolower_equal.h" #include "util/size.h" namespace i18n { namespace addressinput { namespace { const char kCommaSeparator[] = ", "; const char kSpaceSeparator[] = " "; const char kArabicCommaSeparator[] = "، "; const char kLanguagesThatUseSpace[][3] = { "th", "ko", }; const char kLanguagesThatHaveNoSeparator[][3] = { "ja", "zh", }; const char kLanguagesThatUseAnArabicComma[][3] = { "ar", "fa", "ku", "ps", "ur", }; std::string GetLineSeparatorForLanguage(const std::string& language_tag) { Language address_language(language_tag); if (address_language.has_latin_script) { return kCommaSeparator; } const std::string& base_language = address_language.base; using std::placeholders::_1; if (std::find_if(kLanguagesThatUseSpace, kLanguagesThatUseSpace + size(kLanguagesThatUseSpace), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatUseSpace + size(kLanguagesThatUseSpace)) { return kSpaceSeparator; } else if (std::find_if( kLanguagesThatHaveNoSeparator, kLanguagesThatHaveNoSeparator + size(kLanguagesThatHaveNoSeparator), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatHaveNoSeparator + size(kLanguagesThatHaveNoSeparator)) { return ""; } else if (std::find_if( kLanguagesThatUseAnArabicComma, kLanguagesThatUseAnArabicComma + size(kLanguagesThatUseAnArabicComma), std::bind(&EqualToTolowerString, _1, base_language)) != kLanguagesThatUseAnArabicComma + size(kLanguagesThatUseAnArabicComma)) { return kArabicCommaSeparator; } return kCommaSeparator; } void CombineLinesForLanguage(const std::vector<std::string>& lines, const std::string& language_tag, std::string* line) { line->clear(); std::string separator = GetLineSeparatorForLanguage(language_tag); for (auto it = lines.begin(); it != lines.end(); ++it) { if (it != lines.begin()) { line->append(separator); } line->append(*it); } } } void GetFormattedNationalAddress( const AddressData& address_data, std::vector<std::string>* lines) { assert(lines != nullptr); lines->clear(); Rule rule; rule.CopyFrom(Rule::GetDefault()); rule.ParseSerializedRule( RegionDataConstants::GetRegionData(address_data.region_code)); Language language(address_data.language_code); const std::vector<FormatElement>& format = language.has_latin_script && !rule.GetLatinFormat().empty() ? rule.GetLatinFormat() : rule.GetFormat(); std::vector<FormatElement> pruned_format; for (auto element_it = format.begin(); element_it != format.end(); ++element_it) { if (element_it->IsNewline() || (element_it->IsField() && !address_data.IsFieldEmpty(element_it->GetField())) || (!element_it->IsField() && (element_it + 1 == format.end() || !(element_it + 1)->IsField() || !address_data.IsFieldEmpty((element_it + 1)->GetField())) && (element_it == format.begin() || !(element_it - 1)->IsField() || (!pruned_format.empty() && pruned_format.back().IsField())))) { pruned_format.push_back(*element_it); } } std::string line; for (const auto& element : pruned_format) { if (element.IsNewline()) { if (!line.empty()) { lines->push_back(line); line.clear(); } } else if (element.IsField()) { AddressField field = element.GetField(); if (field == STREET_ADDRESS) { if (!address_data.IsFieldEmpty(field)) { line.append(address_data.address_line.front()); if (address_data.address_line.size() > 1U) { lines->push_back(line); line.clear(); const auto last_element_iterator = address_data.address_line.begin() + address_data.address_line.size() - 1; lines->insert(lines->end(), address_data.address_line.begin() + 1, last_element_iterator); line.append(*last_element_iterator); } } } else { line.append(address_data.GetFieldValue(field)); } } else { line.append(element.GetLiteral()); } } if (!line.empty()) { lines->push_back(line); } } void GetFormattedNationalAddressLine( const AddressData& address_data, std::string* line) { std::vector<std::string> address_lines; GetFormattedNationalAddress(address_data, &address_lines); CombineLinesForLanguage(address_lines, address_data.language_code, line); } void GetStreetAddressLinesAsSingleLine( const AddressData& address_data, std::string* line) { CombineLinesForLanguage( address_data.address_line, address_data.language_code, line); } } }
#include <libaddressinput/address_formatter.h> #include <libaddressinput/address_data.h> #include <string> #include <vector> #include <gtest/gtest.h> namespace { using i18n::addressinput::AddressData; using i18n::addressinput::GetFormattedNationalAddress; using i18n::addressinput::GetFormattedNationalAddressLine; using i18n::addressinput::GetStreetAddressLinesAsSingleLine; TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_EmptyAddress) { const AddressData address; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_TRUE(result.empty()); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_1Line) { AddressData address{ .region_code = "US", .address_line{"Line 1"}, }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); address.language_code = "en"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); address.language_code = "zh-Hans"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1", result); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_2Lines) { AddressData address{ .region_code = "US", .address_line{ "Line 1", "Line 2", }, }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1, Line 2", result); address.language_code = "en"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1, Line 2", result); address.language_code = "zh-Hans"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1Line 2", result); address.language_code = "ko"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1 Line 2", result); address.language_code = "ar"; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ("Line 1، Line 2", result); } TEST(AddressFormatterTest, GetStreetAddressLinesAsSingleLine_5Lines) { const AddressData address{ .region_code = "US", .address_line{ "Line 1", "Line 2", "Line 3", "Line 4", "Line 5", }, .language_code = "fr", }; std::string result; GetStreetAddressLinesAsSingleLine(address, &result); EXPECT_EQ(result, "Line 1, Line 2, Line 3, Line 4, Line 5"); } TEST(AddressFormatterTest, GetFormattedNationalAddressLocalLanguage) { AddressData address{ .region_code = "NZ", .address_line{ "Rotopapa", "Irwell 3RD", }, .locality = "Leeston", .postal_code = "8704", }; const std::vector<std::string> expected{ "Rotopapa", "Irwell 3RD", "Leeston 8704", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.language_code = "en-Latn-CN"; lines.clear(); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); std::string one_line; GetFormattedNationalAddressLine(address, &one_line); EXPECT_EQ("Rotopapa, Irwell 3RD, Leeston 8704", one_line); } TEST(AddressFormatterTest, GetFormattedNationalAddressLatinFormat) { static const char kTaiwanCity[] = "大安區"; static const char kTaiwanAdmin[] = "台北市"; static const char kTaiwanStreetLine[] = "台灣信義路三段33號"; static const char kPostalCode[] = "106"; const AddressData address{ .region_code = "TW", .address_line{kTaiwanStreetLine}, .administrative_area = kTaiwanAdmin, .locality = kTaiwanCity, .postal_code = kPostalCode, .language_code = "zh-Hant", }; const std::vector<std::string> expected{ kPostalCode, std::string(kTaiwanAdmin).append(kTaiwanCity), kTaiwanStreetLine, }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); std::string one_line; GetFormattedNationalAddressLine(address, &one_line); EXPECT_EQ(std::string(kPostalCode) .append(kTaiwanAdmin) .append(kTaiwanCity) .append(kTaiwanStreetLine), one_line); const AddressData latin_address{ .region_code = "TW", .address_line{"No. 33, Section 3 Xinyi Rd"}, .administrative_area = "Taipei City", .locality = "Da-an District", .postal_code = kPostalCode, .language_code = "zh-Latn", }; const std::vector<std::string> expected_latin{ "No. 33, Section 3 Xinyi Rd", "Da-an District, Taipei City 106", }; lines.clear(); GetFormattedNationalAddress(latin_address, &lines); EXPECT_EQ(expected_latin, lines); GetFormattedNationalAddressLine(latin_address, &one_line); EXPECT_EQ("No. 33, Section 3 Xinyi Rd, Da-an District, Taipei City 106", one_line); } TEST(AddressFormatterTest, GetFormattedNationalAddressMultilingualCountry) { const AddressData address{ .region_code = "CA", .address_line{ "5 Rue du Tresor", "Apt. 4", }, .administrative_area = "QC", .locality = "Montmagny", .postal_code = "G1R 123", .language_code = "fr", }; const std::vector<std::string> expected{ "5 Rue du Tresor", "Apt. 4", "Montmagny QC G1R 123", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_InlineStreetAddress) { const AddressData address{ .region_code = "CI", .address_line{"32 Boulevard Carde"}, .locality = "Abidjan", .sorting_code = "64", .language_code = "zh-Hant", }; const std::vector<std::string> expected{"64 32 Boulevard Carde Abidjan 64"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralsAroundField) { AddressData address{.region_code = "CH"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Zurich"; expected.emplace_back("Zurich"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "8001"; expected.back().assign("CH-8001 Zurich"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality.clear(); expected.back().assign("CH-8001"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralsBetweenFields) { AddressData address{.region_code = "US"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area = "CA"; expected.emplace_back("CA"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Los Angeles"; expected.back().assign("Los Angeles, CA"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "90291"; expected.back().assign("Los Angeles, CA 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area.clear(); expected.back().assign("Los Angeles 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality.clear(); address.administrative_area = "CA"; expected.back().assign("CA 90291"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralOnSeparateLine) { AddressData address{.region_code = "AX"}; std::vector<std::string> expected{"ÅLAND"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "City"; expected.emplace(expected.begin(), "City"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "123"; expected.front().assign("AX-123 City"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_LiteralBeforeField) { AddressData address{ .region_code = "JP", .language_code = "ja", }; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code = "123"; expected.emplace_back("〒123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.administrative_area = "Prefecture"; expected.emplace_back("Prefecture"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.postal_code.clear(); expected.erase(expected.begin()); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_LiteralBeforeOneAddressLine) { const AddressData address{ .region_code = "JP", .address_line{"Roppongi Hills"}, .administrative_area = "Tokyo", .language_code = "ja_Latn", }; const std::vector<std::string> expected{"Roppongi Hills, Tokyo"}; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddress_LiteralBeforeTwoAddressLines) { const AddressData address{ .region_code = "JP", .address_line{ "Roppongi Hills", "Mori Tower", }, .administrative_area = "Tokyo", .language_code = "ja_Latn", }; const std::vector<std::string> expected{ "Roppongi Hills", "Mori Tower, Tokyo", }; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } TEST(AddressFormatterTest, GetFormattedNationalAddressMissingFields_DuplicateField) { AddressData address{.region_code = "CI"}; std::vector<std::string> expected; std::vector<std::string> lines; GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.sorting_code = "123"; expected.emplace_back("123 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.address_line.emplace_back("456 Main St"); expected.back().assign("123 456 Main St 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.locality = "Yamoussoukro"; expected.back().assign("123 456 Main St Yamoussoukro 123"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.sorting_code.erase(); expected.back().assign("456 Main St Yamoussoukro"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); address.address_line.clear(); expected.back().assign("Yamoussoukro"); GetFormattedNationalAddress(address, &lines); EXPECT_EQ(expected, lines); } }
271
#ifndef TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_RPC_RPC_RENDEZVOUS_MGR_H_ #define TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_RPC_RPC_RENDEZVOUS_MGR_H_ #include "tensorflow/core/distributed_runtime/base_rendezvous_mgr.h" #include "tensorflow/core/distributed_runtime/worker_env.h" #include "tensorflow/core/platform/macros.h" namespace tensorflow { class DeviceMgr; class RpcRendezvousMgr : public BaseRendezvousMgr { public: explicit RpcRendezvousMgr(const WorkerEnv* env); protected: tsl::core::RefCountPtr<BaseRemoteRendezvous> Create( int64_t step_id, const WorkerEnv* worker_env) override; private: RpcRendezvousMgr(const RpcRendezvousMgr&) = delete; void operator=(const RpcRendezvousMgr&) = delete; }; } #endif #include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/tensor_coding.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class RpcRemoteRendezvous : public BaseRemoteRendezvous { public: RpcRemoteRendezvous(const WorkerEnv* env, int64_t step_id) : BaseRemoteRendezvous(env, step_id) {} protected: void RecvFromRemoteAsync(const Rendezvous::ParsedKey& parsed, const Rendezvous::Args& args, DoneCallback done) override; private: ~RpcRemoteRendezvous() override {} RpcRemoteRendezvous(const RpcRemoteRendezvous&) = delete; void operator=(const RpcRemoteRendezvous&) = delete; }; class RpcRecvTensorCall : public BaseRecvTensorCall { public: RpcRecvTensorCall() : wi_(nullptr), dst_device_(nullptr) {} void Init(WorkerInterface* wi, int64_t step_id, StringPiece key, AllocatorAttributes alloc_attrs, Device* dst_device, const Rendezvous::Args& recv_args, Rendezvous::DoneCallback done) { wi_ = wi; alloc_attrs_ = alloc_attrs; dst_device_ = dst_device; recv_args_ = recv_args; done_ = std::move(done); req_.set_step_id(step_id); req_.set_rendezvous_key(key.data(), key.size()); req_.set_request_id(GetUniqueRequestId()); } void Reset() { DCHECK_EQ(static_cast<WorkerInterface*>(nullptr), wi_) << "Leaking WorkerInterface in RpcRecvTensorCall::Reset()."; alloc_attrs_ = AllocatorAttributes(); dst_device_ = nullptr; req_.Clear(); resp_.Clear(); { mutex_lock l(mu_); status_ = absl::OkStatus(); } done_ = nullptr; } ~RpcRecvTensorCall() override { CHECK_EQ(static_cast<WorkerInterface*>(nullptr), wi_) << "Leaking WorkerInterface in RpcRecvTensorCall destructor."; } void Start(std::function<void()> recv_done) override { StartRTCall(std::move(recv_done)); } void StartAbort(const Status& s) override { { mutex_lock l(mu_); status_.Update(s); } opts_.StartCancel(); } Status status() const override { mutex_lock l(mu_); return status_; } void ReleaseWorker(WorkerCacheInterface* worker_cache) { DCHECK_NE(static_cast<WorkerInterface*>(nullptr), wi_) << "RpcRecvTensorCall::ReleaseWorker() called twice."; worker_cache->ReleaseWorker(src_worker_, wi_); wi_ = nullptr; } const Tensor& tensor() const { return resp_.tensor(); } bool is_dead() const { return resp_.metadata().is_dead(); } Device* dst_device() const { return dst_device_; } const Rendezvous::Args& recv_args() const { return recv_args_; } const Rendezvous::DoneCallback& done() const { return done_; } private: friend class RpcRemoteRendezvous; void StartRTCall(std::function<void()> recv_done) { resp_.InitAlloc(dst_device_, alloc_attrs_); auto abort_checked = std::make_shared<Notification>(); auto cb = [this, abort_checked, recv_done = std::move(recv_done)](const Status& s) { abort_checked->WaitForNotification(); if (!s.ok()) { mutex_lock l(mu_); status_.Update(s); } recv_done(); }; wi_->RecvTensorAsync(&opts_, &req_, &resp_, std::move(cb)); Status s; { mutex_lock l(mu_); s = status_; } if (!s.ok()) { opts_.StartCancel(); } abort_checked->Notify(); } string src_worker_; string src_rel_device_; WorkerInterface* wi_; AllocatorAttributes alloc_attrs_; Device* dst_device_; CallOptions opts_; RecvTensorRequest req_; TensorResponse resp_; Rendezvous::Args recv_args_; Rendezvous::DoneCallback done_; mutable mutex mu_; Status status_ TF_GUARDED_BY(mu_); RpcRecvTensorCall(const RpcRecvTensorCall&) = delete; void operator=(const RpcRecvTensorCall&) = delete; }; class RpcRecvTensorFreeList { public: RpcRecvTensorFreeList() {} ~RpcRecvTensorFreeList() { for (size_t i = 0; i < objects_.size(); i++) { delete objects_[i]; } } RpcRecvTensorCall* New() { { mutex_lock l(mu_); if (!objects_.empty()) { RpcRecvTensorCall* result = objects_.back(); objects_.pop_back(); return result; } } return new RpcRecvTensorCall; } void Release(RpcRecvTensorCall* obj) { obj->Reset(); { mutex_lock l(mu_); if (objects_.size() < kMaxObjects) { objects_.push_back(obj); return; } } delete obj; } private: static constexpr int kMaxObjects = 1000; mutex mu_; std::vector<RpcRecvTensorCall*> objects_ TF_GUARDED_BY(mu_); }; static RpcRecvTensorFreeList* get_call_freelist() { static RpcRecvTensorFreeList* call_freelist = new RpcRecvTensorFreeList(); return call_freelist; } void RpcRemoteRendezvous::RecvFromRemoteAsync( const Rendezvous::ParsedKey& parsed, const Rendezvous::Args& recv_args, DoneCallback done) { CHECK(is_initialized()); Status s; RpcRecvTensorCall* call = get_call_freelist()->New(); if (!DeviceNameUtils::SplitDeviceName(parsed.src_device, &call->src_worker_, &call->src_rel_device_)) { s = errors::Internal(parsed.src_device, " is invalid remote source device."); } WorkerSession* sess = session(); std::shared_ptr<WorkerCacheInterface> worker_cache = sess->GetSharedWorkerCache(); WorkerInterface* rwi = worker_cache->GetOrCreateWorker(call->src_worker_); if (s.ok() && rwi == nullptr) { s = errors::Internal("No worker known as ", call->src_worker_); } Device* dst_device; if (s.ok()) { s = sess->device_mgr()->LookupDevice(parsed.dst_device, &dst_device); } if (!s.ok()) { if (rwi != nullptr) { sess->worker_cache()->ReleaseWorker(call->src_worker_, rwi); } get_call_freelist()->Release(call); done(s, Args(), recv_args, Tensor{}, false); return; } call->Init(rwi, step_id_, parsed.FullKey(), recv_args.alloc_attrs, dst_device, recv_args, std::move(done)); RegisterCall(call, recv_args); if (!call->status().ok()) { DeregisterCall(call, recv_args); call->ReleaseWorker(sess->worker_cache()); call->done()(call->status(), Args(), Args(), Tensor(), false); get_call_freelist()->Release(call); return; } Ref(); call->Start([this, call, recv_args, worker_cache]() { DeregisterCall(call, recv_args); Status s = call->status(); call->ReleaseWorker(session()->worker_cache()); call->done()(s, Args(), call->recv_args(), call->tensor(), call->is_dead()); get_call_freelist()->Release(call); Unref(); }); } } RpcRendezvousMgr::RpcRendezvousMgr(const WorkerEnv* env) : BaseRendezvousMgr(env) {} tsl::core::RefCountPtr<BaseRemoteRendezvous> RpcRendezvousMgr::Create( int64_t step_id, const WorkerEnv* worker_env) { return tsl::core::RefCountPtr<BaseRemoteRendezvous>( new RpcRemoteRendezvous(worker_env, step_id)); } }
#include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { Tensor V(const string& content) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tstring>()() = content; return tensor; } string V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_STRING); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<tstring>()(); } Rendezvous::ParsedKey MakeKey(const string& s) { Rendezvous::ParsedKey key; CHECK(Rendezvous::ParseKey(s, &key).ok()); return key; } namespace { class DummyWorker : public TestWorkerInterface { public: void RecvTensorAsync(CallOptions* opts, const RecvTensorRequest* request, TensorResponse* response, StatusCallback done) override { SchedClosure([done = std::move(done)]() { const int64_t t_us = random::New64() % 100 * 1000; Env::Default()->SleepForMicroseconds(t_us); done(absl::OkStatus()); }); } }; class DummyWorkerCache : public WorkerCacheInterface { void ListWorkers(std::vector<string>* workers) const override {} void ListWorkersInJob(const string& job_name, std::vector<string>* workers) const override {} WorkerInterface* GetOrCreateWorker(const string& target) override { if (dummy_remote_worker_ == nullptr) { dummy_remote_worker_ = new DummyWorker; } return dummy_remote_worker_; } Status GetEagerClientCache( std::unique_ptr<eager::EagerClientCache>* eager_client_cache) override { return errors::Unimplemented("Unimplemented."); } Status GetCoordinationClientCache( std::unique_ptr<CoordinationClientCache>* coord_client_cache) override { return errors::Unimplemented("Unimplemented."); } bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override {} private: DummyWorker* dummy_remote_worker_ = nullptr; }; static Device* CreateDevice(const char* type, const char* name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); return new FakeDevice(attr); } static DeviceMgr* CreateDeviceMgr() { std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:mnist/replica:1/task:2/cpu:1")); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); return new StaticDeviceMgr(std::move(devices)); } } class RpcRendezvousMgrTest : public ::testing::Test { protected: RpcRendezvousMgrTest() : cache_(new DummyWorkerCache), worker_session_("rpc_session", "/job:mnist/replica:1/task:2", std::unique_ptr<WorkerCacheInterface>(cache_), std::unique_ptr<DeviceMgr>(CreateDeviceMgr()), std::unique_ptr<GraphMgr>(), nullptr, [](WorkerSession* worker_session, bool called, DeviceMgr* remote_device_mgr) { return nullptr; }), rmgr_(&env) { env.env = Env::Default(); } DummyWorkerCache* cache_; WorkerEnv env; WorkerSession worker_session_; RpcRendezvousMgr rmgr_; }; TEST_F(RpcRendezvousMgrTest, LocalSendRecv) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; TF_ASSERT_OK(rendez->Send(key, args, V("peach"), false)); } { Tensor val(DT_FLOAT); bool val_dead = false; TF_ASSERT_OK(rmgr_.RecvLocal(step_id, key, &val, &val_dead)); EXPECT_EQ(V(val), "peach"); } rmgr_.Cleanup(step_id); } TEST_F(RpcRendezvousMgrTest, LocalAbort) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); SchedClosure([this, rendez = rendez.GetNewRef()]() { env.env->SleepForMicroseconds(100 * 1000); rendez->StartAbort(errors::Aborted("")); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsAborted(rendez->Recv(key, args, &val, &val_dead))); } { const int64_t step_id = 321; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); SchedClosure([this, step_id]() { env.env->SleepForMicroseconds(100 * 1000); rmgr_.Cleanup(step_id); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsAborted(rendez->Recv(key, args, &val, &val_dead))); } } TEST_F(RpcRendezvousMgrTest, LocalCancel) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); auto* cm = new CancellationManager(); const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Notification n; SchedClosure([this, cm, &n]() { env.env->SleepForMicroseconds(100 * 1000); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsCancelled(rendez->Recv(key, args, &val, &val_dead))); n.WaitForNotification(); delete cm; } TEST_F(RpcRendezvousMgrTest, CancelAfterReceived) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); auto* cm = new CancellationManager(); const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Notification n; SchedClosure([this, rendez = rendez.get(), key, cm, &n]() { env.env->SleepForMicroseconds(100 * 1000); TF_ASSERT_OK(rendez->Send(key, Rendezvous::Args(), V("peach"), false)); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); TF_ASSERT_OK(rendez->Recv(key, args, &val, &val_dead)); EXPECT_EQ(V(val), "peach"); n.WaitForNotification(); delete cm; } namespace { class DummyDeviceContext : public DeviceContext { public: explicit DummyDeviceContext(int stream_id) : stream_id_(stream_id) {} ~DummyDeviceContext() override {} int stream_id() const { return stream_id_; } private: const int stream_id_; }; } TEST_F(RpcRendezvousMgrTest, TransferDummyDeviceContext) { DummyDeviceContext* dc = new DummyDeviceContext(123); const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Rendezvous::Args args; args.device_context = dc; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); TF_ASSERT_OK(rendez->Send(key, args, V("peach"), false)); } { Notification n; rmgr_.RecvLocalAsync( step_id, key, [&n](const Status& s, const Rendezvous::Args send_args, const Rendezvous::Args recv_args, const Tensor& val, bool is_dead) { auto send_dev_context = static_cast<DummyDeviceContext*>(send_args.device_context); CHECK_EQ(123, send_dev_context->stream_id()); CHECK_EQ(V(val), "peach"); n.Notify(); }); n.WaitForNotification(); } rmgr_.Cleanup(step_id); dc->Unref(); } TEST_F(RpcRendezvousMgrTest, RemoteRecvOne) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:worker/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; Tensor val(DT_STRING); bool val_dead = false; TF_ASSERT_OK(rendez->Recv(key, args, &val, &val_dead)); } rmgr_.Cleanup(step_id); } TEST_F(RpcRendezvousMgrTest, RemoteRecvAsyncMany) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:worker/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; int num_requests = 10000; Tensor val(DT_STRING); mutex mu_; Status status = absl::OkStatus(); BlockingCounter counter(num_requests); for (int i = 0; i < num_requests; i++) { rendez->RecvAsync( key, args, [&mu_, &status, &counter](const Status& s, const Rendezvous::Args&, const Rendezvous::Args&, const Tensor&, const bool) { { mutex_lock l(mu_); status.Update(s); } counter.DecrementCount(); }); } counter.Wait(); TF_ASSERT_OK(status); } rmgr_.Cleanup(step_id); } }
272
#ifndef TENSORSTORE_INTERNAL_DECODED_MATCHES_H_ #define TENSORSTORE_INTERNAL_DECODED_MATCHES_H_ #include <functional> #include <string> #include <string_view> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal { ::testing::Matcher<absl::Cord> DecodedMatches( ::testing::Matcher<std::string_view> value_matcher, std::function<Result<std::string>(std::string_view)> decoder); } } #endif #include "tensorstore/internal/decoded_matches.h" #include <functional> #include <ostream> #include <string> #include <string_view> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal { namespace { using DecodeFunction = std::function<Result<std::string>(std::string_view)>; class Matcher : public ::testing::MatcherInterface<absl::Cord> { public: Matcher(::testing::Matcher<std::string_view> value_matcher, DecodeFunction decoder) : value_matcher_(std::move(value_matcher)), decoder_(std::move(decoder)) {} bool MatchAndExplain( absl::Cord value, ::testing::MatchResultListener* listener) const override { auto decoded = decoder_(value.Flatten()); if (!decoded.ok()) { *listener << "Failed to decode value: " << decoded.status(); return false; } return value_matcher_.MatchAndExplain(*decoded, listener); } void DescribeTo(std::ostream* os) const override { *os << "when decoded "; value_matcher_.DescribeTo(os); } private: ::testing::Matcher<std::string_view> value_matcher_; DecodeFunction decoder_; }; } ::testing::Matcher<absl::Cord> DecodedMatches( ::testing::Matcher<std::string_view> value_matcher, DecodeFunction decoder) { return ::testing::MakeMatcher( new Matcher(std::move(value_matcher), std::move(decoder))); } } }
#include "tensorstore/internal/decoded_matches.h" #include <cstddef> #include <sstream> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal::DecodedMatches; tensorstore::Result<std::string> Stride2Decoder(std::string_view input) { if (input.size() % 2 != 0) { return absl::InvalidArgumentError(""); } std::string output; for (size_t i = 0; i < input.size(); i += 2) { output += input[i]; } return output; } TEST(DecodedMatchesTest, Describe) { std::ostringstream ss; DecodedMatches("x", Stride2Decoder).DescribeTo(&ss); EXPECT_EQ("when decoded is equal to \"x\"", ss.str()); } TEST(DecodedMatchesTest, ExplainValueMatcher) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult( DecodedMatches(::testing::SizeIs(3), Stride2Decoder), absl::Cord("xy"), &listener); EXPECT_EQ("whose size 1 doesn't match", listener.str()); } TEST(DecodedMatchesTest, ExplainDecodeError) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult(DecodedMatches("x", Stride2Decoder), absl::Cord("xyz"), &listener); EXPECT_EQ("Failed to decode value: INVALID_ARGUMENT: ", listener.str()); } TEST(DecodedMatchesTest, Matches) { EXPECT_THAT(absl::Cord("abcd"), DecodedMatches("ac", Stride2Decoder)); EXPECT_THAT(absl::Cord("abc"), ::testing::Not(DecodedMatches("ac", Stride2Decoder))); EXPECT_THAT(absl::Cord("abcd"), ::testing::Not(DecodedMatches("ab", Stride2Decoder))); EXPECT_THAT(absl::Cord("abcd"), DecodedMatches(::testing::Not("ab"), Stride2Decoder)); } }
273
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_PROPAGATION_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_PROPAGATION_H_ #include <functional> #include <string> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace device_propagation { typedef std::function<bool(StringPiece)> DeviceFilter; typedef std::function<bool(const Node&)> NodeFilter; } void PropagateDevices(const device_propagation::NodeFilter& node_filter, const device_propagation::DeviceFilter& device_filter, Graph* graph); } #endif #include "tensorflow/core/common_runtime/device_propagation.h" #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" namespace tensorflow { namespace { const std::string& AssignedOrRequestedDevice(const Node& node) { if (!node.assigned_device_name().empty()) { return node.assigned_device_name(); } return node.requested_device(); } bool UpdateDeviceFromInputs( const device_propagation::NodeFilter& node_filter, const device_propagation::DeviceFilter& device_filter, Node* node) { if (!AssignedOrRequestedDevice(*node).empty() || !node_filter(*node)) { return false; } string proposed_device = ""; Node* proposed_src = nullptr; for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) { continue; } Node* src = e->src(); const string& src_device = AssignedOrRequestedDevice(*src); if ((node->IsSwitch() && src->IsLoopCond()) || (node->IsMerge() && src->IsEnter())) { continue; } if (!device_filter(src_device)) return false; if (proposed_src == nullptr) { proposed_device = src_device; proposed_src = src; } else if (proposed_device != src_device) { return false; } } if (proposed_src) { node->set_assigned_device_name(proposed_src->assigned_device_name()); node->set_requested_device(proposed_src->requested_device()); return true; } else { return false; } } } void PropagateDevices(const device_propagation::NodeFilter& node_filter, const device_propagation::DeviceFilter& device_filter, Graph* graph) { bool nodes_changed = true; while (nodes_changed) { nodes_changed = false; BreadthFirstTraversal( *graph, {}, [&nodes_changed, &node_filter, &device_filter](Node* node) { nodes_changed |= UpdateDeviceFromInputs(node_filter, device_filter, node); }); } } }
#include "tensorflow/core/common_runtime/device_propagation.h" #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status_test_util.h" using ::testing::UnorderedElementsAreArray; namespace tensorflow { namespace { const char kTpu0[] = "/job:localhost/replica:0/task:0/device:TPU:0"; const char kTpu1[] = "/job:localhost/replica:0/task:0/device:TPU:1"; const char kTpu2[] = "/job:localhost/replica:0/task:0/device:TPU:2"; const char kGpu0[] = "/job:localhost/replica:0/task:0/device:GPU:0"; bool IsTPUDevice(StringPiece device_name) { return absl::StrContains(device_name, "device:TPU:"); } device_propagation::NodeFilter TargetOps( const absl::flat_hash_set<std::string>& ops) { return [&ops](const Node& n) { return ops.contains(n.type_string()); }; } absl::flat_hash_map<std::string, std::string> GetNodeNameDevices( const Graph& graph) { absl::flat_hash_map<std::string, std::string> node_name_devices; for (const Node* node : graph.nodes()) { if (node->IsSource() || node->IsSink()) { continue; } const string& device = node->assigned_device_name().empty() ? node->requested_device() : node->assigned_device_name(); node_name_devices[node->name()] = device; } return node_name_devices; } TEST(DevicePropagationTest, PropagateTPUDevices) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kTpu0); auto b = ops::Placeholder(scope.WithOpName("B"), DT_FLOAT); b.node()->set_assigned_device_name(kTpu1); auto c = ops::Identity(scope.WithOpName("C"), a); auto d = ops::Merge(scope.WithOpName("D"), std::initializer_list<Input>{a, c}); auto e = ops::Merge(scope.WithOpName("E"), std::initializer_list<Input>{b, c}); auto f = ops::Identity(scope.WithOpName("F"), a); f.node()->set_assigned_device_name(kTpu2); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Identity", "Merge"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kTpu0}, {"B", kTpu1}, {"C", kTpu0}, {"D", kTpu0}, {"E", ""}, {"F", kTpu2}, })); } TEST(DevicePropagationTest, DoNotPropagateToUnsupportedOps) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kTpu0); auto b = ops::Identity(scope.WithOpName("B"), a); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Merge"}), IsTPUDevice, &graph); EXPECT_THAT(GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kTpu0}, {"B", ""}, })); } TEST(DevicePropagationTest, DoNotPropagateUnmatchedDevices) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kGpu0); auto b = ops::Identity(scope.WithOpName("B"), a); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Identity"}), IsTPUDevice, &graph); EXPECT_THAT(GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kGpu0}, {"B", ""}, })); } TEST(DevicePropagationTest, SwitchOpShouldIgnoreLoopCondOp) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_BOOL); auto b = ops::LoopCond(scope.WithOpName("B"), a); auto c = ops::Placeholder(scope.WithOpName("C"), DT_FLOAT); c.node()->set_assigned_device_name(kTpu2); auto d = ops::Switch(scope.WithOpName("D"), c, b); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Switch", "LoopCond"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray(std::vector< std::pair<std::string, std::string>>{ {"A", ""}, {"B", ""}, {"C", kTpu2}, {"D", kTpu2}, })); } TEST(DevicePropagationTest, MergeOpShouldIgnoreEnterOp) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); auto b = ops::Placeholder(scope.WithOpName("B"), DT_FLOAT); b.node()->set_assigned_device_name(kTpu2); auto c = ops::internal::Enter(scope.WithOpName("C"), a, "Enter"); auto d = ops::NextIteration(scope.WithOpName("D"), b); auto e = ops::Merge(scope.WithOpName("E"), std::initializer_list<Input>{c, d}); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Enter", "Merge", "NextIteration"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray(std::vector< std::pair<std::string, std::string>>{ {"A", ""}, {"B", kTpu2}, {"C", ""}, {"D", kTpu2}, {"E", kTpu2}, })); } } }
274
#ifndef TENSORFLOW_TSL_LIB_IO_RANDOM_INPUTSTREAM_H_ #define TENSORFLOW_TSL_LIB_IO_RANDOM_INPUTSTREAM_H_ #include "tsl/lib/io/inputstream_interface.h" #include "tsl/platform/cord.h" #include "tsl/platform/file_system.h" namespace tsl { namespace io { class RandomAccessInputStream : public InputStreamInterface { public: RandomAccessInputStream(RandomAccessFile* file, bool owns_file = false); ~RandomAccessInputStream() override; absl::Status ReadNBytes(int64_t bytes_to_read, tstring* result) override; #if defined(TF_CORD_SUPPORT) absl::Status ReadNBytes(int64_t bytes_to_read, absl::Cord* result) override; #endif absl::Status SkipNBytes(int64_t bytes_to_skip) override; int64_t Tell() const override; absl::Status Seek(int64_t position) { pos_ = position; return absl::OkStatus(); } absl::Status Reset() override { return Seek(0); } private: RandomAccessFile* file_; int64_t pos_ = 0; bool owns_file_ = false; }; } } #endif #include "tsl/lib/io/random_inputstream.h" #include <memory> namespace tsl { namespace io { RandomAccessInputStream::RandomAccessInputStream(RandomAccessFile* file, bool owns_file) : file_(file), owns_file_(owns_file) {} RandomAccessInputStream::~RandomAccessInputStream() { if (owns_file_) { delete file_; } } absl::Status RandomAccessInputStream::ReadNBytes(int64_t bytes_to_read, tstring* result) { if (bytes_to_read < 0) { return errors::InvalidArgument("Cannot read negative number of bytes"); } result->clear(); result->resize_uninitialized(bytes_to_read); char* result_buffer = &(*result)[0]; StringPiece data; absl::Status s = file_->Read(pos_, bytes_to_read, &data, result_buffer); if (data.data() != result_buffer) { memmove(result_buffer, data.data(), data.size()); } result->resize(data.size()); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += data.size(); } return s; } #if defined(TF_CORD_SUPPORT) absl::Status RandomAccessInputStream::ReadNBytes(int64_t bytes_to_read, absl::Cord* result) { if (bytes_to_read < 0) { return errors::InvalidArgument("Cannot read negative number of bytes"); } int64_t current_size = result->size(); absl::Status s = file_->Read(pos_, bytes_to_read, result); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += result->size() - current_size; } return s; } #endif static constexpr int64_t kMaxSkipSize = 8 * 1024 * 1024; absl::Status RandomAccessInputStream::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can't skip a negative number of bytes"); } std::unique_ptr<char[]> scratch(new char[kMaxSkipSize]); if (bytes_to_skip > 0) { StringPiece data; absl::Status s = file_->Read(pos_ + bytes_to_skip - 1, 1, &data, scratch.get()); if ((s.ok() || errors::IsOutOfRange(s)) && data.size() == 1) { pos_ += bytes_to_skip; return absl::OkStatus(); } } while (bytes_to_skip > 0) { int64_t bytes_to_read = std::min<int64_t>(kMaxSkipSize, bytes_to_skip); StringPiece data; absl::Status s = file_->Read(pos_, bytes_to_read, &data, scratch.get()); if (s.ok() || errors::IsOutOfRange(s)) { pos_ += data.size(); } else { return s; } if (data.size() < static_cast<size_t>(bytes_to_read)) { return errors::OutOfRange("reached end of file"); } bytes_to_skip -= bytes_to_read; } return absl::OkStatus(); } int64_t RandomAccessInputStream::Tell() const { return pos_; } } }
#include "tsl/lib/io/random_inputstream.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { namespace io { namespace { TEST(RandomInputStream, ReadNBytes) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(5, &read)); EXPECT_EQ(read, "34567"); EXPECT_EQ(8, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(20, &read))); EXPECT_EQ(read, "89"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } #if defined(TF_CORD_SUPPORT) TEST(RandomInputStream, ReadNBytesWithCords) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); absl::Cord read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(5, &read)); EXPECT_EQ(read, "01234567"); EXPECT_EQ(8, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "01234567"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(20, &read))); EXPECT_EQ(read, "0123456789"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, "0123456789"); EXPECT_EQ(10, in.Tell()); } #endif TEST(RandomInputStream, SkipNBytes) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.SkipNBytes(0)); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "78"); EXPECT_EQ(9, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(20))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } TEST(RandomInputStream, Seek) { Env* env = Env::Default(); string fname = testing::TmpDir() + "/random_inputbuffer_seek_test"; TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(fname, &file)); tstring read; RandomAccessInputStream in(file.get()); TF_ASSERT_OK(in.Seek(3)); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.Seek(1)); TF_ASSERT_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "1234"); EXPECT_EQ(5, in.Tell()); } } } }
275
#ifndef QUICHE_COMMON_SIMPLE_BUFFER_ALLOCATOR_H_ #define QUICHE_COMMON_SIMPLE_BUFFER_ALLOCATOR_H_ #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/quiche_buffer_allocator.h" namespace quiche { class QUICHE_EXPORT SimpleBufferAllocator : public QuicheBufferAllocator { public: static SimpleBufferAllocator* Get() { static SimpleBufferAllocator* singleton = new SimpleBufferAllocator(); return singleton; } char* New(size_t size) override; char* New(size_t size, bool flag_enable) override; void Delete(char* buffer) override; }; } #endif #include "quiche/common/simple_buffer_allocator.h" namespace quiche { char* SimpleBufferAllocator::New(size_t size) { return new char[size]; } char* SimpleBufferAllocator::New(size_t size, bool ) { return New(size); } void SimpleBufferAllocator::Delete(char* buffer) { delete[] buffer; } }
#include "quiche/common/simple_buffer_allocator.h" #include <utility> #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace { TEST(SimpleBufferAllocatorTest, NewDelete) { SimpleBufferAllocator alloc; char* buf = alloc.New(4); EXPECT_NE(nullptr, buf); alloc.Delete(buf); } TEST(SimpleBufferAllocatorTest, DeleteNull) { SimpleBufferAllocator alloc; alloc.Delete(nullptr); } TEST(SimpleBufferAllocatorTest, MoveBuffersConstructor) { SimpleBufferAllocator alloc; QuicheBuffer buffer1(&alloc, 16); EXPECT_NE(buffer1.data(), nullptr); EXPECT_EQ(buffer1.size(), 16u); QuicheBuffer buffer2(std::move(buffer1)); EXPECT_EQ(buffer1.data(), nullptr); EXPECT_EQ(buffer1.size(), 0u); EXPECT_NE(buffer2.data(), nullptr); EXPECT_EQ(buffer2.size(), 16u); } TEST(SimpleBufferAllocatorTest, MoveBuffersAssignment) { SimpleBufferAllocator alloc; QuicheBuffer buffer1(&alloc, 16); QuicheBuffer buffer2; EXPECT_NE(buffer1.data(), nullptr); EXPECT_EQ(buffer1.size(), 16u); EXPECT_EQ(buffer2.data(), nullptr); EXPECT_EQ(buffer2.size(), 0u); buffer2 = std::move(buffer1); EXPECT_EQ(buffer1.data(), nullptr); EXPECT_EQ(buffer1.size(), 0u); EXPECT_NE(buffer2.data(), nullptr); EXPECT_EQ(buffer2.size(), 16u); } TEST(SimpleBufferAllocatorTest, CopyBuffer) { SimpleBufferAllocator alloc; const absl::string_view original = "Test string"; QuicheBuffer copy = QuicheBuffer::Copy(&alloc, original); EXPECT_EQ(copy.AsStringView(), original); } } }
276
#ifndef TENSORFLOW_LITE_TOOLS_TOOL_PARAMS_H_ #define TENSORFLOW_LITE_TOOLS_TOOL_PARAMS_H_ #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> namespace tflite { namespace tools { template <typename T> class TypedToolParam; class ToolParam { protected: enum class ParamType { TYPE_INT32, TYPE_FLOAT, TYPE_BOOL, TYPE_STRING }; template <typename T> static ParamType GetValueType(); public: template <typename T> static std::unique_ptr<ToolParam> Create(const T& default_value, int position = 0) { auto* param = new TypedToolParam<T>(default_value); param->SetPosition(position); return std::unique_ptr<ToolParam>(param); } template <typename T> TypedToolParam<T>* AsTyped() { AssertHasSameType(GetValueType<T>(), type_); return static_cast<TypedToolParam<T>*>(this); } template <typename T> const TypedToolParam<T>* AsConstTyped() const { AssertHasSameType(GetValueType<T>(), type_); return static_cast<const TypedToolParam<T>*>(this); } virtual ~ToolParam() {} explicit ToolParam(ParamType type) : has_value_set_(false), position_(0), type_(type) {} bool HasValueSet() const { return has_value_set_; } int GetPosition() const { return position_; } void SetPosition(int position) { position_ = position; } virtual void Set(const ToolParam&) {} virtual std::unique_ptr<ToolParam> Clone() const = 0; protected: bool has_value_set_; int position_; private: static void AssertHasSameType(ParamType a, ParamType b); const ParamType type_; }; template <typename T> class TypedToolParam : public ToolParam { public: explicit TypedToolParam(const T& value) : ToolParam(GetValueType<T>()), value_(value) {} void Set(const T& value) { value_ = value; has_value_set_ = true; } const T& Get() const { return value_; } void Set(const ToolParam& other) override { Set(other.AsConstTyped<T>()->Get()); SetPosition(other.AsConstTyped<T>()->GetPosition()); } std::unique_ptr<ToolParam> Clone() const override { return ToolParam::Create<T>(value_, position_); } private: T value_; }; class ToolParams { public: void AddParam(const std::string& name, std::unique_ptr<ToolParam> value) { params_[name] = std::move(value); } void RemoveParam(const std::string& name) { params_.erase(name); } bool HasParam(const std::string& name) const { return params_.find(name) != params_.end(); } bool Empty() const { return params_.empty(); } const ToolParam* GetParam(const std::string& name) const { const auto& entry = params_.find(name); if (entry == params_.end()) return nullptr; return entry->second.get(); } template <typename T> void Set(const std::string& name, const T& value, int position = 0) { AssertParamExists(name); params_.at(name)->AsTyped<T>()->Set(value); params_.at(name)->AsTyped<T>()->SetPosition(position); } template <typename T> bool HasValueSet(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->HasValueSet(); } template <typename T> int GetPosition(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->GetPosition(); } template <typename T> T Get(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->Get(); } void Set(const ToolParams& other); void Merge(const ToolParams& other, bool overwrite = false); private: void AssertParamExists(const std::string& name) const; std::unordered_map<std::string, std::unique_ptr<ToolParam>> params_; }; #define LOG_TOOL_PARAM(params, type, name, description, verbose) \ do { \ TFLITE_MAY_LOG(INFO, (verbose) || params.HasValueSet<type>(name)) \ << description << ": [" << params.Get<type>(name) << "]"; \ } while (0) } } #endif #include "tensorflow/lite/tools/tool_params.h" #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace tools { void ToolParam::AssertHasSameType(ToolParam::ParamType a, ToolParam::ParamType b) { TFLITE_TOOLS_CHECK(a == b) << "Type mismatch while accessing parameter."; } template <> ToolParam::ParamType ToolParam::GetValueType<int32_t>() { return ToolParam::ParamType::TYPE_INT32; } template <> ToolParam::ParamType ToolParam::GetValueType<bool>() { return ToolParam::ParamType::TYPE_BOOL; } template <> ToolParam::ParamType ToolParam::GetValueType<float>() { return ToolParam::ParamType::TYPE_FLOAT; } template <> ToolParam::ParamType ToolParam::GetValueType<std::string>() { return ToolParam::ParamType::TYPE_STRING; } void ToolParams::AssertParamExists(const std::string& name) const { TFLITE_TOOLS_CHECK(HasParam(name)) << name << " was not found."; } void ToolParams::Set(const ToolParams& other) { for (const auto& param : params_) { const ToolParam* other_param = other.GetParam(param.first); if (other_param == nullptr) continue; param.second->Set(*other_param); } } void ToolParams::Merge(const ToolParams& other, bool overwrite) { for (const auto& one : other.params_) { auto it = params_.find(one.first); if (it == params_.end()) { AddParam(one.first, one.second->Clone()); } else if (overwrite) { it->second->Set(*one.second); } } } } }
#include "tensorflow/lite/tools/tool_params.h" #include <gtest/gtest.h> namespace tflite { namespace tools { namespace { TEST(ToolParams, SetTest) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true, 1)); params.Set(others); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_TRUE(params.HasValueSet<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_EQ(0, params.GetPosition<int>("some-int2")); EXPECT_FALSE(params.HasValueSet<int>("some-int2")); EXPECT_FALSE(params.HasParam("some-bool")); } TEST(ToolParams, MergeTestOverwriteTrue) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others, true ); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } TEST(ToolParams, MergeTestOverwriteFalse) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others); EXPECT_EQ(13, params.Get<int>("some-int1")); EXPECT_EQ(0, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } } } }
277
#ifndef I18N_ADDRESSINPUT_FORMAT_ELEMENT_H_ #define I18N_ADDRESSINPUT_FORMAT_ELEMENT_H_ #include <libaddressinput/address_field.h> #include <iosfwd> #include <string> namespace i18n { namespace addressinput { class FormatElement { public: explicit FormatElement(AddressField field); explicit FormatElement(const std::string& literal); FormatElement(); bool IsField() const { return literal_.empty(); } bool IsNewline() const { return literal_ == "\n"; } AddressField GetField() const { return field_; } const std::string& GetLiteral() const { return literal_; } bool operator==(const FormatElement& other) const; private: AddressField field_; std::string literal_; }; } } std::ostream& operator<<(std::ostream& o, const i18n::addressinput::FormatElement& element); #endif #include "format_element.h" #include <libaddressinput/address_field.h> #include <cassert> #include <ostream> #include <string> namespace i18n { namespace addressinput { FormatElement::FormatElement(AddressField field) : field_(field), literal_() {} FormatElement::FormatElement(const std::string& literal) : field_(COUNTRY), literal_(literal) { assert(!literal.empty()); } FormatElement::FormatElement() : field_(COUNTRY), literal_("\n") {} bool FormatElement::operator==(const FormatElement& other) const { return field_ == other.field_ && literal_ == other.literal_; } } } std::ostream& operator<<(std::ostream& o, const i18n::addressinput::FormatElement& element) { if (element.IsField()) { o << "Field: " << element.GetField(); } else if (element.IsNewline()) { o << "Newline"; } else { o << "Literal: " << element.GetLiteral(); } return o; }
#include "format_element.h" #include <libaddressinput/address_field.h> #include <sstream> #include <gtest/gtest.h> namespace { using i18n::addressinput::FormatElement; using i18n::addressinput::SORTING_CODE; TEST(FormatElementTest, StreamFunctionNewline) { std::ostringstream oss; oss << FormatElement(); EXPECT_EQ("Newline", oss.str()); } TEST(FormatElementTest, StreamFunctionLiteral) { std::ostringstream oss; oss << FormatElement("Text"); EXPECT_EQ("Literal: Text", oss.str()); } TEST(FormatElementTest, StreamFunctionField) { std::ostringstream oss; oss << FormatElement(SORTING_CODE); EXPECT_EQ("Field: SORTING_CODE", oss.str()); } TEST(FormatElementTest, IsNewline) { EXPECT_TRUE(FormatElement().IsNewline()); EXPECT_FALSE(FormatElement(" ").IsNewline()); EXPECT_FALSE(FormatElement(SORTING_CODE).IsNewline()); } TEST(FormatElementTest, IsField) { EXPECT_FALSE(FormatElement().IsField()); EXPECT_FALSE(FormatElement(" ").IsField()); EXPECT_TRUE(FormatElement(SORTING_CODE).IsField()); } }
278
#ifndef I18N_ADDRESSINPUT_TEST_TESTDATA_SOURCE_H_ #define I18N_ADDRESSINPUT_TEST_TESTDATA_SOURCE_H_ #include <libaddressinput/source.h> #include <string> namespace i18n { namespace addressinput { extern const char kDataFileName[]; class TestdataSource : public Source { public: TestdataSource(const TestdataSource&) = delete; TestdataSource& operator=(const TestdataSource&) = delete; explicit TestdataSource(bool aggregate); TestdataSource(bool aggregate, const std::string& src_path); ~TestdataSource() override; void Get(const std::string& key, const Callback& data_ready) const override; private: const bool aggregate_; const std::string src_path_; }; } } #endif #include "testdata_source.h" #include <cassert> #include <cstddef> #include <cstdlib> #include <fstream> #include <iostream> #include <map> #include <string> namespace i18n { namespace addressinput { const char kDataFileName[] = TEST_DATA_DIR "/countryinfo.txt"; namespace { const char kNormalPrefix = '-'; const char kAggregatePrefix = '+'; const char kDataKeyPrefix[] = "data/"; const size_t kDataKeyPrefixLength = sizeof kDataKeyPrefix - 1; const size_t kCldrRegionCodeLength = 2; const size_t kAggregateDataKeyLength = kDataKeyPrefixLength + kCldrRegionCodeLength; std::map<std::string, std::string> InitData(const std::string& src_path) { std::map<std::string, std::string> data; std::ifstream file(src_path); if (!file.is_open()) { std::cerr << "Error opening \"" << src_path << "\"." << '\n'; std::exit(EXIT_FAILURE); } const std::string normal_prefix(1, kNormalPrefix); const std::string aggregate_prefix(1, kAggregatePrefix); std::string key; std::string value; auto last_data_it = data.end(); auto aggregate_data_it = data.end(); while (file.good()) { std::getline(file, key, '='); if (!key.empty()) { std::getline(file, value, '\n'); last_data_it = data.emplace_hint(last_data_it, normal_prefix + key, value); if (key.compare(0, kDataKeyPrefixLength, kDataKeyPrefix, kDataKeyPrefixLength) == 0) { if (aggregate_data_it != data.end() && key.compare(0, kAggregateDataKeyLength, aggregate_data_it->first, sizeof kAggregatePrefix, kAggregateDataKeyLength) == 0) { aggregate_data_it->second.append(", \"" + key + "\": " + value); } else { assert(key.size() == kAggregateDataKeyLength); if (aggregate_data_it != data.end()) { aggregate_data_it->second.push_back('}'); } const std::string& aggregate_key = aggregate_prefix + key.substr(0, kAggregateDataKeyLength); aggregate_data_it = data.emplace_hint( aggregate_data_it, aggregate_key, "{\"" + key + "\": " + value); } } } } file.close(); return data; } const std::map<std::string, std::string>& GetData(const std::string& src_path) { static const std::map<std::string, std::string> kData(InitData(src_path)); return kData; } } TestdataSource::TestdataSource(bool aggregate, const std::string& src_path) : aggregate_(aggregate), src_path_(src_path) {} TestdataSource::TestdataSource(bool aggregate) : aggregate_(aggregate), src_path_(kDataFileName) {} TestdataSource::~TestdataSource() = default; void TestdataSource::Get(const std::string& key, const Callback& data_ready) const { std::string prefixed_key(1, aggregate_ ? kAggregatePrefix : kNormalPrefix); prefixed_key += key; auto data_it = GetData(src_path_).find(prefixed_key); bool success = data_it != GetData(src_path_).end(); std::string* data = nullptr; if (success) { data = new std::string(data_it->second); } else { success = true; data = new std::string("{}"); } data_ready(success, key, data); } } }
#include "testdata_source.h" #include <libaddressinput/callback.h> #include <libaddressinput/source.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> #include "region_data_constants.h" namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::kDataFileName; using i18n::addressinput::RegionDataConstants; using i18n::addressinput::Source; using i18n::addressinput::TestdataSource; class TestdataSourceTest : public testing::TestWithParam<std::string> { public: TestdataSourceTest(const TestdataSourceTest&) = delete; TestdataSourceTest& operator=(const TestdataSourceTest&) = delete; protected: TestdataSourceTest() : source_(false), source_with_path_(false, kDataFileName), aggregate_source_(true), aggregate_source_with_path_(true, kDataFileName), success_(false), key_(), data_(), data_ready_(BuildCallback(this, &TestdataSourceTest::OnDataReady)) {} TestdataSource source_; TestdataSource source_with_path_; TestdataSource aggregate_source_; TestdataSource aggregate_source_with_path_; bool success_; std::string key_; std::string data_; const std::unique_ptr<const Source::Callback> data_ready_; private: void OnDataReady(bool success, const std::string& key, std::string* data) { ASSERT_FALSE(success && data == nullptr); success_ = success; key_ = key; if (data != nullptr) { data_ = *data; delete data; } } }; testing::AssertionResult DataIsValid(const std::string& data, const std::string& key) { if (data.empty()) { return testing::AssertionFailure() << "empty data"; } std::string expected_data_begin = R"({"id":")" + key + R"(")"; if (data.compare(0, expected_data_begin.length(), expected_data_begin) != 0) { return testing::AssertionFailure() << data << " does not begin with " << expected_data_begin; } static const char kDataEnd[] = "\"}"; static const size_t kDataEndLength = sizeof kDataEnd - 1; if (data.compare(data.length() - kDataEndLength, kDataEndLength, kDataEnd, kDataEndLength) != 0) { return testing::AssertionFailure() << data << " does not end with " << kDataEnd; } return testing::AssertionSuccess(); } TEST_P(TestdataSourceTest, TestdataSourceHasValidDataForRegion) { std::string key = "data/" + GetParam(); source_.Get(key, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(key, key_); EXPECT_TRUE(DataIsValid(data_, key)); }; TEST_P(TestdataSourceTest, TestdataSourceWithPathHasValidDataForRegion) { std::string key = "data/" + GetParam(); source_with_path_.Get(key, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(key, key_); EXPECT_TRUE(DataIsValid(data_, key)); }; testing::AssertionResult AggregateDataIsValid(const std::string& data, const std::string& key) { if (data.empty()) { return testing::AssertionFailure() << "empty data"; } std::string expected_data_begin = "{\"" + key; if (data.compare(0, expected_data_begin.length(), expected_data_begin) != 0) { return testing::AssertionFailure() << data << " does not begin with " << expected_data_begin; } static const char kDataEnd[] = "\"}}"; static const size_t kDataEndLength = sizeof kDataEnd - 1; if (data.compare(data.length() - kDataEndLength, kDataEndLength, kDataEnd, kDataEndLength) != 0) { return testing::AssertionFailure() << data << " does not end with " << kDataEnd; } return testing::AssertionSuccess(); } TEST_P(TestdataSourceTest, TestdataSourceHasValidAggregatedDataForRegion) { std::string key = "data/" + GetParam(); aggregate_source_.Get(key, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(key, key_); EXPECT_TRUE(AggregateDataIsValid(data_, key)); }; TEST_P(TestdataSourceTest, TestdataSourceWithPathHasValidAggregatedDataForRegion) { std::string key = "data/" + GetParam(); aggregate_source_with_path_.Get(key, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(key, key_); EXPECT_TRUE(AggregateDataIsValid(data_, key)); }; INSTANTIATE_TEST_SUITE_P( AllRegions, TestdataSourceTest, testing::ValuesIn(RegionDataConstants::GetRegionCodes())); TEST_F(TestdataSourceTest, GetExistingData) { static const std::string kKey = "data"; source_.Get(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_TRUE(DataIsValid(data_, kKey)); } TEST_F(TestdataSourceTest, GetMissingKeyReturnsEmptyDictionary) { static const std::string kJunkKey = "junk"; source_.Get(kJunkKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kJunkKey, key_); EXPECT_EQ("{}", data_); } TEST_F(TestdataSourceTest, AggregateGetMissingKeyReturnsEmptyDictionary) { static const std::string kJunkKey = "junk"; aggregate_source_.Get(kJunkKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kJunkKey, key_); EXPECT_EQ("{}", data_); } TEST_F(TestdataSourceTest, GetEmptyKeyReturnsEmptyDictionary) { static const std::string kEmptyKey; source_.Get(kEmptyKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kEmptyKey, key_); EXPECT_EQ("{}", data_); } }
279
#ifndef TENSORFLOW_DTENSOR_MLIR_DTENSOR_LOCATION_H_ #define TENSORFLOW_DTENSOR_MLIR_DTENSOR_LOCATION_H_ #include <string> #include "mlir/IR/Location.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" namespace tensorflow { namespace dtensor { mlir::Location DTensorLocation(mlir::Location loc, llvm::StringRef file, unsigned int line, llvm::StringRef name = ""); mlir::Location DTensorLocation(mlir::Operation* op, llvm::StringRef file, unsigned int line, llvm::StringRef name = ""); std::string DTensorLocationToString(mlir::Location loc); } } #define DT_LOC(loc) \ ::tensorflow::dtensor::DTensorLocation(loc, __FILE__, __LINE__) #define DT_LOC2(loc, name) \ ::tensorflow::dtensor::DTensorLocation(loc, __FILE__, __LINE__, name) #endif #include "tensorflow/dtensor/mlir/dtensor_location.h" #include <algorithm> #include <queue> #include <string> #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/utils/name_utils.h" namespace tensorflow { namespace dtensor { namespace { std::string CreateLocalLocationString(mlir::FileLineColLoc loc) { return llvm::formatv(">> {0}:{1}:{2}", loc.getFilename(), loc.getLine(), loc.getColumn()) .str(); } } mlir::Location DTensorLocation(mlir::Location loc, llvm::StringRef file, unsigned int line, llvm::StringRef name) { auto split = file.rsplit("/"); if (!split.second.empty()) file = split.second; mlir::Location callee_loc = mlir::FileLineColLoc::get(loc.getContext(), file, line, 0); std::string new_name = GetNameFromLoc(loc); if (!new_name.empty()) { if (!name.empty()) { new_name = llvm::formatv("{0}/{1}", new_name, name).str(); } callee_loc = mlir::NameLoc::get( mlir::StringAttr::get(loc.getContext(), new_name), callee_loc); } return mlir::CallSiteLoc::get(callee_loc, loc); } mlir::Location DTensorLocation(mlir::Operation* op, llvm::StringRef file, unsigned int line, llvm::StringRef name) { return DTensorLocation(op->getLoc(), file, line, name); } std::string DTensorLocationToString(mlir::Location loc) { llvm::SmallVector<std::string, 4> stack; std::queue<mlir::Location> queue; queue.push(loc); while (!queue.empty()) { mlir::Location& front = queue.front(); if (auto name_loc = mlir::dyn_cast<mlir::NameLoc>(front)) { queue.push(name_loc.getChildLoc()); } else if (auto callsite_loc = mlir::dyn_cast<mlir::CallSiteLoc>(front)) { queue.push(callsite_loc.getCallee()); queue.push(callsite_loc.getCaller()); } else if (auto line_loc = mlir::dyn_cast<mlir::FileLineColLoc>(front)) { stack.push_back(CreateLocalLocationString(line_loc)); } queue.pop(); } std::reverse(stack.begin(), stack.end()); std::string s; llvm::raw_string_ostream ss(s); llvm::interleave(stack, ss, "\n"); return ss.str(); } } }
#include "tensorflow/dtensor/mlir/dtensor_location.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/utils/name_utils.h" #include "tensorflow/core/platform/test.h" namespace { void CheckFileLineColLocation(mlir::Location loc, unsigned line, unsigned column) { ASSERT_TRUE(mlir::isa<mlir::FileLineColLoc>(loc)); auto file_line_col_loc = mlir::cast<mlir::FileLineColLoc>(loc); EXPECT_EQ(file_line_col_loc.getFilename(), "test.cc"); EXPECT_EQ(file_line_col_loc.getLine(), line); EXPECT_EQ(file_line_col_loc.getColumn(), column); } TEST(DTensorLocationTest, HandlesEmptyLocation) { mlir::MLIRContext ctx; mlir::Location loc = mlir::FileLineColLoc::get(&ctx, "test.cc", 10, 20); loc = tensorflow::dtensor::DTensorLocation(loc, "test.cc", 21); ASSERT_TRUE(mlir::isa<mlir::CallSiteLoc>(loc)); auto callsite_loc = mlir::cast<mlir::CallSiteLoc>(loc); CheckFileLineColLocation(callsite_loc.getCallee(), 21, 0); CheckFileLineColLocation(callsite_loc.getCaller(), 10, 20); constexpr char stack[] = R"stack(>> test.cc:10:20 >> test.cc:21:0)stack"; EXPECT_EQ(tensorflow::dtensor::DTensorLocationToString(loc), stack); } TEST(DTensorLocationTest, HandlesMultipleCalls) { mlir::MLIRContext ctx; mlir::Location test_loc = mlir::FileLineColLoc::get(&ctx, "test.cc", 10, 20); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 21); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 22); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 23); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 24); auto verify_loc = test_loc; for (int i = 0; i < 4; ++i) { ASSERT_TRUE(mlir::isa<mlir::CallSiteLoc>(verify_loc)); auto callsite_loc = mlir::cast<mlir::CallSiteLoc>(verify_loc); auto callee_loc = callsite_loc.getCallee(); CheckFileLineColLocation(callee_loc, 24 - i, 0); verify_loc = callsite_loc.getCaller(); } CheckFileLineColLocation(verify_loc, 10, 20); constexpr char stack[] = R"stack(>> test.cc:10:20 >> test.cc:21:0 >> test.cc:22:0 >> test.cc:23:0 >> test.cc:24:0)stack"; EXPECT_EQ(tensorflow::dtensor::DTensorLocationToString(test_loc), stack); } TEST(DTensorLocationTest, HandlesNameLoc) { mlir::MLIRContext ctx; mlir::Location test_loc = mlir::NameLoc::get(mlir::StringAttr::get(&ctx, "op@"), mlir::FileLineColLoc::get(&ctx, "test.cc", 10, 20)); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 21); ASSERT_EQ(mlir::GetNameFromLoc(test_loc), "op"); ASSERT_TRUE(mlir::isa<mlir::CallSiteLoc>(test_loc)); auto callsite_loc = mlir::cast<mlir::CallSiteLoc>(test_loc); mlir::Location caller_loc = mlir::cast<mlir::CallSiteLoc>(test_loc).getCaller(); ASSERT_TRUE(mlir::isa<mlir::NameLoc>(caller_loc)); CheckFileLineColLocation(mlir::cast<mlir::NameLoc>(caller_loc).getChildLoc(), 10, 20); mlir::Location callee_loc = callsite_loc.getCallee(); ASSERT_TRUE(mlir::isa<mlir::NameLoc>(callee_loc)); CheckFileLineColLocation(mlir::cast<mlir::NameLoc>(callee_loc).getChildLoc(), 21, 0); constexpr char stack[] = R"stack(>> test.cc:10:20 >> test.cc:21:0)stack"; EXPECT_EQ(tensorflow::dtensor::DTensorLocationToString(test_loc), stack); } TEST(DTensorLocationTest, HandlesNameLocWithName) { mlir::MLIRContext ctx; mlir::Location test_loc = mlir::NameLoc::get(mlir::StringAttr::get(&ctx, "op@"), mlir::FileLineColLoc::get(&ctx, "test.cc", 10, 20)); test_loc = tensorflow::dtensor::DTensorLocation(test_loc, "test.cc", 21, "nested"); EXPECT_EQ(mlir::GetNameFromLoc(test_loc), "op/nested"); constexpr char stack[] = R"stack(>> test.cc:10:20 >> test.cc:21:0)stack"; EXPECT_EQ(tensorflow::dtensor::DTensorLocationToString(test_loc), stack); } }
280
#ifndef XLA_SERVICE_GPU_REDUCTION_LAYOUT_NORMALIZER_H_ #define XLA_SERVICE_GPU_REDUCTION_LAYOUT_NORMALIZER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReductionLayoutNormalizer : public HloModulePass { public: absl::string_view name() const override { return "reduction-layout-normalizer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/reduction_layout_normalizer.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class EnforceMinorToMajorReduceOpVisitor : public DfsHloRewriteVisitor { absl::Status HandleReduce(HloInstruction *hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); VLOG(5) << "Input: " << reduce->ToString(); int operand_idx = -1; absl::InlinedVector<HloInstruction *, 2> canonical_reduce_inputs; absl::InlinedVector<Shape, 2> new_reduce_shapes; DimensionVector out_reduce_dimensions; const Shape &first_instruction_shape = reduce->inputs()[0]->shape(); for (HloInstruction *operand : reduce->inputs()) { operand_idx++; if (operand_idx != 0 && operand->shape().layout() != first_instruction_shape.layout()) { HloInstruction *copy = reduce->parent()->AddInstruction(HloInstruction::CreateUnary( operand->shape(), HloOpcode::kCopy, operand)); LayoutUtil::ClearLayout(copy->mutable_shape()); TF_RETURN_IF_ERROR(LayoutUtil::CopyLayoutBetweenShapes( first_instruction_shape, copy->mutable_shape())); copy->set_metadata(operand->metadata()); operand = copy; VLOG(3) << "Copying to establish consistent inputs layout: " << copy->ToString(); } const Shape &operand_shape = operand->shape(); const Layout &operand_layout = operand_shape.layout(); const Shape &reduce_shape = reduce->shape().IsTuple() ? reduce->shape().tuple_shapes(operand_idx) : reduce->shape(); DimensionVector new_reduce_dimensions; DimensionVector new_operand_shape_data; DimensionVector new_reduce_shape_data; DimensionVector new_reduce_shape_layout(reduce_shape.rank()); std::vector<int64_t> reduce_shape_logical_to_physical = LayoutUtil::MakeLogicalToPhysical(reduce_shape.layout()); auto to_reduce_logical_dim = [&](int64_t op_logical_dim) { return op_logical_dim - absl::c_count_if(reduce->dimensions(), [&](int64_t dim) { CHECK(dim != op_logical_dim); return dim < op_logical_dim; }); }; for (int i = 0; i < operand_shape.rank(); i++) { int64_t major_to_minor_dim_idx = operand_shape.rank() - i - 1; int64_t logical_dim = operand_layout.minor_to_major(major_to_minor_dim_idx); int64_t dim_size = operand_shape.dimensions(logical_dim); VLOG(5) << "Processing logical dimension " << logical_dim << " of size " << dim_size; new_operand_shape_data.push_back(dim_size); if (absl::c_linear_search(reduce->dimensions(), logical_dim)) { new_reduce_dimensions.push_back(i); } else { new_reduce_shape_data.push_back(dim_size); int64_t logical_reduce_dim = to_reduce_logical_dim(logical_dim); int64_t physical_reduce_dim = reduce_shape_logical_to_physical[logical_reduce_dim]; VLOG(5) << "logical_reduce_dim = " << logical_reduce_dim << ", " << "physical_reduce_dim = " << physical_reduce_dim; new_reduce_shape_layout[reduce_shape.rank() - physical_reduce_dim - 1] = new_reduce_shape_data.size() - 1; } } Shape new_operand_shape = ShapeUtil::MakeShape( operand_shape.element_type(), new_operand_shape_data); Shape new_reduce_shape = ShapeUtil::MakeShapeWithDenseLayout( reduce_shape.element_type(), new_reduce_shape_data, new_reduce_shape_layout); if (new_operand_shape == operand_shape && reduce->inputs().size() == 1) { return absl::OkStatus(); } HloInstruction *canonical_reduce_input = new_operand_shape != operand_shape ? reduce->parent()->AddInstruction( HloInstruction::CreateBitcast(new_operand_shape, operand)) : operand; canonical_reduce_input->set_metadata(operand->metadata()); VLOG(5) << "Reduction input: " << canonical_reduce_input->ToString(); new_reduce_shapes.push_back(new_reduce_shape); canonical_reduce_inputs.push_back(canonical_reduce_input); if (out_reduce_dimensions.empty()) { out_reduce_dimensions = new_reduce_dimensions; } else { TF_RET_CHECK(out_reduce_dimensions == new_reduce_dimensions); } } Shape new_reduce_shape = ShapeUtil::MakeMaybeTupleShape(new_reduce_shapes); std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( new_reduce_shape, canonical_reduce_inputs, reduce->init_values(), out_reduce_dimensions, reduce->to_apply()); VLOG(5) << "Generated new reduction: " << new_reduce->ToString(); const Shape &orig_reduce_shape = reduce->shape(); if (new_reduce_shape != orig_reduce_shape) { HloInstruction *wrapped_reduce = reduce->parent()->AddInstruction(std::move(new_reduce)); if (!new_reduce_shape.IsTuple()) { new_reduce = HloInstruction::CreateBitcast(reduce->shape(), wrapped_reduce); } else { absl::InlinedVector<HloInstruction *, 2> out; for (int oidx = 0; oidx < reduce->input_count(); oidx++) { HloInstruction *gte = reduce->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(wrapped_reduce, oidx)); out.push_back( reduce->parent()->AddInstruction(HloInstruction::CreateBitcast( orig_reduce_shape.tuple_shapes(oidx), gte))); } new_reduce = HloInstruction::CreateTuple(out); } } VLOG(5) << "Generated output: " << new_reduce->ToString(); return ReplaceWithNewInstruction(reduce, std::move(new_reduce)); } }; absl::StatusOr<bool> ReductionLayoutNormalizer::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, EnforceMinorToMajorReduceOpVisitor().RunOnModule( module, execution_threads)); return changed; } } }
#include "xla/service/gpu/reduction_layout_normalizer.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/error_spec.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class ReductionLayoutNormalizerTest : public HloTestBase { public: void CheckReductionLayoutNormalizer( absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, gpu::ReductionLayoutNormalizer{}, expected); } }; TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTest) { const char* hlo = R"( HloModule ReduceWithLayoutChange add { x0 = f32[] parameter(0) y0 = f32[] parameter(1) ROOT add0 = f32[] add(x0, y0) } ENTRY main { arg0 = f32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(0) constant0 = f32[] constant(0) ROOT reduce0 = f32[4,5,16,12,12]{4,3,2,1,0} reduce(arg0, constant0), dimensions={1,6,7}, to_apply=add } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); } TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTestVariadic) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadic argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(0) idxs = u32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[4,5,16,12,12]{4,3,2,1,0}, u32[4,5,16,12,12]{4,3,2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={1,6,7}, to_apply=argmax } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); } TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTestVariadicDifferentLayouts) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,7]{2,1,0,3} parameter(0) idxs = u32[2,3,4,7]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-5, 1e-5})); } } }
281
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RELU_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RELU_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewReLUNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/relu.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class ReLU : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const ReLUAttributes&>(ctx.op_attr); std::vector<Variable> params; std::string min; if (attr.alpha == 0) { min = "vec4($activation_min$)"; params.push_back({"activation_min", attr.activation_min}); } else { min = "min($alpha$ * value_0, 0.0)"; params.push_back({"alpha", attr.alpha}); } std::string code; if (attr.activation_max == 0) { code = "value_0 = max(value_0, " + min + ");"; } else { code = "value_0 = clamp(value_0, " + min + ", vec4($activation_max$));"; params.push_back({"activation_max", attr.activation_max}); } *generated_code = { std::move(params), {}, {}, uint3(), uint3(), std::move(code), IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewReLUNodeShader() { return std::make_unique<ReLU>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/relu.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { class ReluTest : public ::testing::Test { public: ReluTest() = default; ~ReluTest() override = default; TensorRef<BHWC> GetTensorRef(int ref) { TensorRef<BHWC> tensor_ref; tensor_ref.type = DataType::FLOAT32; tensor_ref.ref = ref; tensor_ref.shape = BHWC(1, 2, 2, 1); return tensor_ref; } }; TEST_F(ReluTest, Smoke) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_max = 0; attr.alpha = 0; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 0.0, 2.0, 8.0})); } TEST_F(ReluTest, ClipOnly) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_max = 6; attr.alpha = 0; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 0.0, 2.0, 6.0})); } TEST_F(ReluTest, AlphaOnly) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_max = 0; attr.alpha = 0.5; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-3.0, 0.0, 2.0, 8.0})); } TEST_F(ReluTest, ClipAndAlpha) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_max = 6; attr.alpha = 0.5; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-3.0, 0.0, 2.0, 6.0})); } TEST_F(ReluTest, ReLUN1Smoke) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_min = -1; attr.activation_max = 0; attr.alpha = 0; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-12.0f, -0.5f, 0.8f, 3.2f})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.0f, -0.5f, 0.8f, 3.2f})); } TEST_F(ReluTest, ReLUN1ClipOnly) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_min = -1; attr.activation_max = 1; attr.alpha = 0; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-12.0f, -0.5f, 0.8f, 3.2f})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.0f, -0.5f, 0.8f, 1.0f})); } TEST_F(ReluTest, ReLUN1AlphaOnly) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_min = -1; attr.activation_max = 0; attr.alpha = 0.5; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-3.0, 0.0, 2.0, 8.0})); } TEST_F(ReluTest, ReLUN1ClipAndAlpha) { OperationType op_type = OperationType::RELU; ReLUAttributes attr; attr.activation_min = -1; attr.activation_max = 6; attr.alpha = 0.5; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0)}, {GetTensorRef(1)}); ASSERT_TRUE(model.PopulateTensor(0, {-6.0, 0.0, 2.0, 8.0})); ASSERT_OK(model.Invoke(*NewReLUNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-3.0, 0.0, 2.0, 6.0})); } } } } }
282
#ifndef XLA_SERVICE_SPMD_CANONICALIZE_ALL_GATHER_FOR_CSE_H_ #define XLA_SERVICE_SPMD_CANONICALIZE_ALL_GATHER_FOR_CSE_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CanonicalizeAllGatherForCSE : public HloModulePass { public: CanonicalizeAllGatherForCSE() : next_channel_id_(0) {} ~CanonicalizeAllGatherForCSE() override = default; absl::string_view name() const override { return "canon-all-gather-for-cse"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation* comp); int64_t NextChannelId() { return next_channel_id_++; } int64_t next_channel_id_; }; } #endif #include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/utils/hlo_query.h" namespace xla { absl::StatusOr<bool> CanonicalizeAllGatherForCSE::RunOnComputation( HloComputation* comp) { bool changed = false; std::vector<HloInstruction*> ordered_hlos = comp->MakeInstructionPostOrder(); for (HloInstruction* hlo : ordered_hlos) { HloAllGatherInstruction* ag = DynCast<HloAllGatherInstruction>(hlo); if (!ag || ag->operand_count() > 1) { continue; } HloInstruction* real_data = ag->mutable_operand(0); while (real_data->ReshapeMerelyInsertsOrDeletes1SizedDimensions() .has_value()) { real_data = real_data->mutable_operand(0); } if (real_data == ag->operand(0)) { continue; } const int64_t ag_dim = ag->all_gather_dimension(); int64_t new_ag_dim; if (auto dims = ShapeUtil::ReshapeLeavesDimensionsUnmodified( ag->operand(0)->shape(), real_data->shape(), {ag_dim})) { new_ag_dim = dims->at(0); } else { int64_t major_elements = Product(absl::MakeConstSpan(ag->operand(0)->shape().dimensions()) .subspan(0, ag_dim)); new_ag_dim = 0; while (major_elements > 1) { major_elements /= real_data->shape().dimensions(new_ag_dim++); } } if (new_ag_dim == real_data->shape().rank()) { continue; } const int64_t all_gather_participants = ShapeUtil::ElementsIn(ag->shape()) / ShapeUtil::ElementsIn(ag->operand(0)->shape()); Shape new_ag_shape = real_data->shape(); new_ag_shape.set_dimensions( new_ag_dim, all_gather_participants * new_ag_shape.dimensions(new_ag_dim)); std::optional<int64_t> new_channel_id = ag->channel_id() ? std::make_optional(this->NextChannelId()) : std::nullopt; HloInstruction* new_ag = comp->AddInstruction(HloInstruction::CreateAllGather( new_ag_shape, {real_data}, new_ag_dim, ag->device_list(), ag->constrain_layout(), new_channel_id, ag->use_global_device_ids())); ag->SetupDerivedInstruction(new_ag); HloInstruction* new_formatting = comp->AddInstruction( HloInstruction::CreateReshape(ag->shape(), new_ag)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction(ag, new_formatting)); changed = true; } return changed; } absl::StatusOr<bool> CanonicalizeAllGatherForCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; next_channel_id_ = hlo_query::NextChannelId(*module); for (HloComputation* comp : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool comp_changed, RunOnComputation(comp)); changed |= comp_changed; } return changed; } }
#include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace spmd { namespace { using ::testing::_; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; class AllGatherCanonicalizeTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest())); HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } absl::Status RunPassOnModule(HloModule* module, int64_t distance_threshold = 100) { HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); return absl::OkStatus(); } }; TEST_F(AllGatherCanonicalizeTest, SimpleReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) ROOT ag = s32[2,8]{1,0} all-gather(resh), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::Reshape(op::AllGather(_)), op::Shape("s32[2,8]"))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes2) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapesNoDim0) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[1,16,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={1}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, NonDegenerateReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,4,2,1,1]{4,3,2,1,0} reshape(resh) ROOT ag = s32[2,4,2,1,1]{4,3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::AllGather(op::Reshape(op::Reshape(_))), op::Shape("s32[2,4,2,1,1]"))); } } } }
283
#ifndef TENSORFLOW_TSL_PLATFORM_ABI_H_ #define TENSORFLOW_TSL_PLATFORM_ABI_H_ #include <string> #include "tsl/platform/types.h" namespace tsl { namespace port { std::string MaybeAbiDemangle(const char* name); } } #endif #include "tsl/platform/abi.h" #include "tsl/platform/types.h" #if defined(_MSC_VER) #include <windows.h> #include <cstring> #else #include <cxxabi.h> #include <cstdlib> #endif #include <memory> #include <string> #if defined(_MSC_VER) extern "C" char* __unDName(char* output_string, const char* name, int max_string_length, void* (*p_alloc)(std::size_t), void (*p_free)(void*), unsigned short disable_flags); #endif namespace tsl { namespace port { string MaybeAbiDemangle(const char* name) { #if defined(_MSC_VER) std::unique_ptr<char> demangled{__unDName(nullptr, name, 0, std::malloc, std::free, static_cast<unsigned short>(0))}; return string(demangled.get() != nullptr ? demangled.get() : name); #else int status = 0; std::unique_ptr<char, void (*)(void*)> res{ abi::__cxa_demangle(name, nullptr, nullptr, &status), std::free}; return (status == 0) ? res.get() : name; #endif } } }
#include "tsl/platform/abi.h" #include <typeinfo> #include "tsl/platform/test.h" namespace tsl { struct MyRandomPODType {}; TEST(AbiTest, AbiDemangleTest) { EXPECT_EQ(port::MaybeAbiDemangle(typeid(int).name()), "int"); #ifdef PLATFORM_WINDOWS const char pod_type_name[] = "struct tsl::MyRandomPODType"; #else const char pod_type_name[] = "tsl::MyRandomPODType"; #endif EXPECT_EQ(port::MaybeAbiDemangle(typeid(MyRandomPODType).name()), pod_type_name); EXPECT_EQ( port::MaybeAbiDemangle("help! i'm caught in a C++ mangle factoryasdf"), "help! i'm caught in a C++ mangle factoryasdf"); } }
284
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_AST_TRAVERSE_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_AST_TRAVERSE_H_ #include "google/api/expr/v1alpha1/syntax.pb.h" #include "eval/public/ast_visitor.h" namespace google::api::expr::runtime { struct TraversalOptions { bool use_comprehension_callbacks; TraversalOptions() : use_comprehension_callbacks(false) {} }; void AstTraverse(const google::api::expr::v1alpha1::Expr* expr, const google::api::expr::v1alpha1::SourceInfo* source_info, AstVisitor* visitor, TraversalOptions options = TraversalOptions()); } #endif #include "eval/public/ast_traverse.h" #include <stack> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/log/absl_log.h" #include "absl/types/variant.h" #include "eval/public/ast_visitor.h" #include "eval/public/source_position.h" namespace google::api::expr::runtime { using google::api::expr::v1alpha1::Expr; using google::api::expr::v1alpha1::SourceInfo; using Ident = google::api::expr::v1alpha1::Expr::Ident; using Select = google::api::expr::v1alpha1::Expr::Select; using Call = google::api::expr::v1alpha1::Expr::Call; using CreateList = google::api::expr::v1alpha1::Expr::CreateList; using CreateStruct = google::api::expr::v1alpha1::Expr::CreateStruct; using Comprehension = google::api::expr::v1alpha1::Expr::Comprehension; namespace { struct ArgRecord { const Expr* expr; const SourceInfo* source_info; const Expr* calling_expr; int call_arg; }; struct ComprehensionRecord { const Expr* expr; const SourceInfo* source_info; const Comprehension* comprehension; const Expr* comprehension_expr; ComprehensionArg comprehension_arg; bool use_comprehension_callbacks; }; struct ExprRecord { const Expr* expr; const SourceInfo* source_info; }; using StackRecordKind = absl::variant<ExprRecord, ArgRecord, ComprehensionRecord>; struct StackRecord { public: ABSL_ATTRIBUTE_UNUSED static constexpr int kNotCallArg = -1; static constexpr int kTarget = -2; StackRecord(const Expr* e, const SourceInfo* info) { ExprRecord record; record.expr = e; record.source_info = info; record_variant = record; } StackRecord(const Expr* e, const SourceInfo* info, const Comprehension* comprehension, const Expr* comprehension_expr, ComprehensionArg comprehension_arg, bool use_comprehension_callbacks) { if (use_comprehension_callbacks) { ComprehensionRecord record; record.expr = e; record.source_info = info; record.comprehension = comprehension; record.comprehension_expr = comprehension_expr; record.comprehension_arg = comprehension_arg; record.use_comprehension_callbacks = use_comprehension_callbacks; record_variant = record; return; } ArgRecord record; record.expr = e; record.source_info = info; record.calling_expr = comprehension_expr; record.call_arg = comprehension_arg; record_variant = record; } StackRecord(const Expr* e, const SourceInfo* info, const Expr* call, int argnum) { ArgRecord record; record.expr = e; record.source_info = info; record.calling_expr = call; record.call_arg = argnum; record_variant = record; } StackRecordKind record_variant; bool visited = false; }; struct PreVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PreVisitExpr(expr, &position); switch (expr->expr_kind_case()) { case Expr::kConstExpr: visitor->PreVisitConst(&expr->const_expr(), expr, &position); break; case Expr::kIdentExpr: visitor->PreVisitIdent(&expr->ident_expr(), expr, &position); break; case Expr::kSelectExpr: visitor->PreVisitSelect(&expr->select_expr(), expr, &position); break; case Expr::kCallExpr: visitor->PreVisitCall(&expr->call_expr(), expr, &position); break; case Expr::kListExpr: visitor->PreVisitCreateList(&expr->list_expr(), expr, &position); break; case Expr::kStructExpr: visitor->PreVisitCreateStruct(&expr->struct_expr(), expr, &position); break; case Expr::kComprehensionExpr: visitor->PreVisitComprehension(&expr->comprehension_expr(), expr, &position); break; default: break; } } void operator()(const ArgRecord&) {} void operator()(const ComprehensionRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PreVisitComprehensionSubexpression( expr, record.comprehension, record.comprehension_arg, &position); } AstVisitor* visitor; }; void PreVisit(const StackRecord& record, AstVisitor* visitor) { absl::visit(PreVisitor{visitor}, record.record_variant); } struct PostVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); switch (expr->expr_kind_case()) { case Expr::kConstExpr: visitor->PostVisitConst(&expr->const_expr(), expr, &position); break; case Expr::kIdentExpr: visitor->PostVisitIdent(&expr->ident_expr(), expr, &position); break; case Expr::kSelectExpr: visitor->PostVisitSelect(&expr->select_expr(), expr, &position); break; case Expr::kCallExpr: visitor->PostVisitCall(&expr->call_expr(), expr, &position); break; case Expr::kListExpr: visitor->PostVisitCreateList(&expr->list_expr(), expr, &position); break; case Expr::kStructExpr: visitor->PostVisitCreateStruct(&expr->struct_expr(), expr, &position); break; case Expr::kComprehensionExpr: visitor->PostVisitComprehension(&expr->comprehension_expr(), expr, &position); break; default: ABSL_LOG(ERROR) << "Unsupported Expr kind: " << expr->expr_kind_case(); } visitor->PostVisitExpr(expr, &position); } void operator()(const ArgRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); if (record.call_arg == StackRecord::kTarget) { visitor->PostVisitTarget(record.calling_expr, &position); } else { visitor->PostVisitArg(record.call_arg, record.calling_expr, &position); } } void operator()(const ComprehensionRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PostVisitComprehensionSubexpression( expr, record.comprehension, record.comprehension_arg, &position); } AstVisitor* visitor; }; void PostVisit(const StackRecord& record, AstVisitor* visitor) { absl::visit(PostVisitor{visitor}, record.record_variant); } void PushSelectDeps(const Select* select_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { if (select_expr->has_operand()) { stack->push(StackRecord(&select_expr->operand(), source_info)); } } void PushCallDeps(const Call* call_expr, const Expr* expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const int arg_size = call_expr->args_size(); for (int i = arg_size - 1; i >= 0; --i) { stack->push(StackRecord(&call_expr->args(i), source_info, expr, i)); } if (call_expr->has_target()) { stack->push(StackRecord(&call_expr->target(), source_info, expr, StackRecord::kTarget)); } } void PushListDeps(const CreateList* list_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const auto& elements = list_expr->elements(); for (auto it = elements.rbegin(); it != elements.rend(); ++it) { const auto& element = *it; stack->push(StackRecord(&element, source_info)); } } void PushStructDeps(const CreateStruct* struct_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const auto& entries = struct_expr->entries(); for (auto it = entries.rbegin(); it != entries.rend(); ++it) { const auto& entry = *it; if (entry.has_value()) { stack->push(StackRecord(&entry.value(), source_info)); } if (entry.has_map_key()) { stack->push(StackRecord(&entry.map_key(), source_info)); } } } void PushComprehensionDeps(const Comprehension* c, const Expr* expr, const SourceInfo* source_info, std::stack<StackRecord>* stack, bool use_comprehension_callbacks) { StackRecord iter_range(&c->iter_range(), source_info, c, expr, ITER_RANGE, use_comprehension_callbacks); StackRecord accu_init(&c->accu_init(), source_info, c, expr, ACCU_INIT, use_comprehension_callbacks); StackRecord loop_condition(&c->loop_condition(), source_info, c, expr, LOOP_CONDITION, use_comprehension_callbacks); StackRecord loop_step(&c->loop_step(), source_info, c, expr, LOOP_STEP, use_comprehension_callbacks); StackRecord result(&c->result(), source_info, c, expr, RESULT, use_comprehension_callbacks); stack->push(result); stack->push(loop_step); stack->push(loop_condition); stack->push(accu_init); stack->push(iter_range); } struct PushDepsVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; switch (expr->expr_kind_case()) { case Expr::kSelectExpr: PushSelectDeps(&expr->select_expr(), record.source_info, &stack); break; case Expr::kCallExpr: PushCallDeps(&expr->call_expr(), expr, record.source_info, &stack); break; case Expr::kListExpr: PushListDeps(&expr->list_expr(), record.source_info, &stack); break; case Expr::kStructExpr: PushStructDeps(&expr->struct_expr(), record.source_info, &stack); break; case Expr::kComprehensionExpr: PushComprehensionDeps(&expr->comprehension_expr(), expr, record.source_info, &stack, options.use_comprehension_callbacks); break; default: break; } } void operator()(const ArgRecord& record) { stack.push(StackRecord(record.expr, record.source_info)); } void operator()(const ComprehensionRecord& record) { stack.push(StackRecord(record.expr, record.source_info)); } std::stack<StackRecord>& stack; const TraversalOptions& options; }; void PushDependencies(const StackRecord& record, std::stack<StackRecord>& stack, const TraversalOptions& options) { absl::visit(PushDepsVisitor{stack, options}, record.record_variant); } } void AstTraverse(const Expr* expr, const SourceInfo* source_info, AstVisitor* visitor, TraversalOptions options) { std::stack<StackRecord> stack; stack.push(StackRecord(expr, source_info)); while (!stack.empty()) { StackRecord& record = stack.top(); if (!record.visited) { PreVisit(record, visitor); PushDependencies(record, stack, options); record.visited = true; } else { PostVisit(record, visitor); stack.pop(); } } } }
#include "eval/public/ast_traverse.h" #include "eval/public/ast_visitor.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { using google::api::expr::v1alpha1::Constant; using google::api::expr::v1alpha1::Expr; using google::api::expr::v1alpha1::SourceInfo; using testing::_; using Ident = google::api::expr::v1alpha1::Expr::Ident; using Select = google::api::expr::v1alpha1::Expr::Select; using Call = google::api::expr::v1alpha1::Expr::Call; using CreateList = google::api::expr::v1alpha1::Expr::CreateList; using CreateStruct = google::api::expr::v1alpha1::Expr::CreateStruct; using Comprehension = google::api::expr::v1alpha1::Expr::Comprehension; class MockAstVisitor : public AstVisitor { public: MOCK_METHOD(void, PreVisitExpr, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitExpr, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitConst, (const Constant* const_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitConst, (const Constant* const_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitIdent, (const Ident* ident_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitIdent, (const Ident* ident_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitSelect, (const Select* select_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitSelect, (const Select* select_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCall, (const Call* call_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCall, (const Call* call_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitComprehension, (const Comprehension* comprehension_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitComprehension, (const Comprehension* comprehension_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitComprehensionSubexpression, (const Expr* expr, const Comprehension* comprehension_expr, ComprehensionArg comprehension_arg, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitComprehensionSubexpression, (const Expr* expr, const Comprehension* comprehension_expr, ComprehensionArg comprehension_arg, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitTarget, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitArg, (int arg_num, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCreateList, (const CreateList* list_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCreateList, (const CreateList* list_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCreateStruct, (const CreateStruct* struct_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCreateStruct, (const CreateStruct* struct_expr, const Expr* expr, const SourcePosition* position), (override)); }; TEST(AstCrawlerTest, CheckCrawlConstant) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto const_expr = expr.mutable_const_expr(); EXPECT_CALL(handler, PreVisitConst(const_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlIdent) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto ident_expr = expr.mutable_ident_expr(); EXPECT_CALL(handler, PreVisitIdent(ident_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlSelectNotCrashingPostVisitAbsentOperand) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto select_expr = expr.mutable_select_expr(); EXPECT_CALL(handler, PostVisitSelect(select_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlSelect) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto select_expr = expr.mutable_select_expr(); auto operand = select_expr->mutable_operand(); auto ident_expr = operand->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PostVisitIdent(ident_expr, operand, _)).Times(1); EXPECT_CALL(handler, PostVisitSelect(select_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlCallNoReceiver) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto* call_expr = expr.mutable_call_expr(); Expr* arg0 = call_expr->add_args(); auto* const_expr = arg0->mutable_const_expr(); Expr* arg1 = call_expr->add_args(); auto* ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitTarget(_, _)).Times(0); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(0, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(1, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(&expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlCallReceiver) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto* call_expr = expr.mutable_call_expr(); Expr* target = call_expr->mutable_target(); auto* target_ident = target->mutable_ident_expr(); Expr* arg0 = call_expr->add_args(); auto* const_expr = arg0->mutable_const_expr(); Expr* arg1 = call_expr->add_args(); auto* ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(target_ident, target, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(target, _)).Times(1); EXPECT_CALL(handler, PostVisitTarget(&expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(0, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(1, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(&expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlComprehension) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto c = expr.mutable_comprehension_expr(); auto iter_range = c->mutable_iter_range(); auto iter_range_expr = iter_range->mutable_const_expr(); auto accu_init = c->mutable_accu_init(); auto accu_init_expr = accu_init->mutable_ident_expr(); auto loop_condition = c->mutable_loop_condition(); auto loop_condition_expr = loop_condition->mutable_const_expr(); auto loop_step = c->mutable_loop_step(); auto loop_step_expr = loop_step->mutable_ident_expr(); auto result = c->mutable_result(); auto result_expr = result->mutable_const_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitComprehension(c, &expr, _)).Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(iter_range, c, ITER_RANGE, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(iter_range_expr, iter_range, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(iter_range, c, ITER_RANGE, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(accu_init, c, ACCU_INIT, _)) .Times(1); EXPECT_CALL(handler, PostVisitIdent(accu_init_expr, accu_init, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(accu_init, c, ACCU_INIT, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(loop_condition, c, LOOP_CONDITION, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(loop_condition_expr, loop_condition, _)) .Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(loop_condition, c, LOOP_CONDITION, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(loop_step, c, LOOP_STEP, _)) .Times(1); EXPECT_CALL(handler, PostVisitIdent(loop_step_expr, loop_step, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(loop_step, c, LOOP_STEP, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(result, c, RESULT, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(result_expr, result, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(result, c, RESULT, _)) .Times(1); EXPECT_CALL(handler, PostVisitComprehension(c, &expr, _)).Times(1); TraversalOptions opts; opts.use_comprehension_callbacks = true; AstTraverse(&expr, &source_info, &handler, opts); } TEST(AstCrawlerTest, CheckCrawlComprehensionLegacyCallbacks) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto c = expr.mutable_comprehension_expr(); auto iter_range = c->mutable_iter_range(); auto iter_range_expr = iter_range->mutable_const_expr(); auto accu_init = c->mutable_accu_init(); auto accu_init_expr = accu_init->mutable_ident_expr(); auto loop_condition = c->mutable_loop_condition(); auto loop_condition_expr = loop_condition->mutable_const_expr(); auto loop_step = c->mutable_loop_step(); auto loop_step_expr = loop_step->mutable_ident_expr(); auto result = c->mutable_result(); auto result_expr = result->mutable_const_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitComprehension(c, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(iter_range_expr, iter_range, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(ITER_RANGE, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(accu_init_expr, accu_init, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(ACCU_INIT, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(loop_condition_expr, loop_condition, _)) .Times(1); EXPECT_CALL(handler, PostVisitArg(LOOP_CONDITION, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(loop_step_expr, loop_step, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(LOOP_STEP, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(result_expr, result, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(RESULT, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehension(c, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCreateList) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto list_expr = expr.mutable_list_expr(); auto arg0 = list_expr->add_elements(); auto const_expr = arg0->mutable_const_expr(); auto arg1 = list_expr->add_elements(); auto ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCreateList(list_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitCreateList(list_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCreateStruct) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto struct_expr = expr.mutable_struct_expr(); auto entry0 = struct_expr->add_entries(); auto key = entry0->mutable_map_key()->mutable_const_expr(); auto value = entry0->mutable_value()->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCreateStruct(struct_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(key, &entry0->map_key(), _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(value, &entry0->value(), _)).Times(1); EXPECT_CALL(handler, PostVisitCreateStruct(struct_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckExprHandlers) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto struct_expr = expr.mutable_struct_expr(); auto entry0 = struct_expr->add_entries(); entry0->mutable_map_key()->mutable_const_expr(); entry0->mutable_value()->mutable_ident_expr(); EXPECT_CALL(handler, PreVisitExpr(_, _)).Times(3); EXPECT_CALL(handler, PostVisitExpr(_, _)).Times(3); AstTraverse(&expr, &source_info, &handler); } } }
285
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_ML_ADJACENT_DATA_OWNING_VECTOR_REF_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_ML_ADJACENT_DATA_OWNING_VECTOR_REF_H_ #include <vector> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace data { class OwningVectorRef : public MutableDataRef { public: explicit OwningVectorRef(etype_t type) : MutableDataRef(type) {} OwningVectorRef(const OwningVectorRef&) = delete; OwningVectorRef(OwningVectorRef&&) = delete; OwningVectorRef& operator=(const OwningVectorRef&) = delete; OwningVectorRef& operator=(OwningVectorRef&&) = delete; void Resize(dims_t&& dims) override; const void* Data() const override; void* Data() override; ind_t NumElements() const override; size_t Bytes() const override; ~OwningVectorRef() override = default; private: std::vector<char> raw_data_buffer_; ind_t num_elements_ = 0; }; } } #endif #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include <cstddef> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace data { void OwningVectorRef::Resize(dims_t&& dims) { dims_ = dims; num_elements_ = 0; for (dim_t d : dims_) { if (d <= 0) { break; } if (num_elements_ == 0) { num_elements_ = d; } else { num_elements_ *= d; } } raw_data_buffer_.resize(num_elements_ * TypeWidth(Type())); } const void* OwningVectorRef::Data() const { return raw_data_buffer_.data(); } void* OwningVectorRef::Data() { return raw_data_buffer_.data(); } ind_t OwningVectorRef::NumElements() const { return num_elements_; } size_t OwningVectorRef::Bytes() const { return NumElements() * TypeWidth(Type()); } } }
#include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include <algorithm> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::IsEmpty; TEST(OwningVectorRefTest, ConstructFloat32) { OwningVectorRef t(etype_t::f32); EXPECT_EQ(t.Type(), etype_t::f32); EXPECT_EQ(t.NumElements(), 0); EXPECT_EQ(t.Bytes(), 0); EXPECT_THAT(t.Dims(), IsEmpty()); } TEST(OwningVectorRefTest, ResizeFromEmptyFloat32) { OwningVectorRef t(etype_t::f32); t.Resize({2, 2}); EXPECT_THAT(t.Dims(), ElementsAreArray<dim_t>({2, 2})); EXPECT_EQ(t.NumElements(), 4); ASSERT_EQ(t.Bytes(), 4 * sizeof(float)); float* write_f_start = reinterpret_cast<float*>(t.Data()); float* write_f_end = write_f_start + t.NumElements(); std::fill(write_f_start, write_f_end, 0.5f); const float* read_f_start = reinterpret_cast<const float*>(t.Data()); for (int i = 0; i < t.NumElements(); ++i) { EXPECT_EQ(read_f_start[i], 0.5f); } } TEST(OwningVectorRefTest, ResizeDownFloat32) { OwningVectorRef t(etype_t::f32); t.Resize({2, 2}); float* write_f_start = reinterpret_cast<float*>(t.Data()); float* write_f_end = write_f_start + t.NumElements(); std::fill(write_f_start, write_f_end, 0.5f); t.Resize({3}); ASSERT_THAT(t.Dims(), ElementsAreArray<dim_t>({3})); EXPECT_EQ(t.NumElements(), 3); ASSERT_EQ(t.Bytes(), 3 * sizeof(float)); const float* read_f_start = reinterpret_cast<const float*>(t.Data()); for (int i = 0; i < t.NumElements(); ++i) { EXPECT_EQ(read_f_start[i], 0.5f); } } TEST(OwningVectorRefTest, IgnoresDimsForNumElementsAfterFirstNonPositive) { OwningVectorRef t(etype_t::f32); t.Resize({3, 0, 0, 2}); EXPECT_EQ(t.Type(), etype_t::f32); EXPECT_EQ(t.NumElements(), 3); EXPECT_EQ(t.Bytes(), 3 * sizeof(float)); EXPECT_THAT(t.Dims(), ElementsAreArray<dim_t>({3, 0, 0, 2})); } } } }
286
#ifndef QUICHE_HTTP2_DECODER_PAYLOAD_DECODERS_GOAWAY_PAYLOAD_DECODER_H_ #define QUICHE_HTTP2_DECODER_PAYLOAD_DECODERS_GOAWAY_PAYLOAD_DECODER_H_ #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/decoder/frame_decoder_state.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_export.h" namespace http2 { namespace test { class GoAwayPayloadDecoderPeer; } class QUICHE_EXPORT GoAwayPayloadDecoder { public: enum class PayloadState { kStartDecodingFixedFields, kHandleFixedFieldsStatus, kReadOpaqueData, kResumeDecodingFixedFields, }; DecodeStatus StartDecodingPayload(FrameDecoderState* state, DecodeBuffer* db); DecodeStatus ResumeDecodingPayload(FrameDecoderState* state, DecodeBuffer* db); private: friend class test::GoAwayPayloadDecoderPeer; Http2GoAwayFields goaway_fields_; PayloadState payload_state_; }; } #endif #include "quiche/http2/decoder/payload_decoders/goaway_payload_decoder.h" #include <stddef.h> #include <ostream> #include "absl/base/macros.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::ostream& operator<<(std::ostream& out, GoAwayPayloadDecoder::PayloadState v) { switch (v) { case GoAwayPayloadDecoder::PayloadState::kStartDecodingFixedFields: return out << "kStartDecodingFixedFields"; case GoAwayPayloadDecoder::PayloadState::kHandleFixedFieldsStatus: return out << "kHandleFixedFieldsStatus"; case GoAwayPayloadDecoder::PayloadState::kReadOpaqueData: return out << "kReadOpaqueData"; case GoAwayPayloadDecoder::PayloadState::kResumeDecodingFixedFields: return out << "kResumeDecodingFixedFields"; } int unknown = static_cast<int>(v); QUICHE_BUG(http2_bug_167_1) << "Invalid GoAwayPayloadDecoder::PayloadState: " << unknown; return out << "GoAwayPayloadDecoder::PayloadState(" << unknown << ")"; } DecodeStatus GoAwayPayloadDecoder::StartDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "GoAwayPayloadDecoder::StartDecodingPayload: " << state->frame_header(); QUICHE_DCHECK_EQ(Http2FrameType::GOAWAY, state->frame_header().type); QUICHE_DCHECK_LE(db->Remaining(), state->frame_header().payload_length); QUICHE_DCHECK_EQ(0, state->frame_header().flags); state->InitializeRemainders(); payload_state_ = PayloadState::kStartDecodingFixedFields; return ResumeDecodingPayload(state, db); } DecodeStatus GoAwayPayloadDecoder::ResumeDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "GoAwayPayloadDecoder::ResumeDecodingPayload: remaining_payload=" << state->remaining_payload() << ", db->Remaining=" << db->Remaining(); const Http2FrameHeader& frame_header = state->frame_header(); QUICHE_DCHECK_EQ(Http2FrameType::GOAWAY, frame_header.type); QUICHE_DCHECK_LE(db->Remaining(), frame_header.payload_length); QUICHE_DCHECK_NE(PayloadState::kHandleFixedFieldsStatus, payload_state_); DecodeStatus status = DecodeStatus::kDecodeError; size_t avail; while (true) { QUICHE_DVLOG(2) << "GoAwayPayloadDecoder::ResumeDecodingPayload payload_state_=" << payload_state_; switch (payload_state_) { case PayloadState::kStartDecodingFixedFields: status = state->StartDecodingStructureInPayload(&goaway_fields_, db); ABSL_FALLTHROUGH_INTENDED; case PayloadState::kHandleFixedFieldsStatus: if (status == DecodeStatus::kDecodeDone) { state->listener()->OnGoAwayStart(frame_header, goaway_fields_); } else { QUICHE_DCHECK((status == DecodeStatus::kDecodeInProgress && state->remaining_payload() > 0) || (status == DecodeStatus::kDecodeError && state->remaining_payload() == 0)) << "\n status=" << status << "; remaining_payload=" << state->remaining_payload(); payload_state_ = PayloadState::kResumeDecodingFixedFields; return status; } ABSL_FALLTHROUGH_INTENDED; case PayloadState::kReadOpaqueData: avail = db->Remaining(); if (avail > 0) { state->listener()->OnGoAwayOpaqueData(db->cursor(), avail); db->AdvanceCursor(avail); state->ConsumePayload(avail); } if (state->remaining_payload() > 0) { payload_state_ = PayloadState::kReadOpaqueData; return DecodeStatus::kDecodeInProgress; } state->listener()->OnGoAwayEnd(); return DecodeStatus::kDecodeDone; case PayloadState::kResumeDecodingFixedFields: status = state->ResumeDecodingStructureInPayload(&goaway_fields_, db); payload_state_ = PayloadState::kHandleFixedFieldsStatus; continue; } QUICHE_BUG(http2_bug_167_2) << "PayloadState: " << payload_state_; } } }
#include "quiche/http2/decoder/payload_decoders/goaway_payload_decoder.h" #include <stddef.h> #include <string> #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/frame_parts.h" #include "quiche/http2/test_tools/frame_parts_collector.h" #include "quiche/http2/test_tools/http2_frame_builder.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/http2_structures_test_util.h" #include "quiche/http2/test_tools/payload_decoder_base_test_util.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { class GoAwayPayloadDecoderPeer { public: static constexpr Http2FrameType FrameType() { return Http2FrameType::GOAWAY; } static constexpr uint8_t FlagsAffectingPayloadDecoding() { return 0; } }; namespace { struct Listener : public FramePartsCollector { void OnGoAwayStart(const Http2FrameHeader& header, const Http2GoAwayFields& goaway) override { QUICHE_VLOG(1) << "OnGoAwayStart header: " << header << "; goaway: " << goaway; StartFrame(header)->OnGoAwayStart(header, goaway); } void OnGoAwayOpaqueData(const char* data, size_t len) override { QUICHE_VLOG(1) << "OnGoAwayOpaqueData: len=" << len; CurrentFrame()->OnGoAwayOpaqueData(data, len); } void OnGoAwayEnd() override { QUICHE_VLOG(1) << "OnGoAwayEnd"; EndFrame()->OnGoAwayEnd(); } void OnFrameSizeError(const Http2FrameHeader& header) override { QUICHE_VLOG(1) << "OnFrameSizeError: " << header; FrameError(header)->OnFrameSizeError(header); } }; class GoAwayPayloadDecoderTest : public AbstractPayloadDecoderTest<GoAwayPayloadDecoder, GoAwayPayloadDecoderPeer, Listener> {}; TEST_F(GoAwayPayloadDecoderTest, Truncated) { auto approve_size = [](size_t size) { return size != Http2GoAwayFields::EncodedSize(); }; Http2FrameBuilder fb; fb.Append(Http2GoAwayFields(123, Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_TRUE(VerifyDetectsFrameSizeError(0, fb.buffer(), approve_size)); } class GoAwayOpaqueDataLengthTests : public GoAwayPayloadDecoderTest, public ::testing::WithParamInterface<uint32_t> { protected: GoAwayOpaqueDataLengthTests() : length_(GetParam()) { QUICHE_VLOG(1) << "################ length_=" << length_ << " ################"; } const uint32_t length_; }; INSTANTIATE_TEST_SUITE_P(VariousLengths, GoAwayOpaqueDataLengthTests, ::testing::Values(0, 1, 2, 3, 4, 5, 6)); TEST_P(GoAwayOpaqueDataLengthTests, ValidLength) { Http2GoAwayFields goaway; Randomize(&goaway, RandomPtr()); std::string opaque_data = Random().RandString(length_); Http2FrameBuilder fb; fb.Append(goaway); fb.Append(opaque_data); Http2FrameHeader header(fb.size(), Http2FrameType::GOAWAY, RandFlags(), RandStreamId()); set_frame_header(header); FrameParts expected(header, opaque_data); expected.SetOptGoaway(goaway); ASSERT_TRUE(DecodePayloadAndValidateSeveralWays(fb.buffer(), expected)); } } } }
287
#ifndef XLA_SERVICE_GPU_FUSION_WRAPPER_H_ #define XLA_SERVICE_GPU_FUSION_WRAPPER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class FusionWrapper : public HloModulePass { public: absl::string_view name() const override { return "fusion-wrapper"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/fusion_wrapper.h" #include <functional> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { absl::StatusOr<bool> FusionWrapper::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto instructions = module->entry_computation()->MakeInstructionPostOrder(); bool changed = false; std::function<absl::Status(HloInstruction*)> handle_instruction; handle_instruction = [&](HloInstruction* instruction) -> absl::Status { switch (instruction->opcode()) { case HloOpcode::kConditional: case HloOpcode::kWhile: for (auto* computation : instruction->called_computations()) { for (auto* inner_instruction : computation->MakeInstructionPostOrder()) { TF_RETURN_IF_ERROR(handle_instruction(inner_instruction)); } } break; case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAnd: case HloOpcode::kAtan2: case HloOpcode::kBitcastConvert: case HloOpcode::kBroadcast: case HloOpcode::kCeil: case HloOpcode::kCbrt: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConcatenate: case HloOpcode::kConvert: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kDivide: case HloOpcode::kDot: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kGather: case HloOpcode::kImag: case HloOpcode::kIota: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kMap: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kPad: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReshape: case HloOpcode::kReduce: case HloOpcode::kReducePrecision: case HloOpcode::kReduceWindow: case HloOpcode::kRemainder: case HloOpcode::kReverse: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightLogical: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSlice: case HloOpcode::kSqrt: case HloOpcode::kSubtract: case HloOpcode::kStochasticConvert: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTranspose: case HloOpcode::kXor: { auto* computation = instruction->parent(); auto* fusion_instruction = computation->AddInstruction(HloInstruction::CreateFusion( instruction->shape(), ChooseFusionKind(*instruction, *instruction), instruction)); const absl::string_view wrapped_opcode = HloOpcodeString(instruction->opcode()); module->SetAndUniquifyInstrName( fusion_instruction, absl::StrCat("wrapped_", wrapped_opcode)); module->SetAndUniquifyComputationName( fusion_instruction->fused_instructions_computation(), absl::StrCat("wrapped_", wrapped_opcode, "_computation")); if (module->has_schedule()) { module->schedule().replace_instruction(computation, instruction, fusion_instruction); } TF_RETURN_IF_ERROR( fusion_instruction->CopyAllControlDepsFrom(instruction)); TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(fusion_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(instruction)); changed = true; break; } default: break; } return absl::OkStatus(); }; for (auto* instruction : instructions) { TF_RETURN_IF_ERROR(handle_instruction(instruction)); } return changed; } } }
#include "xla/service/gpu/fusion_wrapper.h" #include <optional> #include <gtest/gtest.h> #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { class FusionWrapperTest : public HloTestBase {}; TEST_F(FusionWrapperTest, SimpleOp) { RunAndFilecheckHloRewrite(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[30,41] parameter(0) p1 = f16[30,41] parameter(1) ROOT result = f16[60, 41] concatenate(p0, p1), dimensions={0} })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, Scatter) { RunAndFilecheckHloRewrite(R"( HloModule ScatterIntoScalar update_s32 { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { parameter.1 = s32[] parameter(0) parameter.2 = s32[0]{0} parameter(1) parameter.3 = s32[] parameter(2) ROOT scatter_ScatterIntoScalar = s32[] scatter(parameter.1, parameter.2, parameter.3), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=update_s32 })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, ControlDependency) { RunAndFilecheckHloRewrite(R"( HloModule TestModule fusion { ROOT param = f32[] parameter(0) } ENTRY main { param = f32[] parameter(0) fusion = f32[] fusion(param), kind=kLoop, calls=fusion constant_one = f32[] constant(1) ROOT add = f32[] add(param, constant_one), control-predecessors={fusion} })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, While) { RunAndFilecheckHloRewrite(R"( HloModule While %body { %parameter.5 = (f32[5]{0}) parameter(0) %constant_8 = f32[] constant(0) %broadcast.9 = f32[5]{0} broadcast(f32[] %constant_8), dimensions={} ROOT %tuple.2 = (f32[5]{0}) tuple(f32[5]{0} %broadcast.9) } %cond { %parameter.12 = (f32[5]{0}) parameter(0) ROOT %constant_1 = pred[] constant(false) } ENTRY %main (parameter.1: f32[5]) -> (f32[5]) { %parameter.1 = f32[5]{0} parameter(0) %copy.3 = f32[5]{0} copy(f32[5]{0} %parameter.1) %tuple = (f32[5]{0}) tuple(f32[5]{0} %copy.3) ROOT %while.19 = (f32[5]{0}) while((f32[5]{0}) %tuple), condition=%cond, body=%body })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, WhileInFusion) { RunAndFilecheckHloRewrite(R"( HloModule While %body { %parameter.5 = (f32[5]{0}) parameter(0) %constant_8 = f32[] constant(0) %broadcast.9 = f32[5]{0} broadcast(f32[] %constant_8), dimensions={} ROOT %tuple.2 = (f32[5]{0}) tuple(f32[5]{0} %broadcast.9) } %cond { %parameter.12 = (f32[5]{0}) parameter(0) ROOT %constant_1 = pred[] constant(false) } %fusion { %parameter.1 = f32[5]{0} parameter(0) %copy.3 = f32[5]{0} copy(f32[5]{0} %parameter.1) %tuple = (f32[5]{0}) tuple(f32[5]{0} %copy.3) ROOT %while.19 = (f32[5]{0}) while((f32[5]{0}) %tuple), condition=%cond, body=%body } ENTRY %main (parameter.1: f32[5]) -> (f32[5]) { %parameter.1 = f32[5]{0} parameter(0) ROOT %fusion = (f32[5]{0}) fusion(f32[5]{0} %parameter.1), kind=kLoop, calls=%fusion })", FusionWrapper(), std::nullopt); } } } }
288
#ifndef ABSL_STRINGS_INTERNAL_CORDZ_FUNCTIONS_H_ #define ABSL_STRINGS_INTERNAL_CORDZ_FUNCTIONS_H_ #include <stdint.h> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { int32_t get_cordz_mean_interval(); void set_cordz_mean_interval(int32_t mean_interval); #if defined(ABSL_INTERNAL_CORDZ_ENABLED) #error ABSL_INTERNAL_CORDZ_ENABLED cannot be set directly #elif defined(__linux__) && defined(ABSL_HAVE_THREAD_LOCAL) #define ABSL_INTERNAL_CORDZ_ENABLED 1 #endif #ifdef ABSL_INTERNAL_CORDZ_ENABLED struct SamplingState { int64_t next_sample; int64_t sample_stride; }; ABSL_CONST_INIT extern thread_local SamplingState cordz_next_sample; int64_t cordz_should_profile_slow(SamplingState& state); inline int64_t cordz_should_profile() { if (ABSL_PREDICT_TRUE(cordz_next_sample.next_sample > 1)) { cordz_next_sample.next_sample--; return 0; } return cordz_should_profile_slow(cordz_next_sample); } void cordz_set_next_sample_for_testing(int64_t next_sample); #else inline int64_t cordz_should_profile() { return 0; } inline void cordz_set_next_sample_for_testing(int64_t) {} #endif } ABSL_NAMESPACE_END } #endif #include "absl/strings/internal/cordz_functions.h" #include <atomic> #include <cmath> #include <limits> #include <random> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/profiling/internal/exponential_biased.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { std::atomic<int> g_cordz_mean_interval(50000); } #ifdef ABSL_INTERNAL_CORDZ_ENABLED static constexpr int64_t kInitCordzNextSample = -1; ABSL_CONST_INIT thread_local SamplingState cordz_next_sample = { kInitCordzNextSample, 1}; constexpr int64_t kIntervalIfDisabled = 1 << 16; ABSL_ATTRIBUTE_NOINLINE int64_t cordz_should_profile_slow(SamplingState& state) { thread_local absl::profiling_internal::ExponentialBiased exponential_biased_generator; int32_t mean_interval = get_cordz_mean_interval(); if (mean_interval <= 0) { state = {kIntervalIfDisabled, kIntervalIfDisabled}; return 0; } if (mean_interval == 1) { state = {1, 1}; return 1; } if (cordz_next_sample.next_sample <= 0) { const bool initialized = cordz_next_sample.next_sample != kInitCordzNextSample; auto old_stride = state.sample_stride; auto stride = exponential_biased_generator.GetStride(mean_interval); state = {stride, stride}; bool should_sample = initialized || cordz_should_profile() > 0; return should_sample ? old_stride : 0; } --state.next_sample; return 0; } void cordz_set_next_sample_for_testing(int64_t next_sample) { cordz_next_sample = {next_sample, next_sample}; } #endif int32_t get_cordz_mean_interval() { return g_cordz_mean_interval.load(std::memory_order_acquire); } void set_cordz_mean_interval(int32_t mean_interval) { g_cordz_mean_interval.store(mean_interval, std::memory_order_release); } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/cordz_functions.h" #include <thread> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { using ::testing::Eq; using ::testing::Ge; using ::testing::Le; TEST(CordzFunctionsTest, SampleRate) { int32_t orig_sample_rate = get_cordz_mean_interval(); int32_t expected_sample_rate = 123; set_cordz_mean_interval(expected_sample_rate); EXPECT_THAT(get_cordz_mean_interval(), Eq(expected_sample_rate)); set_cordz_mean_interval(orig_sample_rate); } #ifdef ABSL_INTERNAL_CORDZ_ENABLED TEST(CordzFunctionsTest, ShouldProfileDisable) { int32_t orig_sample_rate = get_cordz_mean_interval(); set_cordz_mean_interval(0); cordz_set_next_sample_for_testing(0); EXPECT_EQ(cordz_should_profile(), 0); EXPECT_THAT(cordz_next_sample.next_sample, Eq(1 << 16)); set_cordz_mean_interval(orig_sample_rate); } TEST(CordzFunctionsTest, ShouldProfileAlways) { int32_t orig_sample_rate = get_cordz_mean_interval(); set_cordz_mean_interval(1); cordz_set_next_sample_for_testing(1); EXPECT_GT(cordz_should_profile(), 0); EXPECT_THAT(cordz_next_sample.next_sample, Le(1)); set_cordz_mean_interval(orig_sample_rate); } TEST(CordzFunctionsTest, DoesNotAlwaysSampleFirstCord) { set_cordz_mean_interval(10000); int tries = 0; bool sampled = false; do { ++tries; ASSERT_THAT(tries, Le(1000)); std::thread thread([&sampled] { sampled = cordz_should_profile() > 0; }); thread.join(); } while (sampled); } TEST(CordzFunctionsTest, ShouldProfileRate) { static constexpr int kDesiredMeanInterval = 1000; static constexpr int kSamples = 10000; int32_t orig_sample_rate = get_cordz_mean_interval(); set_cordz_mean_interval(kDesiredMeanInterval); int64_t sum_of_intervals = 0; for (int i = 0; i < kSamples; i++) { cordz_set_next_sample_for_testing(0); cordz_should_profile(); sum_of_intervals += cordz_next_sample.next_sample; } EXPECT_THAT(sum_of_intervals, Ge(9396115)); EXPECT_THAT(sum_of_intervals, Le(10618100)); set_cordz_mean_interval(orig_sample_rate); } #else TEST(CordzFunctionsTest, ShouldProfileDisabled) { int32_t orig_sample_rate = get_cordz_mean_interval(); set_cordz_mean_interval(1); cordz_set_next_sample_for_testing(0); EXPECT_FALSE(cordz_should_profile()); set_cordz_mean_interval(orig_sample_rate); } #endif } } ABSL_NAMESPACE_END }
289
#ifndef TENSORFLOW_TSL_PLATFORM_ENV_H_ #define TENSORFLOW_TSL_PLATFORM_ENV_H_ #include <stdint.h> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "tsl/platform/env_time.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/macros.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numa.h" #include "tsl/platform/platform.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" #ifdef PLATFORM_WINDOWS #undef CopyFile #undef DeleteFile #endif namespace tsl { class Thread; struct ThreadOptions; class Env { public: Env(); virtual ~Env() = default; static Env* Default(); virtual absl::Status GetFileSystemForFile(const std::string& fname, FileSystem** result); virtual absl::Status GetRegisteredFileSystemSchemes( std::vector<std::string>* schemes); virtual absl::Status RegisterFileSystem(const std::string& scheme, FileSystemRegistry::Factory factory); virtual absl::Status RegisterFileSystem( const std::string& scheme, std::unique_ptr<FileSystem> filesystem); absl::Status SetOption(const std::string& scheme, const std::string& key, const std::string& value); absl::Status SetOption(const std::string& scheme, const std::string& key, const std::vector<string>& values); absl::Status SetOption(const std::string& scheme, const std::string& key, const std::vector<int64_t>& values); absl::Status SetOption(const std::string& scheme, const std::string& key, const std::vector<double>& values); absl::Status FlushFileSystemCaches(); absl::Status NewRandomAccessFile(const std::string& fname, std::unique_ptr<RandomAccessFile>* result); absl::Status NewRandomAccessFile(const std::string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) { return absl::OkStatus(); } absl::Status NewWritableFile(const std::string& fname, std::unique_ptr<WritableFile>* result); absl::Status NewWritableFile(const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { return absl::OkStatus(); } absl::Status NewAppendableFile(const std::string& fname, std::unique_ptr<WritableFile>* result); absl::Status NewAppendableFile(const std::string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { return absl::OkStatus(); } absl::Status NewReadOnlyMemoryRegionFromFile( const std::string& fname, std::unique_ptr<ReadOnlyMemoryRegion>* result); absl::Status NewReadOnlyMemoryRegionFromFile( const std::string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) { return absl::OkStatus(); } absl::Status FileExists(const std::string& fname); absl::Status FileExists(const std::string& fname, TransactionToken* token) { return absl::OkStatus(); } bool FilesExist(const std::vector<string>& files, std::vector<absl::Status>* status); bool FilesExist(const std::vector<string>& files, TransactionToken* token, std::vector<absl::Status>* status) { return true; } absl::Status GetChildren(const std::string& dir, std::vector<string>* result); absl::Status GetChildren(const std::string& dir, TransactionToken* token, std::vector<string>* result) { return absl::OkStatus(); } virtual bool MatchPath(const std::string& path, const std::string& pattern) = 0; virtual absl::Status GetMatchingPaths(const std::string& pattern, std::vector<string>* results); absl::Status GetMatchingPaths(const std::string& pattern, TransactionToken* token, std::vector<string>* results) { return absl::OkStatus(); } absl::Status DeleteFile(const std::string& fname); absl::Status DeleteFile(const std::string& fname, TransactionToken* token) { return absl::OkStatus(); } absl::Status DeleteRecursively(const std::string& dirname, int64_t* undeleted_files, int64_t* undeleted_dirs); absl::Status DeleteRecursively(const std::string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) { return absl::OkStatus(); } absl::Status RecursivelyCreateDir(const std::string& dirname); absl::Status RecursivelyCreateDir(const std::string& dirname, TransactionToken* token) { return absl::OkStatus(); } absl::Status CreateDir(const std::string& dirname); absl::Status CreateDir(const std::string& dirname, TransactionToken* token) { return absl::OkStatus(); } absl::Status DeleteDir(const std::string& dirname); absl::Status DeleteDir(const std::string& dirname, TransactionToken* token) { return absl::OkStatus(); } absl::Status Stat(const std::string& fname, FileStatistics* stat); absl::Status Stat(const std::string& fname, TransactionToken* token, FileStatistics* stat) { return absl::OkStatus(); } absl::Status IsDirectory(const std::string& fname); absl::Status HasAtomicMove(const std::string& path, bool* has_atomic_move); absl::Status CanCreateTempFile(const std::string& fname, bool* can_create_temp_file); absl::Status GetFileSize(const std::string& fname, uint64* file_size); absl::Status GetFileSize(const std::string& fname, TransactionToken* token, uint64* file_size) { return absl::OkStatus(); } absl::Status RenameFile(const std::string& src, const std::string& target); absl::Status RenameFile(const std::string& src, const std::string& target, TransactionToken* token) { return absl::OkStatus(); } absl::Status CopyFile(const std::string& src, const std::string& target); absl::Status CopyFile(const std::string& src, const std::string& target, TransactionToken* token) { return absl::OkStatus(); } absl::Status StartTransaction(const std::string& filename, TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } absl::Status AddToTransaction(const std::string& path, TransactionToken* token) { return absl::OkStatus(); } absl::Status GetTokenOrStartTransaction(const std::string& path, TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } absl::Status GetTransactionForPath(const std::string& path, TransactionToken** token) { *token = nullptr; return absl::OkStatus(); } absl::Status EndTransaction(TransactionToken* token) { return absl::OkStatus(); } std::string GetExecutablePath(); bool LocalTempFilename(std::string* filename); bool CreateUniqueFileName(std::string* prefix, const std::string& suffix); virtual std::string GetRunfilesDir() = 0; virtual uint64 NowNanos() const { return EnvTime::NowNanos(); } virtual uint64 NowMicros() const { return EnvTime::NowMicros(); } virtual uint64 NowSeconds() const { return EnvTime::NowSeconds(); } virtual void SleepForMicroseconds(int64_t micros) = 0; int32 GetProcessId(); virtual Thread* StartThread( const ThreadOptions& thread_options, const std::string& name, absl::AnyInvocable<void()> fn) TF_MUST_USE_RESULT = 0; virtual int32 GetCurrentThreadId() = 0; virtual bool GetCurrentThreadName(std::string* name) = 0; virtual void SchedClosure(absl::AnyInvocable<void()> closure) = 0; virtual void SchedClosureAfter(int64_t micros, absl::AnyInvocable<void()> closure) = 0; virtual absl::Status LoadDynamicLibrary(const char* library_filename, void** handle) = 0; virtual absl::Status GetSymbolFromLibrary(void* handle, const char* symbol_name, void** symbol) = 0; virtual std::string FormatLibraryFileName(const std::string& name, const std::string& version) = 0; virtual void GetLocalTempDirectories(std::vector<string>* list) = 0; private: std::unique_ptr<FileSystemRegistry> file_system_registry_; Env(const Env&) = delete; void operator=(const Env&) = delete; }; class EnvWrapper : public Env { public: explicit EnvWrapper(Env* t) : target_(t) {} ~EnvWrapper() override; Env* target() const { return target_; } absl::Status GetFileSystemForFile(const std::string& fname, FileSystem** result) override { return target_->GetFileSystemForFile(fname, result); } absl::Status GetRegisteredFileSystemSchemes( std::vector<string>* schemes) override { return target_->GetRegisteredFileSystemSchemes(schemes); } absl::Status RegisterFileSystem( const std::string& scheme, FileSystemRegistry::Factory factory) override { return target_->RegisterFileSystem(scheme, factory); } bool MatchPath(const std::string& path, const std::string& pattern) override { return target_->MatchPath(path, pattern); } uint64 NowMicros() const override { return target_->NowMicros(); } void SleepForMicroseconds(int64_t micros) override { target_->SleepForMicroseconds(micros); } Thread* StartThread(const ThreadOptions& thread_options, const std::string& name, absl::AnyInvocable<void()> fn) override { return target_->StartThread(thread_options, name, std::move(fn)); } int32 GetCurrentThreadId() override { return target_->GetCurrentThreadId(); } bool GetCurrentThreadName(std::string* name) override { return target_->GetCurrentThreadName(name); } void SchedClosure(absl::AnyInvocable<void()> closure) override { target_->SchedClosure(std::move(closure)); } void SchedClosureAfter(int64_t micros, absl::AnyInvocable<void()> closure) override { target_->SchedClosureAfter(micros, std::move(closure)); } absl::Status LoadDynamicLibrary(const char* library_filename, void** handle) override { return target_->LoadDynamicLibrary(library_filename, handle); } absl::Status GetSymbolFromLibrary(void* handle, const char* symbol_name, void** symbol) override { return target_->GetSymbolFromLibrary(handle, symbol_name, symbol); } std::string FormatLibraryFileName(const std::string& name, const std::string& version) override { return target_->FormatLibraryFileName(name, version); } std::string GetRunfilesDir() override { return target_->GetRunfilesDir(); } private: void GetLocalTempDirectories(std::vector<string>* list) override { target_->GetLocalTempDirectories(list); } Env* target_; }; class Thread { public: Thread() {} virtual ~Thread(); private: Thread(const Thread&) = delete; void operator=(const Thread&) = delete; }; int setenv(const char* name, const char* value, int overwrite); int unsetenv(const char* name); struct ThreadOptions { size_t stack_size = 0; size_t guard_size = 0; int numa_node = port::kNUMANoAffinity; }; absl::Status FileSystemCopyFile(FileSystem* src_fs, const std::string& src, FileSystem* target_fs, const std::string& target); absl::Status ReadFileToString(Env* env, const std::string& fname, std::string* data); absl::Status WriteStringToFile(Env* env, const std::string& fname, const StringPiece& data); absl::Status WriteBinaryProto(Env* env, const std::string& fname, const protobuf::MessageLite& proto); absl::Status ReadBinaryProto(Env* env, const std::string& fname, protobuf::MessageLite* proto); inline absl::Status WriteTextProto(Env* , const std::string& , const protobuf::MessageLite& ) { return errors::Unimplemented("Can't write text protos with protolite."); } absl::Status WriteTextProto(Env* env, const std::string& fname, const protobuf::Message& proto); inline absl::Status ReadTextProto(Env* , const std::string& , protobuf::MessageLite* ) { return errors::Unimplemented("Can't parse text protos with protolite."); } absl::Status ReadTextProto(Env* env, const std::string& fname, protobuf::Message* proto); absl::Status ReadTextOrBinaryProto(Env* env, const std::string& fname, protobuf::Message* proto); absl::Status ReadTextOrBinaryProto(Env* env, const std::string& fname, protobuf::MessageLite* proto); namespace register_file_system { template <typename Factory> struct Register { Register(Env* env, const std::string& scheme, bool try_modular_filesystems) { if (try_modular_filesystems) { const char* env_value = getenv("TF_USE_MODULAR_FILESYSTEM"); string load_plugin = env_value ? absl::AsciiStrToLower(env_value) : ""; if (load_plugin == "true" || load_plugin == "1") { LOG(WARNING) << "Using modular file system for '" << scheme << "'." << " Please switch to tensorflow-io" << " (https: << " support of '" << scheme << "'."; return; } } env->RegisterFileSystem(scheme, []() -> FileSystem* { return new Factory; }) .IgnoreError(); } }; } } #define REGISTER_FILE_SYSTEM_ENV(env, scheme, factory, modular) \ REGISTER_FILE_SYSTEM_UNIQ_HELPER(__COUNTER__, env, scheme, factory, modular) #define REGISTER_FILE_SYSTEM_UNIQ_HELPER(ctr, env, scheme, factory, modular) \ REGISTER_FILE_SYSTEM_UNIQ(ctr, env, scheme, factory, modular) #define REGISTER_FILE_SYSTEM_UNIQ(ctr, env, scheme, factory, modular) \ static ::tsl::register_file_system::Register<factory> register_ff##ctr \ TF_ATTRIBUTE_UNUSED = \ ::tsl::register_file_system::Register<factory>(env, scheme, modular) #define REGISTER_FILE_SYSTEM(scheme, factory) \ REGISTER_FILE_SYSTEM_ENV(::tsl::Env::Default(), scheme, factory, false); #define REGISTER_LEGACY_FILE_SYSTEM(scheme, factory) \ REGISTER_FILE_SYSTEM_ENV(::tsl::Env::Default(), scheme, factory, true); #endif #include <dirent.h> #include <dlfcn.h> #include <errno.h> #include <fcntl.h> #include <fnmatch.h> #include <stdio.h> #include <stdlib.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #ifdef __FreeBSD__ #include <pthread_np.h> #endif #include <map> #include <thread> #include <vector> #include "tsl/platform/default/posix_file_system.h" #include "tsl/platform/env.h" #include "tsl/platform/load_library.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/ram_file_system.h" #include "tsl/platform/strcat.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace { mutex name_mutex(tsl::LINKER_INITIALIZED); std::map<std::thread::id, string>& GetThreadNameRegistry() TF_EXCLUSIVE_LOCKS_REQUIRED(name_mutex) { static auto* thread_name_registry = new std::map<std::thread::id, string>(); return *thread_name_registry; } class PThread : public Thread { public: PThread(const ThreadOptions& thread_options, const std::string& name, absl::AnyInvocable<void()> fn) { ThreadParams* params = new ThreadParams; params->name = name; params->fn = std::move(fn); pthread_attr_t attributes; pthread_attr_init(&attributes); if (thread_options.stack_size != 0) { pthread_attr_setstacksize(&attributes, thread_options.stack_size); } int ret = pthread_create(&thread_, &attributes, &ThreadFn, para
#include "tensorflow/core/platform/env.h" #include <sys/stat.h> #include <memory> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/cord.h" #include "tensorflow/core/platform/null_file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/test.h" #include "tsl/lib/core/status_test_util.h" namespace tsl { namespace { string CreateTestFile(Env* env, const string& filename, int length) { string input(length, 0); for (int i = 0; i < length; i++) input[i] = i; TF_EXPECT_OK(WriteStringToFile(env, filename, input)); return input; } tensorflow::GraphDef CreateTestProto() { tensorflow::GraphDef g; tensorflow::NodeDef* node = g.add_node(); node->set_name("name1"); node->set_op("op1"); node = g.add_node(); node->set_name("name2"); node->set_op("op2"); return g; } static void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } } string BaseDir() { return io::JoinPath(testing::TmpDir(), "base_dir"); } class DefaultEnvTest : public ::testing::Test { protected: void SetUp() override { TF_CHECK_OK(env_->CreateDir(BaseDir())); } void TearDown() override { int64_t undeleted_files, undeleted_dirs; TF_CHECK_OK( env_->DeleteRecursively(BaseDir(), &undeleted_files, &undeleted_dirs)); } Env* env_ = Env::Default(); }; TEST_F(DefaultEnvTest, IncompleteReadOutOfRange) { const string filename = io::JoinPath(BaseDir(), "out_of_range"); const string input = CreateTestFile(env_, filename, 2); std::unique_ptr<RandomAccessFile> f; TF_EXPECT_OK(env_->NewRandomAccessFile(filename, &f)); StringPiece result; char scratch[3]; EXPECT_EQ(error::OUT_OF_RANGE, f->Read(0, 3, &result, scratch).code()); EXPECT_EQ(input, result); TF_EXPECT_OK(f->Read(0, 2, &result, scratch)); EXPECT_EQ(input, result); } TEST_F(DefaultEnvTest, ReadFileToString) { for (const int length : {0, 1, 1212, 2553, 4928, 8196, 9000, (1 << 20) - 1, 1 << 20, (1 << 20) + 1, (256 << 20) + 100}) { const string filename = io::JoinPath(BaseDir(), "bar", "..", strings::StrCat("file", length)); const string input = CreateTestFile(env_, filename, length); string output; TF_EXPECT_OK(ReadFileToString(env_, filename, &output)); EXPECT_EQ(length, output.size()); EXPECT_EQ(input, output); FileStatistics stat; TF_EXPECT_OK(env_->Stat(filename, &stat)); EXPECT_EQ(length, stat.length); EXPECT_FALSE(stat.is_directory); } } TEST_F(DefaultEnvTest, ReadWriteBinaryProto) { const tensorflow::GraphDef proto = CreateTestProto(); const string filename = strings::StrCat(BaseDir(), "binary_proto"); TF_EXPECT_OK(WriteBinaryProto(env_, filename, proto)); tensorflow::GraphDef result; TF_EXPECT_OK(ReadBinaryProto(env_, filename, &result)); EXPECT_EQ(result.DebugString(), proto.DebugString()); tensorflow::GraphDef result2; TF_EXPECT_OK(ReadTextOrBinaryProto(env_, filename, &result2)); EXPECT_EQ(result2.DebugString(), proto.DebugString()); } TEST_F(DefaultEnvTest, ReadWriteTextProto) { const tensorflow::GraphDef proto = CreateTestProto(); const string filename = strings::StrCat(BaseDir(), "text_proto"); string as_text; EXPECT_TRUE(protobuf::TextFormat::PrintToString(proto, &as_text)); TF_EXPECT_OK(WriteStringToFile(env_, filename, as_text)); tensorflow::GraphDef result; TF_EXPECT_OK(ReadTextProto(env_, filename, &result)); EXPECT_EQ(result.DebugString(), proto.DebugString()); tensorflow::GraphDef result2; TF_EXPECT_OK(ReadTextOrBinaryProto(env_, filename, &result2)); EXPECT_EQ(result2.DebugString(), proto.DebugString()); } TEST_F(DefaultEnvTest, FileToReadonlyMemoryRegion) { for (const int length : {1, 1212, 2553, 4928, 8196, 9000, (1 << 20) - 1, 1 << 20, (1 << 20) + 1}) { const string filename = io::JoinPath(BaseDir(), strings::StrCat("file", length)); const string input = CreateTestFile(env_, filename, length); std::unique_ptr<ReadOnlyMemoryRegion> region; TF_EXPECT_OK(env_->NewReadOnlyMemoryRegionFromFile(filename, &region)); ASSERT_NE(region, nullptr); EXPECT_EQ(length, region->length()); EXPECT_EQ(input, string(reinterpret_cast<const char*>(region->data()), region->length())); FileStatistics stat; TF_EXPECT_OK(env_->Stat(filename, &stat)); EXPECT_EQ(length, stat.length); EXPECT_FALSE(stat.is_directory); } } TEST_F(DefaultEnvTest, DeleteRecursively) { const string parent_dir = io::JoinPath(BaseDir(), "root_dir"); const string child_dir1 = io::JoinPath(parent_dir, "child_dir1"); const string child_dir2 = io::JoinPath(parent_dir, "child_dir2"); TF_EXPECT_OK(env_->CreateDir(parent_dir)); const string root_file1 = io::JoinPath(parent_dir, "root_file1"); const string root_file2 = io::JoinPath(parent_dir, "root_file2"); const string root_file3 = io::JoinPath(parent_dir, ".root_file3"); CreateTestFile(env_, root_file1, 100); CreateTestFile(env_, root_file2, 100); CreateTestFile(env_, root_file3, 100); TF_EXPECT_OK(env_->CreateDir(child_dir1)); const string child1_file1 = io::JoinPath(child_dir1, "child1_file1"); CreateTestFile(env_, child1_file1, 100); TF_EXPECT_OK(env_->CreateDir(child_dir2)); int64_t undeleted_files, undeleted_dirs; TF_EXPECT_OK( env_->DeleteRecursively(parent_dir, &undeleted_files, &undeleted_dirs)); EXPECT_EQ(0, undeleted_files); EXPECT_EQ(0, undeleted_dirs); EXPECT_EQ(error::Code::NOT_FOUND, env_->FileExists(root_file1).code()); EXPECT_EQ(error::Code::NOT_FOUND, env_->FileExists(root_file2).code()); EXPECT_EQ(error::Code::NOT_FOUND, env_->FileExists(root_file3).code()); EXPECT_EQ(error::Code::NOT_FOUND, env_->FileExists(child1_file1).code()); } TEST_F(DefaultEnvTest, DeleteRecursivelyFail) { const string parent_dir = io::JoinPath(BaseDir(), "root_dir"); int64_t undeleted_files, undeleted_dirs; absl::Status s = env_->DeleteRecursively(parent_dir, &undeleted_files, &undeleted_dirs); EXPECT_EQ(error::Code::NOT_FOUND, s.code()); EXPECT_EQ(0, undeleted_files); EXPECT_EQ(1, undeleted_dirs); } TEST_F(DefaultEnvTest, RecursivelyCreateDir) { const string create_path = io::JoinPath(BaseDir(), "a", "b", "c", "d"); TF_CHECK_OK(env_->RecursivelyCreateDir(create_path)); TF_CHECK_OK(env_->RecursivelyCreateDir(create_path)); TF_EXPECT_OK(env_->FileExists(create_path)); } TEST_F(DefaultEnvTest, RecursivelyCreateDirEmpty) { TF_CHECK_OK(env_->RecursivelyCreateDir("")); } TEST_F(DefaultEnvTest, RecursivelyCreateDirSubdirsExist) { const string subdir_path = io::JoinPath(BaseDir(), "a", "b"); TF_CHECK_OK(env_->CreateDir(io::JoinPath(BaseDir(), "a"))); TF_CHECK_OK(env_->CreateDir(subdir_path)); TF_EXPECT_OK(env_->FileExists(subdir_path)); const string create_path = io::JoinPath(BaseDir(), "a", "b", "c", "d"); TF_CHECK_OK(env_->RecursivelyCreateDir(create_path)); TF_CHECK_OK(env_->RecursivelyCreateDir(create_path)); TF_EXPECT_OK(env_->FileExists(create_path)); TF_EXPECT_OK(env_->FileExists(io::JoinPath(BaseDir(), "a", "b", "c"))); } TEST_F(DefaultEnvTest, LocalFileSystem) { int expected_num_files = 0; std::vector<string> matching_paths; for (const int length : {0, 1, 1212, 2553, 4928, 8196, 9000, (1 << 20) - 1, 1 << 20, (1 << 20) + 1}) { string filename = io::JoinPath(BaseDir(), strings::StrCat("len", length)); filename = strings::StrCat("file: const string input = CreateTestFile(env_, filename, length); ++expected_num_files; TF_EXPECT_OK(env_->GetMatchingPaths( strings::StrCat("file: &matching_paths)); EXPECT_EQ(expected_num_files, matching_paths.size()); TF_EXPECT_OK(env_->GetMatchingPaths( io::JoinPath(BaseDir(), "l*"), &matching_paths)); EXPECT_EQ(expected_num_files, matching_paths.size()); string output; TF_EXPECT_OK(ReadFileToString(env_, filename, &output)); EXPECT_EQ(length, output.size()); EXPECT_EQ(input, output); FileStatistics stat; TF_EXPECT_OK(env_->Stat(filename, &stat)); EXPECT_EQ(length, stat.length); EXPECT_FALSE(stat.is_directory); } } TEST_F(DefaultEnvTest, SleepForMicroseconds) { const int64_t start = env_->NowMicros(); const int64_t sleep_time = 1e6 + 5e5; env_->SleepForMicroseconds(sleep_time); const int64_t delta = env_->NowMicros() - start; EXPECT_GE(delta, sleep_time - 200); } class TmpDirFileSystem : public NullFileSystem { public: TF_USE_FILESYSTEM_METHODS_WITH_NO_TRANSACTION_SUPPORT; absl::Status FileExists(const string& dir, TransactionToken* token) override { StringPiece scheme, host, path; io::ParseURI(dir, &scheme, &host, &path); if (path.empty()) return errors::NotFound(dir, " not found"); if (path == "/flushed") { if (flushed_) { return absl::OkStatus(); } else { return errors::NotFound("FlushCaches() not called yet"); } } return Env::Default()->FileExists(io::JoinPath(BaseDir(), path)); } absl::Status CreateDir(const string& dir, TransactionToken* token) override { StringPiece scheme, host, path; io::ParseURI(dir, &scheme, &host, &path); if (scheme != "tmpdirfs") { return errors::FailedPrecondition("scheme must be tmpdirfs"); } if (host != "testhost") { return errors::FailedPrecondition("host must be testhost"); } absl::Status status = Env::Default()->CreateDir(io::JoinPath(BaseDir(), path)); if (status.ok()) { created_directories_.push_back(std::string(path)); } return status; } absl::Status IsDirectory(const string& dir, TransactionToken* token) override { StringPiece scheme, host, path; io::ParseURI(dir, &scheme, &host, &path); for (const auto& existing_dir : created_directories_) if (existing_dir == path) return absl::OkStatus(); return errors::NotFound(dir, " not found"); } void FlushCaches(TransactionToken* token) override { flushed_ = true; } private: bool flushed_ = false; std::vector<std::string> created_directories_ = {"/"}; }; REGISTER_FILE_SYSTEM("tmpdirfs", TmpDirFileSystem); TEST_F(DefaultEnvTest, FlushFileSystemCaches) { Env* env = Env::Default(); const string flushed = strings::StrCat("tmpdirfs: EXPECT_EQ(error::Code::NOT_FOUND, env->FileExists(flushed).code()); TF_EXPECT_OK(env->FlushFileSystemCaches()); TF_EXPECT_OK(env->FileExists(flushed)); } TEST_F(DefaultEnvTest, RecursivelyCreateDirWithUri) { Env* env = Env::Default(); const string create_path = strings::StrCat( "tmpdirfs: EXPECT_EQ(error::Code::NOT_FOUND, env->FileExists(create_path).code()); TF_CHECK_OK(env->RecursivelyCreateDir(create_path)); TF_CHECK_OK(env->RecursivelyCreateDir(create_path)); TF_EXPECT_OK(env->FileExists(create_path)); } TEST_F(DefaultEnvTest, GetExecutablePath) { Env* env = Env::Default(); TF_EXPECT_OK(env->FileExists(env->GetExecutablePath())); } TEST_F(DefaultEnvTest, LocalTempFilename) { Env* env = Env::Default(); string filename; EXPECT_TRUE(env->LocalTempFilename(&filename)); EXPECT_FALSE(env->FileExists(filename).ok()); std::unique_ptr<WritableFile> file_to_write; TF_CHECK_OK(env->NewWritableFile(filename, &file_to_write)); #if defined(PLATFORM_GOOGLE) TF_CHECK_OK(file_to_write->Append("Nu")); TF_CHECK_OK(file_to_write->Append(absl::Cord("ll"))); #else TF_CHECK_OK(file_to_write->Append("Null")); #endif TF_CHECK_OK(file_to_write->Close()); TF_CHECK_OK(env->FileExists(filename)); std::unique_ptr<WritableFile> file_to_append; TF_CHECK_OK(env->NewAppendableFile(filename, &file_to_append)); int64_t pos; TF_CHECK_OK(file_to_append->Tell(&pos)); ASSERT_EQ(4, pos); std::unique_ptr<RandomAccessFile> file_to_read; TF_CHECK_OK(env->NewRandomAccessFile(filename, &file_to_read)); StringPiece content; char scratch[1024]; CHECK_EQ( error::OUT_OF_RANGE, file_to_read->Read(0, 1024, &content, scratch).code()); EXPECT_EQ("Null", content); TF_CHECK_OK(env->DeleteFile(filename)); EXPECT_FALSE(env->FileExists(filename).ok()); } TEST_F(DefaultEnvTest, CreateUniqueFileName) { Env* env = Env::Default(); string prefix = "tempfile-prefix-"; string suffix = ".tmp"; string filename = prefix; EXPECT_TRUE(env->CreateUniqueFileName(&filename, suffix)); EXPECT_TRUE(absl::StartsWith(filename, prefix)); EXPECT_TRUE(str_util::EndsWith(filename, suffix)); } TEST_F(DefaultEnvTest, GetProcessId) { Env* env = Env::Default(); EXPECT_NE(env->GetProcessId(), 0); } TEST_F(DefaultEnvTest, GetThreadInformation) { Env* env = Env::Default(); #if !defined(__APPLE__) EXPECT_NE(env->GetCurrentThreadId(), 0); #endif string thread_name; bool res = env->GetCurrentThreadName(&thread_name); #if defined(PLATFORM_WINDOWS) || defined(__ANDROID__) EXPECT_FALSE(res); #elif !defined(__APPLE__) EXPECT_TRUE(res); EXPECT_GT(thread_name.size(), 0); #endif } TEST_F(DefaultEnvTest, GetChildThreadInformation) { Env* env = Env::Default(); Thread* child_thread = env->StartThread({}, "tf_child_thread", [env]() { #if !defined(__APPLE__) EXPECT_NE(env->GetCurrentThreadId(), 0); #endif string thread_name; bool res = env->GetCurrentThreadName(&thread_name); EXPECT_TRUE(res); ExpectHasSubstr(thread_name, "tf_child_thread"); }); delete child_thread; } }
290
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_FUNCTION_OPTIMIZATION_REGISTRY_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_FUNCTION_OPTIMIZATION_REGISTRY_H_ #include <memory> #include <string> #include <vector> #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { class FunctionOptimizationPass { public: struct FunctionOptions { std::string xla_compile_device_type = ""; bool allow_soft_placement = false; }; virtual ~FunctionOptimizationPass() {} virtual Status Run(const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated) = 0; }; class FunctionOptimizationPassRegistry { public: void Init(std::unique_ptr<FunctionOptimizationPass> pass); Status Run(const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptimizationPass::FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated); static FunctionOptimizationPassRegistry& Global(); private: std::unique_ptr<FunctionOptimizationPass> pass_; }; namespace function_optimization_registration { class FunctionOptimizationPassRegistration { public: explicit FunctionOptimizationPassRegistration( std::unique_ptr<FunctionOptimizationPass> pass) { FunctionOptimizationPassRegistry::Global().Init(std::move(pass)); } }; } } #endif #include "tensorflow/core/common_runtime/function_optimization_registry.h" #include <string> #include "tensorflow/core/framework/metrics.h" namespace tensorflow { void FunctionOptimizationPassRegistry::Init( std::unique_ptr<FunctionOptimizationPass> pass) { DCHECK(!pass_) << "Only one pass should be set."; pass_ = std::move(pass); } Status FunctionOptimizationPassRegistry::Run( const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptimizationPass::FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated) { if (!pass_) return absl::OkStatus(); tensorflow::metrics::ScopedCounter<2> timings( tensorflow::metrics::GetGraphOptimizationCounter(), {"GraphOptimizationPass", "FunctionOptimizationPassRegistry"}); return pass_->Run(function_name, device_set, config_proto, function_options, graph, flib_def, control_ret_node_names, control_rets_updated); } FunctionOptimizationPassRegistry& FunctionOptimizationPassRegistry::Global() { static FunctionOptimizationPassRegistry* kGlobalRegistry = new FunctionOptimizationPassRegistry; return *kGlobalRegistry; } }
#include "tensorflow/core/common_runtime/function_optimization_registry.h" #include <memory> #include <string> #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { class PassingFunctionPass : public FunctionOptimizationPass { public: static bool ran_; Status Run(const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated) override { ran_ = true; return absl::OkStatus(); } }; bool PassingFunctionPass::ran_ = false; TEST(FunctionOptimizationPassRegistry, PassNoError) { EXPECT_FALSE(PassingFunctionPass::ran_); FunctionOptimizationPassRegistry::Global().Init( std::make_unique<PassingFunctionPass>()); DeviceSet device_set; ConfigProto config_proto; FunctionOptimizationPass::FunctionOptions function_options; Status status = FunctionOptimizationPassRegistry::Global().Run( "test_func", device_set, config_proto, function_options, nullptr, nullptr, nullptr, nullptr); EXPECT_EQ(status, absl::OkStatus()); EXPECT_TRUE(PassingFunctionPass::ran_); } }
291
#ifndef TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_ASSERT_NEXT_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_EXPERIMENTAL_ASSERT_NEXT_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { namespace experimental { class AssertNextDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "AssertNext"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kTransformations = "transformations"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit AssertNextDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; private: class Dataset; DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; }; } } } #endif #include "tensorflow/core/kernels/data/experimental/assert_next_dataset_op.h" #include <map> #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const AssertNextDatasetOp::kInputDataset; constexpr const char* const AssertNextDatasetOp::kDatasetType; constexpr const char* const AssertNextDatasetOp::kTransformations; constexpr const char* const AssertNextDatasetOp::kOutputTypes; constexpr const char* const AssertNextDatasetOp::kOutputShapes; class AssertNextDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, const std::vector<tstring>& transformations, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) : DatasetBase(DatasetContext(ctx)), input_(input), transformations_(transformations), output_types_(output_types), output_shapes_(output_shapes) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { return input_->Cardinality(options); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* transformations_node = nullptr; TF_RETURN_IF_ERROR(b->AddVector(transformations_, &transformations_node)); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, transformations_node}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} Status Initialize(IteratorContext* ctx) override { std::vector<string> tokens = absl::StrSplit(prefix(), ':', absl::SkipEmpty()); if (dataset()->transformations_.size() > tokens.size() - 2) { return errors::InvalidArgument( "Asserted next ", dataset()->transformations_.size(), " transformations but encountered only ", tokens.size() - 2, "."); } int n = tokens.size(); for (size_t i = 0; i < dataset()->transformations_.size(); ++i) { if (!MatchesAnyVersion(dataset()->transformations_[i], tokens[n - 2 - i])) { return errors::InvalidArgument("Asserted transformation matching ", dataset()->transformations_[i], " at offset ", i, " but encountered ", tokens[n - 2 - i], " transformation instead."); } } return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { return input_impl_->GetNext(ctx, out_tensors, end_of_sequence); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); return absl::OkStatus(); } private: std::unique_ptr<IteratorBase> input_impl_; }; const DatasetBase* input_; const std::vector<tstring> transformations_; const DataTypeVector output_types_; const std::vector<PartialTensorShape> output_shapes_; }; AssertNextDatasetOp::AssertNextDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void AssertNextDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { std::vector<tstring> transformations; OP_REQUIRES_OK(ctx, ParseVectorArgument<tstring>(ctx, kTransformations, &transformations)); *output = new Dataset(ctx, input, transformations, output_types_, output_shapes_); } namespace { REGISTER_KERNEL_BUILDER(Name("AssertNextDataset").Device(DEVICE_CPU), AssertNextDatasetOp); REGISTER_KERNEL_BUILDER( Name("ExperimentalAssertNextDataset").Device(DEVICE_CPU), AssertNextDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/assert_next_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/kernels/data/range_dataset_op.h" #include "tensorflow/core/kernels/data/take_dataset_op.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "assert_next_dataset"; class AssertNextDatasetParams : public DatasetParams { public: template <typename T> AssertNextDatasetParams(T input_dataset_params, const std::vector<tstring>& transformations, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), transformations_(transformations) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { int num_transformations = transformations_.size(); return {CreateTensor<tstring>(TensorShape({num_transformations}), transformations_)}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->reserve(input_dataset_params_.size() + 1); input_names->emplace_back(AssertNextDatasetOp::kInputDataset); input_names->emplace_back(AssertNextDatasetOp::kTransformations); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{AssertNextDatasetOp::kOutputShapes, output_shapes_}, {AssertNextDatasetOp::kOutputTypes, output_dtypes_}}; return absl::OkStatus(); } string dataset_type() const override { return AssertNextDatasetOp::kDatasetType; } private: std::vector<tstring> transformations_; }; class AssertNextDatasetOpTest : public DatasetOpsTestBase {}; AssertNextDatasetParams AssertNextDatasetParams1() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertNextDatasetParams( std::move(take_dataset_params), {TakeDatasetOp::kDatasetType}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertNextDatasetParams AssertNextDatasetParams2() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertNextDatasetParams( std::move(take_dataset_params), {TakeDatasetOp::kDatasetType, RangeDatasetOp::kDatasetType}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertNextDatasetParams InvalidAssertNextDatasetParams() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertNextDatasetParams(std::move(take_dataset_params), {"Whoops"}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertNextDatasetParams ShortAssertNextDatasetParams() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertNextDatasetParams( std::move(take_dataset_params), {TakeDatasetOp::kDatasetType, RangeDatasetOp::kDatasetType, "Whoops"}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<AssertNextDatasetParams>> GetNextTestCases() { return {{AssertNextDatasetParams1(), CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {AssertNextDatasetParams2(), CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}; } ITERATOR_GET_NEXT_TEST_P(AssertNextDatasetOpTest, AssertNextDatasetParams, GetNextTestCases()) TEST_F(AssertNextDatasetOpTest, DatasetNodeName) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(AssertNextDatasetOpTest, DatasetTypeString) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(AssertNextDatasetOp::kDatasetType))); } TEST_F(AssertNextDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(AssertNextDatasetOpTest, DatasetOutputShapes) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({})})); } TEST_F(AssertNextDatasetOpTest, Cardinality) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetCardinality(3)); } TEST_F(AssertNextDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(AssertNextDatasetOpTest, IteratorOutputShapes) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({})})); } TEST_F(AssertNextDatasetOpTest, IteratorPrefix) { auto dataset_params = AssertNextDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( AssertNextDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<AssertNextDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{AssertNextDatasetParams1(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {AssertNextDatasetParams2(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(AssertNextDatasetOpTest, AssertNextDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(AssertNextDatasetOpTest, InvalidArguments) { auto dataset_params = InvalidAssertNextDatasetParams(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } TEST_F(AssertNextDatasetOpTest, ShortAssertNext) { auto dataset_params = ShortAssertNextDatasetParams(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } } }
292
#ifndef AROLLA_EXPR_OPTIMIZATION_PEEPHOLE_OPTIMIZATIONS_BOOL_H_ #define AROLLA_EXPR_OPTIMIZATION_PEEPHOLE_OPTIMIZATIONS_BOOL_H_ #include "absl/status/statusor.h" #include "arolla/expr/optimization/peephole_optimizer.h" namespace arolla::expr { absl::StatusOr<PeepholeOptimizationPack> BoolOptimizations(); } #endif #include "arolla/expr/optimization/peephole_optimizations/bool.h" #include <array> #include <functional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { auto Matches(const std::vector<ExprNodePtr>& patterns) { absl::flat_hash_set<Fingerprint> pattern_prints; pattern_prints.reserve(patterns.size()); for (const auto& p : patterns) { pattern_prints.insert(p->fingerprint()); } return [pattern_prints(std::move(pattern_prints))](const ExprNodePtr& node) { return pattern_prints.contains(node->fingerprint()); }; } std::vector<ExprNodePtr> BoolLiterals(bool value) { return {Literal(value), Literal(MakeOptionalValue(value))}; } constexpr std::array kComparisonOppositeOps = { std::pair{"bool.equal", "bool.not_equal"}, std::pair{"bool.not_equal", "bool.equal"}, std::pair{"bool.less", "bool.greater_equal"}, std::pair{"bool.less_equal", "bool.greater"}}; absl::Status LogicalNotComparisonOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("bool.logical_not", {CallOpReference("bool.logical_not", {a})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, a)); } for (auto [cmp1, cmp2] : kComparisonOppositeOps) { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("bool.logical_not", {CallOpReference(cmp1, {a, b})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference(cmp2, {a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } return absl::OkStatus(); } constexpr std::array kComparisonOps = {"equal", "not_equal", "less", "less_equal"}; constexpr std::array kLogicalOps = {"and", "or"}; absl::Status CoreBoolComparisonOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); ExprNodePtr d = Placeholder("d"); ExprNodePtr true_ = Placeholder("true"); std::vector<ExprNodePtr> true_literals = BoolLiterals(true); auto is_true = Matches(true_literals); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.equal", {true_, a})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.equal", {a, true_})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"true", is_true}, {"a", std::not_fn(is_true)}})); } for (absl::string_view comparison_op : kComparisonOps) { ASSIGN_OR_RETURN( ExprNodePtr bool_cmp, CallOpReference(absl::StrCat("bool.", comparison_op), {a, b})); ASSIGN_OR_RETURN( ExprNodePtr core_cmp, CallOpReference(absl::StrCat("core.", comparison_op), {a, b})); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.equal", {bool_cmp, true_})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, core_cmp, {{"true", is_true}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( "core.equal", {CallOpReference("core.to_optional._scalar", {bool_cmp}), true_})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, core_cmp, {{"true", is_true}})); } } absl::flat_hash_set<std::string> bool_comparison_ops; for (absl::string_view comparison_op : kComparisonOps) { bool_comparison_ops.insert(absl::StrCat("bool.", comparison_op)); } auto eq_true_will_be_optimized_further = [bool_comparison_ops](const ExprNodePtr& node) { if (node->is_literal()) return true; if (!node->is_op()) return false; return IsRegisteredOperator(node->op()) && bool_comparison_ops.contains(node->op()->display_name()); }; for (absl::string_view logical_op : kLogicalOps) { ASSIGN_OR_RETURN( ExprNodePtr bool_logic, CallOpReference(absl::StrCat("bool.logical_", logical_op), {a, b})); ASSIGN_OR_RETURN( ExprNodePtr core_logic, CallOpReference(absl::StrCat("core.presence_", logical_op), {CallOpReference("core.equal", {a, true_}), CallOpReference("core.equal", {b, true_})})); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.equal", {bool_logic, true_})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, core_logic, {{"true", is_true}, {"a", eq_true_will_be_optimized_further}})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, core_logic, {{"true", is_true}, {"b", eq_true_will_be_optimized_further}})); } } return absl::OkStatus(); } absl::Status LogicalIfOptimizations(PeepholeOptimizationPack& optimizations) { ExprNodePtr condition = Placeholder("condition"); ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); auto is_scalar_bool = [](const ExprNodePtr& expr) { return expr->qtype() == GetQType<bool>(); }; ExprNodePtr true_ = Placeholder("true"); std::vector<ExprNodePtr> true_literals = BoolLiterals(true); auto is_true = Matches(true_literals); ExprNodePtr false_ = Placeholder("false"); std::vector<ExprNodePtr> false_literals = BoolLiterals(false); auto is_false = Matches(false_literals); { ASSIGN_OR_RETURN( ExprNodePtr from1, CallOpReference( "bool.logical_if", {CallOpReference("core.to_optional._scalar", {condition}), a, b, c})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference( "core.where", {CallOpReference("core.equal", {condition, Literal(true)}), a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from1, to, {{"condition", is_scalar_bool}})); ASSIGN_OR_RETURN(ExprNodePtr from2, CallOpReference("bool.logical_if", {CallOpReference("core.presence_or", {condition, false_}), a, b, c})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from2, to, {{"false", is_false}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("bool.logical_if", {condition, a, b, b})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference( "core.where", {CallOpReference("core.equal", {condition, Literal(true)}), a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("bool.logical_if", {CallOpReference("core.presence_or", {condition, true_}), a, b, c})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference( "core.where", {CallOpReference("core.equal", {condition, Literal(false)}), b, a})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"true", is_true}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("bool.logical_if", {condition, true_, false_, a})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_or", {condition, a})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"true", is_true}, {"false", is_false}})); } return absl::OkStatus(); } } absl::StatusOr<PeepholeOptimizationPack> BoolOptimizations() { PeepholeOptimizationPack optimizations; RETURN_IF_ERROR(LogicalNotComparisonOptimizations(optimizations)); RETURN_IF_ERROR(CoreBoolComparisonOptimizations(optimizations)); RETURN_IF_ERROR(LogicalIfOptimizations(optimizations)); return optimizations; } }
#include "arolla/expr/optimization/peephole_optimizations/bool.h" #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/statusor.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/expr/testing/testing.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { using ::arolla::testing::EqualsExpr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::WithQTypeAnnotation; class BoolOptimizationsTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK(InitArolla()); ASSERT_OK_AND_ASSIGN(optimizer_, CreatePeepholeOptimizer({BoolOptimizations})); } absl::StatusOr<ExprNodePtr> ApplyOptimizer( absl::StatusOr<ExprNodePtr> status_or_expr) const { ASSIGN_OR_RETURN(auto expr, ToLowest(status_or_expr)); return ToLowest(optimizer_->ApplyToNode(expr)); } absl::StatusOr<ExprNodePtr> ToLowest( const absl::StatusOr<ExprNodePtr>& status_or_expr) const { if (!status_or_expr.ok()) { return std::move(status_or_expr).status(); } return ::arolla::expr::ToLowest(*status_or_expr); } std::unique_ptr<PeepholeOptimizer> optimizer_; }; TEST_F(BoolOptimizationsTest, LogicalNotRemoval) { ExprNodePtr x = Leaf("x"); ExprNodePtr y = Leaf("y"); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("bool.logical_not", {CallOp("bool.logical_not", {x})}))); EXPECT_THAT(actual_expr, EqualsExpr(x)); } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_eq, CallOp("bool.equal", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_not_eq, CallOp("bool.not_equal", {x, y})); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("bool.logical_not", {bool_eq}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(bool_not_eq)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("bool.logical_not", {bool_not_eq}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(bool_eq)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("bool.logical_not", {CallOp("bool.less", {x, y})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("bool.greater_equal", {x, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("bool.logical_not", {CallOp("bool.less_equal", {x, y})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("bool.greater", {x, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(BoolOptimizationsTest, BoolToCore) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), GetQType<int>())); ASSERT_OK_AND_ASSIGN(auto y, WithQTypeAnnotation(Leaf("y"), GetQType<int>())); ExprNodePtr w = Leaf("w"); ExprNodePtr q = Leaf("q"); ExprNodePtr true_opt = Literal(MakeOptionalValue(true)); { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp, CallOp("bool.equal", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp, CallOp("core.equal", {x, y})); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.equal", {bool_cmp, true_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.equal", {true_opt, bool_cmp}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(auto core_cmp, CallOp("core.equal", {Literal(true), true_opt})); ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(core_cmp)); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp, CallOp("bool.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp, CallOp("core.less", {x, y})); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.equal", {bool_cmp, true_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.equal", {true_opt, bool_cmp}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp, CallOp("bool.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp, CallOp("core.less", {x, y})); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.equal", {CallOp("core.to_optional", {bool_cmp}), true_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.equal", {true_opt, bool_cmp}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_cmp)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp1, CallOp("bool.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp2, CallOp("bool.less_equal", {w, q})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_and, CallOp("bool.logical_and", {bool_cmp1, bool_cmp2})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp1, CallOp("core.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp2, CallOp("core.less_equal", {w, q})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_and, CallOp("core.presence_and", {core_cmp1, core_cmp2})); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ToLowest(CallOp("core.equal", {bool_and, true_opt}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_and)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ToLowest(CallOp("core.equal", {true_opt, bool_and}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_and)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp1, CallOp("bool.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp2, CallOp("bool.less_equal", {w, q})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_or, CallOp("bool.logical_or", {bool_cmp1, bool_cmp2})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp1, CallOp("core.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp2, CallOp("core.less_equal", {w, q})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_or, CallOp("core.presence_or", {core_cmp1, core_cmp2})); { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {bool_or, true_opt}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {true_opt, bool_or}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_cmp1, CallOp("bool.less", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_or, CallOp("bool.logical_or", {bool_cmp1, q})); ASSERT_OK_AND_ASSIGN(ExprNodePtr core_cmp1, CallOp("core.less", {x, y})); ASSERT_OK_AND_ASSIGN( ExprNodePtr core_or, CallOp("core.presence_or", {core_cmp1, CallOp("core.equal", {q, true_opt})})); { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {bool_or, true_opt}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {true_opt, bool_or}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_or, CallOp("bool.logical_or", {true_opt, q})); ASSERT_OK_AND_ASSIGN( ExprNodePtr core_or, CallOp("core.presence_or", {CallOp("core.equal", {true_opt, true_opt}), CallOp("core.equal", {q, true_opt})})); { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {bool_or, true_opt}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ToLowest(CallOp("core.equal", {true_opt, bool_or}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(core_or)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } { ASSERT_OK_AND_ASSIGN(ExprNodePtr bool_or, CallOp("bool.logical_or", {w, q})); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("core.equal", {bool_or, true_opt})); ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(expr)); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(expr)); EXPECT_THAT(ApplyOptimizer(expr), IsOkAndHolds(EqualsExpr(expr))); } } TEST_F(BoolOptimizationsTest, LogicalIf) { ExprNodePtr a = Leaf("a"); ExprNodePtr b = Leaf("b"); ExprNodePtr c = Leaf("c"); ExprNodePtr d = Leaf("d"); ASSERT_OK_AND_ASSIGN(ExprNodePtr cond_full, WithQTypeAnnotation(Leaf("cond"), GetQType<bool>())); ASSERT_OK_AND_ASSIGN( ExprNodePtr cond_optional, WithQTypeAnnotation(Leaf("cond"), GetOptionalQType<bool>())); ExprNodePtr cond_unknown = Leaf("cond"); { for (const auto& [cond, do_optimize] : {std::pair{cond_full, true}, std::pair{cond_unknown, false}}) { ASSERT_OK_AND_ASSIGN( ExprNodePtr from, CallOp("bool.logical_if", {CallOp("core.to_optional", {cond}), a, b, c})); ASSERT_OK_AND_ASSIGN( ExprNodePtr to, CallOp("core.where", {CallOp("core.equal", {cond, Literal(true)}), a, b})); auto result = do_optimize ? to : from; EXPECT_THAT(ApplyOptimizer(from), IsOkAndHolds(EqualsExpr(ToLowest(result)))); } { ASSERT_OK_AND_ASSIGN( ExprNodePtr from1, CallOp("bool.logical_if", {CallOp("core.presence_or", {cond_unknown, Literal(false)}), a, b, c})); ASSERT_OK_AND_ASSIGN( ExprNodePtr from2, CallOp("bool.logical_if", {CallOp("core.presence_or", {cond_unknown, Literal(MakeOptionalValue(false))}), a, b, c})); ASSERT_OK_AND_ASSIGN( ExprNodePtr to, CallOp("core.where", {CallOp("core.equal", {cond_unknown, Literal(true)}), a, b})); EXPECT_THAT(ApplyOptimizer(from1), IsOkAndHolds(EqualsExpr(ToLowest(to)))); EXPECT_THAT(ApplyOptimizer(from2), IsOkAndHolds(EqualsExpr(ToLowest(to)))); ASSERT_OK_AND_ASSIGN( ExprNodePtr no_optimization, CallOp("bool.logical_if", {CallOp("core.presence_or", {cond_unknown, d}), a, b, c})); EXPECT_THAT(ApplyOptimizer(no_optimization), IsOkAndHolds(EqualsExpr(ToLowest(no_optimization)))); } } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ToLowest(CallOp("bool.logical_if", {CallOp("bool.equal", {a, Literal(1)}), b, c, c}))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN(actual_expr, ToLowest(optimizer_->Apply(actual_expr))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.where", {CallOp("core.equal", {a, Literal(1)}), b, c}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( ExprNodePtr from, CallOp("bool.logical_if", {a, Literal(true), Literal(false), b})); ASSERT_OK_AND_ASSIGN(ExprNodePtr to, CallOp("core.presence_or", {a, b})); EXPECT_THAT(ApplyOptimizer(from), IsOkAndHolds(EqualsExpr(to))); } { ASSERT_OK_AND_ASSIGN( auto actual_expr1, ApplyOptimizer( CallOp("bool.logical_if", {CallOp("core.presence_or", {cond_unknown, Literal(true)}), a, b, c}))); ASSERT_OK_AND_ASSIGN( auto actual_expr2, ApplyOptimizer( CallOp("bool.logical_if", {CallOp("core.presence_or", {cond_unknown, Literal(MakeOptionalValue(true))}), a, b, c}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp( "core.where", {CallOp("core.equal", {cond_unknown, Literal(false)}), b, a}))); EXPECT_THAT(actual_expr1, EqualsExpr(expected_expr)); EXPECT_THAT(actual_expr2, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( ExprNodePtr no_optimization, CallOp("bool.logical_if", {CallOp("core.presence_or", {Literal(false), cond_unknown}), a, b, c})); EXPECT_THAT(ApplyOptimizer(no_optimization), IsOkAndHolds(EqualsExpr(no_optimization))); } } } }
293
#ifndef TENSORFLOW_CORE_TRANSFORMS_UTILS_EVAL_UTILS_H_ #define TENSORFLOW_CORE_TRANSFORMS_UTILS_EVAL_UTILS_H_ #include <memory> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/ir/tf_op_wrapper.h" namespace Eigen { class ThreadPoolDevice; } namespace mlir { namespace tfg { namespace util { class SimpleDevice : public tensorflow::DeviceBase { public: SimpleDevice(); ~SimpleDevice() override; tensorflow::Status MakeTensorFromProto( const tensorflow::TensorProto& tensor_proto, const tensorflow::AllocatorAttributes alloc_attrs, tensorflow::Tensor* tensor) override; tensorflow::Allocator* GetAllocator( tensorflow::AllocatorAttributes attr) override; const std::string& device_type() const override { return device_type_; } private: std::unique_ptr<tensorflow::thread::ThreadPool> eigen_worker_; tensorflow::DeviceBase::CpuWorkerThreads eigen_worker_threads_; std::unique_ptr<Eigen::ThreadPoolDevice> eigen_device_; const std::string device_type_ = tensorflow::DEVICE_CPU; }; LogicalResult EvaluateOperation(tensorflow::DeviceBase* cpu_device, tensorflow::ResourceMgr* resource_mgr, TFOp op, ArrayRef<ElementsAttr> operands, SmallVectorImpl<TypedAttr>& results); } } } #endif #define EIGEN_USE_THREADS #include "tensorflow/core/transforms/utils/eval_utils.h" #include <cassert> #include <utility> #include "llvm/ADT/STLExtras.h" #include "mlir/IR/Builders.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/ir/importexport/convert_tensor.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/public/version.h" namespace mlir { namespace tfg { namespace util { static constexpr int kThreads = 2; SimpleDevice::SimpleDevice() : DeviceBase(tensorflow::Env::Default()) { eigen_worker_ = std::make_unique<tensorflow::thread::ThreadPool>( tensorflow::Env::Default(), "eval_utils", kThreads); eigen_worker_threads_.num_threads = kThreads; eigen_worker_threads_.workers = eigen_worker_.get(); eigen_device_ = std::make_unique<Eigen::ThreadPoolDevice>( eigen_worker_threads_.workers->AsEigenThreadPool(), eigen_worker_threads_.num_threads); set_tensorflow_cpu_worker_threads(&eigen_worker_threads_); set_eigen_cpu_device(eigen_device_.get()); } SimpleDevice::~SimpleDevice() {} tensorflow::Allocator *SimpleDevice::GetAllocator( tensorflow::AllocatorAttributes attr) { return tensorflow::cpu_allocator(); } tensorflow::Status SimpleDevice::MakeTensorFromProto( const tensorflow::TensorProto &tensor_proto, const tensorflow::AllocatorAttributes alloc_attrs, tensorflow::Tensor *tensor) { tensorflow::Tensor parsed(tensor_proto.dtype()); if (!parsed.FromProto(tensorflow::cpu_allocator(), tensor_proto)) { return tensorflow::errors::InvalidArgument( "Cannot parse tensor from tensor_proto."); } *tensor = std::move(parsed); return ::tensorflow::OkStatus(); } LogicalResult EvaluateOperation(tensorflow::DeviceBase *cpu_device, tensorflow::ResourceMgr *resource_mgr, TFOp op, ArrayRef<ElementsAttr> operands, SmallVectorImpl<TypedAttr> &results) { assert(cpu_device && "cpu device can't be null"); assert(resource_mgr && "ResourceMgr can't be null"); if (llvm::any_of(operands, [](Attribute operand) { return !operand; })) { VLOG(3) << "cannot be evaluated with null operands"; return failure(); } tensorflow::NodeDef node_def; if (!ConvertToNodeDef(&*op, &node_def, op.getDialect(), [&](Value value) { return GetValueName(value, op.getDialect()); }).ok()) { VLOG(3) << "failed to convert operation to NodeDef"; return failure(); } absl::InlinedVector<tensorflow::Tensor, 4> input_tensors(operands.size()); absl::InlinedVector<tensorflow::TensorValue, 4> input_tensor_values( operands.size()); for (auto it : llvm::zip(operands, input_tensors, input_tensor_values)) { auto &[operand, input_tensor, input_tensor_value] = it; if (!ConvertToTensor(operand, &input_tensor).ok()) return failure(); input_tensor_value.tensor = &input_tensor; } tensorflow::Status status; std::unique_ptr<tensorflow::OpKernel> op_kernel = tensorflow::CreateOpKernel( tensorflow::DEVICE_CPU, cpu_device, cpu_device->GetAllocator({}), node_def, TF_GRAPH_DEF_VERSION, &status); if (!status.ok()) { VLOG(3) << status.message(); return failure(); } tensorflow::OpKernelContext::Params params; params.device = cpu_device; params.frame_iter = tensorflow::FrameAndIter(0, 0); params.inputs = input_tensor_values; params.op_kernel = op_kernel.get(); params.resource_manager = resource_mgr; absl::InlinedVector<tensorflow::AllocatorAttributes, 4> output_attrs( op_kernel->num_outputs()); for (auto &attr : output_attrs) attr.set_on_host(true); params.output_attr_array = output_attrs.data(); tensorflow::OpKernelContext op_context(&params); op_kernel->Compute(&op_context); if (!op_context.status().ok()) { VLOG(3) << op_context.status().message(); return failure(); } Builder builder(op->getContext()); for (int i = 0; i < op_kernel->num_outputs(); ++i) { if (op_context.mutable_output(i) == nullptr) { results.push_back(nullptr); continue; } absl::StatusOr<ElementsAttr> attr_or = ConvertTensor(*(op_context.mutable_output(i)), builder); if (!attr_or.status().ok()) { VLOG(3) << attr_or.status().message(); return failure(); } results.push_back(attr_or.value()); } return success(); } } } }
#include "tensorflow/core/transforms/utils/eval_utils.h" #include <memory> #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { TEST(EvalUtilsTest, InvalidInputs) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i1, value = dense<1> : tensor<i1>} : () -> (tensor<i1>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Switch:2, %ctl_3 = Switch(%Const_1, %Const_0) name("switch") {T = i1} : (tensor<2x2xi32>, tensor<i1>) -> (tensor<*xi32>, tensor<*xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; auto tfg_dialect = context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_0)); Operation *const_1 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_1)); Operation *switch_op = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; EXPECT_TRUE(failed( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), switch_op, {const_0->getAttrOfType<ElementsAttr>("value"), const_1->getAttrOfType<ElementsAttr>("value")}, result))); } TEST(EvalUtilsTest, EvaluateOperation) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i32, value = dense<1> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Add, %ctl_7 = Add(%Const_0, %Const_1) name("add") {T = i32} : (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; Operation *const_1 = &*iter++; Operation *add = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; ASSERT_TRUE(succeeded(util::EvaluateOperation( cpu_device.get(), resource_mgr.get(), const_0, {const_0->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 1); result.clear(); ASSERT_TRUE(succeeded(util::EvaluateOperation( cpu_device.get(), resource_mgr.get(), const_1, {const_1->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 2); result.clear(); ASSERT_TRUE(succeeded( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), add, {const_0->getAttrOfType<ElementsAttr>("value"), const_1->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 3); } TEST(EvalUtilsTest, OutputInvalidation) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i1, value = dense<1> : tensor<i1>} : () -> (tensor<i1>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Switch:2, %ctl_3 = Switch(%Const_1, %Const_0) name("switch") {T = i1} : (tensor<2x2xi32>, tensor<i1>) -> (tensor<*xi32>, tensor<*xi32>) %Identity_0, %ctl_4 = Identity(%Switch#0) name("id1") {T = i32} : (tensor<*xi32>) -> (tensor<*xi32>) %Identity_1, %ctl_5 = Identity(%Switch#1) name("id2") {T = i32} : (tensor<*xi32>) -> (tensor<*xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; auto tfg_dialect = context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_0)); Operation *const_1 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_1)); Operation *switch_op = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; ASSERT_TRUE(succeeded( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), switch_op, {const_1->getAttrOfType<ElementsAttr>("value"), const_0->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 2); EXPECT_EQ(result[0], nullptr); EXPECT_EQ(mlir::cast<ElementsAttr>(result[1]).getValues<int>()[0], 2); } } }
294
#ifndef TENSORFLOW_CORE_KERNELS_TENSOR_MAP_H_ #define TENSORFLOW_CORE_KERNELS_TENSOR_MAP_H_ #include <utility> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_key.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/lib/core/refcount.h" namespace tensorflow { class TensorMap { public: TensorMap() : tensors_(new Tensors) {} ~TensorMap(); TensorMap(const TensorMap& other) : tensors_(other.tensors_) { tensors_->Ref(); } TensorMap(TensorMap&& rhs) : tensors_(rhs.tensors_) { rhs.tensors_ = nullptr; } TensorMap& operator=(const TensorMap& rhs) { if (this == &rhs) return *this; tensors_->Unref(); tensors_ = rhs.tensors_; tensors_->Ref(); return *this; } TensorMap& operator=(TensorMap&& rhs) { if (this == &rhs) return *this; std::swap(tensors_, rhs.tensors_); return *this; } static const char kTypeName[]; string TypeName() const { return kTypeName; } void Encode(VariantTensorData* data) const; bool Decode(const VariantTensorData& data); string DebugString() const { return "TensorMap"; } absl::flat_hash_map<TensorKey, Tensor>& tensors() { return tensors_->values_; } const absl::flat_hash_map<TensorKey, Tensor>& tensors() const { return tensors_->values_; } TensorMap Copy() const { TensorMap out; out.tensors_->values_ = tensors_->values_; return out; } bool insert(const TensorKey& key, const Tensor& value) { auto r = tensors_->values_.try_emplace(key, value); return r.second; } absl::flat_hash_map<TensorKey, Tensor>::iterator find(TensorKey key) { return tensors_->values_.find(key); } Tensor& lookup(TensorKey key) { return tensors_->values_.find(key)->second; } Tensor& operator[](TensorKey& k) { return tensors_->values_[k]; } bool replace(const TensorKey& k, const Tensor& v) { tensors_->values_[k] = v; return true; } size_t erase(TensorKey key) { return tensors_->values_.erase(key); } size_t size() const { return tensors_->values_.size(); } std::vector<Tensor> keys() const { std::vector<Tensor> keys; keys.reserve(tensors_->values_.size()); absl::flat_hash_map<TensorKey, Tensor>::iterator it = tensors_->values_.begin(); while (it != tensors_->values_.end()) { keys.push_back(it->first); it++; } return keys; } bool RefCountIsOne() const { return tensors_->RefCountIsOne(); } private: class Tensors : public core::RefCounted { public: absl::flat_hash_map<TensorKey, Tensor> values_; }; Tensors* tensors_; }; #if defined(PLATFORM_GOOGLE) static_assert(Variant::CanInlineType<TensorMap>() || sizeof(void*) < 8, "Must be able to inline TensorMap into a Variant"); #endif } #endif #include "tensorflow/core/kernels/tensor_map.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/lib/core/coding.h" namespace tensorflow { TensorMap::~TensorMap() { if (tensors_) tensors_->Unref(); } void TensorMap::Encode(VariantTensorData* data) const { data->set_type_name(TypeName()); absl::flat_hash_map<TensorKey, Tensor>::const_iterator map_it = tensors().begin(); while (map_it != tensors().end()) { Tensor k = map_it->first; Tensor v = map_it->second; CHECK_NE(k.dtype(), DT_INVALID); CHECK_NE(v.dtype(), DT_INVALID); *data->add_tensors() = k; *data->add_tensors() = v; map_it++; } } static Status TensorMapDeviceCopy( const TensorMap& from, TensorMap* to, const UnaryVariantOpRegistry::AsyncTensorDeviceCopyFn& copy) { for (const std::pair<TensorKey, Tensor>& p : from.tensors()) { TensorKey to_key(p.first.dtype()); Tensor to_val(p.second.dtype()); TF_RETURN_IF_ERROR(copy(p.first, &to_key)); TF_RETURN_IF_ERROR(copy(p.second, &to_val)); to->tensors().emplace(to_key, to_val); } return absl::OkStatus(); } #define REGISTER_LIST_COPY(DIRECTION) \ INTERNAL_REGISTER_UNARY_VARIANT_DEVICE_COPY_FUNCTION(TensorMap, DIRECTION, \ TensorMapDeviceCopy) REGISTER_LIST_COPY(VariantDeviceCopyDirection::HOST_TO_DEVICE); REGISTER_LIST_COPY(VariantDeviceCopyDirection::DEVICE_TO_HOST); REGISTER_LIST_COPY(VariantDeviceCopyDirection::DEVICE_TO_DEVICE); REGISTER_UNARY_VARIANT_DECODE_FUNCTION(TensorMap, TensorMap::kTypeName); bool TensorMap::Decode(const VariantTensorData& data) { std::vector<Tensor>::const_iterator tensors_it = data.tensors().begin(); while (tensors_it != data.tensors().end()) { if (std::next(tensors_it) == data.tensors().end()) { return false; } tensors().emplace(tensors_it[0], tensors_it[1]); tensors_it += 2; } return true; } const char TensorMap::kTypeName[] = "tensorflow::TensorMap"; }
#include "tensorflow/core/kernels/tensor_map.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { TEST(TensorMapTest, Empty) { TensorMap tm; EXPECT_EQ(tm.tensors().size(), 0); EXPECT_EQ(tm.tensors().begin(), tm.tensors().end()); } TEST(TensorKeyTest, Equal) { TensorKey k1 = Tensor(15); TensorKey k2 = Tensor(15); EXPECT_EQ(k1, k2); EXPECT_EQ(k1.shape(), k2.shape()); EXPECT_EQ(k1.dtype(), k2.dtype()); TensorKey k3 = Tensor(37.0); EXPECT_NE(k1, k3); EXPECT_NE(k1.dtype(), k3.dtype()); } TEST(TensorMapTest, Insert) { TensorMap tm; TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); absl::flat_hash_map<TensorKey, Tensor> am; am.try_emplace(k, v); absl::flat_hash_map<TensorKey, Tensor>::iterator map_it = tm.tensors().begin(); EXPECT_EQ(map_it->first, k); test::ExpectTensorEqual<int32>(map_it->second, v); map_it++; EXPECT_EQ(map_it, tm.tensors().end()); } TEST(TensorMapTest, Lookup) { TensorMap tm; TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); absl::flat_hash_map<TensorKey, Tensor>::iterator map_it = tm.find(k); Tensor f = map_it->second; EXPECT_EQ(map_it->first, k); test::ExpectTensorEqual<int32>(f, v); } TEST(TensorMapTest, Erase) { TensorMap tm; TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); tm.erase(k); EXPECT_EQ(tm.find(k), tm.tensors().end()); } TEST(TensorMapTest, SameKeyInsert) { TensorMap tm; TensorKey k = Tensor(11); Tensor v1 = Tensor(22); Tensor v2 = Tensor(23); bool b1 = tm.insert(k, v1); bool b2 = tm.insert(k, v2); EXPECT_EQ(b1, true); EXPECT_EQ(b2, false); absl::flat_hash_map<TensorKey, Tensor>::iterator map_it = tm.find(k); EXPECT_EQ(map_it->first, k); test::ExpectTensorEqual<int32>(map_it->second, v1); } TEST(TensorMapTest, Replace) { TensorMap tm; TensorKey k = Tensor(11); Tensor v1 = Tensor(22); Tensor v2 = Tensor(23); tm[k] = v2; absl::flat_hash_map<TensorKey, Tensor>::iterator map_it = tm.find(k); EXPECT_EQ(map_it->first, k); test::ExpectTensorEqual<int32>(map_it->second, v2); } TEST(TensorMapTest, ListKeys) { TensorMap tm; TensorKey k = Tensor(11.0); TensorKey k2 = Tensor(12.0); Tensor v = Tensor(22); Tensor v2 = Tensor(23); tm.insert(k, v); tm.insert(k2, v2); std::vector<Tensor> keys = tm.keys(); std::vector<std::pair<double, int>> key_doubles; for (int i = 0; i < keys.size(); i++) { double x = keys[i].scalar<double>()(); std::pair<double, int> p = std::pair<double, int>(x, i); key_doubles.push_back(p); } sort(key_doubles.begin(), key_doubles.end()); EXPECT_EQ(keys.size(), 2); EXPECT_EQ(key_doubles[0].first, 11.0); EXPECT_EQ(key_doubles[1].first, 12.0); int ind1 = key_doubles[0].second; int ind2 = key_doubles[1].second; EXPECT_EQ(keys[ind1].shape(), k.shape()); EXPECT_EQ(keys[ind2].shape(), k2.shape()); } TEST(TensorMapTest, Size) { TensorMap tm; EXPECT_EQ(tm.size(), 0); TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); EXPECT_EQ(tm.size(), 1); } TEST(TensorMapTest, Copy) { TensorMap tm; TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); TensorMap tmc = tm.Copy(); EXPECT_EQ(tm.size(), tmc.size()); EXPECT_NE(tm.find(k), tm.tensors().end()); EXPECT_NE(tmc.find(k), tmc.tensors().end()); EXPECT_EQ(tm.find(k)->first, tmc.find(k)->first); test::ExpectTensorEqual<int32>(tm.find(k)->second, tmc.find(k)->second); } TEST(TensorMapTest, EncodeDecode) { TensorMap tm; TensorKey k = Tensor(11); Tensor v = Tensor(22); tm.insert(k, v); VariantTensorData data; tm.Encode(&data); TensorMap tmc; tmc.Decode(data); EXPECT_EQ(tm.size(), tmc.size()); EXPECT_NE(tm.find(k), tm.tensors().end()); EXPECT_NE(tmc.find(k), tmc.tensors().end()); EXPECT_EQ(tm.find(k)->first, tmc.find(k)->first); test::ExpectTensorEqual<int32>(tm.find(k)->second, tmc.find(k)->second); } } }
295
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_NEXT_PLUGGABLE_DEVICE_C_PLUGIN_COORDINATION_SERVICE_AGENT_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_NEXT_PLUGGABLE_DEVICE_C_PLUGIN_COORDINATION_SERVICE_AGENT_H_ #include <cstdint> #include <string> #include <string_view> #include "absl/time/time.h" #include "tensorflow/c/experimental/next_pluggable_device/c_api.h" #include "tensorflow/c/kernels_experimental.h" #include "tensorflow/core/common_runtime/next_pluggable_device/plugin_coordination_service_agent.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tensorflow { class CPluginCoordinationServiceAgent : public PluginCoordinationServiceAgent { public: explicit CPluginCoordinationServiceAgent(void* agent) : agent_(reinterpret_cast<TF_CoordinationServiceAgent*>(agent)) {} bool IsInitialized() const override { if (agent_ == nullptr) return false; return TF_CoordinationServiceIsInitialized(agent_); } Status InsertKeyValue(std::string_view key, std::string_view value) override; absl::StatusOr<std::string> GetKeyValue(std::string_view key) override; absl::StatusOr<std::string> GetKeyValue(std::string_view key, absl::Duration timeout) override; absl::StatusOr<std::string> TryGetKeyValue(std::string_view key) override; Status DeleteKeyValue(std::string_view key) override; private: TF_CoordinationServiceAgent* agent_; }; } #endif #include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <string> #include <string_view> #include "absl/time/time.h" #include "tensorflow/c/experimental/next_pluggable_device/c_api.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tensorflow { namespace { absl::StatusOr<std::string> ProcessGetKeyValueResult(TF_Buffer* result_buf, TF_Status* status) { if (TF_GetCode(status) != TF_OK) { return StatusFromTF_Status(status); } else { std::string result{static_cast<const char*>(result_buf->data), result_buf->length}; TF_DeleteBuffer(result_buf); return result; } } } Status CPluginCoordinationServiceAgent::InsertKeyValue(std::string_view key, std::string_view value) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceInsertKeyValue(key.data(), key.size(), value.data(), value.size(), agent_, status); return StatusFromTF_Status(status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValue(key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key, absl::Duration timeout) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValueWithTimeout( key.data(), key.size(), absl::ToInt64Seconds(timeout), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::TryGetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceTryGetKeyValue( key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } Status CPluginCoordinationServiceAgent::DeleteKeyValue(std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceDeleteKeyValue(key.data(), key.size(), agent_, status); return StatusFromTF_Status(status); } }
#include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "tensorflow/core/platform/status.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/protobuf/coordination_config.pb.h" #include "tsl/protobuf/coordination_service.pb.h" namespace tensorflow { namespace { using tsl::CoordinationClient; using tsl::CoordinationServiceAgent; using tsl::CallOptions; using tsl::DeleteKeyValueRequest; using tsl::DeleteKeyValueResponse; using tsl::GetKeyValueRequest; using tsl::GetKeyValueResponse; using tsl::InsertKeyValueRequest; using tsl::InsertKeyValueResponse; using ::testing::_; using ::testing::DoAll; using ::testing::InvokeArgument; using ::testing::Pointee; using ::testing::SetArgPointee; using ::testing::WithArgs; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.DebugString()) {} template <typename Message> bool MatchAndExplain(const Message& p, ::testing::MatchResultListener*) const { return p.DebugString() == expected_; } void DescribeTo(std::ostream* os) const { *os << expected_; } void DescribeNegationTo(std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } MATCHER(KvEq, "simple KeyValueEntry matcher") { const KeyValueEntry& kv0 = std::get<0>(arg); const KeyValueEntry& kv1 = std::get<1>(arg); return kv0.key() == kv1.key() && kv0.value() == kv1.value(); } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; MOCK_METHOD(void, GetKeyValueAsync, (CallOptions * call_opts, const GetKeyValueRequest*, GetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, TryGetKeyValueAsync, (const TryGetKeyValueRequest*, TryGetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, InsertKeyValueAsync, (const InsertKeyValueRequest*, InsertKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, DeleteKeyValueAsync, (const DeleteKeyValueRequest*, DeleteKeyValueResponse*, StatusCallback), (override)); void GetKeyValueDirAsync(const tsl::GetKeyValueDirRequest* request, tsl::GetKeyValueDirResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetKeyValueDirAsync")); } void ResetTaskAsync(const tsl::ResetTaskRequest* request, tsl::ResetTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ResetTaskAsync")); } void ReportErrorToServiceAsync( const tsl::ReportErrorToServiceRequest* request, tsl::ReportErrorToServiceResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToServiceAsync")); } void BarrierAsync(const tsl::BarrierRequest* request, tsl::BarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("BarrierAsync")); } void GetTaskStateAsync(const tsl::GetTaskStateRequest* request, tsl::GetTaskStateResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetTaskStateAsync")); } void WaitForAllTasksAsync(const tsl::WaitForAllTasksRequest* request, tsl::WaitForAllTasksResponse* response, StatusCallback done) override { done(absl::UnimplementedError("WaitForAllTasksAsync")); } void CancelBarrierAsync(const tsl::CancelBarrierRequest* request, tsl::CancelBarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("CancelBarrierAsync")); } void RegisterTaskAsync(tsl::CallOptions*, const tsl::RegisterTaskRequest* request, tsl::RegisterTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("RegisterTaskAsync")); } void ShutdownTaskAsync(tsl::CallOptions*, const tsl::ShutdownTaskRequest* request, tsl::ShutdownTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ShutdownTaskAsync")); } void HeartbeatAsync(tsl::CallOptions*, const tsl::HeartbeatRequest* request, tsl::HeartbeatResponse* response, StatusCallback done) override { done(absl::UnimplementedError("HeartbeatAsync")); } void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToTaskAsync")); } }; class CPluginCoordinationServiceAgentTest : public ::testing::Test { public: void InitializeAgent(CoordinationServiceConfig config = {}) { config.set_service_leader("test_leader"); TF_ASSERT_OK(impl_->Initialize( tsl::Env::Default(), "test_job", 0, config, std::move(client_), [](Status s) { LOG(ERROR) << "Coordination agent is set to error: " << s; })); } TestCoordinationClient* GetClient() { CHECK(client_ != nullptr) << "GetClient() was called after InitializeAgent()"; return client_.get(); } protected: std::unique_ptr<CoordinationServiceAgent> impl_ = tsl::CreateCoordinationServiceAgent(); std::unique_ptr<CPluginCoordinationServiceAgent> agent_ = std::make_unique<CPluginCoordinationServiceAgent>(impl_.get()); std::unique_ptr<TestCoordinationClient> client_ = std::make_unique<TestCoordinationClient>(); }; TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Simple_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_WithTimeout_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Timeout_ReturnError) { const std::string test_key = "test_key"; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<3>([&](StatusCallback done) { owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_EQ(result.status().code(), error::DEADLINE_EXCEEDED); owned_done(absl::CancelledError("error")); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_ZeroTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::ZeroDuration()); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_NegativeTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::Seconds(-1)); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, InsertKeyValue_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; InsertKeyValueRequest expected_input; auto kv = expected_input.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); EXPECT_CALL(*GetClient(), InsertKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->InsertKeyValue(test_key, test_value)); } TEST_F(CPluginCoordinationServiceAgentTest, DeleteKeyValue_Success) { const std::string test_key = "test_x_key"; DeleteKeyValueRequest expected_input; expected_input.set_key(test_key); expected_input.set_is_directory(true); EXPECT_CALL(*GetClient(), DeleteKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->DeleteKeyValue(test_key)); } TEST_F(CPluginCoordinationServiceAgentTest, TryGetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; TryGetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), TryGetKeyValueAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->TryGetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } } }
296
#ifndef AROLLA_MEMORY_OPTIONAL_VALUE_H_ #define AROLLA_MEMORY_OPTIONAL_VALUE_H_ #include <cstdint> #include <optional> #include <ostream> #include <tuple> #include <type_traits> #include "absl/base/attributes.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "arolla/util/bytes.h" #include "arolla/util/fingerprint.h" #include "arolla/util/is_bzero_constructible.h" #include "arolla/util/meta.h" #include "arolla/util/repr.h" #include "arolla/util/status.h" #include "arolla/util/struct_field.h" #include "arolla/util/text.h" #include "arolla/util/unit.h" #include "arolla/util/view_types.h" #include "arolla/util/status_macros_backport.h" namespace arolla { template <typename T> struct OptionalValue { static_assert(std::is_default_constructible<T>(), "OptionalValue<T> T must be default constructible."); static_assert(std::is_standard_layout<T>(), "OptionalValue<T> T must have standard layout."); using value_type = T; constexpr OptionalValue() : present(false), value() {} constexpr OptionalValue(T v) : present(true), value(std::move(v)) {} constexpr OptionalValue(std::nullopt_t) : present(false), value() {} constexpr OptionalValue(bool present, T value) : present(present), value(std::move(value)) {} template <typename X = T, typename = std::enable_if_t< std::is_same_v<X, T> && !std::is_same_v<X, view_type_t<X>>, X>> explicit OptionalValue(view_type_t<X> value) : present(true), value(value) {} template <typename X = T, typename = std::enable_if_t< std::is_same_v<X, T> && !std::is_same_v<X, view_type_t<X>>, X>> explicit OptionalValue(OptionalValue<view_type_t<X>> v) : present(v.present) { if (v.present) value = T(v.value); } template <typename X = T, typename = std::enable_if_t<std::is_same_v<X, T>>> constexpr OptionalValue(std::optional<X> opt) : present(opt.has_value()), value(std::move(opt).value_or(T{})) {} operator OptionalValue<view_type_t<T>>() const { return {present, value}; } OptionalValue<T>& operator=(const OptionalValue<T>&) & = default; OptionalValue<T>& operator=(const OptionalValue<T>&) && = delete; OptionalValue<T>& operator=(T value) & { this->present = true; this->value = std::move(value); return *this; } OptionalValue<T>& operator=(T) && = delete; explicit operator bool() const { return present; } constexpr std::optional<T> AsOptional() const& { if (present) { return value; } return {}; } constexpr std::optional<T> AsOptional() && { if (present) { return std::move(value); } return {}; } bool present; value_type value = {}; void ArollaFingerprint(FingerprintHasher* hasher) const { if (present) { hasher->Combine(true, value); } else { hasher->Combine(false); } } constexpr static auto ArollaStructFields() { using CppType = OptionalValue; return std::tuple{ AROLLA_DECLARE_STRUCT_FIELD(present), AROLLA_DECLARE_STRUCT_FIELD(value), }; } }; template <typename T> using strip_optional_t = meta::strip_template_t<OptionalValue, T>; template <typename T> using wrap_with_optional_t = OptionalValue<strip_optional_t<T>>; template <typename T> constexpr bool is_optional_v = meta::is_wrapped_with_v<OptionalValue, T>; template <typename T> struct view_type<OptionalValue<T>> { using type = OptionalValue<view_type_t<T>>; }; template <> struct OptionalValue<Unit> { using value_type = Unit; constexpr OptionalValue() : present(false) {} constexpr OptionalValue(Unit v) : present(true) {} constexpr OptionalValue( std::nullopt_t) : present(false) {} constexpr OptionalValue(bool present, Unit value) : present(present) {} constexpr explicit OptionalValue(bool present) : present(present) {} constexpr OptionalValue( std::optional<Unit> opt) : present(opt.has_value()) {} OptionalValue<Unit>& operator=(const OptionalValue<Unit>&) & = default; OptionalValue<Unit>& operator=(const OptionalValue<Unit>&) && = delete; explicit operator bool() const { return present; } constexpr std::optional<Unit> AsOptional() const { if (present) { return Unit{}; } return {}; } template <typename H> friend H AbslHashValue(H h, const OptionalValue& v) { return H::combine(std::move(h), v.present); } bool present; static constexpr Unit value = {}; constexpr static auto ArollaStructFields() { using CppType = OptionalValue; return std::tuple{ AROLLA_DECLARE_STRUCT_FIELD(present), }; } void ArollaFingerprint(FingerprintHasher* hasher) const { CombineStructFields(hasher, *this); } }; using OptionalUnit = OptionalValue<Unit>; constexpr OptionalUnit kPresent{Unit{}}; constexpr OptionalUnit kMissing{}; template <class T> constexpr OptionalValue<T> MakeOptionalValue(T v) { return {std::move(v)}; } template <class T> absl::StatusOr<OptionalValue<T>> MakeStatusOrOptionalValue( absl::StatusOr<T> v) { using ResultT = absl::StatusOr<OptionalValue<T>>; return v.ok() ? ResultT{OptionalValue<T>{*std::move(v)}} : ResultT{v.status()}; } AROLLA_DECLARE_REPR(OptionalValue<bool>); AROLLA_DECLARE_REPR(OptionalValue<int32_t>); AROLLA_DECLARE_REPR(OptionalValue<int64_t>); AROLLA_DECLARE_REPR(OptionalValue<uint64_t>); AROLLA_DECLARE_REPR(OptionalValue<float>); AROLLA_DECLARE_REPR(OptionalValue<double>); AROLLA_DECLARE_REPR(OptionalValue<Bytes>); AROLLA_DECLARE_REPR(OptionalValue<Text>); AROLLA_DECLARE_REPR(OptionalUnit); template <class T, typename = std::enable_if_t< std::is_invocable_v<ReprTraits<OptionalValue<T>>, T>>> std::ostream& operator<<(std::ostream& stream, const OptionalValue<T>& value) { return stream << Repr(value); } template <typename T> struct is_bzero_constructible<OptionalValue<T>> : is_bzero_constructible<T> {}; template <typename T> constexpr bool operator==(const OptionalValue<T>& a, const OptionalValue<T>& b) { if (a.present && b.present) { return a.value == b.value; } return (a.present == b.present); } template <typename T> constexpr bool operator==(const OptionalValue<T>& a, const T& b) { return a.present && a.value == b; } template <typename T> constexpr bool operator==(const T& a, const OptionalValue<T>& b) { return b.present && a == b.value; } template <typename T> constexpr bool operator==(const OptionalValue<T>& a, std::nullopt_t) { return !a.present; } template <typename T> constexpr bool operator==(std::nullopt_t, const OptionalValue<T>& a) { return !a.present; } template <typename T> constexpr bool operator!=(const OptionalValue<T>& a, const OptionalValue<T>& b) { return !(a == b); } template <typename T> constexpr bool operator!=(const OptionalValue<T>& a, const T& b) { return !(a == b); } template <typename T> constexpr bool operator!=(const T& a, const OptionalValue<T>& b) { return !(a == b); } template <typename T> constexpr bool operator!=(const OptionalValue<T>& a, std::nullopt_t) { return a.present; } template <typename T> constexpr bool operator!=(std::nullopt_t, const OptionalValue<T>& a) { return a.present; } constexpr bool operator==(const OptionalUnit& a, const OptionalUnit& b) { return a.present == b.present; } constexpr bool operator==(const OptionalUnit& a, const Unit& b) { return a.present; } constexpr bool operator==(const Unit& a, const OptionalUnit& b) { return b.present; } constexpr bool operator==(const OptionalValue<absl::string_view>& a, absl::string_view b) { return a.present && a.value == b; } template <typename T> OptionalValue(T value) -> OptionalValue<T>; namespace optional_value_impl { template <class Fn, class ArgList> class OptionalFn; template <class To, class From> ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool is_available(const From& v) { if constexpr (!is_optional_v<To>) { return v.present; } else { return true; } } template <class To, class From> ABSL_ATTRIBUTE_ALWAYS_INLINE inline const To& value(const From& v) { if constexpr (!is_optional_v<To>) { return v.value; } else { return v; } } template <class Fn, class... Args> class OptionalFn<Fn, meta::type_list<Args...>> { private: using FnResT = std::decay_t<typename meta::function_traits<Fn>::return_type>; static constexpr bool kHasStatus = IsStatusOrT<FnResT>::value; using OptResT = wrap_with_optional_t<strip_statusor_t<FnResT>>; using ResT = std::conditional_t<kHasStatus, absl::StatusOr<OptResT>, OptResT>; public: explicit constexpr OptionalFn(Fn fn) : fn_(std::move(fn)) {} ResT operator()( const wrap_with_optional_t<std::decay_t<Args>>&... args) const { if ((is_available<std::decay_t<Args>>(args) && ...)) { if constexpr (kHasStatus && !std::is_same_v<FnResT, ResT>) { ASSIGN_OR_RETURN(auto res, fn_(value<std::decay_t<Args>>(args)...)); return OptResT(res); } else { return fn_(value<std::decay_t<Args>>(args)...); } } else { return OptResT(std::nullopt); } } private: Fn fn_; }; } template <class Fn> constexpr auto WrapFnToAcceptOptionalArgs(Fn fn) { return optional_value_impl::OptionalFn< Fn, typename meta::function_traits<Fn>::arg_types>(fn); } } #endif #include "arolla/memory/optional_value.h" #include <cstdint> #include "absl/strings/str_cat.h" #include "arolla/util/bytes.h" #include "arolla/util/repr.h" #include "arolla/util/text.h" namespace arolla { ReprToken ReprTraits<OptionalValue<bool>>::operator()( const OptionalValue<bool>& value) const { return ReprToken{ value.present ? absl::StrCat("optional_boolean{", Repr(value.value), "}") : "optional_boolean{NA}"}; } ReprToken ReprTraits<OptionalValue<int32_t>>::operator()( const OptionalValue<int32_t>& value) const { return ReprToken{value.present ? absl::StrCat("optional_int32{", Repr(value.value), "}") : "optional_int32{NA}"}; } ReprToken ReprTraits<OptionalValue<int64_t>>::operator()( const OptionalValue<int64_t>& value) const { return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value)) : "optional_int64{NA}"}; } ReprToken ReprTraits<OptionalValue<uint64_t>>::operator()( const OptionalValue<uint64_t>& value) const { return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value)) : "optional_uint64{NA}"}; } ReprToken ReprTraits<OptionalValue<float>>::operator()( const OptionalValue<float>& value) const { return ReprToken{ value.present ? absl::StrCat("optional_float32{", Repr(value.value), "}") : "optional_float32{NA}"}; } ReprToken ReprTraits<OptionalValue<double>>::operator()( const OptionalValue<double>& value) const { return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value)) : "optional_float64{NA}"}; } ReprToken ReprTraits<OptionalValue<Bytes>>::operator()( const OptionalValue<Bytes>& value) const { return ReprToken{value.present ? absl::StrCat("optional_bytes{", Repr(value.value), "}") : "optional_bytes{NA}"}; } ReprToken ReprTraits<OptionalValue<Text>>::operator()( const OptionalValue<Text>& value) const { return ReprToken{value.present ? absl::StrCat("optional_text{", Repr(value.value), "}") : "optional_text{NA}"}; } ReprToken ReprTraits<OptionalUnit>::operator()( const OptionalUnit& value) const { return ReprToken{value.present ? "present" : "missing"}; } }
#include "arolla/memory/optional_value.h" #include <cstdint> #include <cstring> #include <memory> #include <new> #include <optional> #include <sstream> #include <string> #include <type_traits> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/util/bytes.h" #include "arolla/util/repr.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/text.h" #include "arolla/util/view_types.h" namespace arolla { namespace testing { namespace { using ::testing::HasSubstr; using ::testing::Test; TEST(OptionalValueTest, TestEmptyValues) { OptionalValue<float> v1; EXPECT_FALSE(v1.present); OptionalValue<float> v2(std::optional<float>{}); EXPECT_FALSE(v2.present); OptionalValue<float> v3(std::nullopt); EXPECT_FALSE(v3.present); EXPECT_EQ(v1, v2); EXPECT_EQ(v1, v3); v1.value = 1.0f; v2.value = 2.0f; EXPECT_EQ(v1, v2); auto absl_v = v2.AsOptional(); EXPECT_FALSE(absl_v.has_value()); } TEST(OptionalValueTest, TestConstExpr) { static_assert(!OptionalValue<int>().present); static_assert(OptionalValue<int>(5).present); static_assert(OptionalValue<int>(5).value == 5); static_assert(MakeOptionalValue(5).present); static_assert(MakeOptionalValue(5).value == 5); } TEST(OptionalValueTest, TestPresentValues) { OptionalValue<float> v1(1.0f); EXPECT_TRUE(v1.present); EXPECT_EQ(1.0f, v1.value); EXPECT_EQ(Repr(v1), "optional_float32{1.}"); auto v_auto = MakeOptionalValue(1.0f); EXPECT_TRUE(v_auto.present); EXPECT_EQ(1.0f, v_auto.value); EXPECT_EQ(Repr(v_auto), "optional_float32{1.}"); OptionalValue<float> v2(std::optional<float>{2.0f}); EXPECT_TRUE(v2.present); EXPECT_EQ(2.0f, v2.value); EXPECT_EQ(Repr(v2), "optional_float32{2.}"); EXPECT_NE(v1, v2); v1.value = 2.0f; EXPECT_EQ(v1, v2); } TEST(OptionalValueTest, TestAssignment) { OptionalValue<float> v1; v1 = 1.0f; EXPECT_TRUE(v1.present); EXPECT_EQ(v1.value, 1.0f); v1 = std::nullopt; EXPECT_FALSE(v1.present); } TEST(OptionalValueTest, MakeStatusOrOptionalValue) { absl::StatusOr<OptionalValue<float>> v = MakeStatusOrOptionalValue(absl::StatusOr<float>(1.0f)); ASSERT_OK(v.status()); EXPECT_TRUE(v.value().present); EXPECT_EQ(v.value().value, 1.0f); absl::StatusOr<OptionalValue<float>> v_error = MakeStatusOrOptionalValue( absl::StatusOr<float>(absl::InternalError("fake"))); EXPECT_THAT(v_error.status(), StatusIs(absl::StatusCode::kInternal, HasSubstr("fake"))); } TEST(OptionalValueTest, OptionalUnit) { EXPECT_EQ(OptionalUnit(), kMissing); EXPECT_EQ(OptionalUnit(false), kMissing); EXPECT_FALSE(kMissing); EXPECT_FALSE(kMissing.present); EXPECT_EQ(Repr(kMissing), "missing"); EXPECT_EQ(OptionalUnit(true), kPresent); EXPECT_TRUE(kPresent); EXPECT_TRUE(kPresent.present); EXPECT_EQ(Repr(kPresent), "present"); } TEST(OptionalValueTest, Comparison) { OptionalValue<float> v0; v0.value = 1.0f; OptionalValue<float> v1(1.0f); OptionalValue<float> v2(2.0f); { EXPECT_TRUE(v1 == v1); EXPECT_TRUE(v0 == v0); EXPECT_FALSE(v1 == v2); EXPECT_FALSE(v1 == v0); EXPECT_FALSE(v1 != v1); EXPECT_FALSE(v0 != v0); EXPECT_TRUE(v1 != v2); EXPECT_TRUE(v1 != v0); OptionalValue<float> v0_2; v0_2.value = 2.0f; EXPECT_TRUE(v0 == v0_2); EXPECT_FALSE(v0 != v0_2); } { EXPECT_TRUE(v1 == 1.0f); EXPECT_TRUE(1.0f == v1); EXPECT_FALSE(v1 != 1.0f); EXPECT_FALSE(1.0f != v1); EXPECT_FALSE(v1 == 2.0f); EXPECT_FALSE(2.0f == v1); EXPECT_TRUE(v1 != 2.0f); EXPECT_TRUE(2.0f != v1); } { EXPECT_FALSE(v1 == std::nullopt); EXPECT_FALSE(std::nullopt == v1); EXPECT_TRUE(v0 == std::nullopt); EXPECT_TRUE(std::nullopt == v0); EXPECT_TRUE(v1 != std::nullopt); EXPECT_TRUE(std::nullopt != v1); EXPECT_FALSE(v0 != std::nullopt); EXPECT_FALSE(std::nullopt != v0); } } TEST(OptionalValueTest, TestImplicitConstructors) { OptionalValue<float> v = {}; EXPECT_EQ(v, OptionalValue<float>()); v = 3.5; EXPECT_EQ(v, OptionalValue<float>(3.5)); v = std::optional<float>(2.5); EXPECT_EQ(v, OptionalValue<float>(2.5)); } TEST(OptionalValueTest, TestMoves) { auto ptr = std::make_unique<std::string>("Hello!"); OptionalValue<std::unique_ptr<std::string>> v1(std::move(ptr)); EXPECT_TRUE(v1.present); EXPECT_EQ("Hello!", *(v1.value)); std::optional<std::unique_ptr<std::string>> v2(std::move(v1).AsOptional()); EXPECT_TRUE(v2.has_value()); EXPECT_EQ("Hello!", **v2); } template <typename T> using Slot = FrameLayout::Slot<T>; TEST(OptionalValueTest, TestFrameLayout) { FrameLayout::Builder builder; builder.AddSlot<double>(); builder.AddSlot<int32_t>(); auto optional_slot = builder.AddSlot<OptionalValue<float>>(); Slot<bool> presence_slot = optional_slot.GetSubslot<0>(); Slot<float> value_slot = optional_slot.GetSubslot<1>(); FrameLayout layout = std::move(builder).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(optional_slot, OptionalValue<float>{1.0f}); EXPECT_EQ(true, frame.Get(presence_slot)); EXPECT_EQ(1.0f, frame.Get(value_slot)); frame.Set(value_slot, 2.0f); EXPECT_EQ(2.0, frame.Get(optional_slot).value); } TEST(OptionalValue, IsBZeroConstructible) { EXPECT_TRUE(is_bzero_constructible<OptionalValue<float>>()); EXPECT_TRUE(is_bzero_constructible<OptionalValue<int>>()); EXPECT_FALSE(is_bzero_constructible<OptionalValue<std::string>>()); } TEST(OptionalValue, BZeroStateIsEmptyValue) { using T = OptionalValue<float>; std::aligned_storage_t<sizeof(T), alignof(T)> storage; memset(&storage, 0, sizeof(storage)); EXPECT_FALSE(std::launder(reinterpret_cast<const T*>(&storage))->present); } TEST(OptionalValue, StructuredBindings) { { OptionalValue<float> f; auto [present, value] = f; EXPECT_FALSE(present); } { OptionalValue<float> f = 17.0; auto [present, value] = f; EXPECT_TRUE(present); EXPECT_EQ(value, 17.0); } } TEST(OptionalValue, ViewType) { static_assert(std::is_same_v<view_type_t<OptionalValue<int64_t>>, OptionalValue<int64_t>>); static_assert(std::is_same_v<view_type_t<OptionalValue<Bytes>>, OptionalValue<absl::string_view>>); auto fn = [](OptionalValue<absl::string_view> v) -> char { return (v.present && !v.value.empty()) ? v.value[0] : 'X'; }; EXPECT_EQ(fn(OptionalValue<Text>(Text("Hello"))), 'H'); EXPECT_EQ(fn(std::nullopt), 'X'); } TEST(OptionalValue, WrapFnToAcceptOptionalArgs) { { auto fn = [](int a, OptionalValue<int64_t> b, int64_t c) -> int { return a + c + (b.present ? b.value : 10); }; auto opt_fn = WrapFnToAcceptOptionalArgs(fn); EXPECT_EQ(opt_fn(1, 2, 3), OptionalValue<int>(6)); EXPECT_EQ(opt_fn(std::nullopt, 2, 3), OptionalValue<int>()); EXPECT_EQ(opt_fn(1, std::nullopt, 3), OptionalValue<int>(14)); EXPECT_EQ(opt_fn(1, 2, std::nullopt), OptionalValue<int>()); } { auto fn = [](const Bytes& v) -> const Bytes& { return v; }; auto opt_fn = WrapFnToAcceptOptionalArgs(fn); EXPECT_EQ(opt_fn(Bytes("123")), OptionalValue<Bytes>("123")); } { auto fn = [](absl::string_view v) { return v; }; auto opt_fn = WrapFnToAcceptOptionalArgs(fn); EXPECT_EQ(opt_fn(MakeOptionalValue(Bytes("123"))), MakeOptionalValue(absl::string_view("123"))); } { auto fn = [](int a, OptionalValue<int64_t> b, int64_t c) -> absl::StatusOr<int> { if (c < 0) { return absl::InvalidArgumentError("c < 0"); } else { return a + c + (b.present ? b.value : 10); } }; auto opt_fn = WrapFnToAcceptOptionalArgs(fn); EXPECT_THAT(opt_fn(1, 2, 3), IsOkAndHolds(OptionalValue<int>(6))); EXPECT_THAT(opt_fn(1, 2, -3), StatusIs(absl::StatusCode::kInvalidArgument, "c < 0")); EXPECT_THAT(opt_fn(std::nullopt, 2, -3), IsOkAndHolds(OptionalValue<int>())); } } TEST(OptionalValueReprTest, bool) { EXPECT_EQ(Repr(OptionalValue<bool>(true)), "optional_boolean{true}"); EXPECT_EQ(Repr(OptionalValue<bool>()), "optional_boolean{NA}"); } TEST(OptionalValueReprTest, int32_t) { EXPECT_EQ(Repr(OptionalValue<int32_t>(1)), "optional_int32{1}"); EXPECT_EQ(Repr(OptionalValue<int32_t>()), "optional_int32{NA}"); } TEST(OptionalValueReprTest, int64_t) { EXPECT_EQ(Repr(OptionalValue<int64_t>(1)), "optional_int64{1}"); EXPECT_EQ(Repr(OptionalValue<int64_t>()), "optional_int64{NA}"); } TEST(OptionalValueReprTest, uint64_t) { EXPECT_EQ(Repr(OptionalValue<uint64_t>(1)), "optional_uint64{1}"); EXPECT_EQ(Repr(OptionalValue<uint64_t>()), "optional_uint64{NA}"); } TEST(OptionalValueReprTest, float) { EXPECT_EQ(Repr(OptionalValue<float>(1.5)), "optional_float32{1.5}"); EXPECT_EQ(Repr(OptionalValue<float>()), "optional_float32{NA}"); } TEST(OptionalValueReprTest, double) { EXPECT_EQ(Repr(OptionalValue<double>(1.5)), "optional_float64{1.5}"); EXPECT_EQ(Repr(OptionalValue<double>()), "optional_float64{NA}"); } TEST(OptionalValueReprTest, Bytes) { EXPECT_EQ(Repr(OptionalValue<Bytes>("abc")), "optional_bytes{b'abc'}"); EXPECT_EQ(Repr(OptionalValue<Bytes>()), "optional_bytes{NA}"); } TEST(OptionalValueReprTest, Text) { EXPECT_EQ(Repr(OptionalValue<Text>("abc")), "optional_text{'abc'}"); EXPECT_EQ(Repr(OptionalValue<Text>()), "optional_text{NA}"); } TEST(OptionalValueReprTest, StreamOp) { { std::ostringstream oss; oss << OptionalValue<float>(1.5); EXPECT_EQ(oss.str(), "optional_float32{1.5}"); } { std::ostringstream oss; oss << OptionalValue<float>(); EXPECT_EQ(oss.str(), "optional_float32{NA}"); } } } } }
297
#ifndef TENSORFLOW_TOOLS_BENCHMARK_BENCHMARK_MODEL_H_ #define TENSORFLOW_TOOLS_BENCHMARK_BENCHMARK_MODEL_H_ #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/stat_summarizer.h" namespace tensorflow { namespace benchmark_model { struct InputLayerInfo { string name; DataType data_type; TensorShape shape; std::vector<float> initialization_values; }; Status InitializeSession(int num_threads, const string& graph, std::unique_ptr<Session>* session, std::unique_ptr<GraphDef>* graph_def); Status RunBenchmark(const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* inference_time_us); Status TimeMultipleRuns(double sleep_seconds, int num_runs, double max_time_s, const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* total_time_us, int64_t* actual_num_runs); int Main(int argc, char** argv); } } #endif #include "tensorflow/tools/benchmark/benchmark_model.h" #include <cstdlib> #include <memory> #include <string> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/numeric_types.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/numbers.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/core/util/reporter.h" #include "tensorflow/core/util/stat_summarizer.h" #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace tensorflow { namespace benchmark_model { namespace { Status InitializeVariables(Session* session, const std::vector<string>& init_ops) { LOG(INFO) << "Initializing graph variables"; for (const string& init_op : init_ops) { TF_RETURN_IF_ERROR(session->Run({}, {}, {init_op}, nullptr)); } return absl::OkStatus(); } template <class T> void InitializeTensor(const std::vector<float>& initialization_values, Tensor* input_tensor) { auto type_tensor = input_tensor->flat<T>(); type_tensor = type_tensor.constant(0); if (!initialization_values.empty()) { for (int i = 0; i < initialization_values.size(); ++i) { type_tensor(i) = static_cast<T>(initialization_values[i]); } } } void CreateTensorsFromInputInfo( const std::vector<InputLayerInfo>& inputs, std::vector<std::pair<string, tensorflow::Tensor> >* input_tensors) { for (const InputLayerInfo& input : inputs) { Tensor input_tensor(input.data_type, input.shape); switch (input.data_type) { case DT_INT32: { InitializeTensor<int32>(input.initialization_values, &input_tensor); break; } case DT_INT64: { InitializeTensor<int64>(input.initialization_values, &input_tensor); break; } case DT_FLOAT: { InitializeTensor<float>(input.initialization_values, &input_tensor); break; } case DT_QUINT8: { InitializeTensor<quint8>(input.initialization_values, &input_tensor); break; } case DT_UINT8: { InitializeTensor<uint8>(input.initialization_values, &input_tensor); break; } case DT_BOOL: { InitializeTensor<bool>(input.initialization_values, &input_tensor); break; } case DT_STRING: { if (!input.initialization_values.empty()) { LOG(FATAL) << "Initialization values are not supported for strings"; } auto type_tensor = input_tensor.flat<tstring>(); type_tensor = type_tensor.constant(""); break; } default: LOG(FATAL) << "Unsupported input type: " << DataTypeString(input.data_type); } input_tensors->push_back({input.name, input_tensor}); } } Status GetOutputShapes(const std::vector<InputLayerInfo>& inputs, const std::set<string>& wanted_shapes, Session* session, std::unordered_map<string, TensorShape>* node_shapes) { std::vector<std::pair<string, tensorflow::Tensor> > input_tensors; CreateTensorsFromInputInfo(inputs, &input_tensors); std::vector<tensorflow::Tensor> output_tensors; std::vector<string> output_tensor_names; for (const string& wanted_shape : wanted_shapes) { bool is_input = false; for (const std::pair<string, tensorflow::Tensor>& input_tensor : input_tensors) { if (input_tensor.first == wanted_shape) { (*node_shapes)[wanted_shape] = input_tensor.second.shape(); is_input = true; break; } } if (!is_input) { output_tensor_names.push_back(wanted_shape); } } TF_RETURN_IF_ERROR( session->Run(input_tensors, output_tensor_names, {}, &output_tensors)); CHECK_EQ(output_tensors.size(), output_tensor_names.size()); for (int i = 0; i < output_tensor_names.size(); ++i) { const string& wanted_shape_name = output_tensor_names[i]; const TensorShape& found_shape = output_tensors[i].shape(); (*node_shapes)[wanted_shape_name] = found_shape; } return absl::OkStatus(); } Status CalculateFlops(const GraphDef& graph, const std::vector<InputLayerInfo>& inputs, Session* session, int64_t* total_flops, std::unordered_map<string, int64_t>* flops_by_op) { std::unordered_set<string> floppable_ops = { "Conv2D", "MatMul", "QuantizedConv2D", "QuantizedMatMul", "DepthwiseConv2dNative"}; std::set<string> wanted_shapes; for (const NodeDef& node : graph.node()) { if (floppable_ops.count(node.op())) { for (const string& input : node.input()) { wanted_shapes.insert(input); } wanted_shapes.insert(node.name()); } } std::unordered_map<string, TensorShape> found_shapes; TF_RETURN_IF_ERROR( GetOutputShapes(inputs, wanted_shapes, session, &found_shapes)); *total_flops = 0; for (const NodeDef& node : graph.node()) { if (floppable_ops.count(node.op())) { int64_t current_flops = 0; if ((node.op() == "Conv2D") || (node.op() == "QuantizedConv2D")) { const TensorShape& filter_shape = found_shapes[node.input(1)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t filter_height = filter_shape.dim_size(0); int64_t filter_width = filter_shape.dim_size(1); int64_t filter_in_depth = filter_shape.dim_size(2); int64_t output_count = output_shape.num_elements(); current_flops = output_count * filter_in_depth * filter_height * filter_width * 2; } else if ((node.op() == "MatMul") || (node.op() == "QuantizedMatMul")) { const bool transpose_a = node.attr().at("transpose_a").b(); const TensorShape& a_shape = found_shapes[node.input(0)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t k; if (transpose_a) { k = a_shape.dim_size(0); } else { k = a_shape.dim_size(1); } int64_t output_count = output_shape.num_elements(); current_flops = k * output_count * 2; } else if (node.op() == "DepthwiseConv2dNative") { const TensorShape& filter_shape = found_shapes[node.input(1)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t filter_height = filter_shape.dim_size(0); int64_t filter_width = filter_shape.dim_size(1); int64_t output_count = output_shape.num_elements(); current_flops = output_count * filter_height * filter_width * 2; } (*flops_by_op)[node.op()] += current_flops; *total_flops += current_flops; } } return absl::OkStatus(); } void RecordBenchmarkEntry(const string& output_prefix, const string& benchmark_name, const string& postfix, int num_runs, double total_time_s, double throughput = -1.0) { std::stringstream stream; stream << benchmark_name; if (!postfix.empty()) { stream << "_" << postfix; } TestReporter node_reporter(output_prefix, stream.str()); TF_QCHECK_OK(node_reporter.Initialize()); TF_QCHECK_OK( node_reporter.Benchmark(num_runs, -1.0, total_time_s, throughput)); TF_QCHECK_OK(node_reporter.Close()); } void SleepSeconds(double sleep_seconds) { if (sleep_seconds <= 0.0) { return; } #ifdef PLATFORM_WINDOWS Env::Default()->SleepForMicroseconds(sleep_seconds * 1000 * 1000); #else timespec req; req.tv_sec = static_cast<time_t>(sleep_seconds); req.tv_nsec = (sleep_seconds - req.tv_sec) * 1000000000; nanosleep(&req, nullptr); #endif } } Status InitializeSession(int num_threads, const string& graph, std::unique_ptr<Session>* session, std::unique_ptr<GraphDef>* graph_def) { LOG(INFO) << "Loading TensorFlow."; tensorflow::SessionOptions options; tensorflow::ConfigProto& config = options.config; if (num_threads > 0) { config.set_intra_op_parallelism_threads(num_threads); config.set_inter_op_parallelism_threads(num_threads); } LOG(INFO) << "Got config, " << config.device_count_size() << " devices"; session->reset(tensorflow::NewSession(options)); graph_def->reset(new GraphDef()); tensorflow::GraphDef tensorflow_graph; Status s = ReadBinaryProto(Env::Default(), graph, graph_def->get()); if (!s.ok()) { s = ReadTextProto(Env::Default(), graph, graph_def->get()); } if (!s.ok()) { LOG(ERROR) << "Could not create TensorFlow Graph: " << s; return s; } s = (*session)->Create(*(graph_def->get())); if (!s.ok()) { LOG(ERROR) << "Could not create TensorFlow Session: " << s; return s; } return absl::OkStatus(); } Status RunBenchmark(const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* inference_time_us) { std::vector<std::pair<string, tensorflow::Tensor> > input_tensors; CreateTensorsFromInputInfo(inputs, &input_tensors); std::vector<tensorflow::Tensor> output_tensors; tensorflow::Status s; RunOptions run_options; if (stats != nullptr) { run_options.set_trace_level(RunOptions::FULL_TRACE); } RunMetadata run_metadata; const int64_t start_time = Env::Default()->NowMicros(); s = session->Run(run_options, input_tensors, outputs, targets, &output_tensors, &run_metadata); const int64_t end_time = Env::Default()->NowMicros(); *inference_time_us = end_time - start_time; if (!s.ok()) { LOG(ERROR) << "Error during inference: " << s; return s; } if (stats != nullptr) { assert(run_metadata.has_step_stats()); const StepStats& step_stats = run_metadata.step_stats(); stats->ProcessStepStats(step_stats); } return s; } Status TimeMultipleRuns(double sleep_seconds, int num_runs, double max_time_s, const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* total_time_us, int64_t* actual_num_runs) { *total_time_us = 0; LOG(INFO) << "Running benchmark for max " << num_runs << " iterations, max " << max_time_s << " seconds " << (stats != nullptr ? "with" : "without") << " detailed stat logging, with " << sleep_seconds << "s sleep between inferences"; Stat<int64_t> stat; const bool until_max_time = num_runs <= 0; for (int i = 0; until_max_time || i < num_runs; ++i) { int64_t time; Status run_status = RunBenchmark(inputs, outputs, targets, session, stats, &time); stat.UpdateStat(time); (*total_time_us) += time; ++(*actual_num_runs); if (max_time_s > 0.0 && (*total_time_us / 1000000.0) > max_time_s) { break; } if (!run_status.ok()) { LOG(INFO) << "Failed on run " << i; return run_status; } if (sleep_seconds > 0.0) { SleepSeconds(sleep_seconds); } } std::stringstream stream; stat.OutputToStream(&stream); LOG(INFO) << stream.str() << std::endl; return absl::OkStatus(); } int Main(int argc, char** argv) { string graph = "/data/local/tmp/tensorflow_inception_graph.pb"; string init_ops_string = ""; string input_layer_string = "input:0"; string input_layer_shape_string = "1,224,224,3"; string input_layer_type_string = "float"; string input_layer_values_string = ""; string output_layer_string = "output:0"; string target_layer_string = ""; int max_num_runs = 1000; string max_time = "10.0"; string inference_delay = "-1.0"; string inter_benchmark_delay = "-1.0"; int num_threads = -1; string benchmark_name = ""; string output_prefix = ""; bool show_sizes = false; bool show_run_order = true; int run_order_limit = 0; bool show_time = true; int time_limit = 10; bool show_memory = true; int memory_limit = 10; bool show_type = true; bool show_summary = true; bool show_flops = false; int warmup_runs = 1; std::vector<Flag> flag_list = { Flag("graph", &graph, "graph file name"), Flag("init_ops", &init_ops_string, "init ops"), Flag("input_layer", &input_layer_string, "input layer names"), Flag("input_layer_shape", &input_layer_shape_string, "input layer shape"), Flag("input_layer_type", &input_layer_type_string, "input layer type"), Flag("input_layer_values", &input_layer_values_string, "values to initialize the inputs with"), Flag("output_layer", &output_layer_string, "output layer name"), Flag("target_layer", &target_layer_string, "target layer name"), Flag("max_num_runs", &max_num_runs, "number of runs max"), Flag("max_time", &max_time, "length to run max"), Flag("inference_delay", &inference_delay, "delay between runs in seconds"), Flag("inter_benchmark_delay", &inter_benchmark_delay, "delay between benchmarks in seconds"), Flag("num_threads", &num_threads, "number of threads"), Flag("benchmark_name", &benchmark_name, "benchmark name"), Flag("output_prefix", &output_prefix, "benchmark output prefix"), Flag("show_sizes", &show_sizes, "whether to show sizes"), Flag("show_run_order", &show_run_order, "whether to list stats by run order"), Flag("run_order_limit", &run_order_limit, "how many items to show by run order"), Flag("show_time", &show_time, "whether to list stats by time taken"), Flag("time_limit", &time_limit, "how many items to show by time taken"), Flag("show_memory", &show_memory, "whether to list stats by memory used"), Flag("memory_limit", &memory_limit, "how many items to show by memory used"), Flag("show_type", &show_type, "whether to list stats by op type"), Flag("show_summary", &show_summary, "whether to show a summary of the stats"), Flag("show_flops", &show_flops, "whether to estimate the model's FLOPs"), Flag("warmup_runs", &warmup_runs, "how many runs to initialize model"), }; string usage = Flags::Usage(argv[0], flag_list); const bool parse_result = Flags::Parse(&argc, argv, flag_list); if (!parse_result) { LOG(ERROR) << usage; return -1; } std::vector<string> init_ops = str_util::Split(init_ops_string, ','); std::vector<string> input_layers = str_util::Split(input_layer_string, ','); std::vector<string> input_layer_shapes = str_util::Split(input_layer_shape_string, ':'); std::vector<string> input_layer_types = str_util::Split(input_layer_type_string, ','); std::vector<string> input_layer_values = str_util::Split(input_layer_values_string, ':'); std::vector<string> output_layers = str_util::Split(output_layer_string, ','); std::vector<string> target_layers = str_util::Split(target_layer_string, ','); if ((input_layers.size() != input_layer_shapes.size()) || (input_layers.size() != input_layer_types.size())) { LOG(ERROR) << "There must be the same number of items in --input_layer," << " --input_layer_shape, and --input_layer_type, for example" << " --input_layer=input1,input2 --input_layer_type=float,float " << " --input_layer_shape=1,224,224,4:1,20"; LOG(ERROR) << "--input_layer=" << input_layer_string << " (" << input_layers.size() << " items)"; LOG(ERROR) << "--input_layer_type=" << input_layer_type_string << " (" << input_layer_types.size() << " items)"; LOG(ERROR) << "--input_layer_shape=" << input_layer_shape_string << " (" << input_layer_shapes.size() << " items)"; return -1; } const size_t inputs_count = input_layers.size(); ::tensorflow::port::InitMain(argv[0], &argc, &argv); if (argc > 1) { LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage; return -1; } LOG(INFO) << "Graph: [" << graph << "]"; LOG(INFO) << "Init ops:" << init_ops_string; LOG(INFO) << "Input layers: [" << input_layer_string << "]"; LOG(INFO) << "Input shapes: [" << input_layer_shape_string << "]"; LOG(INFO) << "Input types: [" << input_layer_type_string << "]"; LOG(INFO) << "Output layers: [" << output_layer_string << "]"; LOG(INFO) << "Target layers: [" << target_layer_string << "]"; LOG(INFO) << "Num runs: [" << max_num_runs << "]"; LOG(INFO) << "Inter-inference delay (seconds): [" << inference_delay << "]"; LOG(INFO) << "Inter-benchmark delay (seconds): [" << inter_benchmark_delay << "]"; LOG(INFO) << "Num threads: [" << num_threads << "]"; LOG(INFO) << "Benchmark name: [" << benchmark_name << "]"; LOG(INFO) << "Output prefix: [" << output_prefix << "]"; LOG(INFO) << "Show sizes: [" << show_sizes << "]"; LOG(INFO) << "Warmup runs: [" << warmup_runs << "]"; std::unique_ptr<Session> session; std::unique_ptr<StatSummarizer> stats; std::unique_ptr<GraphDef> graph_def; int64_t initialization_start_us = Env::Default()->NowMicros(); Status initialize_status = InitializeSession(num_threads, graph, &session, &graph_def); int64_t initialization_end_us = Env::Default()->NowMicros(); double initialization_time_s = (initialization_end_us - initialization_start_us) / 1000000.0; LOG(INFO) << "Initialized session in " << initialization_time_s << "s"; if (!initialize_status.ok()) { return -1; } if (!init_ops.empty()) { Status initialize_variables_status = InitializeVariables(session.get(), init_ops); if (!initialize_variables_status.ok()) { LOG(ERROR) << "Graph variables initialization failed with " << initialize_variables_status; return -1; } } StatSummarizerOptions stats_options; stats_options.show_run_order = show_run_order; stats_options.run_order_limit = run_order_limit; stats_options.show_time = show_time; stats_options.time_limit = time_limit; stats_options.show_memory = show_memory; stats_options.memory_limit = memory_limit; stats_options.show_type = show_type; stats_options.show_summary = show_summary; stats.reset(new tensorflow::StatSummarizer(stats_options)); const double inter_inference_sleep_seconds = std::strtod(inference_delay.c_str(), nullptr); const double inter_benchmark_sleep_seconds = std::strtod(inter_benchmark_delay.c_str(), nullptr); const double max_benchmark_time_seconds = std::strtod(max_time.c_str(), nullptr); std::vector<InputLayerInfo> inputs; for (int n = 0; n < inputs_count; ++n) { InputLayerInfo input; CHECK(DataTypeFromString(input_layer_types[n], &input.data_type)) << input_layer_types[n] << " was an invalid type"; std::vector<string> split_layer_shapes = str_util::Split(input_layer_shapes[n], ','); for (const string& layer_shape : split_layer_shapes) { int32_t tmp; CHECK(strings::safe_strto32(layer_shape, &tmp)) << "Incorrect size string specified: " << input_layer_shapes[n]; if (tmp == -1) { LOG(ERROR) << "Any unknown sizes in the shapes (-1's) must be replaced" << " with the size you want to benchmark with."; return -1; } else { input.shape.AddDim(tmp); } } input.name = input_layers[n]; if (n < input_layer_values.size()) { std::vector<string> string_tokens = str_util::Split(input_layer_values[n], ','); input.initialization_values.clear(); input.initialization_values.reserve(string_tokens.size()); for (const string& str_val : string_tokens) { float val; CHECK(strings::safe_strtof(str_val, &val)) << "Incorrect initialization values string specified: " << input_layer_values[n]; input.initialization_values.push_back(val); } } inputs.push_back(input); } int64_t warmup_time_us = 0; int64_t num_warmup_runs = 0; if (warmup_runs > 0) { Status warmup_time_status = TimeMultipleRuns(inter_inference_sleep_seconds, warmup_runs, -1.0, inputs, output_layers, target_layers, session.get(), nullptr, &warmup_time_us, &num_warmup_runs); if (!warmup_time_status.ok()) { LOG(ERROR) << "Timing failed with " << warmup_time_status; return -1; } } SleepSeconds(inter_benchmark_sleep_seconds); int64_t no_stat_time_us = 0; int64_t no_stat_num_runs = 0; Status no_stat_time_status = TimeMultipleRuns( inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds, inputs, output_layers, target_layers, session.get(), nullptr, &no_stat_time_us, &no_stat_num_runs); const double no_stat_wall_time = no_stat_time_us / 1000000.0; if (!no_stat_time_status.ok()) { LOG(ERROR) << "Timing failed with " << no_stat_time_status; return -1; } SleepSeconds(inter_benchmark_sleep_seconds); int64_t stat_time_us = 0; int64_t stat_num_runs = 0; Status stat_time_status = TimeMultipleRuns( inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds, inputs, output_layers, target_layers, session.get(), stats.get(), &stat_time_us, &stat_num_runs); if (!stat_time_status.ok()) { LOG(ERROR) << "Timing failed with " << stat_time_status; return -1; } LOG(INFO) << "Average inference timings in us: " << "Warmup: " << (warmup_runs > 0 ? warmup_time_us / warmup_runs : 0) << ", " << "no stats: " << no_stat_time_us / no_stat_num_runs << ", " << "with stats: " << stat_time_us / stat_num_runs; stats->PrintStepStats(); if (show_sizes) { stats->PrintOutputs(); } if (show_flops) { int64_t total_flops; std::unordered_map<string, int64_t> flops_by_op; Status flop_status = CalculateFlops(*graph_def, inputs, session.get(), &total_flops, &flops_by_op); if (!flop_status.ok()) { LOG(ERROR) << "FLOPs calculation failed with " << flop_status; return -1; } string pretty_flops; if (total_flops < 1000) { pretty_flops = strings::StrCat(total_flops, " FLOPs"); } else if (total_flops < (1000 * 1000)) { const float rounded_flops = (total_flops / 1000.0f); pretty_flops = strings::StrCat(rounded_flops, "k FLOPs"); } else if (total_flops < (1000 * 1000 * 1000)) { const float rounded_flops = round(total_flops / 1000.0f) / 1000.0f; pretty_flops = strings::StrCat(rounded_flops, " million FLOPs"); } else { const float rounded_flops = round(total_flops / (1000.0f * 1000.0f)) / 1000.0f; pretty_flops = strings::StrCat(rounded_flops, " billion FLOPs"); } LOG(INFO) << "FLOPs estimate: " << strings::HumanReadableNum(total_flops); const double mean_run_time = no_stat_wall_time / no_stat_num_runs; LOG(INFO) << "FLOPs/second: " << strings::HumanReadableNum( static_cast<int64_t>(total_flops / mean_run_time)); } if (!benchmark_name.empty() && !output_prefix.empty()) { int64_t total_size = inputs[0].shape.num_elements(); const double throughput = DataTypeSize(inputs[0].data_type) * total_size * no_stat_num_runs / static_cast<double>(no_stat_wall_time) / (1024 * 1024); RecordBenchmarkEntry(output_prefix, benchmark_name, "", no_stat_num_runs, no_stat_wall_time, throughput); RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-init", 1, initialization_time_s); RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-first-inference", warmup_runs, warmup_time_us / 1000000.0); RecordBenchmarkEntry( output_prefix, benchmark_name, "meta-init-plus-first-inference", 1, initialization_time_s + (warmup_time_us / 1000000.0) / warmup_runs); std::map<std::string, int64_t> node_type_map_count; std::map<std::string, int64_t> node_type_map_time; std::map<std::string, int64_t> node_type_map_memory; std::map<std::string, int64_t> node_type_map_times_called; int64_t accumulated_us; stats->ComputeStatsByType(&node_type_map_count, &node_type_map_time, &node_type_map_memory, &node_type_map_times_called, &accumulated_us); for (const auto& time : node_type_map_time) { LOG(INFO) << "Outputting: [" << time.first << "]"; RecordBenchmarkEntry(output_prefix, benchmark_name, time.first, stat_num_runs, (time.second * stat_num_runs) / 1000000.0f); } } return 0; } } }
#include "tensorflow/tools/benchmark/benchmark_model.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/stat_summarizer.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace { void CreateTestGraph(const ::tensorflow::Scope& root, benchmark_model::InputLayerInfo* input, string* output_name, GraphDef* graph_def) { const int input_width = 400; const int input_height = 10; input->shape = TensorShape({input_width, input_height}); input->data_type = DT_FLOAT; const TensorShape constant_shape({input_height, input_width}); Tensor constant_tensor(DT_FLOAT, constant_shape); test::FillFn<float>(&constant_tensor, [](int) -> float { return 3.0; }); auto placeholder = ops::Placeholder(root, DT_FLOAT, ops::Placeholder::Shape(input->shape)); input->name = placeholder.node()->name(); auto m = ops::MatMul(root, placeholder, constant_tensor); *output_name = m.node()->name(); TF_ASSERT_OK(root.ToGraphDef(graph_def)); } TEST(BenchmarkModelTest, InitializeAndRun) { const string dir = testing::TmpDir(); const string filename_pb = io::JoinPath(dir, "graphdef.pb"); auto root = Scope::NewRootScope().ExitOnError(); benchmark_model::InputLayerInfo input; string output_name; GraphDef graph_def; CreateTestGraph(root, &input, &output_name, &graph_def); string graph_def_serialized; graph_def.SerializeToString(&graph_def_serialized); TF_ASSERT_OK( WriteStringToFile(Env::Default(), filename_pb, graph_def_serialized)); std::unique_ptr<Session> session; std::unique_ptr<GraphDef> loaded_graph_def; TF_ASSERT_OK(benchmark_model::InitializeSession(1, filename_pb, &session, &loaded_graph_def)); std::unique_ptr<StatSummarizer> stats; stats.reset(new tensorflow::StatSummarizer(*(loaded_graph_def.get()))); int64_t time; int64_t num_runs = 0; TF_ASSERT_OK(benchmark_model::TimeMultipleRuns( 0.0, 10, 0.0, {input}, {output_name}, {}, session.get(), stats.get(), &time, &num_runs)); ASSERT_EQ(num_runs, 10); } TEST(BenchmarkModeTest, TextProto) { const string dir = testing::TmpDir(); const string filename_txt = io::JoinPath(dir, "graphdef.pb.txt"); auto root = Scope::NewRootScope().ExitOnError(); benchmark_model::InputLayerInfo input; string output_name; GraphDef graph_def; CreateTestGraph(root, &input, &output_name, &graph_def); TF_ASSERT_OK(WriteTextProto(Env::Default(), filename_txt, graph_def)); std::unique_ptr<Session> session; std::unique_ptr<GraphDef> loaded_graph_def; TF_ASSERT_OK(benchmark_model::InitializeSession(1, filename_txt, &session, &loaded_graph_def)); std::unique_ptr<StatSummarizer> stats; stats.reset(new tensorflow::StatSummarizer(*(loaded_graph_def.get()))); int64_t time; int64_t num_runs = 0; TF_ASSERT_OK(benchmark_model::TimeMultipleRuns( 0.0, 10, 0.0, {input}, {output_name}, {}, session.get(), stats.get(), &time, &num_runs)); ASSERT_EQ(num_runs, 10); } } }
298
#ifndef TENSORFLOW_LITE_SCHEMA_BUILTIN_OPS_HEADER_GENERATOR_H_ #define TENSORFLOW_LITE_SCHEMA_BUILTIN_OPS_HEADER_GENERATOR_H_ #include <iostream> #include <string> namespace tflite { namespace builtin_ops_header { bool IsValidInputEnumName(const std::string& name); std::string ConstantizeVariableName(const std::string& name); bool GenerateHeader(std::ostream& os); } } #endif #include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <string> #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace builtin_ops_header { namespace { const char* kFileHeader = R"( #ifndef TENSORFLOW_LITE_BUILTIN_OPS_H_ #define TENSORFLOW_LITE_BUILTIN_OPS_H_ #ifdef __cplusplus extern "C" { #endif typedef enum { )"; const char* kFileFooter = R"(} TfLiteBuiltinOperator; #ifdef __cplusplus } #endif #endif )"; } bool IsValidInputEnumName(const std::string& name) { const char* begin = name.c_str(); const char* ch = begin; while (*ch != '\0') { if (ch != begin) { if (*ch != '_') { return false; } ++ch; } bool empty = true; while (isupper(*ch) || isdigit(*ch)) { empty = false; ++ch; } if (empty) { return false; } } return true; } std::string ConstantizeVariableName(const std::string& name) { std::string result = "kTfLiteBuiltin"; bool uppercase = true; for (char input_char : name) { if (input_char == '_') { uppercase = true; } else if (uppercase) { result += toupper(input_char); uppercase = false; } else { result += tolower(input_char); } } return result; } bool GenerateHeader(std::ostream& os) { auto enum_names = tflite::EnumNamesBuiltinOperator(); for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; if (!IsValidInputEnumName(enum_name)) { std::cerr << "Invalid input enum name: " << enum_name << std::endl; return false; } } os << kFileHeader; for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; os << " "; os << ConstantizeVariableName(enum_name); os << " = "; os << enum_value; os << ",\n"; } os << kFileFooter; return true; } } }
#include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <fstream> #include <gtest/gtest.h> namespace { using tflite::builtin_ops_header::ConstantizeVariableName; using tflite::builtin_ops_header::IsValidInputEnumName; TEST(TestIsValidInputEnumName, TestWithValidInputNames) { EXPECT_TRUE(IsValidInputEnumName("ADD")); EXPECT_TRUE(IsValidInputEnumName("CONV_2D")); EXPECT_TRUE(IsValidInputEnumName("L2_POOL_2D")); } TEST(TestIsValidInputEnumName, TestWithLeadingUnderscore) { EXPECT_FALSE(IsValidInputEnumName("_ADD")); EXPECT_FALSE(IsValidInputEnumName("_CONV_2D")); } TEST(TestIsValidInputEnumName, TestWithLowerCase) { EXPECT_FALSE(IsValidInputEnumName("_AdD")); EXPECT_FALSE(IsValidInputEnumName("_COnV_2D")); } TEST(TestIsValidInputEnumName, TestWithOtherCharacters) { EXPECT_FALSE(IsValidInputEnumName("_AdD!2D")); EXPECT_FALSE(IsValidInputEnumName("_COnV?2D")); } TEST(TestIsValidInputEnumName, TestWithDoubleUnderscores) { EXPECT_FALSE(IsValidInputEnumName("ADD__2D")); EXPECT_FALSE(IsValidInputEnumName("CONV__2D")); } TEST(TestConstantizeVariableName, TestWithValidInputNames) { EXPECT_EQ(ConstantizeVariableName("ADD"), "kTfLiteBuiltinAdd"); EXPECT_EQ(ConstantizeVariableName("CONV_2D"), "kTfLiteBuiltinConv2d"); EXPECT_EQ(ConstantizeVariableName("L2_POOL_2D"), "kTfLiteBuiltinL2Pool2d"); } }
299
#ifndef QUICHE_HTTP2_DECODER_PAYLOAD_DECODERS_UNKNOWN_PAYLOAD_DECODER_H_ #define QUICHE_HTTP2_DECODER_PAYLOAD_DECODERS_UNKNOWN_PAYLOAD_DECODER_H_ #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/decoder/frame_decoder_state.h" #include "quiche/common/platform/api/quiche_export.h" namespace http2 { class QUICHE_EXPORT UnknownPayloadDecoder { public: DecodeStatus StartDecodingPayload(FrameDecoderState* state, DecodeBuffer* db); DecodeStatus ResumeDecodingPayload(FrameDecoderState* state, DecodeBuffer* db); }; } #endif #include "quiche/http2/decoder/payload_decoders/unknown_payload_decoder.h" #include <stddef.h> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { DecodeStatus UnknownPayloadDecoder::StartDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { const Http2FrameHeader& frame_header = state->frame_header(); QUICHE_DVLOG(2) << "UnknownPayloadDecoder::StartDecodingPayload: " << frame_header; QUICHE_DCHECK(!IsSupportedHttp2FrameType(frame_header.type)) << frame_header; QUICHE_DCHECK_LE(db->Remaining(), frame_header.payload_length); state->InitializeRemainders(); state->listener()->OnUnknownStart(frame_header); return ResumeDecodingPayload(state, db); } DecodeStatus UnknownPayloadDecoder::ResumeDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "UnknownPayloadDecoder::ResumeDecodingPayload " << "remaining_payload=" << state->remaining_payload() << "; db->Remaining=" << db->Remaining(); QUICHE_DCHECK(!IsSupportedHttp2FrameType(state->frame_header().type)) << state->frame_header(); QUICHE_DCHECK_LE(state->remaining_payload(), state->frame_header().payload_length); QUICHE_DCHECK_LE(db->Remaining(), state->remaining_payload()); size_t avail = db->Remaining(); if (avail > 0) { state->listener()->OnUnknownPayload(db->cursor(), avail); db->AdvanceCursor(avail); state->ConsumePayload(avail); } if (state->remaining_payload() == 0) { state->listener()->OnUnknownEnd(); return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; } }
#include "quiche/http2/decoder/payload_decoders/unknown_payload_decoder.h" #include <stddef.h> #include <string> #include <type_traits> #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/http2/test_tools/frame_parts.h" #include "quiche/http2/test_tools/frame_parts_collector.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/payload_decoder_base_test_util.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { Http2FrameType g_unknown_frame_type; } class UnknownPayloadDecoderPeer { public: static Http2FrameType FrameType() { return g_unknown_frame_type; } static constexpr uint8_t FlagsAffectingPayloadDecoding() { return 0; } }; namespace { struct Listener : public FramePartsCollector { void OnUnknownStart(const Http2FrameHeader& header) override { QUICHE_VLOG(1) << "OnUnknownStart: " << header; StartFrame(header)->OnUnknownStart(header); } void OnUnknownPayload(const char* data, size_t len) override { QUICHE_VLOG(1) << "OnUnknownPayload: len=" << len; CurrentFrame()->OnUnknownPayload(data, len); } void OnUnknownEnd() override { QUICHE_VLOG(1) << "OnUnknownEnd"; EndFrame()->OnUnknownEnd(); } }; constexpr bool SupportedFrameType = false; class UnknownPayloadDecoderTest : public AbstractPayloadDecoderTest<UnknownPayloadDecoder, UnknownPayloadDecoderPeer, Listener, SupportedFrameType>, public ::testing::WithParamInterface<uint32_t> { protected: UnknownPayloadDecoderTest() : length_(GetParam()) { QUICHE_VLOG(1) << "################ length_=" << length_ << " ################"; do { g_unknown_frame_type = static_cast<Http2FrameType>(Random().Rand8()); } while (IsSupportedHttp2FrameType(g_unknown_frame_type)); } const uint32_t length_; }; INSTANTIATE_TEST_SUITE_P(VariousLengths, UnknownPayloadDecoderTest, ::testing::Values(0, 1, 2, 3, 255, 256)); TEST_P(UnknownPayloadDecoderTest, ValidLength) { std::string unknown_payload = Random().RandString(length_); Http2FrameHeader frame_header(length_, g_unknown_frame_type, Random().Rand8(), RandStreamId()); set_frame_header(frame_header); FrameParts expected(frame_header, unknown_payload); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(unknown_payload, expected)); } } } }