Norod78 commited on
Commit
22722be
1 Parent(s): fc4ed9b

Testing ip-adapter-face-full-v15

Browse files
.gitattributes CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
+ shape_predictor_5_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
crop_head_dlib5.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import dlib
3
+ import numpy as np
4
+ from PIL import Image, ImageOps
5
+
6
+ #https://gist.github.com/Norod/757e63802b0b28fbdab9d98b2e646ac2
7
+
8
+ MODEL_PATH = "shape_predictor_5_face_landmarks.dat" # You need to download this file from http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2
9
+ detector = dlib.get_frontal_face_detector() # Initialize dlib's face detector model
10
+
11
+ def get_face_landmarks(image_path):
12
+ # Load the image
13
+ image = cv2.imread(image_path)
14
+ try:
15
+ image = ImageOps.exif_transpose(image)
16
+ except:
17
+ print("exif problem, not rotating")
18
+
19
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
20
+
21
+ # Initialize dlib's facial landmarks predictor
22
+ predictor = dlib.shape_predictor("shape_predictor_5_face_landmarks.dat")
23
+
24
+ # Detect faces in the image
25
+ faces = detector(gray)
26
+
27
+ if len(faces) > 0:
28
+ # Assume the first face is the target, you can modify this based on your requirements
29
+ shape = predictor(gray, faces[0])
30
+ landmarks = np.array([[p.x, p.y] for p in shape.parts()])
31
+ return landmarks
32
+ else:
33
+ return None
34
+
35
+ def calculate_roll_and_yaw(landmarks):
36
+ # Calculate the roll angle using the angle between the eyes
37
+ roll_angle = np.degrees(np.arctan2(landmarks[1, 1] - landmarks[0, 1], landmarks[1, 0] - landmarks[0, 0]))
38
+
39
+ # Calculate the yaw angle using the angle between the eyes and the tip of the nose
40
+ yaw_angle = np.degrees(np.arctan2(landmarks[1, 1] - landmarks[2, 1], landmarks[1, 0] - landmarks[2, 0]))
41
+
42
+ return roll_angle, yaw_angle
43
+
44
+ def detect_and_crop_head(input_image, factor=3.0):
45
+ # Get facial landmarks
46
+ landmarks = get_face_landmarks(input_image)
47
+
48
+ if landmarks is not None:
49
+ # Calculate the center of the face using the mean of the landmarks
50
+ center_x = int(np.mean(landmarks[:, 0]))
51
+ center_y = int(np.mean(landmarks[:, 1]))
52
+
53
+ # Calculate the size of the cropped region
54
+ size = int(max(np.max(landmarks[:, 0]) - np.min(landmarks[:, 0]),
55
+ np.max(landmarks[:, 1]) - np.min(landmarks[:, 1])) * factor)
56
+
57
+ # Calculate the new coordinates for a 1:1 aspect ratio
58
+ x_new = max(0, center_x - size // 2)
59
+ y_new = max(0, center_y - size // 2)
60
+
61
+ # Calculate roll and yaw angles
62
+ roll_angle, yaw_angle = calculate_roll_and_yaw(landmarks)
63
+
64
+ # Adjust the center coordinates based on the yaw and roll angles
65
+ shift_x = int(size * 0.4 * np.sin(np.radians(yaw_angle)))
66
+ shift_y = int(size * 0.4 * np.sin(np.radians(roll_angle)))
67
+
68
+ #print(f'Roll angle: {roll_angle:.2f}, Yaw angle: {yaw_angle:.2f} shift_x: {shift_x}, shift_y: {shift_y}')
69
+
70
+ center_x += shift_x
71
+ center_y += shift_y
72
+
73
+ # Calculate the new coordinates for a 1:1 aspect ratio
74
+ x_new = max(0, center_x - size // 2)
75
+ y_new = max(0, center_y - size // 2)
76
+
77
+ # Read the input image using PIL
78
+ image = Image.open(input_image)
79
+
80
+ # Crop the head region with a 1:1 aspect ratio
81
+ cropped_head = np.array(image.crop((x_new, y_new, x_new + size, y_new + size)))
82
+
83
+ # Convert the cropped head back to PIL format
84
+ cropped_head_pil = Image.fromarray(cropped_head)
85
+
86
+ # Return the cropped head image
87
+ return cropped_head_pil
88
+ else:
89
+ return None
90
+
91
+ if __name__ == '__main__':
92
+ input_image_path = 'input.jpg'
93
+ output_image_path = 'output.jpg'
94
+
95
+ # Detect and crop the head
96
+ cropped_head = detect_and_crop_head(input_image_path, factor=3.0)
97
+
98
+ # Save the cropped head image
99
+ cropped_head.save(output_image_path)
ip-adapter-face-full-v15.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
shape_predictor_5_face_landmarks.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b1e9804792707d3a405c2c16a80a20269e6675021f64a41d30fffafbc41888
3
+ size 9150489