repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
alexjc/pylearn2
pylearn2/train_extensions/plots.py
34
9617
""" Plot monitoring extensions while training. """ __authors__ = "Laurent Dinh" __copyright__ = "Copyright 2014, Universite de Montreal" __credits__ = ["Laurent Dinh"] __license__ = "3-clause BSD" __maintainer__ = "Laurent Dinh" __email__ = "dinhlaur@iro" import logging import os import os.path import stat import numpy np = numpy from pylearn2.train_extensions import TrainExtension from theano.compat.six.moves import xrange from pylearn2.utils import as_floatX, wraps if os.getenv('DISPLAY') is None: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import warnings log = logging.getLogger(__name__) def make_readable(fn): """ Make a file readable by all. Practical when the plot is in your public_html. Parameters ---------- fn : str Filename you wish to make public readable. """ st = os.stat(fn) # Create the desired permission st_mode = st.st_mode read_all = stat.S_IRUSR read_all |= stat.S_IRGRP read_all |= stat.S_IROTH # Set the permission os.chmod(fn, st_mode | read_all) def get_best_layout(n_plots): """ Find the best basic layout for a given number of plots. Minimize the perimeter with a minimum area (``n_plots``) for an integer rectangle. Parameters ---------- n_plots : int The number of plots to display Returns ------- n_rows : int Number of rows in the layout n_cols : Number of columns in the layout """ assert n_plots > 0 # Initialize the layout n_rows = 1 n_cols = np.ceil(n_plots*1./n_rows) n_cols = int(n_cols) half_perimeter = n_cols + 1 # Limit the range of possible layouts max_row = np.sqrt(n_plots) max_row = np.round(max_row) max_row = int(max_row) for l in xrange(1, max_row + 1): width = np.ceil(n_plots*1./l) width = int(width) if half_perimeter >= (width + l): n_rows = l n_cols = np.ceil(n_plots*1./n_rows) n_cols = int(n_cols) half_perimeter = n_rows + n_cols return n_rows, n_cols def create_colors(n_colors): """ Create an array of n_colors Parameters ---------- n_colors : int The number of colors to create Returns ------- colors_rgb : np.array An array of shape (n_colors, 3) in RGB format """ # Create the list of color hue colors_hue = np.arange(n_colors) colors_hue = as_floatX(colors_hue) colors_hue *= 1./n_colors # Set the color in HSV format colors_hsv = np.ones((n_colors, 3)) colors_hsv[:, 2] *= .75 colors_hsv[:, 0] = colors_hue # Put in a matplotlib-friendly format colors_hsv = colors_hsv.reshape((1, )+colors_hsv.shape) # Convert to RGB colors_rgb = matplotlib.colors.hsv_to_rgb(colors_hsv) colors_rgb = colors_rgb[0] return colors_rgb class Plotter(object): """ Base class for plotting. Parameters ---------- freq : int, optional The number of epochs before producing plot. Default is None (set by the PlotManager). """ def __init__(self, freq=None): self.filenames = [] self.freq = freq def setup(self, model, dataset, algorithm): """ Setup the plotters. Parameters ---------- model : pylearn2.models.Model The model trained dataset : pylearn2.datasets.Dataset The dataset on which the model is trained algorithm : pylearn2.training_algorithms.TrainingAlgorithm The algorithm the model is trained with """ raise NotImplementedError(str(type(self))+" does not implement setup.") def plot(self): """ The method that draw and save the desired figure, which depend on the object and its attribute. This method is called by the PlotManager object as frequently as the `freq` attribute defines it. """ raise NotImplementedError(str(type(self))+" does not implement plot.") def set_permissions(self, public): """ Make the produced files readable by everyone. Parameters ---------- public : bool If public is True, then the associated files are readable by everyone. """ if public: for filename in self.filenames: make_readable(filename) class Plots(Plotter): """ Plot different monitors. Parameters ---------- channel_names : list of str List of monitor channels to plot save_path : str Filename of the plot file share : float, optional The percentage of epochs shown. Default is .8 (80%) per_second : bool, optional Set if the x-axis is in seconds, in epochs otherwise. Default is False. kwargs : dict Passed on to the superclass. """ def __init__(self, channel_names, save_path, share=.8, per_second=False, ** kwargs): super(Plots, self).__init__(** kwargs) if not save_path.endswith('.png'): save_path += '.png' self.save_path = save_path self.filenames = [self.save_path] self.channel_names = channel_names self.n_colors = len(self.channel_names) self.colors_rgb = create_colors(self.n_colors) self.share = share self.per_second = per_second @wraps(Plotter.setup) def setup(self, model, dataset, algorithm): self.model = model @wraps(Plotter.plot) def plot(self): monitor = self.model.monitor channels = monitor.channels channel_names = self.channel_names # Accumulate the plots plots = np.array(channels[channel_names[0]].val_record) plots = plots.reshape((1, plots.shape[0])) plots = plots.repeat(self.n_colors, axis=0) for i, channel_name in enumerate(channel_names[1:]): plots[i+1] = np.array(channels[channel_name].val_record) # Keep the relevant part n_min = plots.shape[1] n_min -= int(np.ceil(plots.shape[1] * self.share)) plots = plots[:, n_min:] # Get the x axis x = np.arange(plots.shape[1]) x += n_min # Put in seconds if needed if self.per_second: seconds = channels['training_seconds_this_epoch'].val_record seconds = np.array(seconds) seconds = seconds.cumsum() x = seconds[x] # Plot the quantities plt.figure() for i in xrange(self.n_colors): plt.plot(x, plots[i], color=self.colors_rgb[i], alpha=.5) plt.legend(self.channel_names) plt.xlim(x[0], x[-1]) plt.ylim(plots.min(), plots.max()) plt.axis('on') plt.savefig(self.save_path) plt.close() class PlotManager(TrainExtension): """ Class to manage the Plotter classes. Parameters ---------- plots : list of pylearn2.train_extensions.Plotter List of plots to make during training freq : int The default number of epochs before producing plot. public : bool Whether the files are made public or not. Default is true. html_path : str The path where the HTML page is saved. The associated files should be in the same folder. Default is None, then there is no HTML page. """ def __init__(self, plots, freq, public=True, html_path=None): self.plots = plots self.freq = freq # Set a default freq for plot in self.plots: if plot.freq is None: plot.freq = self.freq self.public = public self.html_path = html_path self.filenames = [] self.count = 0 @wraps(TrainExtension.setup) def setup(self, model, dataset, algorithm): for plot in self.plots: plot.setup(model, dataset, algorithm) for filename in plot.filenames: warn = ("/home/www-etud/" in filename) warn |= (os.environ['HOME'] in filename) warn &= ('umontreal' in os.environ['HOSTNAME']) if warn: warnings.warn('YOU MIGHT RUIN THE NFS' 'BY SAVING IN THIS PATH !') self.filenames.append(filename) if self.html_path is not None: header = ('<?xml version="1.0" encoding="UTF-8"?>\n' '<html xmlns="http://www.w3.org/1999/xhtml"' 'xml:lang="en">\n' '\t<body>\n') footer = ('\t</body>\n' '</html>') body = '' for filename in self.filenames: basename = os.path.basename(filename) body += '<img src = "' + basename + '"><br/>\n' with open(self.html_path, 'w') as f: f.write(header + body + footer) f.close() if self.public: make_readable(self.html_path) @wraps(TrainExtension.on_monitor) def on_monitor(self, model, dataset, algorithm): self.count += 1 for plot in self.plots: if self.count % plot.freq == 0: try: plot.plot() plot.set_permissions(self.public) except Exception as e: warnings.warn(str(plot) + ' has failed.\n' + str(e))
bsd-3-clause
arianna-bis/glass-box-nmt
plots/languageplots.py
1
5684
""" ======== Barchart ======== A bar plot with errorbars and height labels on individual bars """ import numpy as np import matplotlib.pyplot as plt base = {} baseStd = {} acc = {} acc['embed'] = {} acc['lstmo'] = {} std = {} std['embed'] = {} std['lstmo'] = {} # LANGS: FR-IT, FR-DE, FR-EN base['gen'] = 0.5030 base['num'] = 0.6968 base['Per'] = 0.6141 base['Ten'] = 0.7629 base['Moo'] = 0.2450 base['genITM'] = base['gen'] base['avgAllFeats'] = np.mean([base['gen'],base['num'],base['Per'],base['Ten'],base['Moo']]) base['genNumTen'] = np.mean([base['gen'],base['num'],base['Ten']]) baseStd['gen'] = 0.0043 baseStd['num'] = 0.0073 baseStd['Per'] = 0.0392 baseStd['Ten'] = 0.0238 baseStd['Moo'] = 0.0504 baseStd['genITM'] = baseStd['gen'] #baseStd['avgAllFeats'] = np.mean([baseStd['gen'],baseStd['num'],baseStd['Per'],baseStd['Ten'],baseStd['Moo']]) baseStd['avgAllFeats'] = 0 ## HACK! baseStd['genNumTen'] = 0 ## HACK! #gender acc['embed']['gen'] = (0.5804, 0.5304, 0.5085) std['embed']['gen'] = (0.0272, 0.0321, 0.0357) #gender with itNoMasc (2nd lang) acc['embed']['genITM'] = (0.5804, 0.5196, 0.5304, 0.5085) std['embed']['genITM'] = (0.0272, 0.0226, 0.0321, 0.0357) # number acc['embed']['num'] = (0.6804, 0.6623, 0.6563) std['embed']['num'] = (0.0131, 0.0106, 0.0184) # person acc['embed']['Per'] = (0.5648, 0.5789, 0.6017) std['embed']['Per'] = (0.0984, 0.0493, 0.0405) # tense acc['embed']['Ten'] = (0.7219, 0.7090, 0.7483) std['embed']['Ten'] = (0.0051, 0.0466, 0.0073) # mood acc['embed']['Moo'] = (0.4752,0.4515, 0.4908) std['embed']['Moo'] = (0.0370, 0.0640, 0.0250) # # all features averaged layer = 'embed' acc_array = [] for L in range(3): acc_array.append(np.mean([acc[layer]['gen'][L],acc[layer]['num'][L],acc[layer]['Per'][L],acc[layer]['Ten'][L],acc[layer]['Moo'][L]])) acc[layer]['avgAllFeats'] = acc_array print(acc[layer]['avgAllFeats']) acc_array = [] for L in range(3): acc_array.append(np.mean([acc[layer]['gen'][L],acc[layer]['num'][L],acc[layer]['Ten'][L]])) acc[layer]['genNumTen'] = acc_array print(acc[layer]['genNumTen']) # std_array = [] # for L in range(3): # std_array.append(np.mean([std[layer]['gen'][L],std[layer]['num'][L],std[layer]['Per'][L],std[layer]['Ten'][L],std[layer]['Moo'][L]])) # std[layer]['avgAllFeats'] = std_array #print(std[layer]['avgAllFeats']) std[layer]['avgAllFeats'] = (0,0,0) # HACK! std[layer]['genNumTen'] = (0,0,0) # HACK! #gender acc['lstmo']['gen'] = (0.8045,0.6505,0.5949) std['lstmo']['gen'] = (0.0094,0.0228,0.0106) #gender with itNoMasc (2nd lang) acc['lstmo']['genITM'] = (0.8045,0.6191,0.6505,0.5949) std['lstmo']['genITM'] = (0.0094,0.0175,0.0228,0.0106) #number acc['lstmo']['num'] = (0.9413, 0.9463, 0.9278) std['lstmo']['num'] = (0.0016,0.0036, 0.0050) #person acc['lstmo']['Per'] = (0.6777, 0.6727, 0.6888) std['lstmo']['Per'] = (0.0329, 0.0297, 0.0220) # tense acc['lstmo']['Ten'] = (0.9019, 0.8880, 0.8897) std['lstmo']['Ten'] = (0.0080, 0.0086, 0.0169) #mood acc['lstmo']['Moo'] = (0.8182, 0.8070, 0.8041) std['lstmo']['Moo'] = (0.0067, 0.0126, 0.0240) # # all features averaged layer = 'lstmo' acc_array = [] for L in range(3): acc_array.append(np.mean([acc[layer]['gen'][L],acc[layer]['num'][L],acc[layer]['Per'][L],acc[layer]['Ten'][L],acc[layer]['Moo'][L]])) acc[layer]['avgAllFeats'] = acc_array print(acc[layer]['avgAllFeats']) acc_array = [] for L in range(3): acc_array.append(np.mean([acc[layer]['gen'][L],acc[layer]['num'][L],acc[layer]['Ten'][L]])) acc[layer]['genNumTen'] = acc_array print(acc[layer]['genNumTen']) # std_array = [] # for L in range(3): # std_array.append(np.mean([std[layer]['gen'][L],std[layer]['num'][L],std[layer]['Per'][L],std[layer]['Ten'][L],std[layer]['Moo'][L]])) # std[layer]['avgAllFeats'] = std_array #print(std[layer]['avgAllFeats']) std[layer]['avgAllFeats'] = (0,0,0) # HACK! std[layer]['genNumTen'] = (0,0,0) # HACK! ############# ############# feats = ['gen','num','Per','Ten','Moo','avgAllFeats','genITM','genNumTen'] featNames = ['Gender','Number','Person','Tense','Mood','All 5 Features','Gender', 'All Features'] #for i in range(6): for i in range(7,8): # only genNumTen feat = feats[i] featName = featNames[i] N = 3 # for: baseline, embedding, lstm-state if feat == 'genITM': N = 4 ind = np.arange(N) # the x locations for the groups width = 0.3 # the width of the bars fig, ax = plt.subplots() colors1 = ('#9999FF') colors2 = ('#0000FF') #if feat == 'genITM': # use diff color for Fr-ITnoMasc # colors1 = ('#9999FF','#85e085','#9999FF','#9999FF') # colors2 = ('#0000FF','#248F24','#0000FF','#0000FF') rects0 = ax.bar(0.5*width, base[feat], width, color='#FF9900', yerr=baseStd[feat]) rects1 = ax.bar(2.5*width+ind+0.5*width, acc['embed'][feat], width, color=colors1, yerr=std['embed'][feat]) rects2 = ax.bar(2.5*width+ind+0.5*width + width, acc['lstmo'][feat], width, color=colors2, yerr=std['lstmo'][feat]) # add some text for labels, title and axes ticks ax.set_ylabel('Prediction Accuracy',size=12) ax.set_title(featName + ' prediction',size=16) xticks = (np.arange(N+1) + 0.05) xticks[0] = width/2 #ax.set_xticks(width/2, np.arange(N) + width / 2) ax.set_xticks(xticks) ax.set_xticklabels(('majClass', 'FR-IT', 'FR-DE', 'FR-EN')) if feat == 'genITM': ax.set_xticklabels(('majClass', 'FR-IT', 'FR-IT*', 'FR-DE', 'FR-EN')) ax.set_ylim(0.2,1) ax.legend((rects1[0], rects2[0]), ('Word embedding', 'LSTM state')) filename = feat + '_byLang.pdf' plt.savefig(filename, bbox_inches='tight') #plt.show()
mit
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/sklearn/datasets/tests/test_lfw.py
55
7877
"""This test for the LFW require medium-size data downloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
mit
ottermegazord/ottermegazord.github.io
onexi/data_processing/s07_analyzePred.py
1
4074
import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os import pdb import sys plt.style.use("ggplot") os.chdir("..") ipath = "./Data/Final_Data/" ifile1 = "Final_Data_Aug_Pred" ifile2 = "Final_Data" opath = "./Data/Final_Data/Neighborhoods/" imgpath = "./Plots/Neighborhood_TS/" ext = ".csv" input_var = raw_input("Run mode (analysis/plot): ") if input_var == "analysis": df0 = pd.read_csv(ipath + ifile1 + ext, low_memory=False) df1 = pd.read_csv(ipath + ifile2 + ext, low_memory=False) df = pd.concat([df0, df1], axis=1) df.columns = ['t','x','y','PRED_REG','PRED_NNET','TIME','X','Y','TRUE','NEIGHBORHOOD'] df = df[['TIME', 'X', 'Y', 'NEIGHBORHOOD', 'TRUE', 'PRED_REG', 'PRED_NNET']] df_2017 = df[df["TIME"] == 2017.0].reset_index(drop=True) known_sample = len(df[df["TIME"] <= 2017.0]) df_2018 = df.ix[[df.index[i] for i in range(known_sample, known_sample + len(df_2017))]] df_2019 = df.ix[[df.index[i] for i in range(known_sample + len(df_2017), known_sample + 2*len(df_2017))]] df_2020 = df.ix[[df.index[i] for i in range(known_sample + 2*len(df_2017), known_sample + 3*len(df_2017))]] df_2018["TIME"], df_2019["TIME"], df_2020["TIME"] = 2018.0, 2019.0, 2020.0 df_2018 = df_2018[["TIME", "PRED_REG", "PRED_NNET"]].reset_index(drop=True) df_2018 = pd.concat([df_2018, df_2017], axis=1) df_2018.columns = ["TIME", "PRED_REG", "PRED_NNET", "t", "X", "Y", "NEIGHBORHOOD", "TRUE", "p1", "p2"] df_2018 = df_2018[["TIME", "X", "Y", "NEIGHBORHOOD", "TRUE", "PRED_REG", "PRED_NNET"]] df_2018["TRUE"] = 0 df_2019 = df_2019[["TIME", "PRED_REG", "PRED_NNET"]].reset_index(drop=True) df_2019 = pd.concat([df_2019, df_2017], axis=1) df_2019.columns = ["TIME", "PRED_REG", "PRED_NNET", "t", "X", "Y", "NEIGHBORHOOD", "TRUE", "p1", "p2"] df_2019 = df_2019[["TIME", "X", "Y", "NEIGHBORHOOD", "TRUE", "PRED_REG", "PRED_NNET"]] df_2019["TRUE"] = 0 df_2020 = df_2020[["TIME", "PRED_REG", "PRED_NNET"]].reset_index(drop=True) df_2020 = pd.concat([df_2020, df_2017], axis=1) df_2020.columns = ["TIME", "PRED_REG", "PRED_NNET", "t", "X", "Y", "NEIGHBORHOOD", "TRUE", "p1", "p2"] df_2020 = df_2020[["TIME", "X", "Y", "NEIGHBORHOOD", "TRUE", "PRED_REG", "PRED_NNET"]] df_2020["TRUE"] = 0 df_known = df[df["TIME"] <= 2017.0] df = df_known.append([df_2018, df_2019, df_2020]).reset_index(drop=True) df['TIME'] = df['TIME'].astype(np.int64) df.to_csv(ipath + "MapData_Full.csv", index=False) df2 = df.groupby(["TIME", "NEIGHBORHOOD"]).mean().unstack() time = df["TIME"].unique().tolist() nhood = df["NEIGHBORHOOD"].unique().tolist() nhood = [x for x in nhood if str(x) != 'nan'] for n in nhood: mean_true, mean_reg, mean_nnet = [], [], [] for t in time: mean_true.append(df2.loc[t, ("TRUE", n)]) mean_reg.append(df2.loc[t, ("PRED_REG", n)]) mean_nnet.append(df2.loc[t, ("PRED_NNET", n)]) out_df = pd.DataFrame({'TIME': time, 'MEAN_TRUE': mean_true, 'MEAN_REG': mean_reg, 'MEAN_NNET': mean_nnet}) out_df.to_csv(opath + n + ext, index=False) elif input_var == "plot": def makePlot(x, true, reg, nnet, xlabel, ylabel, title, filename): N = 17 ind = np.arange(N) width = 0.25 plt.bar(ind - width, true, width=0.25, align="center", color='green', label="True Value") plt.bar(ind, reg, width=0.25, align="center", color="blue", label="Predicted Value (Regression)") plt.bar(ind + width, nnet, width=0.25, align="center", color="red", label="Predicted Value (Neural Net)") plt.ylabel(ylabel) plt.xlabel(xlabel) plt.title(title) plt.xticks(ind + width, map(int, x), fontsize=6) plt.legend(loc="best") plt.savefig(filename, bbox_inches="tight", dpi=300) plt.close() nhood_files = os.listdir(opath) for f in nhood_files: nhood = f[:-4] df = pd.read_csv(opath + f, low_memory=False) df["YEAR"] = df["TIME"] makePlot(x=df["YEAR"].tolist(), true=df["MEAN_TRUE"].tolist(), reg=df["MEAN_REG"].tolist(), nnet=df["MEAN_NNET"].tolist(), ylabel="AVG LAND VALUE ($/sqft)", xlabel="TIME (year)", title=nhood, filename=imgpath + nhood +".png")
mit
cjayb/mne-python
examples/inverse/plot_mixed_source_space_inverse.py
2
6574
""" =================================================================== Compute MNE inverse solution on evoked data in a mixed source space =================================================================== Create a mixed source space and compute an MNE inverse solution on an evoked dataset. """ # Author: Annalisa Pascarella <[email protected]> # # License: BSD (3-clause) import os.path as op import matplotlib.pyplot as plt from nilearn import plotting import mne from mne.minimum_norm import make_inverse_operator, apply_inverse # Set dir data_path = mne.datasets.sample.data_path() subject = 'sample' data_dir = op.join(data_path, 'MEG', subject) subjects_dir = op.join(data_path, 'subjects') bem_dir = op.join(subjects_dir, subject, 'bem') # Set file names fname_mixed_src = op.join(bem_dir, '%s-oct-6-mixed-src.fif' % subject) fname_aseg = op.join(subjects_dir, subject, 'mri', 'aseg.mgz') fname_model = op.join(bem_dir, '%s-5120-bem.fif' % subject) fname_bem = op.join(bem_dir, '%s-5120-bem-sol.fif' % subject) fname_evoked = data_dir + '/sample_audvis-ave.fif' fname_trans = data_dir + '/sample_audvis_raw-trans.fif' fname_fwd = data_dir + '/sample_audvis-meg-oct-6-mixed-fwd.fif' fname_cov = data_dir + '/sample_audvis-shrunk-cov.fif' ############################################################################### # Set up our source space # ----------------------- # List substructures we are interested in. We select only the # sub structures we want to include in the source space: labels_vol = ['Left-Amygdala', 'Left-Thalamus-Proper', 'Left-Cerebellum-Cortex', 'Brain-Stem', 'Right-Amygdala', 'Right-Thalamus-Proper', 'Right-Cerebellum-Cortex'] ############################################################################### # Get a surface-based source space, here with few source points for speed # in this demonstration, in general you should use oct6 spacing! src = mne.setup_source_space(subject, spacing='oct5', add_dist=False, subjects_dir=subjects_dir) ############################################################################### # Now we create a mixed src space by adding the volume regions specified in the # list labels_vol. First, read the aseg file and the source space bounds # using the inner skull surface (here using 10mm spacing to save time, # we recommend something smaller like 5.0 in actual analyses): vol_src = mne.setup_volume_source_space( subject, mri=fname_aseg, pos=10.0, bem=fname_model, volume_label=labels_vol, subjects_dir=subjects_dir, add_interpolator=False, # just for speed, usually this should be True verbose=True) # Generate the mixed source space src += vol_src # Visualize the source space. src.plot(subjects_dir=subjects_dir) n = sum(src[i]['nuse'] for i in range(len(src))) print('the src space contains %d spaces and %d points' % (len(src), n)) ############################################################################### # Viewing the source space # ------------------------ # We could write the mixed source space with:: # # >>> write_source_spaces(fname_mixed_src, src, overwrite=True) # # We can also export source positions to nifti file and visualize it again: nii_fname = op.join(bem_dir, '%s-mixed-src.nii' % subject) src.export_volume(nii_fname, mri_resolution=True, overwrite=True) plotting.plot_img(nii_fname, cmap='nipy_spectral') ############################################################################### # Compute the fwd matrix # ---------------------- fwd = mne.make_forward_solution( fname_evoked, fname_trans, src, fname_bem, mindist=5.0, # ignore sources<=5mm from innerskull meg=True, eeg=False, n_jobs=1) leadfield = fwd['sol']['data'] print("Leadfield size : %d sensors x %d dipoles" % leadfield.shape) src_fwd = fwd['src'] n = sum(src_fwd[i]['nuse'] for i in range(len(src_fwd))) print('the fwd src space contains %d spaces and %d points' % (len(src_fwd), n)) # Load data condition = 'Left Auditory' evoked = mne.read_evokeds(fname_evoked, condition=condition, baseline=(None, 0)) noise_cov = mne.read_cov(fname_cov) ############################################################################### # Compute inverse solution # ------------------------ snr = 3.0 # use smaller SNR for raw data inv_method = 'dSPM' # sLORETA, MNE, dSPM parc = 'aparc' # the parcellation to use, e.g., 'aparc' 'aparc.a2009s' loose = dict(surface=0.2, volume=1.) lambda2 = 1.0 / snr ** 2 inverse_operator = make_inverse_operator( evoked.info, fwd, noise_cov, depth=None, loose=loose, verbose=True) stc = apply_inverse(evoked, inverse_operator, lambda2, inv_method, pick_ori=None) src = inverse_operator['src'] ############################################################################### # Plot the mixed source estimate # ------------------------------ # sphinx_gallery_thumbnail_number = 3 initial_time = 0.1 stc_vec = apply_inverse(evoked, inverse_operator, lambda2, inv_method, pick_ori='vector') brain = stc_vec.plot( hemi='both', src=inverse_operator['src'], views='coronal', initial_time=initial_time, subjects_dir=subjects_dir) ############################################################################### # Plot the surface # ---------------- brain = stc.surface().plot(initial_time=initial_time, subjects_dir=subjects_dir) ############################################################################### # Plot the volume # ---------------- fig = stc.volume().plot(initial_time=initial_time, src=src, subjects_dir=subjects_dir) ############################################################################### # Process labels # -------------- # Average the source estimates within each label of the cortical parcellation # and each sub structure contained in the src space # Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi labels_parc = mne.read_labels_from_annot( subject, parc=parc, subjects_dir=subjects_dir) label_ts = mne.extract_label_time_course( [stc], labels_parc, src, mode='mean', allow_empty=True) # plot the times series of 2 labels fig, axes = plt.subplots(1) axes.plot(1e3 * stc.times, label_ts[0][0, :], 'k', label='bankssts-lh') axes.plot(1e3 * stc.times, label_ts[0][71, :].T, 'r', label='Brain-stem') axes.set(xlabel='Time (ms)', ylabel='MNE current (nAm)') axes.legend() mne.viz.tight_layout()
bsd-3-clause
blechta/dolfin-tape
dolfintape/demo_problems/pLaplaceAdaptiveSolver.py
1
9447
# Copyright (C) 2016 Jan Blechta # # This file is part of dolfin-tape. # # dolfin-tape is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # dolfin-tape is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with dolfin-tape. If not, see <http://www.gnu.org/licenses/>. from dolfin import * import ufl import matplotlib.pyplot as plt import numpy as np from itertools import chain from dolfintape import FluxReconstructor from dolfintape.utils import logn from dolfintape.cell_diameter import CellDiameters from dolfintape.poincare import poincare_const from dolfintape.sobolev_norm import sobolev_norm __all__ = ['solve_p_laplace_adaptive', 'pLapLaplaceAdaptiveSolver', 'geometric_progression'] def solve_p_laplace_adaptive(p, criterion, V, f, df, u_ex=None, eps0=1.0, eps_decrease=0.1**0.5, solver_parameters=None): """Approximate p-Laplace problem with rhs of the form (f, v) - (df, grad(v)) with test function v on initial space V. Compute adaptively in regularization parameter and refine mesh adaptively until criterion = lambda u_h, Est_h, Est_eps, Est_tot, Est_up: bool returns True. Return u.""" if isinstance(p, Constant): q = Constant(float(p)/(float(p)-1.0)) else: q = p/(p-1) eps = geometric_progression(eps0, eps_decrease) solver = pLaplaceAdaptiveSolver(p, q, f, df, u_ex) return solver.solve(V, criterion, eps, solver_parameters) def geometric_progression(a0, q): """Return function returning generator taking values of geometric progression: a0, a0*q, a0*q**2, a0*q**3, ... """ def generator(): _a0 = a0 while True: yield _a0 _a0 *= q return generator class pLaplaceAdaptiveSolver(object): """Adaptive solver for p-Laplace problem with spatial adaptivity and adaptivity in regularization parameter. """ def __init__(self, p, q, f, df, exact_solution=None): """Adaptive solver for p-Laplace problem (q should be dual exponent q = p/(p-1)) with rhs of the form (f, v) - (df, grad(v)) with test function v. """ assert np.allclose(1.0/float(p) + 1.0/float(q), 1.0), \ "Expected conjugate Lebesgue exponents " \ "p, q (of type int, float, or Constatnt)!" self.p = p self.q = q self.f = f self.df = df self.u_ex = exact_solution self.boundary = CompiledSubDomain("on_boundary") def solve(self, V, criterion, eps, solver_parameters=None): """Start on initial function space V, refine adaptively mesh and regularization parameter provided by decreasing generator eps until criterion = lambda u_h, Est_h, Est_eps, Est_tot, Est_up: bool returns True. Return found approximation.""" p = float(self.p) u = Function(V) while True: logn(25, 'Adapting mesh (space dimension %s): ' % V.dim()) result = self._adapt_eps(criterion, u, eps, solver_parameters) u, est_h, est_eps, est_tot, Est_h, Est_eps, Est_tot, Est_up = result # Check convergence log(25, 'Estimators h, eps, tot, up: %s' % (result[4:],)) log(25, r'||\nabla u_h||_p^{p-1} = %s' % sobolev_norm(u, p)**(p-1.0)) if criterion(u, Est_h, Est_eps, Est_tot, Est_up): break # Refine mesh markers = self.estimator_to_markers(est_h, p/(p-1.0), fraction=0.5) log(25, 'Marked %s of %s cells for refinement' % (sum(markers), markers.mesh().num_cells())) adapt(V.mesh(), markers) mesh = V.mesh().child() adapt(u, mesh) u = u.child() V = u.function_space() return u def _solve(self, eps, u, reconstructor, P0, solver_parameters): """Find approximate solution with fixed eps and mesh. Use reconstructor to reconstruct the flux and estimate errors. """ p, q = self.p, self.q f, df = self.f, self.df boundary = self.boundary exact_solution = self.u_ex V = u.function_space() mesh = V.mesh() dx = Measure('dx', domain=mesh) eps = Constant(eps) # Problem formulation S = inner(grad(u), grad(u))**(p/2-1) * grad(u) + df S_eps = (eps + inner(grad(u), grad(u)))**(p/2-1) * grad(u) + df v = TestFunction(V) F_eps = ( inner(S_eps, grad(v)) - f*v ) * dx bc = DirichletBC(V, exact_solution if exact_solution else 0.0, boundary) # Solve solve(F_eps == 0, u, bc, solver_parameters=solver_parameters or {}) # Reconstruct flux q in H^q(div) s.t. # q ~ -S # div q ~ f Q = reconstructor.reconstruct(S, f).sub(0, deepcopy=False) # Compute error estimate using equilibrated stress reconstruction v = TestFunction(P0) h = CellDiameters(mesh) Cp = Constant(poincare_const(mesh.type(), p)) est0 = assemble(((Cp*h*(f-div(Q)))**2)**(0.5*q)*v*dx) est1 = assemble(inner(S_eps+Q, S_eps+Q)**(0.5*q)*v*dx) est2 = assemble(inner(S_eps-S, S_eps-S)**(0.5*q)*v*dx) q = float(q) est_h = est0.array()**(1.0/q) + est1.array()**(1.0/q) est_eps = est2.array()**(1.0/q) est_tot = est_h + est_eps Est_h = MPI.sum( mesh.mpi_comm(), (est_h **q).sum() )**(1.0/q) Est_eps = MPI.sum( mesh.mpi_comm(), (est_eps**q).sum() )**(1.0/q) Est_tot = MPI.sum( mesh.mpi_comm(), (est_tot**q).sum() )**(1.0/q) # Wrap arrays as cell functions est_h = self.vecarray_to_cellfunction(est_h, P0) est_eps = self.vecarray_to_cellfunction(est_eps, P0) est_tot = self.vecarray_to_cellfunction(est_tot, P0) # Upper estimate using exact solution if exact_solution: S_exact = ufl.replace(S, {u: exact_solution}) Est_up = sobolev_norm(S-S_exact, q, k=0) else: Est_up = None log(18, 'Error estimates: overall %g, discretization %g, ' 'regularization %g, estimate_up %s' % (Est_tot, Est_h, Est_eps, Est_up)) return u, est_h, est_eps, est_tot, Est_h, Est_eps, Est_tot, Est_up def _adapt_eps(self, criterion, u, epsilons, solver_parameters): """Solve adaptively in eps on fixed space (given by u) until criterion = lambda None, Est_h, Est_eps, Est_tot, Est_up: bool return True. Notice None supplied instead of u_h, thus not taking discretization error criterion into account. """ # Prepare flux reconstructor and P0 space log(25, 'Initializing flux reconstructor') reconstructor = FluxReconstructor(u.function_space().mesh(), u.function_space().ufl_element().degree()) P0 = FunctionSpace(u.function_space().mesh(), 'Discontinuous Lagrange', 0) # Adapt regularization logn(25, 'Adapting regularization') for eps in epsilons(): debug('Regularizing using eps = %s' % eps) logn(25, '.') result = self._solve(eps, u, reconstructor, P0, solver_parameters) u, est_h, est_eps, est_tot, Est_h, Est_eps, Est_tot, Est_up = result if criterion(None, Est_h, Est_eps, Est_tot, Est_up): break log(25, '') return result @staticmethod def estimator_to_markers(est, q, cf=None, fraction=0.5): """Take double CellFunction and convert it to bool cell function using Dorfler marking strategy. """ assert isinstance(est, CellFunctionDouble) if cf is None: cf = CellFunction('bool', est.mesh()) else: assert isinstance(cf, CellFunctionBool) # Take appropriate powers (operating on a copy) _est = MeshFunction('double', est) np.abs(_est.array(), out=_est.array()) _est.array()[:] **= q # Call Dorfler marking not_working_in_parallel("Dorfler marking strategy") dorfler_mark(cf, _est, fraction) return cf @staticmethod def vecarray_to_cellfunction(arr, space, cf=None): """Convert numpy array coming from function.vector().array() for P0 function to CellFunction, optionally existing cf. """ assert space.ufl_element().family() == "Discontinuous Lagrange" assert space.ufl_element().degree() == 0 assert space.ufl_element().value_shape() == () if cf is None: cf = CellFunction('double', space.mesh()) else: assert isinstance(cf, CellFunctionDouble) cell_dofs = space.dofmap().cell_dofs for c in cells(space.mesh()): cf[c] = arr[cell_dofs(c.index())[0]] return cf
gpl-3.0
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/dask/array/numpy_compat.py
6
13707
from __future__ import absolute_import, division, print_function from ..compatibility import builtins import numpy as np import warnings try: isclose = np.isclose except AttributeError: def isclose(*args, **kwargs): raise RuntimeError("You need numpy version 1.7 or greater to use " "isclose.") try: full = np.full except AttributeError: def full(shape, fill_value, dtype=None, order=None): """Our implementation of numpy.full because your numpy is old.""" if order is not None: raise NotImplementedError("`order` kwarg is not supported upgrade " "to Numpy 1.8 or greater for support.") return np.multiply(fill_value, np.ones(shape, dtype=dtype), dtype=dtype) # Taken from scikit-learn: # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/fixes.py#L84 try: with warnings.catch_warnings(): if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(1, .5, dtype='i8'), 2) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Divide with dtype doesn't work on Python 3 def divide(x1, x2, out=None, dtype=None): """Implementation of numpy.divide that works with dtype kwarg. Temporary compatibility fix for a bug in numpy's version. See https://github.com/numpy/numpy/issues/3484 for the relevant issue.""" x = np.divide(x1, x2, out) if dtype is not None: x = x.astype(dtype) return x # functions copied from numpy try: from numpy import broadcast_to, nanprod, nancumsum, nancumprod except ImportError: # pragma: no cover # these functions should arrive in numpy v1.10 to v1.12. Until then, # they are duplicated here # See https://github.com/numpy/numpy/blob/master/LICENSE.txt # or NUMPY_LICENSE.txt within this directory def _maybe_view_as_subclass(original_array, new_array): if type(original_array) is not type(new_array): # if input was an ndarray subclass and subclasses were OK, # then view the result as that subclass. new_array = new_array.view(type=type(original_array)) # Since we have done something akin to a view from original_array, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_array.__array_finalize__: new_array.__array_finalize__(original_array) return new_array def _broadcast_to(array, shape, subok, readonly): shape = tuple(shape) if np.iterable(shape) else (shape,) array = np.array(array, copy=False, subok=subok) if not shape and array.shape: raise ValueError('cannot broadcast a non-scalar to a scalar array') if builtins.any(size < 0 for size in shape): raise ValueError('all elements of broadcast shape must be non-' 'negative') broadcast = np.nditer( (array,), flags=['multi_index', 'zerosize_ok', 'refs_ok'], op_flags=['readonly'], itershape=shape, order='C').itviews[0] result = _maybe_view_as_subclass(array, broadcast) if not readonly and array.flags.writeable: result.flags.writeable = True return result def broadcast_to(array, shape, subok=False): """Broadcast an array to a new shape. Parameters ---------- array : array_like The array to broadcast. shape : tuple The shape of the desired array. subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). Returns ------- broadcast : array A readonly view on the original array with the given shape. It is typically not contiguous. Furthermore, more than one element of a broadcasted array may refer to a single memory location. Raises ------ ValueError If the array is not compatible with the new shape according to NumPy's broadcasting rules. Examples -------- >>> x = np.array([1, 2, 3]) >>> np.broadcast_to(x, (3, 3)) # doctest: +SKIP array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) """ return _broadcast_to(array, shape, subok=subok, readonly=True) def _replace_nan(a, val): """ If `a` is of inexact type, make a copy of `a`, replace NaNs with the `val` value, and return the copy together with a boolean mask marking the locations where NaNs were present. If `a` is not of inexact type, do nothing and return `a` together with a mask of None. Note that scalars will end up as array scalars, which is important for using the result as the value of the out argument in some operations. Parameters ---------- a : array-like Input array. val : float NaN values are set to val before doing the operation. Returns ------- y : ndarray If `a` is of inexact type, return a copy of `a` with the NaNs replaced by the fill value, otherwise return `a`. mask: {bool, None} If `a` is of inexact type, return a boolean mask marking locations of NaNs, otherwise return None. """ is_new = not isinstance(a, np.ndarray) if is_new: a = np.array(a) if not issubclass(a.dtype.type, np.inexact): return a, None if not is_new: # need copy a = np.array(a, subok=True) mask = np.isnan(a) np.copyto(a, val, where=mask) return a, mask def nanprod(a, axis=None, dtype=None, out=None, keepdims=0): """ Return the product of array elements over a given axis treating Not a Numbers (NaNs) as zero. One is returned for slices that are all-NaN or empty. .. versionadded:: 1.10.0 Parameters ---------- a : array_like Array containing numbers whose sum is desired. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which the product is computed. The default is to compute the product of the flattened array. dtype : data-type, optional The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of `a` is used. An exception is when `a` has an integer type with less precision than the platform (u)intp. In that case, the default will be either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact inputs, dtype must be inexact. out : ndarray, optional Alternate output array in which to place the result. The default is ``None``. If provided, it must have the same shape as the expected output, but the type will be cast if necessary. See `doc.ufuncs` for details. The casting of NaN to integer can yield unexpected results. keepdims : bool, optional If True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- y : ndarray or numpy scalar See Also -------- numpy.prod : Product across array propagating NaNs. isnan : Show which elements are NaN. Notes ----- Numpy integer arithmetic is modular. If the size of a product exceeds the size of an integer accumulator, its value will wrap around and the result will be incorrect. Specifying ``dtype=double`` can alleviate that problem. Examples -------- >>> np.nanprod(1) 1 >>> np.nanprod([1]) 1 >>> np.nanprod([1, np.nan]) 1.0 >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nanprod(a) 6.0 >>> np.nanprod(a, axis=0) array([ 3., 2.]) """ a, mask = _replace_nan(a, 1) return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def nancumsum(a, axis=None, dtype=None, out=None): """ Return the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are encountered and leading NaNs are replaced by zeros. Zeros are returned for slices that are all-NaN or empty. .. versionadded:: 1.12.0 Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- nancumsum : ndarray. A new array holding the result is returned unless `out` is specified, in which it is returned. The result has the same size as `a`, and the same shape as `a` if `axis` is not None or `a` is a 1-d array. See Also -------- numpy.cumsum : Cumulative sum across array propagating NaNs. isnan : Show which elements are NaN. Examples -------- >>> np.nancumsum(1) #doctest: +SKIP array([1]) >>> np.nancumsum([1]) #doctest: +SKIP array([1]) >>> np.nancumsum([1, np.nan]) #doctest: +SKIP array([ 1., 1.]) >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nancumsum(a) #doctest: +SKIP array([ 1., 3., 6., 6.]) >>> np.nancumsum(a, axis=0) #doctest: +SKIP array([[ 1., 2.], [ 4., 2.]]) >>> np.nancumsum(a, axis=1) #doctest: +SKIP array([[ 1., 3.], [ 3., 3.]]) """ a, mask = _replace_nan(a, 0) return np.cumsum(a, axis=axis, dtype=dtype, out=out) def nancumprod(a, axis=None, dtype=None, out=None): """ Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. The cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones. Ones are returned for slices that are all-NaN or empty. .. versionadded:: 1.12.0 Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative product is computed. By default the input is flattened. dtype : dtype, optional Type of the returned array, as well as of the accumulator in which the elements are multiplied. If *dtype* is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used instead. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type of the resulting values will be cast if necessary. Returns ------- nancumprod : ndarray A new array holding the result is returned unless `out` is specified, in which case it is returned. See Also -------- numpy.cumprod : Cumulative product across array propagating NaNs. isnan : Show which elements are NaN. Examples -------- >>> np.nancumprod(1) #doctest: +SKIP array([1]) >>> np.nancumprod([1]) #doctest: +SKIP array([1]) >>> np.nancumprod([1, np.nan]) #doctest: +SKIP array([ 1., 1.]) >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nancumprod(a) #doctest: +SKIP array([ 1., 2., 6., 6.]) >>> np.nancumprod(a, axis=0) #doctest: +SKIP array([[ 1., 2.], [ 3., 2.]]) >>> np.nancumprod(a, axis=1) #doctest: +SKIP array([[ 1., 2.], [ 3., 3.]]) """ a, mask = _replace_nan(a, 1) return np.cumprod(a, axis=axis, dtype=dtype, out=out)
mit
pnedunuri/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
marcusmueller/gnuradio
gr-fec/python/fec/polar/channel_construction_bec.py
7
8225
#!/usr/bin/env python # # Copyright 2015 Free Software Foundation, Inc. # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import numpy as np from . import helper_functions as hf def bec_channel(eta): ''' binary erasure channel (BEC) for each y e Y W(y|0) * W(y|1) = 0 or W(y|0) = W(y|1) transitions are 1 -> 1 or 0 -> 0 or {0, 1} -> ? (erased symbol) ''' # looks like BSC but should be interpreted differently. w = np.array((1 - eta, eta, 1 - eta), dtype=float) return w def odd_rec(iwn): return iwn ** 2 def even_rec(iwn): return 2 * iwn - iwn ** 2 def calc_one_recursion(iw0): iw1 = np.zeros(2 * len(iw0)) # double values for i in range(len(iw0)): # careful indices screw you because paper is '1' based :( iw1[2 * i] = odd_rec(iw0[i]) iw1[2 * i + 1] = even_rec(iw0[i]) return iw1 def calculate_bec_channel_capacities_loop(initial_channel, block_power): # compare [0, Arikan] eq. 6 iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_one_recursion(iw) return iw def calc_vector_capacities_one_recursion(iw0): degraded = odd_rec(iw0) upgraded = even_rec(iw0) iw1 = np.empty(2 * len(iw0), dtype=degraded.dtype) iw1[0::2] = degraded iw1[1::2] = upgraded return iw1 def calculate_bec_channel_capacities_vector(initial_channel, block_power): # compare [0, Arikan] eq. 6 # this version is ~ 180 times faster than the loop version with 2**22 synthetic channels iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_vector_capacities_one_recursion(iw) return iw def calculate_bec_channel_capacities(eta, block_size): # compare [0, Arikan] eq. 6 iw = 1 - eta # holds for BEC as stated in paper lw = hf.power_of_2_int(block_size) return calculate_bec_channel_capacities_vector(iw, lw) def calculate_z_parameters_one_recursion(z_params): z_next = np.empty(2 * z_params.size, dtype=z_params.dtype) z_sq = z_params ** 2 z_low = 2 * z_params - z_sq z_next[0::2] = z_low z_next[1::2] = z_sq return z_next def calculate_bec_channel_z_parameters(eta, block_size): # compare [0, Arikan] eq. 38 block_power = hf.power_of_2_int(block_size) z_params = np.array([eta, ], dtype=float) for block_size in range(block_power): z_params = calculate_z_parameters_one_recursion(z_params) return z_params def design_snr_to_bec_eta(design_snr): # minimum design snr = -1.5917 corresponds to BER = 0.5 s = 10. ** (design_snr / 10.) return np.exp(-s) def bhattacharyya_bounds(design_snr, block_size): ''' Harish Vangala, Emanuele Viterbo, Yi Hong: 'A Comparative Study of Polar Code Constructions for the AWGN Channel', 2015 In this paper it is called Bhattacharyya bounds channel construction and is abbreviated PCC-0 Best design SNR for block_size = 2048, R = 0.5, is 0dB. Compare with Arikan: 'Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. Proposition 5. inequalities turn into equalities for BEC channel. Otherwise they represent an upper bound. Also compare [0, Arikan] eq. 6 and 38 For BEC that translates to capacity(i) = 1 - bhattacharyya(i) :return Z-parameters in natural bit-order. Choose according to desired rate. ''' eta = design_snr_to_bec_eta(design_snr) return calculate_bec_channel_z_parameters(eta, block_size) def plot_channel_capacities(capacity, save_file=None): block_size = len(capacity) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) plt.plot(capacity) plt.xlim([0, block_size]) plt.ylim([-0.01, 1.01]) plt.xlabel('synthetic channel number') plt.ylabel('channel capacity') # plt.title('BEC channel construction') plt.grid() plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass # only plot in case matplotlib is installed def plot_average_channel_distance(save_file=None): eta = 0.5 # design_snr_to_bec_eta(-1.5917) powers = np.arange(4, 26) try: import matplotlib.pyplot as plt import matplotlib # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) dist = [] medians = [] initial_channel = 1 - eta for p in powers: bs = int(2 ** p) capacities = calculate_bec_channel_capacities(eta, bs) avg_capacity = np.repeat(initial_channel, len(capacities)) averages = np.abs(capacities - avg_capacity) avg_distance = np.sum(averages) / float(len(capacities)) dist.append(avg_distance) variance = np.std(averages) medians.append(variance) plt.errorbar(powers, dist, yerr=medians) plt.grid() plt.xlabel(r'block size $N$') plt.ylabel(r'$\frac{1}{N} \sum_i |I(W_N^{(i)}) - 0.5|$') axes = plt.axes() tick_values = np.array(axes.get_xticks().tolist()) tick_labels = np.array(tick_values, dtype=int) tick_labels = ['$2^{' + str(i) + '}$' for i in tick_labels] plt.xticks(tick_values, tick_labels) plt.xlim((powers[0], powers[-1])) plt.ylim((0.2, 0.5001)) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def plot_capacity_histogram(design_snr, save_file=None): eta = design_snr_to_bec_eta(design_snr) # capacities = calculate_bec_channel_capacities(eta, block_size) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) block_sizes = [32, 128, 512] for b in block_sizes: capacities = calculate_bec_channel_capacities(eta, b) w = 1. / float(len(capacities)) weights = [w, ] * b plt.hist(capacities, bins=b, weights=weights, range=(0.95, 1.0)) plt.grid() plt.xlabel('synthetic channel capacity') plt.ylabel('normalized item count') print(plt.gcf().get_size_inches()) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def main(): print('channel construction main') n = 11 block_size = int(2 ** n) design_snr = -1.59 eta = design_snr_to_bec_eta(design_snr) # print(calculate_bec_channel_z_parameters(eta, block_size)) # capacity = calculate_bec_channel_capacities(eta, block_size) # plot_average_channel_distance() calculate_bec_channel_z_parameters(eta, block_size) if __name__ == '__main__': main()
gpl-3.0
kernc/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
marqh/iris
docs/iris/example_code/Meteorology/COP_maps.py
3
5588
""" Global average annual temperature maps ====================================== Produces maps of global temperature forecasts from the A1B and E1 scenarios. The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were derived using the IMAGE Integrated Assessment Model (Johns et al. 2011; Lowe et al. 2009). References ---------- Johns T.C., et al. (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Climate Dynamics, Vol 37, No. 9-10, doi:10.1007/s00382-011-1005-5. Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden, 2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21, doi:10.1029/2009EO210001. """ from six.moves import zip import os.path import matplotlib.pyplot as plt import numpy as np import iris import iris.coords as coords import iris.plot as iplt def cop_metadata_callback(cube, field, filename): """ A function which adds an "Experiment" coordinate which comes from the filename. """ # Extract the experiment name (such as a1b or e1) from the filename (in # this case it is just the parent folder's name) containing_folder = os.path.dirname(filename) experiment_label = os.path.basename(containing_folder) # Create a coordinate with the experiment label in it exp_coord = coords.AuxCoord(experiment_label, long_name='Experiment', units='no_unit') # and add it to the cube cube.add_aux_coord(exp_coord) def main(): # Load e1 and a1 using the callback to update the metadata e1 = iris.load_cube(iris.sample_data_path('E1.2098.pp'), callback=cop_metadata_callback) a1b = iris.load_cube(iris.sample_data_path('A1B.2098.pp'), callback=cop_metadata_callback) # Load the global average data and add an 'Experiment' coord it global_avg = iris.load_cube(iris.sample_data_path('pre-industrial.pp')) # Define evenly spaced contour levels: -2.5, -1.5, ... 15.5, 16.5 with the # specific colours levels = np.arange(20) - 2.5 red = np.array([0, 0, 221, 239, 229, 217, 239, 234, 228, 222, 205, 196, 161, 137, 116, 89, 77, 60, 51]) / 256. green = np.array([16, 217, 242, 243, 235, 225, 190, 160, 128, 87, 72, 59, 33, 21, 29, 30, 30, 29, 26]) / 256. blue = np.array([255, 255, 243, 169, 99, 51, 63, 37, 39, 21, 27, 23, 22, 26, 29, 28, 27, 25, 22]) / 256. # Put those colours into an array which can be passed to contourf as the # specific colours for each level colors = np.array([red, green, blue]).T # Subtract the global # Iterate over each latitude longitude slice for both e1 and a1b scenarios # simultaneously for e1_slice, a1b_slice in zip(e1.slices(['latitude', 'longitude']), a1b.slices(['latitude', 'longitude'])): time_coord = a1b_slice.coord('time') # Calculate the difference from the mean delta_e1 = e1_slice - global_avg delta_a1b = a1b_slice - global_avg # Make a wider than normal figure to house two maps side-by-side fig = plt.figure(figsize=(12, 5)) # Get the time datetime from the coordinate time = time_coord.units.num2date(time_coord.points[0]) # Set a title for the entire figure, giving the time in a nice format # of "MonthName Year". Also, set the y value for the title so that it # is not tight to the top of the plot. fig.suptitle( 'Annual Temperature Predictions for ' + time.strftime("%Y"), y=0.9, fontsize=18) # Add the first subplot showing the E1 scenario plt.subplot(121) plt.title('HadGEM2 E1 Scenario', fontsize=10) iplt.contourf(delta_e1, levels, colors=colors, linewidth=0, extend='both') plt.gca().coastlines() # get the current axes' subplot for use later on plt1_ax = plt.gca() # Add the second subplot showing the A1B scenario plt.subplot(122) plt.title('HadGEM2 A1B-Image Scenario', fontsize=10) contour_result = iplt.contourf(delta_a1b, levels, colors=colors, linewidth=0, extend='both') plt.gca().coastlines() # get the current axes' subplot for use later on plt2_ax = plt.gca() # Now add a colourbar who's leftmost point is the same as the leftmost # point of the left hand plot and rightmost point is the rightmost # point of the right hand plot # Get the positions of the 2nd plot and the left position of the 1st # plot left, bottom, width, height = plt2_ax.get_position().bounds first_plot_left = plt1_ax.get_position().bounds[0] # the width of the colorbar should now be simple width = left - first_plot_left + width # Add axes to the figure, to place the colour bar colorbar_axes = fig.add_axes([first_plot_left, bottom + 0.07, width, 0.03]) # Add the colour bar cbar = plt.colorbar(contour_result, colorbar_axes, orientation='horizontal') # Label the colour bar and add ticks cbar.set_label(e1_slice.units) cbar.ax.tick_params(length=0) iplt.show() if __name__ == '__main__': main()
lgpl-3.0
dmitriz/zipline
zipline/assets/assets.py
1
29230
# Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABCMeta from numbers import Integral from operator import itemgetter import warnings from logbook import Logger import numpy as np import pandas as pd from pandas.tseries.tools import normalize_date from six import with_metaclass, string_types, viewkeys import sqlalchemy as sa from toolz import compose from zipline.errors import ( MultipleSymbolsFound, RootSymbolNotFound, SidNotFound, SymbolNotFound, MapAssetIdentifierIndexError, ) from zipline.assets import ( Asset, Equity, Future, ) from zipline.assets.asset_writer import ( split_delimited_symbol, check_version_info, ASSET_DB_VERSION, asset_db_table_names, ) log = Logger('assets.py') # A set of fields that need to be converted to strings before building an # Asset to avoid unicode fields _asset_str_fields = frozenset({ 'symbol', 'asset_name', 'exchange', }) # A set of fields that need to be converted to timestamps in UTC _asset_timestamp_fields = frozenset({ 'start_date', 'end_date', 'first_traded', 'notice_date', 'expiration_date', 'auto_close_date', }) def _convert_asset_timestamp_fields(dict): """ Takes in a dict of Asset init args and converts dates to pd.Timestamps """ for key in (_asset_timestamp_fields & viewkeys(dict)): value = pd.Timestamp(dict[key], tz='UTC') dict[key] = None if pd.isnull(value) else value class AssetFinder(object): # Token used as a substitute for pickling objects that contain a # reference to an AssetFinder PERSISTENT_TOKEN = "<AssetFinder>" def __init__(self, engine): self.engine = engine metadata = sa.MetaData(bind=engine) metadata.reflect(only=asset_db_table_names) for table_name in asset_db_table_names: setattr(self, table_name, metadata.tables[table_name]) # Check the version info of the db for compatibility check_version_info(self.version_info, ASSET_DB_VERSION) # Cache for lookup of assets by sid, the objects in the asset lookup # may be shared with the results from equity and future lookup caches. # # The top level cache exists to minimize lookups on the asset type # routing. # # The caches are read through, i.e. accessing an asset through # retrieve_asset, _retrieve_equity etc. will populate the cache on # first retrieval. self._asset_cache = {} self._equity_cache = {} self._future_cache = {} self._asset_type_cache = {} # Populated on first call to `lifetimes`. self._asset_lifetimes = None def asset_type_by_sid(self, sid): """ Retrieve the asset type of a given sid. """ try: return self._asset_type_cache[sid] except KeyError: pass asset_type = sa.select((self.asset_router.c.asset_type,)).where( self.asset_router.c.sid == int(sid), ).scalar() if asset_type is not None: self._asset_type_cache[sid] = asset_type return asset_type def retrieve_asset(self, sid, default_none=False): """ Retrieve the Asset object of a given sid. """ if isinstance(sid, Asset): return sid try: asset = self._asset_cache[sid] except KeyError: asset_type = self.asset_type_by_sid(sid) if asset_type == 'equity': asset = self._retrieve_equity(sid) elif asset_type == 'future': asset = self._retrieve_futures_contract(sid) else: asset = None # Cache the asset if it has been retrieved if asset is not None: self._asset_cache[sid] = asset if asset is not None: return asset elif default_none: return None else: raise SidNotFound(sid=sid) def retrieve_all(self, sids, default_none=False): return [self.retrieve_asset(sid, default_none) for sid in sids] def _retrieve_equity(self, sid): """ Retrieve the Equity object of a given sid. """ return self._retrieve_asset( sid, self._equity_cache, self.equities, Equity, ) def _retrieve_futures_contract(self, sid): """ Retrieve the Future object of a given sid. """ return self._retrieve_asset( sid, self._future_cache, self.futures_contracts, Future, ) @staticmethod def _select_asset_by_sid(asset_tbl, sid): return sa.select([asset_tbl]).where(asset_tbl.c.sid == int(sid)) @staticmethod def _select_asset_by_symbol(asset_tbl, symbol): return sa.select([asset_tbl]).where(asset_tbl.c.symbol == symbol) def _retrieve_asset(self, sid, cache, asset_tbl, asset_type): try: return cache[sid] except KeyError: pass data = self._select_asset_by_sid(asset_tbl, sid).execute().fetchone() # Convert 'data' from a RowProxy object to a dict, to allow assignment data = dict(data.items()) if data: _convert_asset_timestamp_fields(data) asset = asset_type(**data) else: asset = None cache[sid] = asset return asset def _get_fuzzy_candidates(self, fuzzy_symbol): candidates = sa.select( (self.equities.c.sid,) ).where(self.equities.c.fuzzy_symbol == fuzzy_symbol).order_by( self.equities.c.start_date.desc(), self.equities.c.end_date.desc() ).execute().fetchall() return candidates def _get_fuzzy_candidates_in_range(self, fuzzy_symbol, ad_value): candidates = sa.select( (self.equities.c.sid,) ).where( sa.and_( self.equities.c.fuzzy_symbol == fuzzy_symbol, self.equities.c.start_date <= ad_value, self.equities.c.end_date >= ad_value ) ).order_by( self.equities.c.start_date.desc(), self.equities.c.end_date.desc(), ).execute().fetchall() return candidates def _get_split_candidates_in_range(self, company_symbol, share_class_symbol, ad_value): candidates = sa.select( (self.equities.c.sid,) ).where( sa.and_( self.equities.c.company_symbol == company_symbol, self.equities.c.share_class_symbol == share_class_symbol, self.equities.c.start_date <= ad_value, self.equities.c.end_date >= ad_value ) ).order_by( self.equities.c.start_date.desc(), self.equities.c.end_date.desc(), ).execute().fetchall() return candidates def _get_split_candidates(self, company_symbol, share_class_symbol): candidates = sa.select( (self.equities.c.sid,) ).where( sa.and_( self.equities.c.company_symbol == company_symbol, self.equities.c.share_class_symbol == share_class_symbol ) ).order_by( self.equities.c.start_date.desc(), self.equities.c.end_date.desc(), ).execute().fetchall() return candidates def _resolve_no_matching_candidates(self, company_symbol, share_class_symbol, ad_value): candidates = sa.select((self.equities.c.sid,)).where( sa.and_( self.equities.c.company_symbol == company_symbol, self.equities.c.share_class_symbol == share_class_symbol, self.equities.c.start_date <= ad_value), ).order_by( self.equities.c.end_date.desc(), ).execute().fetchall() return candidates def _get_best_candidate(self, candidates): return self._retrieve_equity(candidates[0]['sid']) def _get_equities_from_candidates(self, candidates): return list(map( compose(self._retrieve_equity, itemgetter('sid')), candidates, )) def lookup_symbol(self, symbol, as_of_date, fuzzy=False): """ Return matching Equity of name symbol in database. If multiple Equities are found and as_of_date is not set, raises MultipleSymbolsFound. If no Equity was active at as_of_date raises SymbolNotFound. """ company_symbol, share_class_symbol, fuzzy_symbol = \ split_delimited_symbol(symbol) if as_of_date: # Format inputs as_of_date = pd.Timestamp(normalize_date(as_of_date)) ad_value = as_of_date.value if fuzzy: # Search for a single exact match on the fuzzy column candidates = self._get_fuzzy_candidates_in_range(fuzzy_symbol, ad_value) # If exactly one SID exists for fuzzy_symbol, return that sid if len(candidates) == 1: return self._get_best_candidate(candidates) # Search for exact matches of the split-up company_symbol and # share_class_symbol candidates = self._get_split_candidates_in_range( company_symbol, share_class_symbol, ad_value ) # If exactly one SID exists for symbol, return that symbol # If multiple SIDs exist for symbol, return latest start_date with # end_date as a tie-breaker if candidates: return self._get_best_candidate(candidates) # If no SID exists for symbol, return SID with the # highest-but-not-over end_date elif not candidates: candidates = self._resolve_no_matching_candidates( company_symbol, share_class_symbol, ad_value ) if candidates: return self._get_best_candidate(candidates) raise SymbolNotFound(symbol=symbol) else: # If this is a fuzzy look-up, check if there is exactly one match # for the fuzzy symbol if fuzzy: candidates = self._get_fuzzy_candidates(fuzzy_symbol) if len(candidates) == 1: return self._get_best_candidate(candidates) candidates = self._get_split_candidates(company_symbol, share_class_symbol) if len(candidates) == 1: return self._get_best_candidate(candidates) elif not candidates: raise SymbolNotFound(symbol=symbol) else: raise MultipleSymbolsFound( symbol=symbol, options=self._get_equities_from_candidates(candidates) ) def lookup_future_symbol(self, symbol): """ Return the Future object for a given symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- Future A Future object. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ data = self._select_asset_by_symbol(self.futures_contracts, symbol)\ .execute().fetchone() # If no data found, raise an exception if not data: raise SymbolNotFound(symbol=symbol) # If we find a contract, check whether it's been cached try: return self._future_cache[data['sid']] except KeyError: pass # Build the Future object from its parameters data = dict(data.items()) _convert_asset_timestamp_fields(data) future = Future(**data) # Cache the Future object. self._future_cache[data['sid']] = future return future def lookup_future_chain(self, root_symbol, as_of_date): """ Return the futures chain for a given root symbol. Parameters ---------- root_symbol : str Root symbol of the desired future. as_of_date : pd.Timestamp or pd.NaT Date at which the chain determination is rooted. I.e. the existing contract whose notice date/expiration date is first after this date is the primary contract, etc. If NaT is given, the chain is unbounded, and all contracts for this root symbol are returned. Returns ------- list A list of Future objects, the chain for the given parameters. Raises ------ RootSymbolNotFound Raised when a future chain could not be found for the given root symbol. """ fc_cols = self.futures_contracts.c if as_of_date is pd.NaT: # If the as_of_date is NaT, get all contracts for this # root symbol. sids = list(map( itemgetter('sid'), sa.select((fc_cols.sid,)).where( (fc_cols.root_symbol == root_symbol), ).order_by( fc_cols.notice_date.asc(), ).execute().fetchall())) else: as_of_date = as_of_date.value sids = list(map( itemgetter('sid'), sa.select((fc_cols.sid,)).where( (fc_cols.root_symbol == root_symbol) & # Filter to contracts that are still valid. If both # exist, use the one that comes first in time (i.e. # the lower value). If either notice_date or # expiration_date is NaT, use the other. If both are # NaT, the contract cannot be included in any chain. sa.case( [ ( fc_cols.notice_date == pd.NaT.value, fc_cols.expiration_date >= as_of_date ), ( fc_cols.expiration_date == pd.NaT.value, fc_cols.notice_date >= as_of_date ) ], else_=( sa.func.min( fc_cols.notice_date, fc_cols.expiration_date ) >= as_of_date ) ) ).order_by( # Sort using expiration_date if valid. If it's NaT, # use notice_date instead. sa.case( [ ( fc_cols.expiration_date == pd.NaT.value, fc_cols.notice_date ) ], else_=fc_cols.expiration_date ).asc() ).execute().fetchall() )) if not sids: # Check if root symbol exists. count = sa.select((sa.func.count(fc_cols.sid),)).where( fc_cols.root_symbol == root_symbol, ).scalar() if count == 0: raise RootSymbolNotFound(root_symbol=root_symbol) return list(map(self._retrieve_futures_contract, sids)) @property def sids(self): return tuple(map( itemgetter('sid'), sa.select((self.asset_router.c.sid,)).execute().fetchall(), )) def _lookup_generic_scalar(self, asset_convertible, as_of_date, matches, missing): """ Convert asset_convertible to an asset. On success, append to matches. On failure, append to missing. """ if isinstance(asset_convertible, Asset): matches.append(asset_convertible) elif isinstance(asset_convertible, Integral): try: result = self.retrieve_asset(int(asset_convertible)) except SidNotFound: missing.append(asset_convertible) return None matches.append(result) elif isinstance(asset_convertible, string_types): try: matches.append( self.lookup_symbol(asset_convertible, as_of_date) ) except SymbolNotFound: missing.append(asset_convertible) return None else: raise NotAssetConvertible( "Input was %s, not AssetConvertible." % asset_convertible ) def lookup_generic(self, asset_convertible_or_iterable, as_of_date): """ Convert a AssetConvertible or iterable of AssetConvertibles into a list of Asset objects. This method exists primarily as a convenience for implementing user-facing APIs that can handle multiple kinds of input. It should not be used for internal code where we already know the expected types of our inputs. Returns a pair of objects, the first of which is the result of the conversion, and the second of which is a list containing any values that couldn't be resolved. """ matches = [] missing = [] # Interpret input as scalar. if isinstance(asset_convertible_or_iterable, AssetConvertible): self._lookup_generic_scalar( asset_convertible=asset_convertible_or_iterable, as_of_date=as_of_date, matches=matches, missing=missing, ) try: return matches[0], missing except IndexError: if hasattr(asset_convertible_or_iterable, '__int__'): raise SidNotFound(sid=asset_convertible_or_iterable) else: raise SymbolNotFound(symbol=asset_convertible_or_iterable) # Interpret input as iterable. try: iterator = iter(asset_convertible_or_iterable) except TypeError: raise NotAssetConvertible( "Input was not a AssetConvertible " "or iterable of AssetConvertible." ) for obj in iterator: self._lookup_generic_scalar(obj, as_of_date, matches, missing) return matches, missing def map_identifier_index_to_sids(self, index, as_of_date): """ This method is for use in sanitizing a user's DataFrame or Panel inputs. Takes the given index of identifiers, checks their types, builds assets if necessary, and returns a list of the sids that correspond to the input index. Parameters ---------- index : Iterable An iterable containing ints, strings, or Assets as_of_date : pandas.Timestamp A date to be used to resolve any dual-mapped symbols Returns ------- List A list of integer sids corresponding to the input index """ # This method assumes that the type of the objects in the index is # consistent and can, therefore, be taken from the first identifier first_identifier = index[0] # Ensure that input is AssetConvertible (integer, string, or Asset) if not isinstance(first_identifier, AssetConvertible): raise MapAssetIdentifierIndexError(obj=first_identifier) # If sids are provided, no mapping is necessary if isinstance(first_identifier, Integral): return index # Look up all Assets for mapping matches = [] missing = [] for identifier in index: self._lookup_generic_scalar(identifier, as_of_date, matches, missing) # Handle missing assets if len(missing) > 0: warnings.warn("Missing assets for identifiers: %s" % missing) # Return a list of the sids of the found assets return [asset.sid for asset in matches] def _compute_asset_lifetimes(self): """ Compute and cache a recarry of asset lifetimes. """ equities_cols = self.equities.c buf = np.array( tuple( sa.select(( equities_cols.sid, equities_cols.start_date, equities_cols.end_date, )).execute(), ), dtype='<f8', # use doubles so we get NaNs ) lifetimes = np.recarray( buf=buf, shape=(len(buf),), dtype=[ ('sid', '<f8'), ('start', '<f8'), ('end', '<f8') ], ) start = lifetimes.start end = lifetimes.end start[np.isnan(start)] = 0 # convert missing starts to 0 end[np.isnan(end)] = np.iinfo(int).max # convert missing end to INTMAX # Cast the results back down to int. return lifetimes.astype([ ('sid', '<i8'), ('start', '<i8'), ('end', '<i8'), ]) def lifetimes(self, dates, include_start_date): """ Compute a DataFrame representing asset lifetimes for the specified date range. Parameters ---------- dates : pd.DatetimeIndex The dates for which to compute lifetimes. include_start_date : bool Whether or not to count the asset as alive on its start_date. This is useful in a backtesting context where `lifetimes` is being used to signify "do I have data for this asset as of the morning of this date?" For many financial metrics, (e.g. daily close), data isn't available for an asset until the end of the asset's first day. Returns ------- lifetimes : pd.DataFrame A frame of dtype bool with `dates` as index and an Int64Index of assets as columns. The value at `lifetimes.loc[date, asset]` will be True iff `asset` existed on `date`. If `include_start_date` is False, then lifetimes.loc[date, asset] will be false when date == asset.start_date. See Also -------- numpy.putmask zipline.pipeline.engine.SimplePipelineEngine._compute_root_mask """ # This is a less than ideal place to do this, because if someone adds # assets to the finder after we've touched lifetimes we won't have # those new assets available. Mutability is not my favorite # programming feature. if self._asset_lifetimes is None: self._asset_lifetimes = self._compute_asset_lifetimes() lifetimes = self._asset_lifetimes raw_dates = dates.asi8[:, None] if include_start_date: mask = lifetimes.start <= raw_dates else: mask = lifetimes.start < raw_dates mask &= (raw_dates <= lifetimes.end) return pd.DataFrame(mask, index=dates, columns=lifetimes.sid) class AssetConvertible(with_metaclass(ABCMeta)): """ ABC for types that are convertible to integer-representations of Assets. Includes Asset, six.string_types, and Integral """ pass AssetConvertible.register(Integral) AssetConvertible.register(Asset) # Use six.string_types for Python2/3 compatibility for _type in string_types: AssetConvertible.register(_type) class NotAssetConvertible(ValueError): pass class AssetFinderCachedEquities(AssetFinder): """ An extension to AssetFinder that loads all equities from equities table into memory and overrides the methods that lookup_symbol uses to look up those equities. """ def __init__(self, engine): super(AssetFinderCachedEquities, self).__init__(engine) self.fuzzy_symbol_hashed_equities = {} self.company_share_class_hashed_equities = {} self.hashed_equities = sa.select(self.equities.c).execute().fetchall() self._load_hashed_equities() def _load_hashed_equities(self): """ Populates two maps - fuzzy symbol to list of equities having that fuzzy symbol and company symbol/share class symbol to list of equities having that combination of company symbol/share class symbol. """ for equity in self.hashed_equities: company_symbol = equity['company_symbol'] share_class_symbol = equity['share_class_symbol'] fuzzy_symbol = equity['fuzzy_symbol'] asset = self._convert_row_to_equity(equity) self.company_share_class_hashed_equities.setdefault( (company_symbol, share_class_symbol), [] ).append(asset) self.fuzzy_symbol_hashed_equities.setdefault( fuzzy_symbol, [] ).append(asset) def _convert_row_to_equity(self, equity): """ Converts a SQLAlchemy equity row to an Equity object. """ data = dict(equity.items()) _convert_asset_timestamp_fields(data) asset = Equity(**data) return asset def _get_fuzzy_candidates(self, fuzzy_symbol): if fuzzy_symbol in self.fuzzy_symbol_hashed_equities: return self.fuzzy_symbol_hashed_equities[fuzzy_symbol] return [] def _get_fuzzy_candidates_in_range(self, fuzzy_symbol, ad_value): equities = self._get_fuzzy_candidates(fuzzy_symbol) fuzzy_candidates = [] for equity in equities: if (equity.start_date.value <= ad_value <= equity.end_date.value): fuzzy_candidates.append(equity) return fuzzy_candidates def _get_split_candidates(self, company_symbol, share_class_symbol): if (company_symbol, share_class_symbol) in \ self.company_share_class_hashed_equities: return self.company_share_class_hashed_equities[( company_symbol, share_class_symbol)] return [] def _get_split_candidates_in_range(self, company_symbol, share_class_symbol, ad_value): equities = self._get_split_candidates( company_symbol, share_class_symbol ) best_candidates = [] for equity in equities: if (equity.start_date.value <= ad_value <= equity.end_date.value): best_candidates.append(equity) if best_candidates: best_candidates = sorted( best_candidates, key=lambda x: (x.start_date, x.end_date), reverse=True ) return best_candidates def _resolve_no_matching_candidates(self, company_symbol, share_class_symbol, ad_value): equities = self._get_split_candidates( company_symbol, share_class_symbol ) partial_candidates = [] for equity in equities: if equity.start_date.value <= ad_value: partial_candidates.append(equity) if partial_candidates: partial_candidates = sorted( partial_candidates, key=lambda x: x.end_date, reverse=True ) return partial_candidates def _get_best_candidate(self, candidates): return candidates[0] def _get_equities_from_candidates(self, candidates): return candidates
apache-2.0
Crobisaur/HyperSpec
Python/tifffile.py
1
205137
#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2015, Christoph Gohlke # Copyright (c) 2008-2015, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read image and meta data from (bio)TIFF files. Save numpy arrays as TIFF. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG and CCITT compressed image data or EXIF, IPTC, GPS, and XMP metadata is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH Image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run `python tifffile.py --help` :Author: `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2015.08.17 Requirements ------------ * `CPython 2.7 or 3.4 <http://www.python.org>`_ (64 bit recommended) * `Numpy 1.9.2 <http://www.numpy.org>`_ * `Matplotlib 1.4.3 <http://www.matplotlib.org>`_ (optional for plotting) * `Tifffile.c 2015.08.17 <http://www.lfd.uci.edu/~gohlke/>`_ (recommended for faster decoding of PackBits and LZW encoded strings) Revisions --------- 2015.08.17 Pass 1906 tests. Write ImageJ hyperstacks (optional). Read and write LZMA compressed data. Specify datetime when saving (optional). Save tiled and color-mapped images (optional). Ignore void byte_counts and offsets if possible. Ignore bogus image_depth tag created by ISS Vista software. Decode floating point horizontal differencing (not tiled). Save image data contiguously if possible. Only read first IFD from ImageJ files if possible. Read ImageJ 'raw' format (files larger than 4 GB). TiffPageSeries class for pages with compatible shape and data type. Try to read incomplete tiles. Open file dialog if no filename is passed on command line. Ignore errors when decoding OME-XML. Rename decoder functions (backwards incompatible) 2014.08.24 TiffWriter class for incremental writing images. Simplified examples. 2014.08.19 Add memmap function to FileHandle. Add function to determine if image data in TiffPage is memory-mappable. Do not close files if multifile_close parameter is False. 2014.08.10 Pass 1730 tests. Return all extrasamples by default (backwards incompatible). Read data from series of pages into memory-mapped array (optional). Squeeze OME dimensions (backwards incompatible). Workaround missing EOI code in strips. Support image and tile depth tags (SGI extension). Better handling of STK/UIC tags (backwards incompatible). Disable color mapping for STK. Julian to datetime converter. TIFF ASCII type may be NULL separated. Unwrap strip offsets for LSM files greater than 4 GB. Correct strip byte counts in compressed LSM files. Skip missing files in OME series. Read embedded TIFF files. 2014.02.05 Save rational numbers as type 5 (bug fix). 2013.12.20 Keep other files in OME multi-file series closed. FileHandle class to abstract binary file handle. Disable color mapping for bad OME-TIFF produced by bio-formats. Read bad OME-XML produced by ImageJ when cropping. 2013.11.03 Allow zlib compress data in imsave function (optional). Memory-map contiguous image data (optional). 2013.10.28 Read MicroManager metadata and little endian ImageJ tag. Save extra tags in imsave function. Save tags in ascending order by code (bug fix). 2012.10.18 Accept file like objects (read from OIB files). 2012.08.21 Rename TIFFfile to TiffFile and TIFFpage to TiffPage. TiffSequence class for reading sequence of TIFF files. Read UltraQuant tags. Allow float numbers as resolution in imsave function. 2012.08.03 Read MD GEL tags and NIH Image header. 2012.07.25 Read ImageJ tags. ... Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread <http://luispedro.org/software/imread>`_ * `PyLibTiff <http://code.google.com/p/pylibtiff>`_ * `SimpleITK <http://www.simpleitk.org>`_ * `PyLSM <https://launchpad.net/pylsm>`_ * `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_ (same as fabio.TiffIO) * `BioImageXD.Readers <http://www.bioimagexd.net/>`_ * `Cellcognition.io <http://cellcognition.org/>`_ * `CellProfiler.bioformats <https://github.com/CellProfiler/python-bioformats>`_ Acknowledgements ---------------- * Egor Zindy, University of Manchester, for cz_lsm_scan_info specifics. * Wim Lewis for a bug fix and some read_cz_lsm functions. * Hadrien Mary for help on reading MicroManager files. * Christian Kliche for help writing tiled and color-mapped files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 (5) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (8) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats (9) Tags for TIFF and Related Specifications. Digital Preservation. http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml Examples -------- >>> data = numpy.random.rand(5, 301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> numpy.testing.assert_array_equal(image, data) >>> with TiffFile('temp.tif') as tif: ... images = tif.asarray() ... for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import tempfile import datetime import collections from fractions import Fraction from xml.etree import cElementTree as etree import numpy try: import lzma except ImportError: try: import backports.lzma as lzma except ImportError: lzma = None try: if __package__: from . import _tifffile else: import _tifffile except ImportError: warnings.warn( "failed to import the optional _tifffile C extension module.\n" "Loading of some compressed images will be very slow.\n" "Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/") __version__ = '2015.08.17' __docformat__ = 'restructuredtext en' __all__ = ( 'imsave', 'imread', 'imshow', 'TiffFile', 'TiffWriter', 'TiffSequence', # utility functions used in oiffile and czifile 'FileHandle', 'lazyattr', 'natural_sorted', 'decode_lzw', 'stripnull') def imsave(filename, data, **kwargs): """Write image data to TIFF file. Refer to the TiffWriter class and member functions for documentation. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image depth, height, width, and samples. kwargs : dict Parameters 'byteorder', 'bigtiff', 'software', and 'imagej', are passed to the TiffWriter class. Parameters 'photometric', 'planarconfig', 'resolution', 'compress', 'colormap', 'tile', 'description', 'datetime', 'metadata', 'contiguous' and 'extratags' are passed to the TiffWriter.save function. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> metadata = {'axes': 'TZCYX'} >>> imsave('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'}) """ tifargs = {} for key in ('byteorder', 'bigtiff', 'software', 'imagej'): if key in kwargs: tifargs[key] = kwargs[key] del kwargs[key] if 'bigtiff' not in tifargs and 'imagej' not in tifargs and ( data.size*data.dtype.itemsize > 2000*2**20): tifargs['bigtiff'] = True with TiffWriter(filename, **tifargs) as tif: tif.save(data, **kwargs) class TiffWriter(object): """Write image data to TIFF file. TiffWriter instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Examples -------- >>> data = numpy.random.rand(2, 5, 3, 301, 219) >>> with TiffWriter('temp.tif', bigtiff=True) as tif: ... for i in range(data.shape[0]): ... tif.save(data[i], compress=6) """ TYPES = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} TAGS = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'tile_width': 322, 'tile_length': 323, 'tile_offsets': 324, 'tile_byte_counts': 325, 'extra_samples': 338, 'sample_format': 339, 'image_depth': 32997, 'tile_depth': 32998} def __init__(self, filename, bigtiff=False, byteorder=None, software='tifffile.py', imagej=False): """Create a new TIFF file for writing. Use bigtiff=True when creating files greater than 2 GB. Parameters ---------- filename : str Name of file to write. bigtiff : bool If True, the BigTIFF format is used. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. software : str Name of the software used to create the file. Saved with the first page in the file only. imagej : bool If True, write an ImageJ hyperstack compatible file. This format can handle data types uint8, uint16, or float32 and data shapes up to 6 dimensions in TZCYXS order. RGB images (S=3 or S=4) must be uint8. ImageJ's default byte order is big endian but this implementation uses the system's native byte order by default. ImageJ doesn't support BigTIFF format or LZMA compression. The ImageJ file format is undocumented. """ if byteorder not in (None, '<', '>'): raise ValueError("invalid byteorder %s" % byteorder) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' if imagej and bigtiff: warnings.warn("writing incompatible bigtiff ImageJ") self._byteorder = byteorder self._software = software self._imagej = bool(imagej) self._metadata = None self._colormap = None self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 self._tags = None self._shape = None # normalized shape of data in consecutive pages self._data_shape = None # shape of data in consecutive pages self._data_dtype = None # data type self._data_offset = None # offset to data self._data_byte_counts = None # byte counts per plane self._tag_offsets = None # strip or tile offset tag code self._fh = open(filename, 'wb') self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._bigtiff = True self._offset_size = 8 self._tag_size = 20 self._numtag_format = 'Q' self._offset_format = 'Q' self._value_format = '8s' self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0)) else: self._bigtiff = False self._offset_size = 4 self._tag_size = 12 self._numtag_format = 'H' self._offset_format = 'I' self._value_format = '4s' self._fh.write(struct.pack(byteorder+'H', 42)) # first IFD self._ifd_offset = self._fh.tell() self._fh.write(struct.pack(byteorder+self._offset_format, 0)) def save(self, data, photometric=None, planarconfig=None, resolution=None, compress=0, colormap=None, tile=None, datetime=None, description='', metadata=None, contiguous=True, extratags=()): """Write image data and tags to TIFF file. Image data are written in one stripe per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' tags are derived from the data type. Parameters ---------- data : numpy.ndarray Input image. The last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. photometric : {'minisblack', 'miniswhite', 'rgb', 'palette'} The color space of the image data. By default this setting is inferred from the data shape and the value of colormap. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. compress : int or 'lzma' Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). Compression cannot be used to write contiguous files. If 'lzma', LZMA compression is used, which is not available on all platforms. colormap : numpy.ndarray RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16. tile : tuple of int The shape (depth, length, width) of image tiles to write. If None (default), image data are written in one stripe per plane. The tile length and width must be a multiple of 16. If the tile depth is provided, the SGI image_depth and tile_depth tags are used to save volume data. Few software can read the SGI format, e.g. MeVisLab. datetime : datetime Date and time of image creation. Saved with the first page only. If None (default), the current date and time is used. description : str The subject of the image. Saved with the first page only. Cannot be used with the ImageJ format. If None (default), the data shape and metadata are saved in JSON or ImageJ format. metadata : dict Additional meta data passed to the image description functions. contiguous : bool If True (default) and the data and parameters are compatible with previous ones, if any, the data are stored contiguously after the previous one. Parameters 'photometric' and 'planarconfig' are ignored. extratags : sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in 'value' in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence 'Count' values compatible with 'dtype'. writeonce : bool If True, the tag is written to the first page only. """ # TODO: refactor this function fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format value_format = self._value_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') # just append contiguous data if possible if self._data_shape: if (not contiguous or self._data_shape[1:] != data.shape or self._data_dtype != data.dtype or (compress and self._tags) or tile or not numpy.array_equal(colormap, self._colormap)): # incompatible shape, dtype, compression mode, or colormap self._write_remaining_pages() self._write_image_description() self._description_offset = 0 self._description_len_offset = 0 self._data_shape = None self._colormap = None if self._imagej: raise ValueError( "ImageJ does not support non-contiguous data") else: # consecutive mode self._data_shape = (self._data_shape[0] + 1,) + data.shape if not compress: # write contiguous data, write ifds/tags later data.tofile(fh) return if photometric not in (None, 'minisblack', 'miniswhite', 'rgb', 'palette'): raise ValueError("invalid photometric %s" % photometric) if planarconfig not in (None, 'contig', 'planar'): raise ValueError("invalid planarconfig %s" % planarconfig) # prepare compression if not compress: compress = False compress_tag = 1 elif compress == 'lzma': compress = lzma.compress compress_tag = 34925 if self._imagej: raise ValueError("ImageJ can't handle LZMA compression") elif not 0 <= compress <= 9: raise ValueError("invalid compression level %s" % compress) elif compress: def compress(data, level=compress): return zlib.compress(data, level) compress_tag = 32946 # prepare ImageJ format if self._imagej: if description: warnings.warn("not writing description to ImageJ file") description = None volume = False if data.dtype.char not in 'BHhf': raise ValueError("ImageJ does not support data type '%s'" % data.dtype.char) ijrgb = photometric == 'rgb' if photometric else None if data.dtype.char not in 'B': ijrgb = False ijshape = imagej_shape(data.shape, ijrgb) if ijshape[-1] in (3, 4): photometric = 'rgb' if data.dtype.char not in 'B': raise ValueError("ImageJ does not support data type '%s' " "for RGB" % data.dtype.char) elif photometric is None: photometric = 'minisblack' planarconfig = None if planarconfig == 'planar': raise ValueError("ImageJ does not support planar images") else: planarconfig = 'contig' if ijrgb else None # verify colormap and indices if colormap is not None: if data.dtype.char not in 'BH': raise ValueError("invalid data dtype for palette mode") colormap = numpy.asarray(colormap, dtype=byteorder+'H') if colormap.shape != (3, 2**(data.itemsize * 8)): raise ValueError("invalid color map shape") self._colormap = colormap # verify tile shape if tile: tile = tuple(int(i) for i in tile[:3]) volume = len(tile) == 3 if (len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or any(i < 1 for i in tile)): raise ValueError("invalid tile shape") else: tile = () volume = False # normalize data shape to 5D or 6D, depending on volume: # (pages, planar_samples, [depth,] height, width, contig_samples) data_shape = shape = data.shape data = numpy.atleast_2d(data) samplesperpixel = 1 extrasamples = 0 if volume and data.ndim < 3: volume = False if colormap is not None: photometric = 'palette' planarconfig = None if photometric is None: if planarconfig: photometric = 'rgb' elif data.ndim > 2 and shape[-1] in (3, 4): photometric = 'rgb' elif self._imagej: photometric = 'minisblack' elif volume and data.ndim > 3 and shape[-4] in (3, 4): photometric = 'rgb' elif data.ndim > 2 and shape[-3] in (3, 4): photometric = 'rgb' else: photometric = 'minisblack' if planarconfig and len(shape) <= (3 if volume else 2): planarconfig = None photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if len(shape) < 4: volume = False if planarconfig is None: if shape[-1] in (3, 4): planarconfig = 'contig' elif shape[-4 if volume else -3] in (3, 4): planarconfig = 'planar' elif shape[-1] > shape[-4 if volume else -3]: planarconfig = 'planar' else: planarconfig = 'contig' if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] if samplesperpixel > 3: extrasamples = samplesperpixel - 3 elif planarconfig and len(shape) > (3 if volume else 2): if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) samplesperpixel = data.shape[-1] else: data = data.reshape( (-1,) + shape[(-4 if volume else -3):] + (1,)) samplesperpixel = data.shape[1] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] if len(shape) < 3: volume = False if False and ( photometric != 'palette' and len(shape) > (3 if volume else 2) and shape[-1] < 5 and all(shape[-1] < i for i in shape[(-4 if volume else -3):-1])): # DISABLED: non-standard TIFF, e.g. (220, 320, 2) planarconfig = 'contig' samplesperpixel = shape[-1] data = data.reshape((-1, 1) + shape[(-4 if volume else -3):]) else: data = data.reshape( (-1, 1) + shape[(-3 if volume else -2):] + (1,)) # normalize shape to 6D assert len(data.shape) in (5, 6) if len(data.shape) == 5: data = data.reshape(data.shape[:2] + (1,) + data.shape[2:]) shape = data.shape if tile and not volume: tile = (1, tile[-2], tile[-1]) if photometric == 'palette': if (samplesperpixel != 1 or extrasamples or shape[1] != 1 or shape[-1] != 1): raise ValueError("invalid data shape for palette mode") if samplesperpixel == 2: warnings.warn("writing non-standard TIFF (samplesperpixel 2)") bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tags = [] # list of (code, ifdentry, ifdvalue, writeonce) strip_or_tile = 'tile' if tile else 'strip' tag_byte_counts = TiffWriter.TAGS[strip_or_tile + '_byte_counts'] tag_offsets = TiffWriter.TAGS[strip_or_tile + '_offsets'] self._tag_offsets = tag_offsets def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # Compute ifdentry & ifdvalue bytes from code, dtype, count, value # Append (code, ifdentry, ifdvalue, writeonce) to tags list code = int(TiffWriter.TAGS.get(code, code)) try: tifftype = TiffWriter.TYPES[dtype] except KeyError: raise ValueError("unknown dtype %s" % dtype) rawcount = count if dtype == 's': value = bytestr(value) + b'\0' count = rawcount = len(value) rawcount = value.find(b'\0\0') if rawcount < 0: rawcount = count else: rawcount += 1 # length of string without buffer value = (value,) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offset_format, rawcount)] ifdvalue = None if count == 1: if isinstance(value, (tuple, list, numpy.ndarray)): value = value[0] ifdentry.append(pack(value_format, pack(dtype, value))) elif struct.calcsize(dtype) * count <= offset_size: ifdentry.append(pack(value_format, pack(str(count)+dtype, *value))) else: ifdentry.append(pack(offset_format, 0)) if isinstance(value, numpy.ndarray): assert value.size == count assert value.dtype.char == dtype ifdvalue = value.tobytes() else: ifdvalue = pack(str(count)+dtype, *value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if description: # user provided description addtag('image_description', 's', 0, description, writeonce=True) # always write shape and metadata to image_description self._metadata = {} if metadata is None else metadata if self._imagej: description = imagej_description( data_shape, shape[-1] in (3, 4), self._colormap is not None, **self._metadata) else: description = image_description( data_shape, self._colormap is not None, **self._metadata) if description: # add 32 bytes buffer # the image description might be updated later with the final shape description += b'\0'*32 self._description_len = len(description) addtag('image_description', 's', 0, description, writeonce=True) if self._software: addtag('software', 's', 0, self._software, writeonce=True) self._software = None # only save to first page in file if datetime is None: datetime = self._now() addtag('datetime', 's', 0, datetime.strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, compress_tag) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) if tile: addtag('tile_width', 'I', 1, tile[-1]) addtag('tile_length', 'I', 1, tile[-2]) if tile[0] > 1: addtag('image_depth', 'I', 1, shape[-4]) addtag('tile_depth', 'I', 1, tile[0]) addtag('new_subfile_type', 'I', 1, 0) addtag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2, 'palette': 3}[photometric]) if colormap is not None: addtag('color_map', 'H', colormap.size, colormap) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig and samplesperpixel > 1: addtag('planar_configuration', 'H', 1, 1 if planarconfig == 'contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8,) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb' and extrasamples == 1: addtag('extra_samples', 'H', 1, 1) # associated alpha channel else: addtag('extra_samples', 'H', extrasamples, (0,) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) if not tile: addtag('rows_per_strip', 'I', 1, shape[-3]) # * shape[-4] if tile: # use one chunk per tile per plane tiles = ((shape[2] + tile[0] - 1) // tile[0], (shape[3] + tile[1] - 1) // tile[1], (shape[4] + tile[2] - 1) // tile[2]) numtiles = product(tiles) * shape[1] strip_byte_counts = [ product(tile) * shape[-1] * data.dtype.itemsize] * numtiles addtag(tag_byte_counts, offset_format, numtiles, strip_byte_counts) addtag(tag_offsets, offset_format, numtiles, [0] * numtiles) # allocate tile buffer chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype) else: # use one strip per plane strip_byte_counts = [ data[0, 0].size * data.dtype.itemsize] * shape[1] addtag(tag_byte_counts, offset_format, shape[1], strip_byte_counts) addtag(tag_offsets, offset_format, shape[1], [0] * shape[1]) # add extra tags from user for t in extratags: addtag(*t) # TODO: check TIFFReadDirectoryCheckOrder warning in files containing # multiple tags of same code # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) if not (self._bigtiff or self._imagej) and ( fh.tell() + data.size*data.dtype.itemsize > 2**31-1): raise ValueError("data too large for standard TIFF file") # if not compressed or tiled, write the first ifd and then all data # contiguously; else, write all ifds and data interleaved for pageindex in range(shape[0] if (compress or tile) else 1): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifdentries fh.write(pack(numtag_format, len(tags))) tag_offset = fh.tell() fh.write(b''.join(t[1] for t in tags)) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == tag_offsets: strip_offsets_offset = pos elif tag[0] == tag_byte_counts: strip_byte_counts_offset = pos elif tag[0] == 270 and tag[2].endswith(b'\0\0\0\0'): # image description buffer self._description_offset = pos self._description_len_offset = ( tag_offset + tagindex * tag_size + 4) fh.write(tag[2]) # write image data data_offset = fh.tell() if compress: strip_byte_counts = [] if tile: for plane in data[pageindex]: for tz in range(tiles[0]): for ty in range(tiles[1]): for tx in range(tiles[2]): c0 = min(tile[0], shape[2] - tz*tile[0]) c1 = min(tile[1], shape[3] - ty*tile[1]) c2 = min(tile[2], shape[4] - tx*tile[2]) chunk[c0:, c1:, c2:] = 0 chunk[:c0, :c1, :c2] = plane[ tz*tile[0]:tz*tile[0]+c0, ty*tile[1]:ty*tile[1]+c1, tx*tile[2]:tx*tile[2]+c2] if compress: t = compress(chunk) strip_byte_counts.append(len(t)) fh.write(t) else: chunk.tofile(fh) fh.flush() elif compress: for plane in data[pageindex]: plane = compress(plane) strip_byte_counts.append(len(plane)) fh.write(plane) else: data.tofile(fh) # if this fails try update Python and numpy # update strip/tile offsets and byte_counts if necessary pos = fh.tell() for tagindex, tag in enumerate(tags): if tag[0] == tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) elif tag[0] == tag_byte_counts: # strip/tile byte_counts if compress: if tag[2]: fh.seek(strip_byte_counts_offset) for size in strip_byte_counts: fh.write(pack(offset_format, size)) else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, strip_byte_counts[0])) break fh.seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [tag for tag in tags if not tag[-1]] # if uncompressed, write remaining ifds/tags later if not (compress or tile): self._tags = tags self._shape = shape self._data_shape = (1,) + data_shape self._data_dtype = data.dtype self._data_offset = data_offset self._data_byte_counts = strip_byte_counts def _write_remaining_pages(self): """Write outstanding IFDs and tags to file.""" if not self._tags: return fh = self._fh byteorder = self._byteorder numtag_format = self._numtag_format offset_format = self._offset_format offset_size = self._offset_size tag_size = self._tag_size data_offset = self._data_offset page_data_size = sum(self._data_byte_counts) tag_bytes = b''.join(t[1] for t in self._tags) numpages = self._shape[0] * self._data_shape[0] - 1 pos = fh.tell() if not self._bigtiff and pos + len(tag_bytes) * numpages > 2**32 - 256: if self._imagej: warnings.warn("truncating ImageJ file") return raise ValueError("data too large for non-bigtiff file") def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) for _ in range(numpages): # update pointer at ifd_offset pos = fh.tell() fh.seek(self._ifd_offset) fh.write(pack(offset_format, pos)) fh.seek(pos) # write ifd entries fh.write(pack(numtag_format, len(self._tags))) tag_offset = fh.tell() fh.write(tag_bytes) self._ifd_offset = fh.tell() fh.write(pack(offset_format, 0)) # offset to next IFD # offset to image data data_offset += page_data_size # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(self._tags): if tag[2]: pos = fh.tell() fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, pos)) fh.seek(pos) if tag[0] == self._tag_offsets: strip_offsets_offset = pos fh.write(tag[2]) # update strip/tile offsets if necessary pos = fh.tell() for tagindex, tag in enumerate(self._tags): if tag[0] == self._tag_offsets: # strip/tile offsets if tag[2]: fh.seek(strip_offsets_offset) strip_offset = data_offset for size in self._data_byte_counts: fh.write(pack(offset_format, strip_offset)) strip_offset += size else: fh.seek(tag_offset + tagindex*tag_size + offset_size + 4) fh.write(pack(offset_format, data_offset)) break fh.seek(pos) self._tags = None self._data_dtype = None self._data_offset = None self._data_byte_counts = None # do not reset _shape or _data_shape def _write_image_description(self): """Write meta data to image_description tag.""" if (not self._data_shape or self._data_shape[0] == 1 or self._description_offset <= 0): return colormapped = self._colormap is not None if self._imagej: isrgb = self._shape[-1] in (3, 4) description = imagej_description( self._data_shape, isrgb, colormapped, **self._metadata) else: description = image_description( self._data_shape, colormapped, **self._metadata) # rewrite description and its length to file description = description[:self._description_len-1] pos = self._fh.tell() self._fh.seek(self._description_offset) self._fh.write(description) self._fh.seek(self._description_len_offset) self._fh.write(struct.pack(self._byteorder+self._offset_format, len(description)+1)) self._fh.seek(pos) self._description_offset = 0 self._description_len_offset = 0 self._description_len = 0 def _now(self): """Return current date and time.""" return datetime.datetime.now() def close(self, truncate=False): """Write remaining pages (if not truncate) and close file handle.""" if not truncate: self._write_remaining_pages() self._write_image_description() self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def imread(files, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. kwargs : dict Additional parameters passed to the TiffFile or TiffSequence asarray function. Examples -------- >>> imsave('temp.tif', numpy.random.rand(3, 4, 301, 219)) >>> im = imread('temp.tif', key=0) >>> im.shape (4, 301, 219) >>> ims = imread(['temp.tif', 'temp.tif']) >>> ims.shape (2, 3, 4, 301, 219) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(**kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(**kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func',) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and metadata from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the 'close' method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list of TiffPage All TIFF pages in file. series : list of TiffPageSeries TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> with TiffFile('temp.tif') as tif: ... data = tif.asarray() ... data.shape (5, 301, 219) """ def __init__(self, arg, name=None, offset=None, size=None, multifile=True, multifile_close=True, maxpages=None, fastij=True): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. multifile : bool If True (default), series may include pages from multiple files. Currently applies to OME-TIFF only. multifile_close : bool If True (default), keep the handles of other files in multifile series closed. This is inefficient when few files refer to many pages. If False, the C runtime may run out of resources. maxpages : int Number of pages to read (default: no limit). fastij : bool If True (default), try to use only the metadata from the first page of ImageJ files. Significantly speeds up loading movies with thousands of pages. """ self._fh = FileHandle(arg, name=name, offset=offset, size=size) self.offset_size = None self.pages = [] self._multifile = bool(multifile) self._multifile_close = bool(multifile_close) self._files = {self._fh.name: self} # cache of TiffFiles try: self._fromfile(maxpages, fastij) except Exception: self._fh.close() raise @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif._fh.close() self._files = {} def _fromfile(self, maxpages=None, fastij=True): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") self._is_native = self.byteorder == {'big': '>', 'little': '<'}[sys.byteorder] version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if maxpages and len(self.pages) > maxpages: break if fastij and page.is_imagej: if page._patch_imagej(): break # only read the first page of ImageJ files fastij = False if not self.pages: raise ValueError("empty TIFF file") # TODO? sort pages by page_number value if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) if self.is_lsm: self._fix_lsm_strip_offsets() self._fix_lsm_strip_byte_counts() def _fix_lsm_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB.""" for series in self.series: wrap = 0 previous_offset = 0 for page in series.pages: strip_offsets = [] for current_offset in page.strip_offsets: if current_offset < previous_offset: wrap += 2**32 strip_offsets.append(current_offset + wrap) previous_offset = current_offset page.strip_offsets = tuple(strip_offsets) def _fix_lsm_strip_byte_counts(self): """Set strip_byte_counts to size of compressed data. The strip_byte_counts tag in LSM files contains the number of bytes for the uncompressed data. """ if not self.pages: return strips = {} for page in self.pages: assert len(page.strip_offsets) == len(page.strip_byte_counts) for offset, bytecount in zip(page.strip_offsets, page.strip_byte_counts): strips[offset] = bytecount offsets = sorted(strips.keys()) offsets.append(min(offsets[-1] + strips[offsets[-1]], self._fh.size)) for i, offset in enumerate(offsets[:-1]): strips[offset] = min(strips[offset], offsets[i+1] - offset) for page in self.pages: if page.compression: page.strip_byte_counts = tuple( strips[offset] for offset in page.strip_offsets) def asarray(self, key=None, series=None, memmap=False): """Return image data from multiple TIFF pages as numpy array. By default the first image series is returned. Parameters ---------- key : int, slice, or sequence of page indices Defines which pages to return as array. series : int or TiffPageSeries Defines which series of pages to return as array. memmap : bool If True, return an array stored in a binary file on disk if possible. """ if key is None and series is None: series = 0 if series is not None: try: series = self.series[series] except (KeyError, TypeError): pass pages = series.pages else: pages = self.pages if key is None: pass elif isinstance(key, int): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, collections.Iterable): pages = [pages[k] for k in key] else: raise TypeError("key must be an int, slice, or sequence") if not len(pages): raise ValueError("no pages selected") if self.is_nih: if pages[0].is_palette: result = stack_pages(pages, colormapped=False, squeeze=False) result = numpy.take(pages[0].color_map, result, axis=1) result = numpy.swapaxes(result, 0, 1) else: result = stack_pages(pages, memmap=memmap, colormapped=False, squeeze=False) elif len(pages) == 1: result = pages[0].asarray(memmap=memmap) elif self.is_ome: assert not self.is_palette, "color mapping disabled for ome-tiff" if any(p is None for p in pages): # zero out missing pages firstpage = next(p for p in pages if p) nopage = numpy.zeros_like( firstpage.asarray(memmap=False)) if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, series.dtype, shape=series.shape) result = result.reshape(-1) else: result = numpy.empty(series.shape, series.dtype).reshape(-1) index = 0 class KeepOpen: # keep Tiff files open between consecutive pages def __init__(self, parent, close): self.master = parent self.parent = parent self._close = close def open(self, page): if self._close and page and page.parent != self.parent: if self.parent != self.master: self.parent.filehandle.close() self.parent = page.parent self.parent.filehandle.open() def close(self): if self._close and self.parent != self.master: self.parent.filehandle.close() keep = KeepOpen(self, self._multifile_close) for page in pages: keep.open(page) if page: a = page.asarray(memmap=False, colormapped=False, reopen=False) else: a = nopage try: result[index:index + a.size] = a.reshape(-1) except ValueError as e: warnings.warn("ome-tiff: %s" % e) break index += a.size keep.close() else: result = stack_pages(pages, memmap=memmap) if key is None: try: result.shape = series.shape except ValueError: try: warnings.warn("failed to reshape %s to %s" % ( result.shape, series.shape)) # try series of expected shapes result.shape = (-1,) + series.shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape elif len(pages) == 1: result.shape = pages[0].shape else: result.shape = (-1,) + pages[0].shape return result @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" if not self.pages: return [] series = [] if self.is_ome: series = self._ome_series() elif self.is_fluoview: series = self._fluoview_series() elif self.is_lsm: series = self._lsm_series() elif self.is_imagej: series = self._imagej_series() elif self.is_nih: series = self._nih_series() if not series: # generic detection of series shapes = [] pages = {} index = 0 for page in self.pages: if not page.shape: continue if page.is_shaped: index += 1 # shape starts a new series shape = page.shape + (index, page.axes, page.compression in TIFF_DECOMPESSORS) if shape in pages: pages[shape].append(page) else: shapes.append(shape) pages[shape] = [page] series = [] for s in shapes: shape = ((len(pages[s]),) + s[:-3] if len(pages[s]) > 1 else s[:-3]) axes = (('I' + s[-2]) if len(pages[s]) > 1 else s[-2]) page0 = pages[s][0] if page0.is_shaped: description = page0.is_shaped metadata = image_description_dict(description) if product(metadata.get('shape', shape)) == product(shape): shape = metadata.get('shape', shape) else: warnings.warn( "metadata shape doesn't match data shape") if 'axes' in metadata: axes = metadata['axes'] if len(axes) != len(shape): warnings.warn("axes don't match shape") axes = 'Q'*(len(shape)-len(axes)) + axes[-len(shape):] series.append( TiffPageSeries(pages[s], shape, page0.dtype, axes)) # remove empty series, e.g. in MD Gel files series = [s for s in series if sum(s.shape) > 0] return series def _fluoview_series(self): """Return image series in FluoView file.""" page0 = self.pages[0] dims = { b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(page0.mm_header.dimensions)) axes = ''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1) shape = tuple(int(i[1]) for i in mmhd if i[1] > 1) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _lsm_series(self): """Return image series in LSM file.""" page0 = self.pages[0] lsmi = page0.cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if page0.is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = tuple(getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes) pages = [p for p in self.pages if not p.is_reduced] dtype = pages[0].dtype series = [TiffPageSeries(pages, shape, dtype, axes)] if len(pages) != len(self.pages): # reduced RGB pages pages = [p for p in self.pages if p.is_reduced] cp = 1 i = 0 while cp < len(pages) and i < len(shape)-2: cp *= shape[i] i += 1 shape = shape[:i] + pages[0].shape axes = axes[:i] + 'CYX' dtype = pages[0].dtype series.append(TiffPageSeries(pages, shape, dtype, axes)) return series def _imagej_series(self): """Return image series in ImageJ file.""" # ImageJ's dimension order is always TZCYXS # TODO: fix loading of color, composite or palette images shape = [] axes = [] page0 = self.pages[0] ij = page0.imagej_tags if 'frames' in ij: shape.append(ij['frames']) axes.append('T') if 'slices' in ij: shape.append(ij['slices']) axes.append('Z') if 'channels' in ij and not (self.is_rgb and not ij.get('hyperstack', False)): shape.append(ij['channels']) axes.append('C') remain = ij.get('images', len(self.pages)) // (product(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') if page0.axes[0] == 'I': # contiguous multiple images shape.extend(page0.shape[1:]) axes.extend(page0.axes[1:]) elif page0.axes[:2] == 'SI': # color-mapped contiguous multiple images shape = page0.shape[0:1] + tuple(shape) + page0.shape[2:] axes = list(page0.axes[0]) + axes + list(page0.axes[2:]) else: shape.extend(page0.shape) axes.extend(page0.axes) return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _nih_series(self): """Return image series in NIH file.""" page0 = self.pages[0] if len(self.pages) == 1: shape = page0.shape axes = page0.axes else: shape = (len(self.pages),) + page0.shape axes = 'I' + page0.axes return [TiffPageSeries(self.pages, shape, page0.dtype, axes)] def _ome_series(self): """Return image series in OME-TIFF file(s).""" omexml = self.pages[0].tags['image_description'].value omexml = omexml.decode('UTF-8', 'ignore') root = etree.fromstring(omexml) uuid = root.attrib.get('UUID', None) self._files = {uuid: self} dirname = self._fh.dirname modulo = {} series = [] for element in root: if element.tag.endswith('BinaryOnly'): warnings.warn("ome-xml: not an ome-tiff master file") break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = AXES_LABELS[newaxis] if 'Start' in along.attrib: labels = range( int(along.attrib['Start']), int(along.attrib['End']) + 1, int(along.attrib.get('Step', 1))) else: labels = [label.text for label in along if label.tag.endswith('Label')] modulo[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for pixels in element: if not pixels.tag.endswith('Pixels'): continue atr = pixels.attrib dtype = atr.get('Type', None) axes = ''.join(reversed(atr['DimensionOrder'])) shape = list(int(atr['Size'+ax]) for ax in axes) size = product(shape[:-2]) ifds = [None] * size for data in pixels: if not data.tag.endswith('TiffData'): continue atr = data.attrib ifd = int(atr.get('IFD', 0)) num = int(atr.get('NumPlanes', 1 if 'IFD' in atr else 0)) num = int(atr.get('PlaneCount', num)) idx = [int(atr.get('First'+ax, 0)) for ax in axes[:-2]] try: idx = numpy.ravel_multi_index(idx, shape[:-2]) except ValueError: # ImageJ produces invalid ome-xml when cropping warnings.warn("ome-xml: invalid TiffData index") continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile(os.path.join(dirname, fname)) except (IOError, ValueError): tif.close() warnings.warn( "ome-xml: failed to read '%s'" % fname) break self._files[uuid.text] = tif if self._multifile_close: tif.close() pages = self._files[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") # only process first uuid break else: pages = self.pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: warnings.warn("ome-xml: index out of range") if all(i is None for i in ifds): # skip images without data continue dtype = next(i for i in ifds if i).dtype series.append(TiffPageSeries(ifds, shape, dtype, axes, self)) for serie in series: shape = list(serie.shape) for axis, (newaxis, labels) in modulo.items(): i = serie.axes.index(axis) size = len(labels) if shape[i] == size: serie.axes = serie.axes.replace(axis, newaxis, 1) else: shape[i] //= size shape.insert(i+1, size) serie.axes = serie.axes.replace(axis, axis+newaxis, 1) serie.shape = tuple(shape) # squeeze dimensions for serie in series: serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes) return series def __len__(self): """Return number of image pages in file.""" return len(self.pages) def __getitem__(self, key): """Return specified page.""" return self.pages[key] def __iter__(self): """Return iterator over pages.""" return iter(self.pages) def __str__(self): """Return string containing information about file.""" result = [ self._fh.name.capitalize(), format_size(self._fh.size), {'<': 'little endian', '>': 'big endian'}[self.byteorder]] if self.is_bigtiff: result.append("bigtiff") if len(self.pages) > 1: result.append("%i pages" % len(self.pages)) if len(self.series) > 1: result.append("%i series" % len(self.series)) if len(self._files) > 1: result.append("%i files" % (len(self._files))) return ", ".join(result) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @lazyattr def fstat(self): try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None @lazyattr def is_bigtiff(self): """File has BigTIFF format.""" return self.offset_size != 4 @lazyattr def is_rgb(self): """File contains only RGB images.""" return all(p.is_rgb for p in self.pages) @lazyattr def is_palette(self): """File contains only color-mapped images.""" return all(p.is_palette for p in self.pages) @lazyattr def is_mdgel(self): """File has MD Gel format.""" return any(p.is_mdgel for p in self.pages) @lazyattr def is_mediacy(self): """File was created by Media Cybernetics software.""" return any(p.is_mediacy for p in self.pages) @lazyattr def is_stk(self): """File has MetaMorph STK format.""" return all(p.is_stk for p in self.pages) @lazyattr def is_lsm(self): """File was created by Carl Zeiss software.""" return len(self.pages) and self.pages[0].is_lsm @lazyattr def is_vista(self): """File was created by ISS Vista.""" return len(self.pages) and self.pages[0].is_vista @lazyattr def is_imagej(self): """File has ImageJ format.""" return len(self.pages) and self.pages[0].is_imagej @lazyattr def is_micromanager(self): """File was created by MicroManager.""" return len(self.pages) and self.pages[0].is_micromanager @lazyattr def is_nih(self): """File has NIH Image format.""" return len(self.pages) and self.pages[0].is_nih @lazyattr def is_fluoview(self): """File was created by Olympus FluoView.""" return len(self.pages) and self.pages[0].is_fluoview @lazyattr def is_ome(self): """File has OME-TIFF format.""" return len(self.pages) and self.pages[0].is_ome class TiffPage(object): """A TIFF image file directory (IFD). Attributes ---------- index : int Index of page in file. dtype : str {TIFF_SAMPLE_DTYPES} Data type of image, color-mapped if applicable. shape : tuple Dimensions of the image array in TIFF page, color-mapped and with extra samples if applicable. axes : str Axes label codes: 'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Dictionary of tags in page. Tag values are also directly accessible as attributes. color_map : numpy.ndarray Color look up table, if exists. cz_lsm_scan_info: Record(dict) LSM scan info attributes, if exists. imagej_tags: Record(dict) Consolidated ImageJ description and metadata tags, if exists. uic_tags: Record(dict) Consolidated MetaMorph STK/UIC tags, if exists. All attributes are read-only. Notes ----- The internal, normalized '_shape' attribute is 6 dimensional: 0. number planes/images (stk, ij). 1. planar samples_per_pixel. 2. image_depth Z (sgi). 3. image_length Y. 4. image_width X. 5. contig samples_per_pixel. """ def __init__(self, parent): """Initialize instance from file.""" self.parent = parent self.index = len(parent.pages) self.shape = self._shape = () self.dtype = self._dtype = None self.axes = "" self.tags = TiffTags() self._offset = 0 self._fromfile() self._process_tags() def _fromfile(self): """Read TIFF IFD structure and its tags from file. File cursor must be at storage position of IFD offset and is left at offset to next IFD. Raises StopIteration if offset (first bytes read) is 0 or a corrupted page list is encountered. """ fh = self.parent.filehandle byteorder = self.parent.byteorder offset_size = self.parent.offset_size # read offset to this IFD fmt = {4: 'I', 8: 'Q'}[offset_size] offset = struct.unpack(byteorder + fmt, fh.read(offset_size))[0] if not offset: raise StopIteration() if offset >= fh.size: warnings.warn("invalid page offset > file size") raise StopIteration() self._offset = offset # read standard tags tags = self.tags fh.seek(offset) fmt, size = {4: ('H', 2), 8: ('Q', 8)}[offset_size] try: numtags = struct.unpack(byteorder + fmt, fh.read(size))[0] if numtags > 4096: raise ValueError("suspicious number of tags") except Exception: warnings.warn("corrupted page list at offset %i" % offset) raise StopIteration() tagcode = 0 for _ in range(numtags): try: tag = TiffTag(self.parent) except TiffTag.Error as e: warnings.warn(str(e)) continue if tagcode > tag.code: # expected for early LSM and tifffile versions warnings.warn("tags are not ordered by code") tagcode = tag.code if tag.name not in tags: tags[tag.name] = tag else: # some files contain multiple IFD with same code # e.g. MicroManager files contain two image_description i = 1 while True: name = "%s_%i" % (tag.name, i) if name not in tags: tags[name] = tag break pos = fh.tell() # where offset to next IFD can be found if self.is_lsm or (self.index and self.parent.is_lsm): # correct non standard LSM bitspersample tags self.tags['bits_per_sample']._fix_lsm_bitspersample(self) if self.is_lsm: # read LSM info subrecords for name, reader in CZ_LSM_INFO_READERS.items(): try: offset = self.cz_lsm_info['offset_'+name] except KeyError: continue if offset < 8: # older LSM revision continue fh.seek(offset) try: setattr(self, 'cz_lsm_'+name, reader(fh)) except ValueError: pass elif self.is_stk and 'uic1tag' in tags and not tags['uic1tag'].value: # read uic1tag now that plane count is known uic1tag = tags['uic1tag'] fh.seek(uic1tag.value_offset) tags['uic1tag'].value = Record( read_uic1tag(fh, byteorder, uic1tag.dtype, uic1tag.count, tags['uic2tag'].count)) fh.seek(pos) def _process_tags(self): """Validate standard tags and initialize attributes. Raise ValueError if tag values are not supported. """ tags = self.tags for code, (name, default, dtype, count, validate) in TIFF_TAGS.items(): if not (name in tags or default is None): tags[name] = TiffTag(code, dtype=dtype, count=count, value=default, name=name) if name in tags and validate: try: if tags[name].count == 1: setattr(self, name, validate[tags[name].value]) else: setattr(self, name, tuple( validate[value] for value in tags[name].value)) except KeyError: raise ValueError("%s.value (%s) not supported" % (name, tags[name].value)) tag = tags['bits_per_sample'] if tag.count == 1: self.bits_per_sample = tag.value else: # LSM might list more items than samples_per_pixel value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.bits_per_sample = value else: self.bits_per_sample = value[0] tag = tags['sample_format'] if tag.count == 1: self.sample_format = TIFF_SAMPLE_FORMATS[tag.value] else: value = tag.value[:self.samples_per_pixel] if any((v-value[0] for v in value)): self.sample_format = [TIFF_SAMPLE_FORMATS[v] for v in value] else: self.sample_format = TIFF_SAMPLE_FORMATS[value[0]] if 'photometric' not in tags: self.photometric = None if 'image_depth' not in tags: self.image_depth = 1 if 'image_length' in tags: self.strips_per_image = int(math.floor( float(self.image_length + self.rows_per_strip - 1) / self.rows_per_strip)) else: self.strips_per_image = 0 key = (self.sample_format, self.bits_per_sample) self.dtype = self._dtype = TIFF_SAMPLE_DTYPES.get(key, None) if 'image_length' not in self.tags or 'image_width' not in self.tags: # some GEL file pages are missing image data self.image_length = 0 self.image_width = 0 self.image_depth = 0 self.strip_offsets = 0 self._shape = () self.shape = () self.axes = '' if self.is_vista or self.parent.is_vista: # ISS Vista writes wrong image_depth tag self.image_depth = 1 if self.is_palette: self.dtype = self.tags['color_map'].dtype[1] self.color_map = numpy.array(self.color_map, self.dtype) dmax = self.color_map.max() if dmax < 256: self.dtype = numpy.uint8 self.color_map = self.color_map.astype(self.dtype) #else: # self.dtype = numpy.uint8 # self.color_map >>= 8 # self.color_map = self.color_map.astype(self.dtype) self.color_map.shape = (3, -1) # determine shape of data image_length = self.image_length image_width = self.image_width image_depth = self.image_depth samples_per_pixel = self.samples_per_pixel if self.is_stk: assert self.image_depth == 1 planes = self.tags['uic2tag'].count if self.is_contig: self._shape = (planes, 1, 1, image_length, image_width, samples_per_pixel) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self._shape = (planes, samples_per_pixel, 1, image_length, image_width, 1) if samples_per_pixel == 1: self.shape = (planes, image_length, image_width) self.axes = 'YX' else: self.shape = (planes, samples_per_pixel, image_length, image_width) self.axes = 'SYX' # detect type of series if planes == 1: self.shape = self.shape[1:] elif numpy.all(self.uic2tag.z_distance != 0): self.axes = 'Z' + self.axes elif numpy.all(numpy.diff(self.uic2tag.time_created) != 0): self.axes = 'T' + self.axes else: self.axes = 'I' + self.axes # DISABLED if self.is_palette: assert False, "color mapping disabled for stk" if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, planes, image_length, image_width) else: self.shape = (3, planes, image_depth, image_length, image_width) self.axes = 'S' + self.axes else: warnings.warn("palette cannot be applied") self.is_palette = False elif self.is_palette: samples = 1 if 'extra_samples' in self.tags: samples += len(self.extra_samples) if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples) else: self._shape = (1, samples, image_depth, image_length, image_width, 1) if self.color_map.shape[1] >= 2**self.bits_per_sample: if image_depth == 1: self.shape = (3, image_length, image_width) self.axes = 'SYX' else: self.shape = (3, image_depth, image_length, image_width) self.axes = 'SZYX' else: warnings.warn("palette cannot be applied") self.is_palette = False if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' elif self.is_rgb or samples_per_pixel > 1: if self.is_contig: self._shape = (1, 1, image_depth, image_length, image_width, samples_per_pixel) if image_depth == 1: self.shape = (image_length, image_width, samples_per_pixel) self.axes = 'YXS' else: self.shape = (image_depth, image_length, image_width, samples_per_pixel) self.axes = 'ZYXS' else: self._shape = (1, samples_per_pixel, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (samples_per_pixel, image_length, image_width) self.axes = 'SYX' else: self.shape = (samples_per_pixel, image_depth, image_length, image_width) self.axes = 'SZYX' if False and self.is_rgb and 'extra_samples' in self.tags: # DISABLED: only use RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for exs in extra_samples: if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: self.shape = self.shape[:-1] + (4,) else: self.shape = (4,) + self.shape[1:] break else: self._shape = (1, 1, image_depth, image_length, image_width, 1) if image_depth == 1: self.shape = (image_length, image_width) self.axes = 'YX' else: self.shape = (image_depth, image_length, image_width) self.axes = 'ZYX' if not self.compression and 'strip_byte_counts' not in tags: self.strip_byte_counts = ( product(self.shape) * (self.bits_per_sample // 8),) assert len(self.shape) == len(self.axes) def _patch_imagej(self): """Return if ImageJ data are contiguous and adjust page attributes. Patch 'strip_offsets' and 'strip_byte_counts' tags to span the complete contiguous data. ImageJ stores all image metadata in the first page and image data is stored contiguously before the second page, if any. No need to read other pages. """ if not self.is_imagej or not self.is_contiguous: return images = self.imagej_tags.get('images', 0) if images <= 1: return pre = 'tile' if self.is_tiled else 'strip' self.tags[pre+'_offsets'].value = (self.is_contiguous[0],) self.tags[pre+'_byte_counts'].value = (self.is_contiguous[1] * images,) self.shape = (images,) + self.shape self._shape = (images,) + self._shape[1:] self.axes = 'I' + self.axes if self.is_palette: # swap first two dimensions self.axes = self.axes[1::-1] + self.axes[2:] self.shape = self.shape[1::-1] + self.shape[2:] return True def asarray(self, squeeze=True, colormapped=True, rgbonly=False, scale_mdgel=False, memmap=False, reopen=True, maxsize=64*1024*1024*1024): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. If any of 'squeeze', 'colormapped', or 'rgbonly' are not the default, the shape of the returned array might be different from the page shape. Parameters ---------- squeeze : bool If True, all length-1 dimensions (except X and Y) are squeezed out from result. colormapped : bool If True, color mapping is applied for palette-indexed images. rgbonly : bool If True, return RGB(A) image without additional extra samples. memmap : bool If True, use numpy.memmap to read arrays from file if possible. For use on 64 bit systems and files with few huge contiguous data. reopen : bool If True and the parent file handle is closed, the file is temporarily re-opened (and closed if no exception occurs). scale_mdgel : bool If True, MD Gel data will be scaled according to the private metadata in the second TIFF page. The dtype will be float32. maxsize: int or None Maximum size of data before a ValueError is raised. Can be used to catch DOS. Default: 64 GB. """ if not self._shape: return if maxsize and product(self._shape) > maxsize: raise ValueError("data is too large %s" % str(self._shape)) if self.dtype is None: raise ValueError("data type not supported: %s%i" % ( self.sample_format, self.bits_per_sample)) if self.compression not in TIFF_DECOMPESSORS: raise ValueError("cannot decompress %s" % self.compression) tag = self.tags['sample_format'] if tag.count != 1 and any((i-tag.value[0] for i in tag.value)): raise ValueError("sample formats don't match %s" % str(tag.value)) fh = self.parent.filehandle closed = fh.closed if closed: if reopen: fh.open() else: raise IOError("file handle is closed") dtype = self._dtype shape = self._shape image_width = self.image_width image_length = self.image_length image_depth = self.image_depth typecode = self.parent.byteorder + dtype bits_per_sample = self.bits_per_sample byte_counts, offsets = self._byte_counts_offsets if self.is_tiled: tile_width = self.tile_width tile_length = self.tile_length tile_depth = self.tile_depth if 'tile_depth' in self.tags else 1 tw = (image_width + tile_width - 1) // tile_width tl = (image_length + tile_length - 1) // tile_length td = (image_depth + tile_depth - 1) // tile_depth shape = (shape[0], shape[1], td*tile_depth, tl*tile_length, tw*tile_width, shape[-1]) tile_shape = (tile_depth, tile_length, tile_width, shape[-1]) runlen = tile_width else: runlen = image_width if memmap and self._is_memmappable(rgbonly, colormapped): result = fh.memmap_array(typecode, shape, offset=offsets[0]) elif self.is_contiguous: fh.seek(offsets[0]) result = fh.read_array(typecode, product(shape)) result = result.astype('=' + dtype) else: if self.is_contig: runlen *= self.samples_per_pixel if bits_per_sample in (8, 16, 32, 64, 128): if (bits_per_sample * runlen) % 8: raise ValueError("data and sample size mismatch") def unpack(x, typecode=typecode): if self.predictor == 'float': # the floating point horizontal differencing decoder # needs the raw byte order typecode = dtype try: return numpy.fromstring(x, typecode) except ValueError as e: # strips may be missing EOI warnings.warn("unpack: %s" % e) xlen = ((len(x) // (bits_per_sample // 8)) * (bits_per_sample // 8)) return numpy.fromstring(x[:xlen], typecode) elif isinstance(bits_per_sample, tuple): def unpack(x): return unpack_rgb(x, typecode, bits_per_sample) else: def unpack(x): return unpack_ints(x, typecode, bits_per_sample, runlen) decompress = TIFF_DECOMPESSORS[self.compression] if self.compression == 'jpeg': table = self.jpeg_tables if 'jpeg_tables' in self.tags else b'' def decompress(x): return decode_jpeg(x, table, self.photometric) if self.is_tiled: result = numpy.empty(shape, dtype) tw, tl, td, pl = 0, 0, 0, 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) tile = unpack(decompress(fh.read(bytecount))) try: tile.shape = tile_shape except ValueError: # incomplete tiles; see gdal issue #1179 warnings.warn("invalid tile data") t = numpy.zeros(tile_shape, dtype).reshape(-1) s = min(tile.size, t.size) t[:s] = tile[:s] tile = t.reshape(tile_shape) if self.predictor == 'horizontal': numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile) elif self.predictor == 'float': raise NotImplementedError() result[0, pl, td:td+tile_depth, tl:tl+tile_length, tw:tw+tile_width, :] = tile del tile tw += tile_width if tw >= shape[4]: tw, tl = 0, tl + tile_length if tl >= shape[3]: tl, td = 0, td + tile_depth if td >= shape[2]: td, pl = 0, pl + 1 result = result[..., :image_depth, :image_length, :image_width, :] else: strip_size = (self.rows_per_strip * self.image_width * self.samples_per_pixel) result = numpy.empty(shape, dtype).reshape(-1) index = 0 for offset, bytecount in zip(offsets, byte_counts): fh.seek(offset) strip = fh.read(bytecount) strip = decompress(strip) strip = unpack(strip) size = min(result.size, strip.size, strip_size, result.size - index) result[index:index+size] = strip[:size] del strip index += size result.shape = self._shape if self.predictor and not (self.is_tiled and not self.is_contiguous): if self.parent.is_lsm and not self.compression: pass # work around bug in LSM510 software elif self.predictor == 'horizontal': numpy.cumsum(result, axis=-2, dtype=dtype, out=result) elif self.predictor == 'float': result = decode_floats(result) if colormapped and self.is_palette: if self.color_map.shape[1] >= 2**bits_per_sample: # FluoView and LSM might fail here result = numpy.take(self.color_map, result[:, 0:1, :, :, :, 0:1], axis=1) elif rgbonly and self.is_rgb and 'extra_samples' in self.tags: # return only RGB and first alpha channel if exists extra_samples = self.extra_samples if self.tags['extra_samples'].count == 1: extra_samples = (extra_samples,) for i, exs in enumerate(extra_samples): if exs in ('unassalpha', 'assocalpha', 'unspecified'): if self.is_contig: result = result[..., [0, 1, 2, 3+i]] else: result = result[:, [0, 1, 2, 3+i]] break else: if self.is_contig: result = result[..., :3] else: result = result[:, :3] if squeeze: try: result.shape = self.shape except ValueError: warnings.warn("failed to reshape from %s to %s" % ( str(result.shape), str(self.shape))) if scale_mdgel and self.parent.is_mdgel: # MD Gel stores private metadata in the second page tags = self.parent.pages[1] if tags.md_file_tag in (2, 128): scale = tags.md_scale_pixel scale = scale[0] / scale[1] # rational result = result.astype('float32') if tags.md_file_tag == 2: result **= 2 # squary root data format result *= scale if closed: # TODO: file should remain open if an exception occurred above fh.close() return result @lazyattr def _byte_counts_offsets(self): """Return simplified byte_counts and offsets.""" if 'tile_offsets' in self.tags: byte_counts = self.tile_byte_counts offsets = self.tile_offsets else: byte_counts = self.strip_byte_counts offsets = self.strip_offsets j = 0 for i, (b, o) in enumerate(zip(byte_counts, offsets)): if b > 0 and o > 0: if i > j: byte_counts[j] = b offsets[j] = o j += 1 elif b > 0 and o <= 0: raise ValueError("invalid offset") else: warnings.warn("empty byte count") if j == 0: j = 1 return byte_counts[:j], offsets[:j] def _is_memmappable(self, rgbonly, colormapped): """Return if page's image data in file can be memory-mapped.""" return (self.parent.filehandle.is_file and self.is_contiguous and (self.bits_per_sample == 8 or self.parent._is_native) and not self.predictor and not (rgbonly and 'extra_samples' in self.tags) and not (colormapped and self.is_palette)) @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction and colormapping. """ if self.compression or self.bits_per_sample not in (8, 16, 32, 64): return if self.is_tiled: if (self.image_width != self.tile_width or self.image_length % self.tile_length or self.tile_width % 16 or self.tile_length % 16): return if ('image_depth' in self.tags and 'tile_depth' in self.tags and (self.image_length != self.tile_length or self.image_depth % self.tile_depth)): return offsets = self.tile_offsets byte_counts = self.tile_byte_counts else: offsets = self.strip_offsets byte_counts = self.strip_byte_counts if len(offsets) == 1: return offsets[0], byte_counts[0] if self.is_stk or all(offsets[i] + byte_counts[i] == offsets[i+1] or byte_counts[i+1] == 0 # no data/ignore offset for i in range(len(offsets)-1)): return offsets[0], sum(byte_counts) def __str__(self): """Return string containing information about page.""" s = ', '.join(s for s in ( ' x '.join(str(i) for i in self.shape), str(numpy.dtype(self.dtype)), '%s bit' % str(self.bits_per_sample), self.photometric if 'photometric' in self.tags else '', self.compression if self.compression else 'raw', '|'.join(t[3:] for t in ( 'is_stk', 'is_lsm', 'is_nih', 'is_ome', 'is_imagej', 'is_micromanager', 'is_fluoview', 'is_mdgel', 'is_mediacy', 'is_sgi', 'is_reduced', 'is_tiled', 'is_contiguous') if getattr(self, t))) if s) return "Page %i: %s" % (self.index, s) def __getattr__(self, name): """Return tag value.""" if name in self.tags: value = self.tags[name].value setattr(self, name, value) return value raise AttributeError(name) @lazyattr def uic_tags(self): """Consolidate UIC tags.""" if not self.is_stk: raise AttributeError("uic_tags") tags = self.tags result = Record() result.number_planes = tags['uic2tag'].count if 'image_description' in tags: result.plane_descriptions = self.image_description.split(b'\x00') if 'uic1tag' in tags: result.update(tags['uic1tag'].value) if 'uic3tag' in tags: result.update(tags['uic3tag'].value) # wavelengths if 'uic4tag' in tags: result.update(tags['uic4tag'].value) # override uic1 tags uic2tag = tags['uic2tag'].value result.z_distance = uic2tag.z_distance result.time_created = uic2tag.time_created result.time_modified = uic2tag.time_modified try: result.datetime_created = [ julian_datetime(*dt) for dt in zip(uic2tag.date_created, uic2tag.time_created)] result.datetime_modified = [ julian_datetime(*dt) for dt in zip(uic2tag.date_modified, uic2tag.time_modified)] except ValueError as e: warnings.warn("uic_tags: %s" % e) return result @lazyattr def imagej_tags(self): """Consolidate ImageJ metadata.""" if not self.is_imagej: raise AttributeError("imagej_tags") result = imagej_description_dict(self.is_imagej) if 'imagej_metadata' in self.tags: try: result.update(imagej_metadata( self.tags['imagej_metadata'].value, self.tags['imagej_byte_counts'].value, self.parent.byteorder)) except Exception as e: warnings.warn(str(e)) return Record(result) @lazyattr def is_rgb(self): """Page contains a RGB image.""" return ('photometric' in self.tags and self.tags['photometric'].value == 2) @lazyattr def is_contig(self): """Page contains contiguous image.""" return ('planar_configuration' in self.tags and self.tags['planar_configuration'].value == 1) @lazyattr def is_palette(self): """Page contains palette-colored image and is not OME or STK.""" # turn off color mapping for OME-TIFF and STK if self.is_stk or self.is_ome or self.parent.is_ome: return False return ('photometric' in self.tags and self.tags['photometric'].value == 3) @lazyattr def is_tiled(self): """Page contains tiled image.""" return 'tile_width' in self.tags @lazyattr def is_reduced(self): """Page is reduced image of another image.""" return bool(self.tags['new_subfile_type'].value & 1) @lazyattr def is_mdgel(self): """Page contains md_file_tag tag.""" return 'md_file_tag' in self.tags @lazyattr def is_mediacy(self): """Page contains Media Cybernetics Id tag.""" return ('mc_id' in self.tags and self.tags['mc_id'].value.startswith(b'MC TIFF')) @lazyattr def is_stk(self): """Page contains UIC2Tag tag.""" return 'uic2tag' in self.tags @lazyattr def is_lsm(self): """Page contains LSM CZ_LSM_INFO tag.""" return 'cz_lsm_info' in self.tags @lazyattr def is_fluoview(self): """Page contains FluoView MM_STAMP tag.""" return 'mm_stamp' in self.tags @lazyattr def is_nih(self): """Page contains NIH image header.""" return 'nih_image_header' in self.tags @lazyattr def is_sgi(self): """Page contains SGI image and tile depth tags.""" return 'image_depth' in self.tags and 'tile_depth' in self.tags @lazyattr def is_vista(self): """Software tag is 'ISS Vista'.""" return ('software' in self.tags and self.tags['software'].value == b'ISS Vista') @lazyattr def is_ome(self): """Page contains OME-XML in image_description tag.""" if 'image_description' not in self.tags: return False d = self.tags['image_description'].value.strip() return d.startswith(b'<?xml version=') and d.endswith(b'</OME>') @lazyattr def is_shaped(self): """Return description containing shape if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if b'"shape":' in description or b'shape=(' in description: return description if 'image_description_1' in self.tags: description = self.tags['image_description_1'].value if b'"shape":' in description or b'shape=(' in description: return description @lazyattr def is_imagej(self): """Return ImageJ description if exists, else None.""" if 'image_description' in self.tags: description = self.tags['image_description'].value if description.startswith(b'ImageJ='): return description if 'image_description_1' in self.tags: # Micromanager description = self.tags['image_description_1'].value if description.startswith(b'ImageJ='): return description @lazyattr def is_micromanager(self): """Page contains Micro-Manager metadata.""" return 'micromanager_metadata' in self.tags class TiffTag(object): """A TIFF tag structure. Attributes ---------- name : string Attribute name of tag. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF_DATA_TYPES. count : int Number of values. value : various types Tag data as Python object. value_offset : int Location of value in file, if any. All attributes are read-only. """ __slots__ = ('code', 'name', 'count', 'dtype', 'value', 'value_offset', '_offset', '_value', '_type') class Error(Exception): pass def __init__(self, arg, **kwargs): """Initialize instance from file or arguments.""" self._offset = None if hasattr(arg, '_fh'): self._fromfile(arg, **kwargs) else: self._fromdata(arg, **kwargs) def _fromdata(self, code, dtype, count, value, name=None): """Initialize instance from arguments.""" self.code = int(code) self.name = name if name else str(code) self.dtype = TIFF_DATA_TYPES[dtype] self.count = int(count) self.value = value self._value = value self._type = dtype def _fromfile(self, parent): """Read tag structure from open file. Advance file cursor.""" fh = parent.filehandle byteorder = parent.byteorder self._offset = fh.tell() self.value_offset = self._offset + parent.offset_size + 4 fmt, size = {4: ('HHI4s', 12), 8: ('HHQ8s', 20)}[parent.offset_size] data = fh.read(size) code, dtype = struct.unpack(byteorder + fmt[:2], data[:4]) count, value = struct.unpack(byteorder + fmt[2:], data[4:]) self._value = value self._type = dtype if code in TIFF_TAGS: name = TIFF_TAGS[code][0] elif code in CUSTOM_TAGS: name = CUSTOM_TAGS[code][0] else: name = str(code) try: dtype = TIFF_DATA_TYPES[self._type] except KeyError: raise TiffTag.Error("unknown tag data type %i" % self._type) fmt = '%s%i%s' % (byteorder, count*int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > parent.offset_size or code in CUSTOM_TAGS: pos = fh.tell() tof = {4: 'I', 8: 'Q'}[parent.offset_size] self.value_offset = offset = struct.unpack(byteorder+tof, value)[0] if offset < 0 or offset > parent.filehandle.size: raise TiffTag.Error("corrupt file - invalid tag value offset") elif offset < 4: raise TiffTag.Error("corrupt value offset for tag %i" % code) fh.seek(offset) if code in CUSTOM_TAGS: readfunc = CUSTOM_TAGS[code][1] value = readfunc(fh, byteorder, dtype, count) if isinstance(value, dict): # numpy.core.records.record value = Record(value) elif code in TIFF_TAGS or dtype[-1] == 's': value = struct.unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count) fh.seek(pos) else: value = struct.unpack(fmt, value[:size]) if code not in CUSTOM_TAGS and code not in (273, 279, 324, 325): # scalar value if not strip/tile offsets/byte_counts if len(value) == 1: value = value[0] if (dtype.endswith('s') and isinstance(value, bytes) and self._type != 7): # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL value = stripascii(value) self.code = code self.name = name self.dtype = dtype self.count = count self.value = value def _fix_lsm_bitspersample(self, parent): """Correct LSM bitspersample tag. Old LSM writers may use a separate region for two 16-bit values, although they fit into the tag value element of the tag. """ if self.code == 258 and self.count == 2: # TODO: test this case; need example file warnings.warn("correcting LSM bitspersample tag") fh = parent.filehandle tof = {4: '<I', 8: '<Q'}[parent.offset_size] self.value_offset = struct.unpack(tof, self._value)[0] fh.seek(self.value_offset) self.value = struct.unpack("<HH", fh.read(4)) def as_str(self): """Return value as human readable string.""" return ((str(self.value).split('\n', 1)[0]) if (self._type != 7) else '<undefined>') def __str__(self): """Return string containing information about tag.""" return ' '.join(str(getattr(self, s)) for s in self.__slots__) class TiffPageSeries(object): """Series of TIFF pages with compatible shape and data type. Attributes ---------- pages : list of TiffPage Sequence of TiffPages in series. dtype : numpy.dtype or str Data type of the image array in series. shape : tuple Dimensions of the image array in series. axes : str Labels of axes in shape. See TiffPage.axes. """ __slots__ = 'pages', 'shape', 'dtype', 'axes', 'parent' def __init__(self, pages, shape, dtype, axes, parent=None): self.pages = pages self.shape = tuple(shape) self.axes = ''.join(axes) self.dtype = numpy.dtype(dtype) if parent: self.parent = parent elif len(pages): self.parent = pages[0].parent else: self.parent = None def asarray(self, memmap=False): """Return image data from series of TIFF pages as numpy array. Parameters ---------- memmap : bool If True, return an array stored in a binary file on disk if possible. """ if self.parent: return self.parent.asarray(series=self, memmap=memmap) def __len__(self): """Return number of TiffPages in series.""" return len(self.pages) def __getitem__(self, key): """Return specified TiffPage.""" return self.pages[key] def __iter__(self): """Return iterator over TiffPages in series.""" return iter(self.pages) def __str__(self): """Return string with information about series.""" return "* pages: %i\n* dtype: %s\n* shape: %s\n* axes: %s" % ( len(self.pages), str(self.dtype), str(self.shape), self.axes) class TiffSequence(object): """Sequence of image files. The data shape and dtype of all files must match. Attributes ---------- files : list List of file names. shape : tuple Shape of image sequence. axes : str Labels of axes in shape. Examples -------- >>> tifs = TiffSequence("test.oif.files/*.tif") >>> tifs.shape, tifs.axes ((2, 100), 'CT') >>> data = tifs.asarray() >>> data.shape (2, 100, 256, 256) """ _patterns = { 'axes': r""" # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """} class ParseError(Exception): pass def __init__(self, files, imread=TiffFile, pattern='axes', *args, **kwargs): """Initialize instance from multiple files. Parameters ---------- files : str, or sequence of str Glob pattern or sequence of file names. imread : function or class Image read function or class with asarray function returning numpy array from single file. pattern : str Regular expression pattern that matches axes names and sequence indices in file names. By default this matches Olympus OIF and Leica TIFF series. """ if isinstance(files, basestring): files = natural_sorted(glob.glob(files)) files = list(files) if not files: raise ValueError("no files found") #if not os.path.isfile(files[0]): # raise ValueError("file not found") self.files = files if hasattr(imread, 'asarray'): # redefine imread _imread = imread def imread(fname, *args, **kwargs): with _imread(fname) as im: return im.asarray(*args, **kwargs) self.imread = imread self.pattern = self._patterns.get(pattern, pattern) try: self._parse() if not self.axes: self.axes = 'I' except self.ParseError: self.axes = 'I' self.shape = (len(files),) self._start_index = (0,) self._indices = tuple((i,) for i in range(len(files))) def __str__(self): """Return string with information about image sequence.""" return "\n".join([ self.files[0], '* files: %i' % len(self.files), '* axes: %s' % self.axes, '* shape: %s' % str(self.shape)]) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): pass def asarray(self, memmap=False, *args, **kwargs): """Read image data from all files and return as single numpy array. If memmap is True, return an array stored in a binary file on disk. The args and kwargs parameters are passed to the imread function. Raise IndexError or ValueError if image shapes don't match. """ im = self.imread(self.files[0], *args, **kwargs) shape = self.shape + im.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=im.dtype, shape=shape) else: result = numpy.zeros(shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) for index, fname in zip(self._indices, self.files): index = [i-j for i, j in zip(index, self._start_index)] index = numpy.ravel_multi_index(index, self.shape) im = self.imread(fname, *args, **kwargs) result[index] = im result.shape = shape return result def _parse(self): """Get axes and shape from file names.""" if not self.pattern: raise self.ParseError("invalid pattern") pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE) matches = pattern.findall(self.files[0]) if not matches: raise self.ParseError("pattern doesn't match file names") matches = matches[-1] if len(matches) % 2: raise self.ParseError("pattern doesn't match axis name and index") axes = ''.join(m for m in matches[::2] if m) if not axes: raise self.ParseError("pattern doesn't match file names") indices = [] for fname in self.files: matches = pattern.findall(fname)[-1] if axes != ''.join(m for m in matches[::2] if m): raise ValueError("axes don't match within the image sequence") indices.append([int(m) for m in matches[1::2] if m]) shape = tuple(numpy.max(indices, axis=0)) start_index = tuple(numpy.min(indices, axis=0)) shape = tuple(i-j+1 for i, j in zip(shape, start_index)) if product(shape) != len(self.files): warnings.warn("files are missing. Missing data are zeroed") self.axes = axes.upper() self.shape = shape self._indices = indices self._start_index = start_index class Record(dict): """Dictionary with attribute access. Can also be initialized with numpy.core.records.record. """ __slots__ = () def __init__(self, arg=None, **kwargs): if kwargs: arg = kwargs elif arg is None: arg = {} try: dict.__init__(self, arg) except (TypeError, ValueError): for i, name in enumerate(arg.dtype.names): v = arg[i] self[name] = v if v.dtype.char != 'S' else stripnull(v) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self.__setitem__(name, value) def __str__(self): """Pretty print Record.""" s = [] lists = [] for k in sorted(self): try: if k.startswith('_'): # does not work with byte continue except AttributeError: pass v = self[k] if isinstance(v, (list, tuple)) and len(v): if isinstance(v[0], Record): lists.append((k, v)) continue elif isinstance(v[0], TiffPage): v = [i.index for i in v if i] s.append( ("* %s: %s" % (k, str(v))).split("\n", 1)[0] [:PRINT_LINE_LEN].rstrip()) for k, v in lists: l = [] for i, w in enumerate(v): l.append("* %s[%i]\n %s" % (k, i, str(w).replace("\n", "\n "))) s.append('\n'.join(l)) return '\n'.join(s) class TiffTags(Record): """Dictionary of TiffTag with attribute access.""" def __str__(self): """Return string with information about all tags.""" s = [] for tag in sorted(self.values(), key=lambda x: x.code): typecode = "%i%s" % (tag.count * int(tag.dtype[0]), tag.dtype[1]) line = "* %i %s (%s) %s" % ( tag.code, tag.name, typecode, tag.as_str()) s.append(line[:PRINT_LINE_LEN].lstrip()) return '\n'.join(s) class FileHandle(object): """Binary file handle. * Handle embedded files (for CZI within CZI files). * Allow to re-open closed files (for multi file formats such as OME-TIFF). * Read numpy arrays and records from file like objects. Only binary read, seek, tell, and close are supported on embedded files. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a filno and can be memory-mapped. All attributes are read-only. """ __slots__ = ('_fh', '_arg', '_mode', '_name', '_dir', '_offset', '_size', '_close', 'is_file') def __init__(self, arg, mode='rb', name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- arg : str, File, or FileHandle File name or open file handle. mode : str File open mode in case 'arg' is a file name. name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default this is the current file position. size : int Optional size of embedded file. By default this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._arg = arg self._mode = mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = False self.open() def open(self): """Open or re-open file.""" if self._fh: return # file is open if isinstance(self._arg, basestring): # file name self._arg = os.path.abspath(self._arg) self._dir, self._name = os.path.split(self._arg) self._fh = open(self._arg, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._arg, FileHandle): # FileHandle self._fh = self._arg._fh if self._offset is None: self._offset = 0 self._offset += self._arg._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._arg._name) self._name = "%s@%i%s" % (name, self._offset, ext) else: self._name = self._arg._name self._dir = self._arg._dir else: # open file object self._fh = self._arg if self._offset is None: self._offset = self._arg.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = "Unnamed stream" if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, 2) self._size = self._fh.tell() self._fh.seek(pos) try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError("Can not memory-map file without fileno.") return numpy.memmap(self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order) def read_array(self, dtype, count=-1, sep=""): """Return numpy array from file. Work around numpy issue #2230, "numpy.fromfile does not accept StringIO object" https://github.com/numpy/numpy/issues/2230. """ try: return numpy.fromfile(self._fh, dtype, count, sep) except IOError: if count < 0: size = self._size else: size = count * numpy.dtype(dtype).itemsize data = self._fh.read(size) return numpy.fromstring(data, dtype, count, sep) def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" try: rec = numpy.rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize data = self._fh.read(size) return numpy.rec.fromstring(data, dtype, shape, byteorder=byteorder) return rec[0] if shape == 1 else rec def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: self._fh.seek(self._offset + offset, whence) return elif whence == 2: self._fh.seek(self._offset + self._size + offset, 0) return self._fh.seek(offset, whence) def close(self): """Close file.""" if self._close and self._fh: self._fh.close() self._fh = None self.is_file = False def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( "FileHandle: '%s' not implemented for embedded files" % name) return getattr(self._fh, name) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None def read_bytes(fh, byteorder, dtype, count): """Read tag data from file and return as byte string.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count).tostring() def read_numpy(fh, byteorder, dtype, count): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1] return fh.read_array(dtype, count) def read_json(fh, byteorder, dtype, count): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(unicode(stripnull(data), 'utf-8')) except ValueError: warnings.warn("invalid JSON '%s'" % data) def read_mm_header(fh, byteorder, dtype, count): """Read MM_HEADER tag from file and return as numpy.rec.array.""" return fh.read_record(MM_HEADER, byteorder=byteorder) def read_mm_stamp(fh, byteorder, dtype, count): """Read MM_STAMP tag from file and return as numpy.ndarray.""" return fh.read_array(byteorder+'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, plane_count=None): """Read MetaMorph STK UIC1Tag from file and return as dictionary. Return empty dictionary if plane_count is unknown. """ assert dtype in ('2I', '1I') and byteorder == '<' result = {} if dtype == '2I': # pre MetaMorph 2.5 (not tested) values = fh.read_array('<u4', 2*count).reshape(count, 2) result = {'z_distance': values[:, 0] / values[:, 1]} elif plane_count: for _ in range(count): tagid = struct.unpack('<I', fh.read(4))[0] if tagid in (28, 29, 37, 40, 41): # silently skip unexpected tags fh.read(4) continue name, value = read_uic_tag(fh, tagid, plane_count, offset=True) result[name] = value return result def read_uic2tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC2Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 6*plane_count).reshape(plane_count, 6) return { 'z_distance': values[:, 0] / values[:, 1], 'date_created': values[:, 2], # julian days 'time_created': values[:, 3], # milliseconds 'date_modified': values[:, 4], # julian days 'time_modified': values[:, 5], # milliseconds } def read_uic3tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC3Tag from file and return as dictionary.""" assert dtype == '2I' and byteorder == '<' values = fh.read_array('<u4', 2*plane_count).reshape(plane_count, 2) return {'wavelengths': values[:, 0] / values[:, 1]} def read_uic4tag(fh, byteorder, dtype, plane_count): """Read MetaMorph STK UIC4Tag from file and return as dictionary.""" assert dtype == '1I' and byteorder == '<' result = {} while True: tagid = struct.unpack('<H', fh.read(2))[0] if tagid == 0: break name, value = read_uic_tag(fh, tagid, plane_count, offset=False) result[name] = value return result def read_uic_tag(fh, tagid, plane_count, offset): """Read a single UIC tag value from file and return tag name and value. UIC1Tags use an offset. """ def read_int(count=1): value = struct.unpack('<%iI' % count, fh.read(4*count)) return value[0] if count == 1 else value try: name, dtype = UIC_TAGS[tagid] except KeyError: # unknown tag return '_tagid_%i' % tagid, read_int() if offset: pos = fh.tell() if dtype not in (int, None): off = read_int() if off < 8: warnings.warn("invalid offset for uic tag '%s': %i" % (name, off)) return name, off fh.seek(off) if dtype is None: # skip name = '_' + name value = read_int() elif dtype is int: # int value = read_int() elif dtype is Fraction: # fraction value = read_int(2) value = value[0] / value[1] elif dtype is julian_datetime: # datetime value = julian_datetime(*read_int(2)) elif dtype is read_uic_image_property: # ImagePropertyEx value = read_uic_image_property(fh) elif dtype is str: # pascal string size = read_int() if 0 <= size < 2**10: value = struct.unpack('%is' % size, fh.read(size))[0][:-1] value = stripnull(value) elif offset: value = '' warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) elif dtype == '%ip': # sequence of pascal strings value = [] for _ in range(plane_count): size = read_int() if 0 <= size < 2**10: string = struct.unpack('%is' % size, fh.read(size))[0][:-1] string = stripnull(string) value.append(string) elif offset: warnings.warn("corrupt string in uic tag '%s'" % name) else: raise ValueError("invalid string size %i" % size) else: # struct or numpy type dtype = '<' + dtype if '%i' in dtype: dtype = dtype % plane_count if '(' in dtype: # numpy type value = fh.read_array(dtype, 1)[0] if value.shape[-1] == 2: # assume fractions value = value[..., 0] / value[..., 1] else: # struct format value = struct.unpack(dtype, fh.read(struct.calcsize(dtype))) if len(value) == 1: value = value[0] if offset: fh.seek(pos + 4) return name, value def read_uic_image_property(fh): """Read UIC ImagePropertyEx tag from file and return as dict.""" # TODO: test this size = struct.unpack('B', fh.read(1))[0] name = struct.unpack('%is' % size, fh.read(size))[0][:-1] flags, prop = struct.unpack('<IB', fh.read(5)) if prop == 1: value = struct.unpack('II', fh.read(8)) value = value[0] / value[1] else: size = struct.unpack('B', fh.read(1))[0] value = struct.unpack('%is' % size, fh.read(size))[0] return dict(name=name, flags=flags, value=value) def read_cz_lsm_info(fh, byteorder, dtype, count): """Read CS_LSM_INFO tag from file and return as numpy.rec.array.""" assert byteorder == '<' magic_number, structure_size = struct.unpack('<II', fh.read(8)) if magic_number not in (50350412, 67127628): raise ValueError("not a valid CS_LSM_INFO structure") fh.seek(-8, 1) if structure_size < numpy.dtype(CZ_LSM_INFO).itemsize: # adjust structure according to structure_size cz_lsm_info = [] size = 0 for name, dtype in CZ_LSM_INFO: size += numpy.dtype(dtype).itemsize if size > structure_size: break cz_lsm_info.append((name, dtype)) else: cz_lsm_info = CZ_LSM_INFO return fh.read_record(cz_lsm_info, byteorder=byteorder) def read_cz_lsm_floatpairs(fh): """Read LSM sequence of float pairs from file and return as list.""" size = struct.unpack('<i', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_positions(fh): """Read LSM positions from file and return as list.""" size = struct.unpack('<I', fh.read(4))[0] return fh.read_array('<2f8', count=size) def read_cz_lsm_time_stamps(fh): """Read LSM time stamps from file and return as list.""" size, count = struct.unpack('<ii', fh.read(8)) if size != (8 + 8 * count): raise ValueError("lsm_time_stamps block is too short") # return struct.unpack('<%dd' % count, fh.read(8*count)) return fh.read_array('<f8', count=count) def read_cz_lsm_event_list(fh): """Read LSM events from file and return as list of (time, type, text).""" count = struct.unpack('<II', fh.read(8))[1] events = [] while count > 0: esize, etime, etype = struct.unpack('<IdI', fh.read(16)) etext = stripnull(fh.read(esize - 16)) events.append((etime, etype, etext)) count -= 1 return events def read_cz_lsm_scan_info(fh): """Read LSM scan information from file and return as Record.""" block = Record() blocks = [block] unpack = struct.unpack if 0x10000000 != struct.unpack('<I', fh.read(4))[0]: # not a Recording sub block raise ValueError("not a lsm_scan_info structure") fh.read(8) while True: entry, dtype, size = unpack('<III', fh.read(12)) if dtype == 2: # ascii value = stripnull(fh.read(size)) elif dtype == 4: # long value = unpack('<i', fh.read(4))[0] elif dtype == 5: # rational value = unpack('<d', fh.read(8))[0] else: value = 0 if entry in CZ_LSM_SCAN_INFO_ARRAYS: blocks.append(block) name = CZ_LSM_SCAN_INFO_ARRAYS[entry] newobj = [] setattr(block, name, newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_STRUCTS: blocks.append(block) newobj = Record() block.append(newobj) block = newobj elif entry in CZ_LSM_SCAN_INFO_ATTRIBUTES: name = CZ_LSM_SCAN_INFO_ATTRIBUTES[entry] setattr(block, name, value) elif entry == 0xffffffff: # end sub block block = blocks.pop() else: # unknown entry setattr(block, "entry_0x%x" % entry, value) if not blocks: break return block def read_nih_image_header(fh, byteorder, dtype, count): """Read NIH_IMAGE_HEADER tag from file and return as numpy.rec.array.""" a = fh.read_record(NIH_IMAGE_HEADER, byteorder=byteorder) a = a.newbyteorder(byteorder) a.xunit = a.xunit[:a._xunit_len] a.um = a.um[:a._um_len] return a def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. Raise ValueError if file does not contain valid MicroManager metadata. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError("not a MicroManager TIFF file") results = {} fh.seek(8) (index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32)) if summary_header != 2355492: raise ValueError("invalid MicroManager summary_header") results['summary'] = read_json(fh, byteorder, None, summary_length) if index_header != 54773648: raise ValueError("invalid MicroManager index_header") fh.seek(index_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 3453623: raise ValueError("invalid MicroManager index_header") data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count)) results['index_map'] = { 'channel': data[::5], 'slice': data[1::5], 'frame': data[2::5], 'position': data[3::5], 'offset': data[4::5]} if display_header != 483765892: raise ValueError("invalid MicroManager display_header") fh.seek(display_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 347834724: raise ValueError("invalid MicroManager display_header") results['display_settings'] = read_json(fh, byteorder, None, count) if comments_header != 99384722: raise ValueError("invalid MicroManager comments_header") fh.seek(comments_offset) header, count = struct.unpack(byteorder + "II", fh.read(8)) if header != 84720485: raise ValueError("invalid MicroManager comments_header") results['comments'] = read_json(fh, byteorder, None, count) return results def imagej_metadata(data, bytecounts, byteorder): """Return dictionary from ImageJ metadata tag value.""" _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') def read_string(data, byteorder): return _str(stripnull(data[0 if byteorder == '<' else 1::2])) def read_double(data, byteorder): return struct.unpack(byteorder+('d' * (len(data) // 8)), data) def read_bytes(data, byteorder): #return struct.unpack('b' * len(data), data) return numpy.fromstring(data, 'uint8') metadata_types = { # big endian b'info': ('info', read_string), b'labl': ('labels', read_string), b'rang': ('ranges', read_double), b'luts': ('luts', read_bytes), b'roi ': ('roi', read_bytes), b'over': ('overlays', read_bytes)} metadata_types.update( # little endian dict((k[::-1], v) for k, v in metadata_types.items())) if not bytecounts: raise ValueError("no ImageJ metadata") if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError("invalid ImageJ metadata") header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError("invalid ImageJ metadata header size") ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (_str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description_dict(description): """Return dictionary from ImageJ image description byte string. Raise ValueError if not a valid ImageJ description. >>> description = b'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n' >>> imagej_description_dict(description) # doctest: +SKIP {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True} """ def _bool(val): return {b'true': True, b'false': False}[val.lower()] _str = str if sys.version_info[0] < 3 else lambda x: str(x, 'cp1252') result = {} for line in description.splitlines(): try: key, val = line.split(b'=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool, _str): try: val = dtype(val) break except Exception: pass result[_str(key)] = val if 'ImageJ' not in result: raise ValueError("not a ImageJ image description") return result def imagej_description(shape, rgb=None, colormaped=False, version='1.11a', hyperstack=None, mode=None, loop=None, kwargs={}): """Return ImageJ image decription from data shape as byte string. ImageJ can handle up to 6 dimensions in order TZCYXS. >>> imagej_description((51, 5, 2, 196, 171)) # doctest: +SKIP ImageJ=1.11a images=510 channels=2 slices=5 frames=51 hyperstack=true mode=grayscale loop=false """ if colormaped: raise NotImplementedError("ImageJ colormapping not supported") shape = imagej_shape(shape, rgb=rgb) rgb = shape[-1] in (3, 4) result = ['ImageJ=%s' % version] append = [] result.append('images=%i' % product(shape[:-3])) if hyperstack is None: #if product(shape[:-3]) > 1: hyperstack = True append.append('hyperstack=true') else: append.append('hyperstack=%s' % bool(hyperstack)) if shape[2] > 1: result.append('channels=%i' % shape[2]) if mode is None and not rgb: mode = 'grayscale' if hyperstack and mode: append.append('mode=%s' % mode) if shape[1] > 1: result.append('slices=%i' % shape[1]) if shape[0] > 1: result.append("frames=%i" % shape[0]) if loop is None: append.append('loop=false') if loop is not None: append.append('loop=%s' % bool(loop)) for key, value in kwargs.items(): append.append('%s=%s' % (key.lower(), value)) return str2bytes('\n'.join(result + append + [''])) def imagej_shape(shape, rgb=None): """Return shape normalized to 6D ImageJ hyperstack TZCYXS. Raise ValueError if not a valid ImageJ hyperstack shape. >>> imagej_shape((2, 3, 4, 5, 3), False) (2, 3, 4, 5, 3, 1) """ shape = tuple(int(i) for i in shape) ndim = len(shape) if 1 > ndim > 6: raise ValueError("invalid ImageJ hyperstack: not 2 to 6 dimensional") if rgb is None: rgb = shape[-1] in (3, 4) and ndim > 2 if rgb and shape[-1] not in (3, 4): raise ValueError("invalid ImageJ hyperstack: not a RGB image") if not rgb and ndim == 6 and shape[-1] != 1: raise ValueError("invalid ImageJ hyperstack: not a non-RGB image") if rgb or shape[-1] == 1: return (1, ) * (6 - ndim) + shape else: return (1, ) * (5 - ndim) + shape + (1,) def image_description_dict(description): """Return dictionary from image description byte string. Raise ValuError if description is of unknown format. >>> image_description_dict(b'shape=(256, 256, 3)') {'shape': (256, 256, 3)} >>> description = b'{"shape": [256, 256, 3], "axes": "YXS"}' >>> image_description_dict(description) # doctest: +SKIP {'shape': [256, 256, 3], 'axes': 'YXS'} """ if description.startswith(b'shape='): # old style 'shaped' description shape = tuple(int(i) for i in description[7:-1].split(b',')) return dict(shape=shape) if description.startswith(b'{') and description.endswith(b'}'): # JSON description return json.loads(description.decode('utf-8')) raise ValueError("unknown image description") def image_description(shape, colormaped=False, **metadata): """Return image description from data shape and meta data. Return UTF-8 encoded JSON. >>> image_description((256, 256, 3), axes='YXS') # doctest: +SKIP b'{"shape": [256, 256, 3], "axes": "YXS"}' """ if colormaped: shape = (3,) + shape metadata.update({'shape': shape}) return json.dumps(metadata).encode('utf-8') def _replace_by(module_function, package=__package__, warn=False): """Try replace decorated function by module.function.""" try: from importlib import import_module except ImportError: warnings.warn('could not import module importlib') return lambda func: func def decorate(func, module_function=module_function, warn=warn): try: module, function = module_function.split('.') if package: module = import_module('.' + module, package=package) else: module = import_module(module) func, oldfunc = getattr(module, function), func globals()['__old_' + func.__name__] = oldfunc except Exception: if warn: warnings.warn("failed to import %s" % module_function) return func return decorate def decode_floats(data): """Decode floating point horizontal differencing. The TIFF predictor type 3 reorders the bytes of the image values and applies horizontal byte differencing to improve compression of floating point images. The ordering of interleaved color channels is preserved. Parameters ---------- data : numpy.ndarray The image to be decoded. The dtype must be a floating point. The shape must include the number of contiguous samples per pixel even if 1. """ shape = data.shape dtype = data.dtype if len(shape) < 3: raise ValueError('invalid data shape') if dtype.char not in 'dfe': raise ValueError('not a floating point image') littleendian = data.dtype.byteorder == '<' or ( sys.byteorder == 'little' and data.dtype.byteorder == '=') # undo horizontal byte differencing data = data.view('uint8') data.shape = shape[:-2] + (-1,) + shape[-1:] numpy.cumsum(data, axis=-2, dtype='uint8', out=data) # reorder bytes if littleendian: data.shape = shape[:-2] + (-1,) + shape[-2:] data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) data = data[..., ::-1] # back to float data = numpy.ascontiguousarray(data) data = data.view(dtype) data.shape = shape return data def decode_jpeg(encoded, tables=b'', photometric=None, ycbcr_subsampling=None, ycbcr_positioning=None): """Decode JPEG encoded byte string (using _czifile extension module).""" from czifile import _czifile image = _czifile.decode_jpeg(encoded, tables) if photometric == 'rgb' and ycbcr_subsampling and ycbcr_positioning: # TODO: convert YCbCr to RGB pass return image.tostring() @_replace_by('_tifffile.decode_packbits') def decode_packbits(encoded): """Decompress PackBits encoded byte string. PackBits is a simple byte-oriented run-length compression scheme. """ func = ord if sys.version[0] == '2' else lambda x: x result = [] result_extend = result.extend i = 0 try: while True: n = func(encoded[i]) + 1 i += 1 if n < 129: result_extend(encoded[i:i+n]) i += n elif n > 129: result_extend(encoded[i:i+1] * (258-n)) i += 1 except IndexError: pass return b''.join(result) if sys.version[0] == '2' else bytes(result) @_replace_by('_tifffile.decode_lzw') def decode_lzw(encoded): """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string). The strip must begin with a CLEAR code and end with an EOI code. This is an implementation of the LZW decoding algorithm described in (1). It is not compatible with old style LZW compressed files like quad-lzw.tif. """ len_encoded = len(encoded) bitcount_max = len_encoded * 8 unpack = struct.unpack if sys.version[0] == '2': newtable = [chr(i) for i in range(256)] else: newtable = [bytes([i]) for i in range(256)] newtable.extend((0, 0)) def next_code(): """Return integer of 'bitw' bits at 'bitcount' position in encoded.""" start = bitcount // 8 s = encoded[start:start+4] try: code = unpack('>I', s)[0] except Exception: code = unpack('>I', s + b'\x00'*(4-len(s)))[0] code <<= bitcount % 8 code &= mask return code >> shr switchbitch = { # code: bit-width, shr-bits, bit-mask 255: (9, 23, int(9*'1'+'0'*23, 2)), 511: (10, 22, int(10*'1'+'0'*22, 2)), 1023: (11, 21, int(11*'1'+'0'*21, 2)), 2047: (12, 20, int(12*'1'+'0'*20, 2)), } bitw, shr, mask = switchbitch[255] bitcount = 0 if len_encoded < 4: raise ValueError("strip must be at least 4 characters long") if next_code() != 256: raise ValueError("strip must begin with CLEAR code") code = 0 oldcode = 0 result = [] result_append = result.append while True: code = next_code() # ~5% faster when inlining this function bitcount += bitw if code == 257 or bitcount >= bitcount_max: # EOI break if code == 256: # CLEAR table = newtable[:] table_append = table.append lentable = 258 bitw, shr, mask = switchbitch[255] code = next_code() bitcount += bitw if code == 257: # EOI break result_append(table[code]) else: if code < lentable: decoded = table[code] newcode = table[oldcode] + decoded[:1] else: newcode = table[oldcode] newcode += newcode[:1] decoded = newcode result_append(decoded) table_append(newcode) lentable += 1 oldcode = code if lentable in switchbitch: bitw, shr, mask = switchbitch[lentable] if code != 257: warnings.warn("unexpected end of lzw stream (code %i)" % code) return b''.join(result) @_replace_by('_tifffile.unpack_ints') def unpack_ints(data, dtype, itemsize, runlen=0): """Decompress byte string to array of integers of any bit size <= 32. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. itemsize : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. """ if itemsize == 1: # bitarray data = numpy.fromstring(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) dtype = numpy.dtype(dtype) if itemsize in (8, 16, 32, 64): return numpy.fromstring(data, dtype) if itemsize < 1 or itemsize > 32: raise ValueError("itemsize out of range: %i" % itemsize) if dtype.kind not in "biu": raise ValueError("invalid dtype") itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize) if itembytes != dtype.itemsize: raise ValueError("dtype.itemsize too small") if runlen == 0: runlen = len(data) // itembytes skipbits = runlen*itemsize % 8 if skipbits: skipbits = 8 - skipbits shrbits = itembytes*8 - itemsize bitmask = int(itemsize*'1'+'0'*shrbits, 2) dtypestr = '>' + dtype.char # dtype always big endian? unpack = struct.unpack l = runlen * (len(data)*8 // (runlen*itemsize + skipbits)) result = numpy.empty((l,), dtype) bitcount = 0 for i in range(len(result)): start = bitcount // 8 s = data[start:start+itembytes] try: code = unpack(dtypestr, s)[0] except Exception: code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0] code <<= bitcount % 8 code &= bitmask result[i] = code >> shrbits bitcount += itemsize if (i+1) % runlen == 0: bitcount += skipbits return result def unpack_rgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True): """Return array from byte string containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- result : ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpack_rgb(data, '<B', (5, 6, 5), False)) [ 1 1 1 31 63 31] >>> print(unpack_rgb(data, '<B', (5, 6, 5))) [ 8 4 8 255 255 255] >>> print(unpack_rgb(data, '<B', (5, 5, 5))) [ 16 8 8 255 255 255] """ dtype = numpy.dtype(dtype) bits = int(numpy.sum(bitspersample)) if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)): raise ValueError("sample size not supported %s" % str(bitspersample)) dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits) data = numpy.fromstring(data, dtype.byteorder+dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i+1:])) t &= int('0b'+'1'*bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy.ndarray Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF_ORIENTATIONS keys or values. """ o = TIFF_ORIENTATIONS.get(orientation, orientation) if o == 'top_left': return image elif o == 'top_right': return image[..., ::-1, :] elif o == 'bottom_left': return image[..., ::-1, :, :] elif o == 'bottom_right': return image[..., ::-1, ::-1, :] elif o == 'left_top': return numpy.swapaxes(image, -3, -2) elif o == 'right_top': return numpy.swapaxes(image, -3, -2)[..., ::-1, :] elif o == 'left_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] elif o == 'right_bottom': return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] def squeeze_axes(shape, axes, skip='XY'): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError("dimensions of axes and shape don't match") shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return tuple(shape), ''.join(axes) def transpose_axes(data, axes, asaxes='CTZYX'): """Return data with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError("unknown axis %s" % ax) # add missing axes to data shape = data.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape data = data.reshape(shape) # transpose axes data = data.transpose([axes.index(ax) for ax in asaxes]) return data def stack_pages(pages, memmap=False, *args, **kwargs): """Read data from sequence of TiffPage and stack them vertically. If memmap is True, return an array stored in a binary file on disk. Additional parameters are passsed to the page asarray function. """ if len(pages) == 0: raise ValueError("no pages") if len(pages) == 1: return pages[0].asarray(memmap=memmap, *args, **kwargs) result = pages[0].asarray(*args, **kwargs) shape = (len(pages),) + result.shape if memmap: with tempfile.NamedTemporaryFile() as fh: result = numpy.memmap(fh, dtype=result.dtype, shape=shape) else: result = numpy.empty(shape, dtype=result.dtype) for i, page in enumerate(pages): result[i] = page.asarray(*args, **kwargs) return result def stripnull(string): """Return string truncated at first null character. Clean NULL terminated C strings. >>> stripnull(b'string\\x00') b'string' """ i = string.find(b'\x00') return string if (i < 0) else string[:i] def stripascii(string): """Return string truncated at last byte that is 7bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\\x00string\\n\\x01\\x00') b'string\\x00string\\n' >>> stripascii(b'\\x00') b'' """ # TODO: pythonize this ord_ = ord if sys.version_info[0] < 3 else lambda x: x i = len(string) while i: i -= 1 if 8 < ord_(string[i]) < 127: break else: i = -1 return string[:i+1] def format_size(size): """Return file size as string from byte size.""" for unit in ('B', 'KB', 'MB', 'GB', 'TB'): if size < 2048: return "%.f %s" % (size, unit) size /= 1024.0 def sequence(value): """Return tuple containing value if value is not a sequence. >>> sequence(1) (1,) >>> sequence([1]) [1] """ try: len(value) return value except TypeError: return (value,) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime(year, month, day, hour, minute, second, milisecond) def test_tifffile(directory='testimages', verbose=True): """Read all images in directory. Print error message on failure. >>> test_tifffile(verbose=False) """ successful = 0 failed = 0 start = time.time() for f in glob.glob(os.path.join(directory, '*.*')): if verbose: print("\n%s>\n" % f.lower(), end='') t0 = time.time() try: tif = TiffFile(f, multifile=True) except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue try: img = tif.asarray() except ValueError: try: img = tif[0].asarray() except Exception as e: if not verbose: print(f, end=' ') print("ERROR:", e) failed += 1 continue finally: tif.close() successful += 1 if verbose: print("%s, %s %s, %s, %.0f ms" % ( str(tif), str(img.shape), img.dtype, tif[0].compression, (time.time()-t0) * 1e3)) if verbose: print("\nSuccessfully read %i of %i files in %.3f s\n" % ( successful, successful+failed, time.time()-start)) class TIFF_SUBFILE_TYPES(object): def __getitem__(self, key): result = [] if key & 1: result.append('reduced_image') if key & 2: result.append('page') if key & 4: result.append('mask') return tuple(result) TIFF_PHOTOMETRICS = { 0: 'miniswhite', 1: 'minisblack', 2: 'rgb', 3: 'palette', 4: 'mask', 5: 'separated', # CMYK 6: 'ycbcr', 8: 'cielab', 9: 'icclab', 10: 'itulab', 32803: 'cfa', # Color Filter Array 32844: 'logl', 32845: 'logluv', 34892: 'linear_raw' } TIFF_COMPESSIONS = { 1: None, 2: 'ccittrle', 3: 'ccittfax3', 4: 'ccittfax4', 5: 'lzw', 6: 'ojpeg', 7: 'jpeg', 8: 'adobe_deflate', 9: 't85', 10: 't43', 32766: 'next', 32771: 'ccittrlew', 32773: 'packbits', 32809: 'thunderscan', 32895: 'it8ctpad', 32896: 'it8lw', 32897: 'it8mp', 32898: 'it8bl', 32908: 'pixarfilm', 32909: 'pixarlog', 32946: 'deflate', 32947: 'dcs', 34661: 'jbig', 34676: 'sgilog', 34677: 'sgilog24', 34712: 'jp2000', 34713: 'nef', 34925: 'lzma', } TIFF_DECOMPESSORS = { None: lambda x: x, 'adobe_deflate': zlib.decompress, 'deflate': zlib.decompress, 'packbits': decode_packbits, 'lzw': decode_lzw, # 'jpeg': decode_jpeg } if lzma: TIFF_DECOMPESSORS['lzma'] = lzma.decompress TIFF_DATA_TYPES = { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator of # a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1s', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the numerator # of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. #14: '', # UNICODE #15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } TIFF_SAMPLE_FORMATS = { 1: 'uint', 2: 'int', 3: 'float', #4: 'void', #5: 'complex_int', 6: 'complex', } TIFF_SAMPLE_DTYPES = { ('uint', 1): '?', # bitmap ('uint', 2): 'B', ('uint', 3): 'B', ('uint', 4): 'B', ('uint', 5): 'B', ('uint', 6): 'B', ('uint', 7): 'B', ('uint', 8): 'B', ('uint', 9): 'H', ('uint', 10): 'H', ('uint', 11): 'H', ('uint', 12): 'H', ('uint', 13): 'H', ('uint', 14): 'H', ('uint', 15): 'H', ('uint', 16): 'H', ('uint', 17): 'I', ('uint', 18): 'I', ('uint', 19): 'I', ('uint', 20): 'I', ('uint', 21): 'I', ('uint', 22): 'I', ('uint', 23): 'I', ('uint', 24): 'I', ('uint', 25): 'I', ('uint', 26): 'I', ('uint', 27): 'I', ('uint', 28): 'I', ('uint', 29): 'I', ('uint', 30): 'I', ('uint', 31): 'I', ('uint', 32): 'I', ('uint', 64): 'Q', ('int', 8): 'b', ('int', 16): 'h', ('int', 32): 'i', ('int', 64): 'q', ('float', 16): 'e', ('float', 32): 'f', ('float', 64): 'd', ('complex', 64): 'F', ('complex', 128): 'D', ('uint', (5, 6, 5)): 'B', } TIFF_ORIENTATIONS = { 1: 'top_left', 2: 'top_right', 3: 'bottom_right', 4: 'bottom_left', 5: 'left_top', 6: 'right_top', 7: 'right_bottom', 8: 'left_bottom', } # TODO: is there a standard for character axes labels? AXES_LABELS = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'I': 'series', # general sequence, plane, page, IFD 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', #'M': 'mosaic', # LSM 6 } AXES_LABELS.update(dict((v, k) for k, v in AXES_LABELS.items())) # Map OME pixel types to numpy dtype OME_PIXEL_TYPES = { 'int8': 'i1', 'int16': 'i2', 'int32': 'i4', 'uint8': 'u1', 'uint16': 'u2', 'uint32': 'u4', 'float': 'f4', # 'bit': 'bit', 'double': 'f8', 'complex': 'c8', 'double-complex': 'c16', } # NIH Image PicHeader v1.63 NIH_IMAGE_HEADER = [ ('fileid', 'a8'), ('nlines', 'i2'), ('pixelsperline', 'i2'), ('version', 'i2'), ('oldlutmode', 'i2'), ('oldncolors', 'i2'), ('colors', 'u1', (3, 32)), ('oldcolorstart', 'i2'), ('colorwidth', 'i2'), ('extracolors', 'u2', (6, 3)), ('nextracolors', 'i2'), ('foregroundindex', 'i2'), ('backgroundindex', 'i2'), ('xscale', 'f8'), ('_x0', 'i2'), ('_x1', 'i2'), ('units_t', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('curvefit_t', 'i2'), # NIH_CURVEFIT_TYPE ('ncoefficients', 'i2'), ('coeff', 'f8', 6), ('_um_len', 'u1'), ('um', 'a15'), ('_x2', 'u1'), ('binarypic', 'b1'), ('slicestart', 'i2'), ('sliceend', 'i2'), ('scalemagnification', 'f4'), ('nslices', 'i2'), ('slicespacing', 'f4'), ('currentslice', 'i2'), ('frameinterval', 'f4'), ('pixelaspectratio', 'f4'), ('colorstart', 'i2'), ('colorend', 'i2'), ('ncolors', 'i2'), ('fill1', '3u2'), ('fill2', '3u2'), ('colortable_t', 'u1'), # NIH_COLORTABLE_TYPE ('lutmode_t', 'u1'), # NIH_LUTMODE_TYPE ('invertedtable', 'b1'), ('zeroclip', 'b1'), ('_xunit_len', 'u1'), ('xunit', 'a11'), ('stacktype_t', 'i2'), # NIH_STACKTYPE_TYPE ] NIH_COLORTABLE_TYPE = ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum') NIH_LUTMODE_TYPE = ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale') NIH_CURVEFIT_TYPE = ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD') NIH_UNITS_TYPE = ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits') NIH_STACKTYPE_TYPE = ( 'VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack') # Map Universal Imaging Corporation MetaMorph internal tag ids to name and type UIC_TAGS = { 0: ('auto_scale', int), 1: ('min_scale', int), 2: ('max_scale', int), 3: ('spatial_calibration', int), 4: ('x_calibration', Fraction), 5: ('y_calibration', Fraction), 6: ('calibration_units', str), 7: ('name', str), 8: ('thresh_state', int), 9: ('thresh_state_red', int), 10: ('tagid_10', None), # undefined 11: ('thresh_state_green', int), 12: ('thresh_state_blue', int), 13: ('thresh_state_lo', int), 14: ('thresh_state_hi', int), 15: ('zoom', int), 16: ('create_time', julian_datetime), 17: ('last_saved_time', julian_datetime), 18: ('current_buffer', int), 19: ('gray_fit', None), 20: ('gray_point_count', None), 21: ('gray_x', Fraction), 22: ('gray_y', Fraction), 23: ('gray_min', Fraction), 24: ('gray_max', Fraction), 25: ('gray_unit_name', str), 26: ('standard_lut', int), 27: ('wavelength', int), 28: ('stage_position', '(%i,2,2)u4'), # N xy positions as fractions 29: ('camera_chip_offset', '(%i,2,2)u4'), # N xy offsets as fractions 30: ('overlay_mask', None), 31: ('overlay_compress', None), 32: ('overlay', None), 33: ('special_overlay_mask', None), 34: ('special_overlay_compress', None), 35: ('special_overlay', None), 36: ('image_property', read_uic_image_property), 37: ('stage_label', '%ip'), # N str 38: ('autoscale_lo_info', Fraction), 39: ('autoscale_hi_info', Fraction), 40: ('absolute_z', '(%i,2)u4'), # N fractions 41: ('absolute_z_valid', '(%i,)u4'), # N long 42: ('gamma', int), 43: ('gamma_red', int), 44: ('gamma_green', int), 45: ('gamma_blue', int), 46: ('camera_bin', int), 47: ('new_lut', int), 48: ('image_property_ex', None), 49: ('plane_property', int), 50: ('user_lut_table', '(256,3)u1'), 51: ('red_autoscale_info', int), 52: ('red_autoscale_lo_info', Fraction), 53: ('red_autoscale_hi_info', Fraction), 54: ('red_minscale_info', int), 55: ('red_maxscale_info', int), 56: ('green_autoscale_info', int), 57: ('green_autoscale_lo_info', Fraction), 58: ('green_autoscale_hi_info', Fraction), 59: ('green_minscale_info', int), 60: ('green_maxscale_info', int), 61: ('blue_autoscale_info', int), 62: ('blue_autoscale_lo_info', Fraction), 63: ('blue_autoscale_hi_info', Fraction), 64: ('blue_min_scale_info', int), 65: ('blue_max_scale_info', int), #66: ('overlay_plane_color', read_uic_overlay_plane_color), } # Olympus FluoView MM_DIMENSION = [ ('name', 'a16'), ('size', 'i4'), ('origin', 'f8'), ('resolution', 'f8'), ('unit', 'a64'), ] MM_HEADER = [ ('header_flag', 'i2'), ('image_type', 'u1'), ('image_name', 'a257'), ('offset_data', 'u4'), ('palette_size', 'i4'), ('offset_palette0', 'u4'), ('offset_palette1', 'u4'), ('comment_size', 'i4'), ('offset_comment', 'u4'), ('dimensions', MM_DIMENSION, 10), ('offset_position', 'u4'), ('map_type', 'i2'), ('map_min', 'f8'), ('map_max', 'f8'), ('min_value', 'f8'), ('max_value', 'f8'), ('offset_map', 'u4'), ('gamma', 'f8'), ('offset', 'f8'), ('gray_channel', MM_DIMENSION), ('offset_thumbnail', 'u4'), ('voice_field', 'i4'), ('offset_voice_field', 'u4'), ] # Carl Zeiss LSM CZ_LSM_INFO = [ ('magic_number', 'u4'), ('structure_size', 'i4'), ('dimension_x', 'i4'), ('dimension_y', 'i4'), ('dimension_z', 'i4'), ('dimension_channels', 'i4'), ('dimension_time', 'i4'), ('data_type', 'i4'), # CZ_DATA_TYPES ('thumbnail_x', 'i4'), ('thumbnail_y', 'i4'), ('voxel_size_x', 'f8'), ('voxel_size_y', 'f8'), ('voxel_size_z', 'f8'), ('origin_x', 'f8'), ('origin_y', 'f8'), ('origin_z', 'f8'), ('scan_type', 'u2'), ('spectral_scan', 'u2'), ('type_of_data', 'u4'), # CZ_TYPE_OF_DATA ('offset_vector_overlay', 'u4'), ('offset_input_lut', 'u4'), ('offset_output_lut', 'u4'), ('offset_channel_colors', 'u4'), ('time_interval', 'f8'), ('offset_channel_data_types', 'u4'), ('offset_scan_info', 'u4'), # CZ_LSM_SCAN_INFO ('offset_ks_data', 'u4'), ('offset_time_stamps', 'u4'), ('offset_event_list', 'u4'), ('offset_roi', 'u4'), ('offset_bleach_roi', 'u4'), ('offset_next_recording', 'u4'), # LSM 2.0 ends here ('display_aspect_x', 'f8'), ('display_aspect_y', 'f8'), ('display_aspect_z', 'f8'), ('display_aspect_time', 'f8'), ('offset_mean_of_roi_overlay', 'u4'), ('offset_topo_isoline_overlay', 'u4'), ('offset_topo_profile_overlay', 'u4'), ('offset_linescan_overlay', 'u4'), ('offset_toolbar_flags', 'u4'), ('offset_channel_wavelength', 'u4'), ('offset_channel_factors', 'u4'), ('objective_sphere_correction', 'f8'), ('offset_unmix_parameters', 'u4'), # LSM 3.2, 4.0 end here ('offset_acquisition_parameters', 'u4'), ('offset_characteristics', 'u4'), ('offset_palette', 'u4'), ('time_difference_x', 'f8'), ('time_difference_y', 'f8'), ('time_difference_z', 'f8'), ('internal_use_1', 'u4'), ('dimension_p', 'i4'), ('dimension_m', 'i4'), ('dimensions_reserved', '16i4'), ('offset_tile_positions', 'u4'), ('reserved_1', '9u4'), ('offset_positions', 'u4'), ('reserved_2', '21u4'), # must be 0 ] # Import functions for LSM_INFO sub-records CZ_LSM_INFO_READERS = { 'scan_info': read_cz_lsm_scan_info, 'time_stamps': read_cz_lsm_time_stamps, 'event_list': read_cz_lsm_event_list, 'channel_colors': read_cz_lsm_floatpairs, 'positions': read_cz_lsm_floatpairs, 'tile_positions': read_cz_lsm_floatpairs, } # Map cz_lsm_info.scan_type to dimension order CZ_SCAN_TYPES = { 0: 'XYZCT', # x-y-z scan 1: 'XYZCT', # z scan (x-z plane) 2: 'XYZCT', # line scan 3: 'XYTCZ', # time series x-y 4: 'XYZTC', # time series x-z 5: 'XYTCZ', # time series 'Mean of ROIs' 6: 'XYZTC', # time series x-y-z 7: 'XYCTZ', # spline scan 8: 'XYCZT', # spline scan x-z 9: 'XYTCZ', # time series spline plane x-z 10: 'XYZCT', # point mode } # Map dimension codes to cz_lsm_info attribute CZ_DIMENSIONS = { 'X': 'dimension_x', 'Y': 'dimension_y', 'Z': 'dimension_z', 'C': 'dimension_channels', 'T': 'dimension_time', } # Description of cz_lsm_info.data_type CZ_DATA_TYPES = { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } # Description of cz_lsm_info.type_of_data CZ_TYPE_OF_DATA = { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } CZ_LSM_SCAN_INFO_ARRAYS = { 0x20000000: "tracks", 0x30000000: "lasers", 0x60000000: "detection_channels", 0x80000000: "illumination_channels", 0xa0000000: "beam_splitters", 0xc0000000: "data_channels", 0x11000000: "timers", 0x13000000: "markers", } CZ_LSM_SCAN_INFO_STRUCTS = { # 0x10000000: "recording", 0x40000000: "track", 0x50000000: "laser", 0x70000000: "detection_channel", 0x90000000: "illumination_channel", 0xb0000000: "beam_splitter", 0xd0000000: "data_channel", 0x12000000: "timer", 0x14000000: "marker", } CZ_LSM_SCAN_INFO_ATTRIBUTES = { # recording 0x10000001: "name", 0x10000002: "description", 0x10000003: "notes", 0x10000004: "objective", 0x10000005: "processing_summary", 0x10000006: "special_scan_mode", 0x10000007: "scan_type", 0x10000008: "scan_mode", 0x10000009: "number_of_stacks", 0x1000000a: "lines_per_plane", 0x1000000b: "samples_per_line", 0x1000000c: "planes_per_volume", 0x1000000d: "images_width", 0x1000000e: "images_height", 0x1000000f: "images_number_planes", 0x10000010: "images_number_stacks", 0x10000011: "images_number_channels", 0x10000012: "linscan_xy_size", 0x10000013: "scan_direction", 0x10000014: "time_series", 0x10000015: "original_scan_data", 0x10000016: "zoom_x", 0x10000017: "zoom_y", 0x10000018: "zoom_z", 0x10000019: "sample_0x", 0x1000001a: "sample_0y", 0x1000001b: "sample_0z", 0x1000001c: "sample_spacing", 0x1000001d: "line_spacing", 0x1000001e: "plane_spacing", 0x1000001f: "plane_width", 0x10000020: "plane_height", 0x10000021: "volume_depth", 0x10000023: "nutation", 0x10000034: "rotation", 0x10000035: "precession", 0x10000036: "sample_0time", 0x10000037: "start_scan_trigger_in", 0x10000038: "start_scan_trigger_out", 0x10000039: "start_scan_event", 0x10000040: "start_scan_time", 0x10000041: "stop_scan_trigger_in", 0x10000042: "stop_scan_trigger_out", 0x10000043: "stop_scan_event", 0x10000044: "stop_scan_time", 0x10000045: "use_rois", 0x10000046: "use_reduced_memory_rois", 0x10000047: "user", 0x10000048: "use_bc_correction", 0x10000049: "position_bc_correction1", 0x10000050: "position_bc_correction2", 0x10000051: "interpolation_y", 0x10000052: "camera_binning", 0x10000053: "camera_supersampling", 0x10000054: "camera_frame_width", 0x10000055: "camera_frame_height", 0x10000056: "camera_offset_x", 0x10000057: "camera_offset_y", 0x10000059: "rt_binning", 0x1000005a: "rt_frame_width", 0x1000005b: "rt_frame_height", 0x1000005c: "rt_region_width", 0x1000005d: "rt_region_height", 0x1000005e: "rt_offset_x", 0x1000005f: "rt_offset_y", 0x10000060: "rt_zoom", 0x10000061: "rt_line_period", 0x10000062: "prescan", 0x10000063: "scan_direction_z", # track 0x40000001: "multiplex_type", # 0 after line; 1 after frame 0x40000002: "multiplex_order", 0x40000003: "sampling_mode", # 0 sample; 1 line average; 2 frame average 0x40000004: "sampling_method", # 1 mean; 2 sum 0x40000005: "sampling_number", 0x40000006: "acquire", 0x40000007: "sample_observation_time", 0x4000000b: "time_between_stacks", 0x4000000c: "name", 0x4000000d: "collimator1_name", 0x4000000e: "collimator1_position", 0x4000000f: "collimator2_name", 0x40000010: "collimator2_position", 0x40000011: "is_bleach_track", 0x40000012: "is_bleach_after_scan_number", 0x40000013: "bleach_scan_number", 0x40000014: "trigger_in", 0x40000015: "trigger_out", 0x40000016: "is_ratio_track", 0x40000017: "bleach_count", 0x40000018: "spi_center_wavelength", 0x40000019: "pixel_time", 0x40000021: "condensor_frontlens", 0x40000023: "field_stop_value", 0x40000024: "id_condensor_aperture", 0x40000025: "condensor_aperture", 0x40000026: "id_condensor_revolver", 0x40000027: "condensor_filter", 0x40000028: "id_transmission_filter1", 0x40000029: "id_transmission1", 0x40000030: "id_transmission_filter2", 0x40000031: "id_transmission2", 0x40000032: "repeat_bleach", 0x40000033: "enable_spot_bleach_pos", 0x40000034: "spot_bleach_posx", 0x40000035: "spot_bleach_posy", 0x40000036: "spot_bleach_posz", 0x40000037: "id_tubelens", 0x40000038: "id_tubelens_position", 0x40000039: "transmitted_light", 0x4000003a: "reflected_light", 0x4000003b: "simultan_grab_and_bleach", 0x4000003c: "bleach_pixel_time", # laser 0x50000001: "name", 0x50000002: "acquire", 0x50000003: "power", # detection_channel 0x70000001: "integration_mode", 0x70000002: "special_mode", 0x70000003: "detector_gain_first", 0x70000004: "detector_gain_last", 0x70000005: "amplifier_gain_first", 0x70000006: "amplifier_gain_last", 0x70000007: "amplifier_offs_first", 0x70000008: "amplifier_offs_last", 0x70000009: "pinhole_diameter", 0x7000000a: "counting_trigger", 0x7000000b: "acquire", 0x7000000c: "point_detector_name", 0x7000000d: "amplifier_name", 0x7000000e: "pinhole_name", 0x7000000f: "filter_set_name", 0x70000010: "filter_name", 0x70000013: "integrator_name", 0x70000014: "channel_name", 0x70000015: "detector_gain_bc1", 0x70000016: "detector_gain_bc2", 0x70000017: "amplifier_gain_bc1", 0x70000018: "amplifier_gain_bc2", 0x70000019: "amplifier_offset_bc1", 0x70000020: "amplifier_offset_bc2", 0x70000021: "spectral_scan_channels", 0x70000022: "spi_wavelength_start", 0x70000023: "spi_wavelength_stop", 0x70000026: "dye_name", 0x70000027: "dye_folder", # illumination_channel 0x90000001: "name", 0x90000002: "power", 0x90000003: "wavelength", 0x90000004: "aquire", 0x90000005: "detchannel_name", 0x90000006: "power_bc1", 0x90000007: "power_bc2", # beam_splitter 0xb0000001: "filter_set", 0xb0000002: "filter", 0xb0000003: "name", # data_channel 0xd0000001: "name", 0xd0000003: "acquire", 0xd0000004: "color", 0xd0000005: "sample_type", 0xd0000006: "bits_per_sample", 0xd0000007: "ratio_type", 0xd0000008: "ratio_track1", 0xd0000009: "ratio_track2", 0xd000000a: "ratio_channel1", 0xd000000b: "ratio_channel2", 0xd000000c: "ratio_const1", 0xd000000d: "ratio_const2", 0xd000000e: "ratio_const3", 0xd000000f: "ratio_const4", 0xd0000010: "ratio_const5", 0xd0000011: "ratio_const6", 0xd0000012: "ratio_first_images1", 0xd0000013: "ratio_first_images2", 0xd0000014: "dye_name", 0xd0000015: "dye_folder", 0xd0000016: "spectrum", 0xd0000017: "acquire", # timer 0x12000001: "name", 0x12000002: "description", 0x12000003: "interval", 0x12000004: "trigger_in", 0x12000005: "trigger_out", 0x12000006: "activation_time", 0x12000007: "activation_number", # marker 0x14000001: "name", 0x14000002: "description", 0x14000003: "trigger_in", 0x14000004: "trigger_out", } # Map TIFF tag code to attribute name, default value, type, count, validator TIFF_TAGS = { 254: ('new_subfile_type', 0, 4, 1, TIFF_SUBFILE_TYPES()), 255: ('subfile_type', None, 3, 1, {0: 'undefined', 1: 'image', 2: 'reduced_image', 3: 'page'}), 256: ('image_width', None, 4, 1, None), 257: ('image_length', None, 4, 1, None), 258: ('bits_per_sample', 1, 3, 1, None), 259: ('compression', 1, 3, 1, TIFF_COMPESSIONS), 262: ('photometric', None, 3, 1, TIFF_PHOTOMETRICS), 266: ('fill_order', 1, 3, 1, {1: 'msb2lsb', 2: 'lsb2msb'}), 269: ('document_name', None, 2, None, None), 270: ('image_description', None, 2, None, None), 271: ('make', None, 2, None, None), 272: ('model', None, 2, None, None), 273: ('strip_offsets', None, 4, None, None), 274: ('orientation', 1, 3, 1, TIFF_ORIENTATIONS), 277: ('samples_per_pixel', 1, 3, 1, None), 278: ('rows_per_strip', 2**32-1, 4, 1, None), 279: ('strip_byte_counts', None, 4, None, None), 280: ('min_sample_value', None, 3, None, None), 281: ('max_sample_value', None, 3, None, None), # 2**bits_per_sample 282: ('x_resolution', None, 5, 1, None), 283: ('y_resolution', None, 5, 1, None), 284: ('planar_configuration', 1, 3, 1, {1: 'contig', 2: 'separate'}), 285: ('page_name', None, 2, None, None), 286: ('x_position', None, 5, 1, None), 287: ('y_position', None, 5, 1, None), 296: ('resolution_unit', 2, 4, 1, {1: 'none', 2: 'inch', 3: 'centimeter'}), 297: ('page_number', None, 3, 2, None), 305: ('software', None, 2, None, None), 306: ('datetime', None, 2, None, None), 315: ('artist', None, 2, None, None), 316: ('host_computer', None, 2, None, None), 317: ('predictor', 1, 3, 1, {1: None, 2: 'horizontal', 3: 'float'}), 318: ('white_point', None, 5, 2, None), 319: ('primary_chromaticities', None, 5, 6, None), 320: ('color_map', None, 3, None, None), 322: ('tile_width', None, 4, 1, None), 323: ('tile_length', None, 4, 1, None), 324: ('tile_offsets', None, 4, None, None), 325: ('tile_byte_counts', None, 4, None, None), 338: ('extra_samples', None, 3, None, {0: 'unspecified', 1: 'assocalpha', 2: 'unassalpha'}), 339: ('sample_format', 1, 3, 1, TIFF_SAMPLE_FORMATS), 340: ('smin_sample_value', None, None, None, None), 341: ('smax_sample_value', None, None, None, None), 347: ('jpeg_tables', None, 7, None, None), 530: ('ycbcr_subsampling', 1, 3, 2, None), 531: ('ycbcr_positioning', 1, 3, 1, None), 32996: ('sgi_matteing', None, None, 1, None), # use extra_samples 32996: ('sgi_datatype', None, None, 1, None), # use sample_format 32997: ('image_depth', None, 4, 1, None), 32998: ('tile_depth', None, 4, 1, None), 33432: ('copyright', None, 1, None, None), 33445: ('md_file_tag', None, 4, 1, None), 33446: ('md_scale_pixel', None, 5, 1, None), 33447: ('md_color_table', None, 3, None, None), 33448: ('md_lab_name', None, 2, None, None), 33449: ('md_sample_info', None, 2, None, None), 33450: ('md_prep_date', None, 2, None, None), 33451: ('md_prep_time', None, 2, None, None), 33452: ('md_file_units', None, 2, None, None), 33550: ('model_pixel_scale', None, 12, 3, None), 33922: ('model_tie_point', None, 12, None, None), 34665: ('exif_ifd', None, None, 1, None), 34735: ('geo_key_directory', None, 3, None, None), 34736: ('geo_double_params', None, 12, None, None), 34737: ('geo_ascii_params', None, 2, None, None), 34853: ('gps_ifd', None, None, 1, None), 37510: ('user_comment', None, None, None, None), 42112: ('gdal_metadata', None, 2, None, None), 42113: ('gdal_nodata', None, 2, None, None), 50289: ('mc_xy_position', None, 12, 2, None), 50290: ('mc_z_position', None, 12, 1, None), 50291: ('mc_xy_calibration', None, 12, 3, None), 50292: ('mc_lens_lem_na_n', None, 12, 3, None), 50293: ('mc_channel_name', None, 1, None, None), 50294: ('mc_ex_wavelength', None, 12, 1, None), 50295: ('mc_time_stamp', None, 12, 1, None), 50838: ('imagej_byte_counts', None, None, None, None), 51023: ('fibics_xml', None, 2, None, None), 65200: ('flex_xml', None, 2, None, None), # code: (attribute name, default value, type, count, validator) } # Map custom TIFF tag codes to attribute names and import functions CUSTOM_TAGS = { 700: ('xmp', read_bytes), 34377: ('photoshop', read_numpy), 33723: ('iptc', read_bytes), 34675: ('icc_profile', read_bytes), 33628: ('uic1tag', read_uic1tag), # Universal Imaging Corporation STK 33629: ('uic2tag', read_uic2tag), 33630: ('uic3tag', read_uic3tag), 33631: ('uic4tag', read_uic4tag), 34361: ('mm_header', read_mm_header), # Olympus FluoView 34362: ('mm_stamp', read_mm_stamp), 34386: ('mm_user_block', read_bytes), 34412: ('cz_lsm_info', read_cz_lsm_info), # Carl Zeiss LSM 43314: ('nih_image_header', read_nih_image_header), # 40001: ('mc_ipwinscal', read_bytes), 40100: ('mc_id_old', read_bytes), 50288: ('mc_id', read_bytes), 50296: ('mc_frame_properties', read_bytes), 50839: ('imagej_metadata', read_bytes), 51123: ('micromanager_metadata', read_json), } # Max line length of printed output PRINT_LINE_LEN = 79 def imshow(data, title=None, vmin=0, vmax=None, cmap=None, bitspersample=None, photometric='rgb', interpolation='nearest', dpi=96, figure=None, subplot=111, maxdim=8192, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported `from matplotlib import pyplot`. Parameters ---------- bitspersample : int or None Number of bits per channel in integer RGB images. photometric : {'miniswhite', 'minisblack', 'rgb', or 'palette'} The color space of the image data. title : str Window and subplot title. figure : matplotlib.figure.Figure (optional). Matplotlib to use for plotting. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int maximum image width and length. kwargs : optional Arguments for matplotlib.pyplot.imshow. """ #if photometric not in ('miniswhite', 'minisblack', 'rgb', 'palette'): # raise ValueError("Can't handle %s photometrics" % photometric) # TODO: handle photometric == 'separated' (CMYK) isrgb = photometric in ('rgb', 'palette') data = numpy.atleast_2d(data.squeeze()) dims = data.ndim if dims < 2: raise ValueError("not an image") elif dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and (data.shape[-1] < data.shape[-2] // 8 and data.shape[-1] < data.shape[-3] // 8 and data.shape[-1] < 5): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if isrgb: data = data[..., :maxdim, :maxdim, :maxdim] else: data = data[..., :maxdim, :maxdim] if photometric == 'palette' and isrgb: datamax = data.max() if datamax > 255: data >>= 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, int): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data <<= 8 - bitspersample elif bitspersample > 8: data >>= bitspersample - 8 # precision loss data = data.astype('B') elif data.dtype.kind == 'f': datamax = data.max() if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': # TODO: handle complex types raise NotImplementedError("complex type") if not isrgb: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) if data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min vmin = numpy.min(data) if vmin == dtmin: vmin = numpy.min(data > dtmin) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.9, left=0.1, right=0.95, hspace=0.05, wspace=0.0) subplot = pyplot.subplot(subplot) if title: try: title = unicode(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.kind in 'ubf' or vmin == 0: cmap = 'cubehelix' else: cmap = 'coolwarm' if photometric == 'miniswhite': cmap += '_r' image = pyplot.imshow(data[(0,) * dims].squeeze(), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return "%s @ %s [%4i, %4i]" % (cur_ax_dat[1][y, x], current, x, y) else: return "%s @ [%4i, %4i]" % (data[y, x], x, y) except IndexError: return "" pyplot.gca().format_coord = format_coord if dims: current = list((0,) * dims) cur_ax_dat = [0, data[tuple(current)].squeeze()] sliders = [pyplot.Slider( pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]), 'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5', valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas cur_ax_dat[1] = data[tuple(current)].squeeze() image.set_data(cur_ax_dat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) cur_ax_dat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = cur_ax_dat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': cur_ax_dat[0] = 0 if axis == len(data.shape)-1 else axis + 1 elif key == 'down': cur_ax_dat[0] = len(data.shape)-1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def main(argv=None): """Command line usage main function.""" if float(sys.version[0:3]) < 2.6: print("This script requires Python version 2.6 or better.") print("This is Python version %s" % sys.version) return 0 if argv is None: argv = sys.argv import optparse parser = optparse.OptionParser( usage="usage: %prog [options] path", description="Display image data in TIFF files.", version="%%prog %s" % __version__) opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help="display single page") opt('-s', '--series', dest='series', type='int', default=-1, help="display series of pages of same shape") opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help="don't read OME series from multiple files") opt('--noplot', dest='noplot', action='store_true', default=False, help="don't display images") opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear', help="image interpolation method") opt('--dpi', dest='dpi', type='int', default=96, help="set plot resolution") opt('--debug', dest='debug', action='store_true', default=False, help="raise exception on failures") opt('--test', dest='test', action='store_true', default=False, help="try read all images in path") opt('--doctest', dest='doctest', action='store_true', default=False, help="runs the docstring examples") opt('-v', '--verbose', dest='verbose', action='store_true', default=True) opt('-q', '--quiet', dest='verbose', action='store_false') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest doctest.testmod() return 0 if not path: try: import tkFileDialog as filedialog except ImportError: from tkinter import filedialog path = filedialog.askopenfilename(filetypes=[ ("TIF files", "*.tif"), ("LSM files", "*.lsm"), ("STK files", "*.stk"), ("allfiles", "*")]) #parser.error("No file specified") if settings.test: test_tifffile(path, settings.verbose) return 0 if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('no files match the pattern') return 0 # TODO: handle image sequences #if len(path) == 1: path = path[0] print("Reading file structure...", end=' ') start = time.time() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as e: if settings.debug: raise else: print("\n", e) sys.exit(0) print("%.3f ms" % ((time.time()-start) * 1e3)) if tif.is_ome: settings.norgb = True images = [(None, tif[0 if settings.page < 0 else settings.page])] if not settings.noplot: print("Reading image data... ", end=' ') def notnone(x): return next(i for i in x if i is not None) start = time.time() try: if settings.page >= 0: images = [(tif.asarray(key=settings.page), tif[settings.page])] elif settings.series >= 0: images = [(tif.asarray(series=settings.series), notnone(tif.series[settings.series].pages))] else: images = [] for i, s in enumerate(tif.series): try: images.append( (tif.asarray(series=i), notnone(s.pages))) except ValueError as e: images.append((None, notnone(s.pages))) if settings.debug: raise else: print("\n* series %i failed: %s... " % (i, e), end='') print("%.3f ms" % ((time.time()-start) * 1e3)) except Exception as e: if settings.debug: raise else: print(e) tif.close() print("\nTIFF file:", tif) print() for i, s in enumerate(tif.series): print ("Series %i" % i) print(s) print() for i, page in images: print(page) print(page.tags) if page.is_palette: print("\nColor Map:", page.color_map.shape, page.color_map.dtype) for attr in ('cz_lsm_info', 'cz_lsm_scan_info', 'uic_tags', 'mm_header', 'imagej_tags', 'micromanager_metadata', 'nih_image_header'): if hasattr(page, attr): print("", attr.upper(), Record(getattr(page, attr)), sep="\n") print() if page.is_micromanager: print('MICROMANAGER_FILE_METADATA') print(Record(tif.micromanager_metadata)) if images and not settings.noplot: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as e: warnings.warn("failed to import matplotlib.\n%s" % e) else: for img, page in images: if img is None: continue vmin, vmax = None, None if 'gdal_nodata' in page.tags: try: vmin = numpy.min(img[img > float(page.gdal_nodata)]) except ValueError: pass if page.is_stk: try: vmin = page.uic_tags['min_scale'] vmax = page.uic_tags['max_scale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = None, None title = "%s\n %s" % (str(tif), str(page)) imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bits_per_sample, photometric=page.photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() TIFFfile = TiffFile # backwards compatibility if sys.version_info[0] > 2: basestring = str, bytes unicode = str def str2bytes(s, encoding="latin-1"): return s.encode(encoding) else: def str2bytes(s): return s if __name__ == "__main__": sys.exit(main())
gpl-3.0
Curly-Mo/sample-recognition
fingerprint/spectral_peaks.py
1
5789
import sys import itertools from collections import Counter import logging logger = logging.getLogger('spectral_peaks') if not logger.handlers: stream = logging.StreamHandler(sys.stdout) stream.setLevel(logging.INFO) logger.addHandler(stream) import librosa import numpy as np import scipy import matplotlib.pyplot as plt from matplotlib.patches import ConnectionPatch import seaborn seaborn.set(style='ticks') import ann def spectral_peaks(audio_path, hop_length, octave_bins=24, n_octaves=7, wn=0.5, num_peaks=5, plot=False): logger.info('{}: Loading signal into memory...'.format(audio_path)) y, sr = librosa.load(audio_path) logger.info('{}: Generating Spectrogram...'.format(audio_path)) S = librosa.core.constantq.cqt(y, sr=22050, hop_length=hop_length, bins_per_octave=octave_bins, n_bins=octave_bins*n_octaves, fmin=20) S = librosa.logamplitude(S, ref_power=np.max) # Find peaks logger.info('{}: Finding Peaks...'.format(audio_path)) peakx, peaky = scipy.signal.argrelextrema(lowpass(S.T, wn=wn), np.greater, axis=1) # Convert peaks to 'matrix' logger.info('{}: Creating peak matrix...'.format(audio_path)) peaks = np.full([num_peaks, S.shape[1]], -1, dtype=int) for x, points in itertools.groupby(zip(peakx, peaky), lambda x: x[0]): points = list(points) values = [S[point[1], x] for point in points] ys = [point[1] for (value, point) in sorted(zip(values, points), reverse=True)] if len(ys) >= num_peaks: peaks[:, x] = sorted(ys[:num_peaks]) peaks = np.clip(peaks, -1, 168) # # Convert peaks to distances between peaks # logger.info('{}: Finding peak distances...'.format(audio_path)) # peak_dists = np.empty([len(list(itertools.combinations(range(num_peaks), 2))), peaks.shape[1]], dtype=int) # for x, frame in enumerate(peaks.T): # peak_dists[:, x] = [b - a for (a, b) in itertools.combinations(frame, 2)] # Plot if plot: # Plot spectrogram librosa.display.specshow( S, sr=sr, hop_length=hop_length, bins_per_octave=octave_bins, fmin=20, x_axis='time', y_axis='cqt_hz', n_xticks=10, n_yticks=20, ) #plt.imshow(S, aspect='auto', origin='lower') plt.title(audio_path) plt.colorbar(format='%+2.0f dB') # Plot Peaks peakx = [np.repeat(x, len(frame)) for (x, frame) in enumerate(peaks.T)] peakx = [i for i in peakx] peaky = [i for frame in peaks.T for i in frame] plt.scatter(peakx, peaky, c='y') plt.tight_layout() return S, peaks def find_peaks(matrix, axis=1, width=10): peaks = [[], []] if axis == 1: matrix = matrix.T for x, frame in enumerate(matrix): y_vals = scipy.signal.find_peaks_cwt(frame, np.array([width])) x_vals = [x] * len(y_vals) peaks[0].extend(x_vals) peaks[1].extend(y_vals) return peaks def lowpass(x, order=8, wn=0.4, axis=1): b, a = scipy.signal.butter(order, wn, btype='low') y = scipy.signal.filtfilt(b, a, x, axis=axis) return y def match(path1, path2, hop_length, wn=0.4, num_peaks=5, thresh=0.001, plot=True): target_peaks = num_peaks + 2 fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) S1, peaks1 = spectral_peaks(path1, hop_length, wn=wn, num_peaks=target_peaks, plot=plot) ax2 = fig.add_subplot(2, 1, 2) S2, peaks2 = spectral_peaks(path2, hop_length, wn=wn, num_peaks=num_peaks, plot=plot) mng = plt.get_current_fig_manager() mng.full_screen_toggle() logger.info('Finding peak distances...') peak_dists2 = np.diff(peaks2, axis=0) num_combos = len(list(itertools.combinations(range(target_peaks), num_peaks))) peak_dists1 = np.empty([num_peaks-1, peaks1.shape[1]*(num_combos+1)], dtype=int) for x, frame in enumerate(peaks1.T): start = x*(num_combos+1) end = (x+1)*(num_combos+1) - 1 peak_dists1[:, start:end] = np.array([np.diff(combo) for combo in itertools.combinations(frame, num_peaks)]).T logger.info('Finding nearest neighbors') distances, nearest_neighbors = ann.nearest_neighbors(peak_dists2.T, peak_dists1.T, k=1) # nearest_neighbors = [] # for frame in peak_dists1: # score = 0 # nn = None # for i, yframe in enumerate(peak_dists2): # count = count_matches(frame, yframe) # if count > score: # score = count # nn = i # nearest_neighbors.append({'score': score, 'index': nn}) logger.info('Drawing lines between matches') for x, nn in enumerate(nearest_neighbors[:-1]): if distances[x] < thresh: if any(n in nearest_neighbors[x+1:x+(num_combos*3)] for n in [nn+1, nn+2, nn+3]): con = ConnectionPatch( xyA=(x/num_combos, 0), xyB=(nn, S2.shape[0]), coordsA='data', coordsB='data', axesA=ax1, axesB=ax2, arrowstyle='<-', linewidth=1, zorder=999 ) ax1.add_artist(con) ax2.set_zorder(-1) plt.show(block=False) return nearest_neighbors, distances def nearest_neighbors(peaks1, peaks2): # Convert peaks to distances between peaks peak_dists = [[] for i in range(len(peaks1))] for x, frame in enumerate(peaks1): for a, b in itertools.combinations(frame, 2): peak_dists[x].append(b-a) def count_matches(lista, listb): if len(lista) > len(listb): lista, listb = listb, lista a_count = Counter(lista) b_count = Counter(listb) return sum(min(b_count[ak], av) for ak,av in a_count.iteritems())
apache-2.0
elijah513/scikit-learn
sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
Myasuka/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
aabadie/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
65
5529
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float64) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float64) y.fill(0.0) sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float64) y.fill(1.0) sw = np.ones(102, dtype=np.float64) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
selective-inference/selective-inference
selectinf/randomized/tests/test_group_lasso.py
2
10569
from __future__ import division, print_function import numpy as np import nose.tools as nt import regreg.api as rr from ..group_lasso import (group_lasso, selected_targets, full_targets, debiased_targets) from ...tests.instance import gaussian_instance from ...tests.flags import SET_SEED from ...tests.decorators import set_sampling_params_iftrue, set_seed_iftrue from ...algorithms.sqrt_lasso import choose_lambda, solve_sqrt_lasso from ..randomization import randomization from ...tests.decorators import rpy_test_safe @set_seed_iftrue(SET_SEED) def test_group_lasso(n=400, p=100, signal_fac=3, s=5, sigma=3, target='full', rho=0.4, randomizer_scale=.75, ndraw=100000): """ Test group lasso """ inst, const = gaussian_instance, group_lasso.gaussian signal = np.sqrt(signal_fac * np.log(p)) X, Y, beta = inst(n=n, p=p, signal=signal, s=s, equicorrelated=False, rho=rho, sigma=sigma, random_signs=True)[:3] orthogonal = True if orthogonal: X = np.linalg.svd(X, full_matrices=False)[0] Y = X.dot(beta) + sigma * np.random.standard_normal(n) n, p = X.shape sigma_ = np.std(Y) groups = np.floor(np.arange(p)/2).astype(np.int) weights = dict([(i, sigma_ * 2 * np.sqrt(2)) for i in np.unique(groups)]) conv = const(X, Y, groups, weights, randomizer_scale=randomizer_scale * sigma_) signs = conv.fit() nonzero = conv.selection_variable['directions'].keys() if target == 'full': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = full_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'selected': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = selected_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'debiased': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = debiased_targets(conv.loglike, conv._W, nonzero, conv.penalty) _, pval, intervals = conv.summary(observed_target, group_assignments, cov_target, cov_target_score, alternatives, ndraw=ndraw, compute_intervals=False) which = np.zeros(p, np.bool) for group in conv.selection_variable['directions'].keys(): which_group = conv.penalty.groups == group which += which_group return pval[beta[which] == 0], pval[beta[which] != 0] @set_seed_iftrue(SET_SEED) def test_lasso(n=400, p=200, signal_fac=1.5, s=5, sigma=3, target='full', rho=0.4, ndraw=10000): """ Test group lasso with groups of size 1, ie lasso """ inst, const = gaussian_instance, group_lasso.gaussian signal = np.sqrt(signal_fac * np.log(p)) X, Y, beta = inst(n=n, p=p, signal=signal, s=s, equicorrelated=False, rho=rho, sigma=sigma, random_signs=True)[:3] n, p = X.shape sigma_ = np.std(Y) groups = np.arange(p) weights = dict([(i, sigma_ * 2 * np.sqrt(2)) for i in np.unique(groups)]) conv = const(X, Y, groups, weights) signs = conv.fit() nonzero = conv.selection_variable['directions'].keys() if target == 'full': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = full_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'selected': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = selected_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'debiased': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = debiased_targets(conv.loglike, conv._W, nonzero, conv.penalty) _, pval, intervals = conv.summary(observed_target, group_assignments, cov_target, cov_target_score, alternatives, ndraw=ndraw, compute_intervals=False) which = np.zeros(p, np.bool) for group in conv.selection_variable['directions'].keys(): which_group = conv.penalty.groups == group which += which_group return pval[beta[which] == 0], pval[beta[which] != 0] @set_seed_iftrue(SET_SEED) def test_mixed(n=400, p=200, signal_fac=1.5, s=5, sigma=3, target='full', rho=0.4, ndraw=10000): """ Test group lasso with a mix of groups of size 1, and larger """ inst, const = gaussian_instance, group_lasso.gaussian signal = np.sqrt(signal_fac * np.log(p)) X, Y, beta = inst(n=n, p=p, signal=signal, s=s, equicorrelated=False, rho=rho, sigma=sigma, random_signs=True)[:3] n, p = X.shape sigma_ = np.std(Y) groups = np.arange(p) groups[-5:] = -1 groups[-8:-5] = -2 Y += X[:,-8:].dot(np.ones(8)) * 5 # so we select the last two groups weights = dict([(i, sigma_ * 2 * np.sqrt(2)) for i in np.unique(groups)]) conv = const(X, Y, groups, weights) signs = conv.fit() nonzero = conv.selection_variable['directions'].keys() if target == 'full': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = full_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'selected': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = selected_targets(conv.loglike, conv._W, nonzero, conv.penalty) elif target == 'debiased': (observed_target, group_assignments, cov_target, cov_target_score, alternatives) = debiased_targets(conv.loglike, conv._W, nonzero, conv.penalty) _, pval, intervals = conv.summary(observed_target, group_assignments, cov_target, cov_target_score, alternatives, ndraw=ndraw, compute_intervals=False) which = np.zeros(p, np.bool) for group in conv.selection_variable['directions'].keys(): which_group = conv.penalty.groups == group which += which_group return pval[beta[which] == 0], pval[beta[which] != 0] @set_seed_iftrue(SET_SEED) def test_all_targets(n=100, p=20, signal_fac=1.5, s=5, sigma=3, rho=0.4): for target in ['full', 'selected', 'debiased']: test_group_lasso(n=n, p=p, signal_fac=signal_fac, s=s, sigma=sigma, rho=rho, target=target) def main(nsim=500, n=200, p=50, target='full', sigma=3): import matplotlib.pyplot as plt P0, PA = [], [] from statsmodels.distributions import ECDF for i in range(nsim): try: p0, pA = test_group_lasso(n=n, p=p, target=target, sigma=sigma) except: pass print(len(p0), len(pA)) P0.extend(p0) PA.extend(pA) P0_clean = np.array(P0) P0_clean = P0_clean[P0_clean > 1.e-5] # print(np.mean(P0_clean), np.std(P0_clean), np.mean(np.array(PA) < 0.05), np.sum(np.array(PA) < 0.05) / (i+1), np.mean(np.array(P0) < 0.05), np.mean(P0_clean < 0.05), np.mean(np.array(P0) < 1e-5), 'null pvalue + power + failure') if i % 3 == 0 and i > 0: U = np.linspace(0, 1, 101) plt.clf() if len(P0_clean) > 0: plt.plot(U, ECDF(P0_clean)(U)) if len(PA) > 0: plt.plot(U, ECDF(PA)(U), 'r') plt.plot([0, 1], [0, 1], 'k--') plt.savefig("plot.pdf") plt.show()
bsd-3-clause
valgur/metsaregister
metsaregister/cli.py
1
2792
# -*- coding: utf-8 -*- """Console script for metsaregister.""" from __future__ import print_function import click import geopandas as gpd from shapely.ops import cascaded_union import metsaregister def _read_aoi(aoi_path): gdf = gpd.read_file(aoi_path) return cascaded_union(list(gdf.geometry)).wkt def _add_crs(json): return json.replace( '{', '{\n"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::3301" } }, ', 1 ) @click.group() def cli(): return @cli.command(name="list", help="List available layers and their IDs") def list_layers(): layers = metsaregister.get_layers() for name, id in layers.items(): print(id, name, sep='\t') @cli.command(help="""Get any layer's features intersecting with a given AOI. Takes a vector file containing the area of interest as input. Must be in L-EST97 CRS. For a list of available layers and their IDs see the 'list' command. The result is saved as a GeoJSON file.""") @click.argument('aoi', type=str) @click.argument('layer_id', type=int) @click.argument('out_path', type=str) def get_layer(aoi, layer_id, out_path): aoi = _read_aoi(aoi) gdf = metsaregister.query_layer(aoi, layer_id) with open(out_path, 'w', encoding='utf8') as f: f.write(_add_crs(gdf.to_json())) @cli.command(help="""Fetch and save forest stands' information for a given AOI. Takes a vector file containing the area of interest as input. Must be in L-EST97 CRS. The result is saved as a GeoJSON file.""") @click.argument('aoi', type=str) @click.argument('out_path', type=str) @click.option('--wait', default=0.5, type=float, help="Time to wait in seconds between querying each stand's information " "to not overload the server. Defaults to 0.5 s.") def forest_stands(aoi, out_path, wait): aoi = _read_aoi(aoi) gdf = metsaregister.query_forest_stands(aoi, wait) with open(out_path, 'w', encoding='utf8') as f: f.write(_add_crs(gdf.to_json())) @cli.command(help="""Fetch and save forest notifications' information for a given AOI. Takes a vector file containing the area of interest as input. Must be in L-EST97 CRS. The result is saved as a GeoJSON file.""") @click.argument('aoi', type=str) @click.argument('out_path', type=str) @click.option('--wait', default=0.5, type=float, help="Time to wait in seconds between querying each stand's information " "to not overload the server. Defaults to 0.5 s.") def forest_notifications(aoi, out_path, wait): aoi = _read_aoi(aoi) gdf = metsaregister.query_forest_notifications(aoi, wait) with open(out_path, 'w', encoding='utf8') as f: f.write(_add_crs(gdf.to_json())) if __name__ == "__main__": cli()
mit
tarzan0820/addons-yelizariev
sugarcrm_migration/wizard/upload.py
16
3753
from openerp.osv import osv, fields from openerp.tools.translate import _ from openerp import tools import logging _logger = logging.getLogger(__name__) import base64 import tempfile try: import MySQLdb import MySQLdb.cursors from pandas import DataFrame except ImportError: pass from ..import_sugarcrm import import_sugarcrm from ..import_kashflow import import_kashflow import tarfile import shutil try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import os import glob class sugarcrm_migration_upload(osv.TransientModel): _name = "sugarcrm_migration.upload" _description = "Upload dumps" _columns = { 'sugarcrm_file': fields.char('Sugarcrm file (*.tar.gz)', help='Path on server'), 'kashflow_file': fields.char('Kashflow file (*.tar.gz)', help='Path on server'), 'db_host': fields.char('MySQL Host'), 'db_port': fields.char('MySQL Port'), 'db_name': fields.char('MySQL Database'), 'db_user': fields.char('MySQL User'), 'db_passwd': fields.char('MySQL Password'), } _defaults = { 'db_host': 'localhost', 'db_port': '3306', 'db_name': 'test', 'db_user': 'test', 'db_passwd': 'test', } def upload_button(self, cr, uid, ids, context=None): record = self.browse(cr, uid, ids[0]) self.kashflow(record, cr, uid) #self.sugarcrm(record, cr, uid) return True def sugarcrm(self, record, cr, uid): #if not record.sugarcrm_file: # return #unzip files files = [] tmp_dir = None if record.sugarcrm_file: tmp_dir,files = self.unzip_file(record.sugarcrm_file.strip()) instance = import_sugarcrm(self.pool, cr, uid, 'sugarcrm', #instance_name 'sugarcrm_migration', # module_name context={'db_host': record.db_host, 'db_port': record.db_port, 'db_user': record.db_user, 'db_passwd': record.db_passwd, 'db_name': record.db_name, 'db_dump_fies': files } ) try: shutil.rmtree(tmp_dir) except: pass instance.run() return instance def kashflow(self, record, cr, uid): if not record.kashflow_file: return # unzip files tmp,files = self.unzip_file(record.kashflow_file.strip(), pattern='*.csv') _logger.info('kashflow files: %s'%files) # map data and save to base_import.import instance = import_kashflow(self.pool, cr, uid, 'kashflow', #instance_name 'sugarcrm_migration', #module_name context = {'csv_files': files, 'sugarcrm_instance_name':'sugarcrm' } ) instance.run() return instance def unzip_file(self, filename, pattern='*'): ''' extract *.tar.gz files returns list of extracted file names ''' tar = tarfile.open(name=filename) dir = tempfile.mkdtemp(prefix='tmp_sugarcrm_migration') tar.extractall(path=dir) return dir, glob.glob('%s/%s' % (dir, pattern))+glob.glob('%s/*/%s' % (dir, pattern))
lgpl-3.0
fzalkow/scikit-learn
examples/model_selection/randomized_search.py
201
3214
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from operator import itemgetter from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data digits = load_digits() X, y = digits.data, digits.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(grid_scores, n_top=3): top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top] for i, score in enumerate(top_scores): print("Model with rank: {0}".format(i + 1)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores))) print("Parameters: {0}".format(score.parameters)) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.grid_scores_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.grid_scores_))) report(grid_search.grid_scores_)
bsd-3-clause
neuroidss/nupic.research
projects/union_pooling/experiments/union_sdr_continuous/union_pooling_tm_learning.py
8
9165
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import csv import sys import time import os import yaml from optparse import OptionParser import numpy from pylab import rcParams import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.backends.backend_pdf import PdfPages plt.ion() from nupic.data.generators.pattern_machine import PatternMachine from nupic.data.generators.sequence_machine import SequenceMachine from nupic.algorithms.monitor_mixin.monitor_mixin_base import MonitorMixinBase from htmresearch.frameworks.union_temporal_pooling.union_temporal_pooler_experiment import ( UnionTemporalPoolerExperiment) """ Experiment 2 Runs UnionTemporalPooler on input from a Temporal Memory while TM learns the sequence """ def experiment2(): paramDir = 'params/1024_baseline/5_trainingPasses.yaml' outputDir = 'results/' params = yaml.safe_load(open(paramDir, 'r')) options = {'plotVerbosity': 2, 'consoleVerbosity': 2} plotVerbosity = 2 consoleVerbosity = 1 print "Running SDR overlap experiment...\n" print "Params dir: {0}".format(paramDir) print "Output dir: {0}\n".format(outputDir) # Dimensionality of sequence patterns patternDimensionality = params["patternDimensionality"] # Cardinality (ON / true bits) of sequence patterns patternCardinality = params["patternCardinality"] # TODO If this parameter is to be supported, the sequence generation code # below must change # Number of unique patterns from which sequences are built # patternAlphabetSize = params["patternAlphabetSize"] # Length of sequences shown to network sequenceLength = params["sequenceLength"] # Number of sequences used. Sequences may share common elements. numberOfSequences = params["numberOfSequences"] # Number of sequence passes for training the TM. Zero => no training. trainingPasses = params["trainingPasses"] tmParamOverrides = params["temporalMemoryParams"] upParamOverrides = params["unionPoolerParams"] # Generate a sequence list and an associated labeled list (both containing a # set of sequences separated by None) start = time.time() print "\nGenerating sequences..." patternAlphabetSize = sequenceLength * numberOfSequences patternMachine = PatternMachine(patternDimensionality, patternCardinality, patternAlphabetSize) sequenceMachine = SequenceMachine(patternMachine) numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength) generatedSequences = sequenceMachine.generateFromNumbers(numbers) sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength]) for i in xrange(numberOfSequences)] labeledSequences = [] for label in sequenceLabels: for _ in xrange(sequenceLength): labeledSequences.append(label) labeledSequences.append(None) # Set up the Temporal Memory and Union Pooler network print "\nCreating network..." experiment = UnionTemporalPoolerExperiment(tmParamOverrides, upParamOverrides) # Train only the Temporal Memory on the generated sequences # if trainingPasses > 0: # # print "\nTraining Temporal Memory..." # if consoleVerbosity > 0: # print "\nPass\tBursting Columns Mean\tStdDev\tMax" # # for i in xrange(trainingPasses): # experiment.runNetworkOnSequences(generatedSequences, # labeledSequences, # tmLearn=True, # upLearn=None, # verbosity=consoleVerbosity, # progressInterval=_SHOW_PROGRESS_INTERVAL) # # if consoleVerbosity > 0: # stats = experiment.getBurstingColumnsStats() # print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2]) # # # Reset the TM monitor mixin's records accrued during this training pass # # experiment.tm.mmClearHistory() # # print # print MonitorMixinBase.mmPrettyPrintMetrics( # experiment.tm.mmGetDefaultMetrics()) # print # # if plotVerbosity >= 2: # plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Training") # # experiment.tm.mmClearHistory() # experiment.up.mmClearHistory() print "\nRunning test phase..." inputSequences = generatedSequences inputCategories = labeledSequences tmLearn = True upLearn = False classifierLearn = False currentTime = time.time() experiment.tm.reset() experiment.up.reset() poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 1)) activeCellsTrace = numpy.zeros((experiment.up._numColumns, 1)) activeSPTrace = numpy.zeros((experiment.up._numColumns, 1)) for _ in xrange(trainingPasses): for i in xrange(len(inputSequences)): sensorPattern = inputSequences[i] inputCategory = inputCategories[i] if sensorPattern is None: pass else: experiment.tm.compute(sensorPattern, learn=tmLearn, sequenceLabel=inputCategory) if upLearn is not None: activeCells, predActiveCells, burstingCols, = experiment.getUnionTemporalPoolerInput() experiment.up.compute(activeCells, predActiveCells, learn=upLearn, sequenceLabel=inputCategory) currentPoolingActivation = experiment.up._poolingActivation currentPoolingActivation = experiment.up._poolingActivation.reshape((experiment.up._numColumns, 1)) poolingActivationTrace = numpy.concatenate((poolingActivationTrace, currentPoolingActivation), 1) currentUnionSDR = numpy.zeros((experiment.up._numColumns, 1)) currentUnionSDR[experiment.up._unionSDR] = 1 activeCellsTrace = numpy.concatenate((activeCellsTrace, currentUnionSDR), 1) currentSPSDR = numpy.zeros((experiment.up._numColumns, 1)) currentSPSDR[experiment.up._activeCells] = 1 activeSPTrace = numpy.concatenate((activeSPTrace, currentSPSDR), 1) print "\nPass\tBursting Columns Mean\tStdDev\tMax" stats = experiment.getBurstingColumnsStats() print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2]) print print MonitorMixinBase.mmPrettyPrintMetrics(\ experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics()) print experiment.tm.mmClearHistory() # estimate fraction of shared bits across adjacent time point unionSDRshared = experiment.up._mmComputeUnionSDRdiff() bitLifeList = experiment.up._mmComputeBitLifeStats() bitLife = numpy.array(bitLifeList) # Plot SP outputs, UP persistence and UP outputs in testing phase def showSequenceStartLine(ax, trainingPasses, sequenceLength): for i in xrange(trainingPasses): ax.vlines(i*sequenceLength, 0, 100, linestyles='--') plt.figure() ncolShow = 100 f, (ax1, ax2, ax3) = plt.subplots(nrows=1,ncols=3) ax1.imshow(activeSPTrace[1:ncolShow,:], cmap=cm.Greys,interpolation="nearest",aspect='auto') showSequenceStartLine(ax1, trainingPasses, sequenceLength) ax1.set_title('SP SDR') ax1.set_ylabel('Columns') ax2.imshow(poolingActivationTrace[1:100,:], cmap=cm.Greys, interpolation="nearest",aspect='auto') showSequenceStartLine(ax2, trainingPasses, sequenceLength) ax2.set_title('Persistence') ax3.imshow(activeCellsTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto') showSequenceStartLine(ax3, trainingPasses, sequenceLength) plt.title('Union SDR') ax2.set_xlabel('Time (steps)') pp = PdfPages('results/UnionPoolingDuringTMlearning_Experiment2.pdf') pp.savefig() pp.close() f, (ax1, ax2, ax3) = plt.subplots(nrows=3,ncols=1) ax1.plot((sum(activeCellsTrace))/experiment.up._numColumns*100) ax1.set_ylabel('Union SDR size (%)') ax1.set_xlabel('Time (steps)') ax1.set_ylim(0,25) ax2.plot(unionSDRshared) ax2.set_ylabel('Shared Bits') ax2.set_xlabel('Time (steps)') ax3.hist(bitLife) ax3.set_xlabel('Life duration for each bit') pp = PdfPages('results/UnionSDRproperty_Experiment2.pdf') pp.savefig() pp.close() if __name__ == "__main__": experiment2()
agpl-3.0
ian-r-rose/burnman
contrib/CHRU2014/paper_averaging.py
1
6852
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ paper_averaging --------------- This script reproduces :cite:`Cottaar2014`, Figure 2. This example shows the effect of different averaging schemes. Currently four averaging schemes are available: 1. Voight-Reuss-Hill 2. Voight averaging 3. Reuss averaging 4. Hashin-Shtrikman averaging See :cite:`Watt1976` for explanations of each averaging scheme. requires: - geotherms - compute seismic velocities teaches: - averaging """ from __future__ import absolute_import from __future__ import print_function import os import sys import numpy as np import matplotlib.pyplot as plt # hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../../burnman'): sys.path.insert(1, os.path.abspath('../..')) import burnman from burnman import minerals import misc.colors as colors if __name__ == "__main__": figsize = (6, 5) prop = {'size': 12} # plt.rc('text', usetex=True) plt.rc('font', family='sans-serif') figure = plt.figure(dpi=100, figsize=figsize) """ choose 'slb2' (finite-strain 2nd order shear modulus, stixrude and lithgow-bertelloni, 2005) or 'slb3 (finite-strain 3rd order shear modulus, stixrude and lithgow-bertelloni, 2005) or 'mgd3' (mie-gruneisen-debeye 3rd order shear modulus, matas et al. 2007) or 'mgd2' (mie-gruneisen-debeye 2nd order shear modulus, matas et al. 2007) or 'bm2' (birch-murnaghan 2nd order, if you choose to ignore temperature (your choice in geotherm will not matter in this case)) or 'bm3' (birch-murnaghan 3rd order, if you choose to ignore temperature (your choice in geotherm will not matter in this case))""" amount_perovskite = 0.6 rock = burnman.Composite( [minerals.SLB_2011.mg_perovskite(), minerals.SLB_2011.wuestite()], [amount_perovskite, 1.0 - amount_perovskite]) perovskitite = burnman.Composite( [minerals.SLB_2011.mg_perovskite()], [1.0]) periclasite = burnman.Composite([minerals.SLB_2011.wuestite()], [1.0]) # seismic model for comparison: # pick from .prem() .slow() .fast() (see burnman/seismic.py) seismic_model = burnman.seismic.PREM() # set on how many depth slices the computations should be done number_of_points = 20 # we will do our computation and comparison at the following depth values: depths = np.linspace(700e3, 2800e3, number_of_points) # alternatively, we could use the values where prem is defined: # depths = seismic_model.internal_depth_list() pressures, seis_rho, seis_vp, seis_vs, seis_vphi = seismic_model.evaluate( ['pressure', 'density', 'v_p', 'v_s', 'v_phi'], depths) temperatures = burnman.geotherm.brown_shankland(pressures) print("Calculations are done for:") rock.debug_print() # calculate the seismic velocities of the rock using a whole battery of # averaging schemes: # evaluate the end members rho_pv, vp_pv, vs_pv, vphi_pv, K_pv, G_pv = \ perovskitite.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) rho_fp, vp_fp, vs_fp, vphi_fp, K_fp, G_fp = \ periclasite.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # Voigt Reuss Hill averaging rock.set_averaging_scheme(burnman.averaging_schemes.VoigtReussHill()) rho_vrh, vp_vrh, vs_vrh, vphi_vrh, K_vrh, G_vrh = \ rock.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # Voigt averaging rock.set_averaging_scheme(burnman.averaging_schemes.Voigt()) rho_v, vp_v, vs_v, vphi_v, K_v, G_v = \ rock.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # Reuss averaging rock.set_averaging_scheme(burnman.averaging_schemes.Reuss()) rho_r, vp_r, vs_r, vphi_r, K_r, G_r = \ rock.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # Upper bound for Hashin-Shtrikman averaging rock.set_averaging_scheme(burnman.averaging_schemes.HashinShtrikmanUpper()) rho_hsu, vp_hsu, vs_hsu, vphi_hsu, K_hsu, G_hsu = \ rock.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # Lower bound for Hashin-Shtrikman averaging rock.set_averaging_scheme(burnman.averaging_schemes.HashinShtrikmanLower()) rho_hsl, vp_hsl, vs_hsl, vphi_hsl, K_hsl, G_hsl = \ rock.evaluate( ['rho', 'v_p', 'v_s', 'v_phi', 'K_S', 'G'], pressures, temperatures) # linear fit vs_lin = vs_pv * amount_perovskite + vs_fp * (1.0 - amount_perovskite) # PLOTTING # plot vs ax = figure.add_subplot(1, 1, 1) plt.plot( pressures / 1.e9, vs_v / 1.e3, color=colors.color(0), linewidth=2, linestyle='-', marker='^', markersize=4, label='Voigt') plt.plot( pressures / 1.e9, vs_r / 1.e3, color=colors.color(5), linewidth=2, linestyle='-', marker='v', markersize=4, label='Reuss') plt.plot( pressures / 1.e9, vs_vrh / 1.e3, color=colors.color(1), linestyle='-', marker='*', markersize=6, label='Voigt-Reuss-Hill') plt.fill_between(pressures / 1.e9, vs_hsu / 1.e3, vs_hsl / 1.e3, facecolor='red', lw=0, label='asdf', interpolate=False) # plt.plot(pressures/1.e9,vs_hsu/1.e3,color='r',linestyle='-',\ # markersize=4,label='Hashin-Shtrikman') # plt.plot(pressures/1.e9,vs_hsl/1.e3,color='r',linestyle='-',marker='x',\ # markersize=4) plt.plot( pressures / 1.e9, vs_lin / 1.e3, color='k', linewidth=2, linestyle='--', markersize=4, label='linear') plt.plot( pressures / 1.e9, vs_pv / 1.e3, color=colors.color(2), linewidth=2, linestyle='-', marker='d', markersize=4, label='Mg Perovskite') plt.plot( pressures / 1.e9, vs_fp / 1.e3, color=colors.color(4), linewidth=2, linestyle='-', marker='x', markersize=6, label=r'W\"ustite') plt.ylim(3.0, 7.5) plt.xlim(min(pressures) / 1.e9, max(pressures) / 1.e9) simArtist = plt.Line2D((0, 1), (0, 0), color='r', lw=5, linestyle='-') handles, labels = ax.get_legend_handles_labels() plt.legend(handles[0:3] + [simArtist] + handles[3:], labels[0:3] + [ 'Hashin-Shtrikman'] + labels[3:], loc='lower right', ncol=2, prop=prop) plt.xlabel('Pressure (GPa)') plt.ylabel('Shear velocity $V_s$ (km/s)') if "RUNNING_TESTS" not in globals(): plt.savefig("example_averaging.pdf", bbox_inches='tight') plt.show()
gpl-2.0
kaiserroll14/301finalproject
main/pandas/sparse/tests/test_list.py
16
2996
from pandas.compat import range import unittest from numpy import nan import numpy as np from pandas.sparse.api import SparseList, SparseArray from pandas.util.testing import assert_almost_equal from .test_sparse import assert_sp_array_equal def assert_sp_list_equal(left, right): assert_sp_array_equal(left.to_array(), right.to_array()) class TestSparseList(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): self.na_data = np.array([nan, nan, 1, 2, 3, nan, 4, 5, nan, 6]) self.zero_data = np.array([0, 0, 1, 2, 3, 0, 4, 5, 0, 6]) def test_constructor(self): lst1 = SparseList(self.na_data[:5]) exp = SparseList() exp.append(self.na_data[:5]) assert_sp_list_equal(lst1, exp) def test_len(self): arr = self.na_data splist = SparseList() splist.append(arr[:5]) self.assertEqual(len(splist), 5) splist.append(arr[5]) self.assertEqual(len(splist), 6) splist.append(arr[6:]) self.assertEqual(len(splist), 10) def test_append_na(self): arr = self.na_data splist = SparseList() splist.append(arr[:5]) splist.append(arr[5]) splist.append(arr[6:]) sparr = splist.to_array() assert_sp_array_equal(sparr, SparseArray(arr)) def test_append_zero(self): arr = self.zero_data splist = SparseList(fill_value=0) splist.append(arr[:5]) splist.append(arr[5]) splist.append(arr[6:]) sparr = splist.to_array() assert_sp_array_equal(sparr, SparseArray(arr, fill_value=0)) def test_consolidate(self): arr = self.na_data exp_sparr = SparseArray(arr) splist = SparseList() splist.append(arr[:5]) splist.append(arr[5]) splist.append(arr[6:]) consol = splist.consolidate(inplace=False) self.assertEqual(consol.nchunks, 1) self.assertEqual(splist.nchunks, 3) assert_sp_array_equal(consol.to_array(), exp_sparr) splist.consolidate() self.assertEqual(splist.nchunks, 1) assert_sp_array_equal(splist.to_array(), exp_sparr) def test_copy(self): arr = self.na_data exp_sparr = SparseArray(arr) splist = SparseList() splist.append(arr[:5]) splist.append(arr[5]) cp = splist.copy() cp.append(arr[6:]) self.assertEqual(splist.nchunks, 2) assert_sp_array_equal(cp.to_array(), exp_sparr) def test_getitem(self): arr = self.na_data splist = SparseList() splist.append(arr[:5]) splist.append(arr[5]) splist.append(arr[6:]) for i in range(len(arr)): assert_almost_equal(splist[i], arr[i]) assert_almost_equal(splist[-i], arr[-i]) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
sinhrks/pandas-ml
pandas_ml/skaccessors/test/test_multiclass.py
1
2288
#!/usr/bin/env python import sklearn.datasets as datasets import sklearn.multiclass as multiclass import sklearn.svm as svm import pandas_ml as pdml import pandas_ml.util.testing as tm class TestMultiClass(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.multiclass.OneVsRestClassifier, multiclass.OneVsRestClassifier) self.assertIs(df.multiclass.OneVsOneClassifier, multiclass.OneVsOneClassifier) self.assertIs(df.multiclass.OutputCodeClassifier, multiclass.OutputCodeClassifier) def test_Classifications(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) models = ['OneVsOneClassifier', 'OneVsOneClassifier'] for model in models: svm1 = df.svm.LinearSVC(random_state=self.random_state) svm2 = svm.LinearSVC(random_state=self.random_state) mod1 = getattr(df.multiclass, model)(svm1) mod2 = getattr(multiclass, model)(svm2) df.fit(mod1) mod2.fit(iris.data, iris.target) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) def test_Classifications_Random(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) models = ['OutputCodeClassifier'] for model in models: svm1 = df.svm.LinearSVC(random_state=self.random_state) svm2 = svm.LinearSVC(random_state=self.random_state) mod1 = getattr(df.multiclass, model)(svm1, random_state=self.random_state) mod2 = getattr(multiclass, model)(svm2, random_state=self.random_state) df.fit(mod1) mod2.fit(iris.data, iris.target) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
bsd-3-clause
bgris/ODL_bgris
lib/python3.5/site-packages/IPython/core/display.py
6
34087
# -*- coding: utf-8 -*- """Top-level display functions for displaying object in different formats.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function try: from base64 import encodebytes as base64_encode except ImportError: from base64 import encodestring as base64_encode import json import mimetypes import os import struct import sys import warnings from IPython.utils.py3compat import (string_types, cast_bytes_py2, cast_unicode, unicode_type) from IPython.testing.skipdoctest import skip_doctest __all__ = ['display', 'display_pretty', 'display_html', 'display_markdown', 'display_svg', 'display_png', 'display_jpeg', 'display_latex', 'display_json', 'display_javascript', 'display_pdf', 'DisplayObject', 'TextDisplayObject', 'Pretty', 'HTML', 'Markdown', 'Math', 'Latex', 'SVG', 'JSON', 'Javascript', 'Image', 'clear_output', 'set_matplotlib_formats', 'set_matplotlib_close', 'publish_display_data'] #----------------------------------------------------------------------------- # utility functions #----------------------------------------------------------------------------- def _safe_exists(path): """Check path, but don't let exceptions raise""" try: return os.path.exists(path) except Exception: return False def _merge(d1, d2): """Like update, but merges sub-dicts instead of clobbering at the top level. Updates d1 in-place """ if not isinstance(d2, dict) or not isinstance(d1, dict): return d2 for key, value in d2.items(): d1[key] = _merge(d1.get(key), value) return d1 def _display_mimetype(mimetype, objs, raw=False, metadata=None): """internal implementation of all display_foo methods Parameters ---------- mimetype : str The mimetype to be published (e.g. 'image/png') objs : tuple of objects The Python objects to display, or if raw=True raw text data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ if metadata: metadata = {mimetype: metadata} if raw: # turn list of pngdata into list of { 'image/png': pngdata } objs = [ {mimetype: obj} for obj in objs ] display(*objs, raw=raw, metadata=metadata, include=[mimetype]) #----------------------------------------------------------------------------- # Main functions #----------------------------------------------------------------------------- def publish_display_data(data, metadata=None, source=None): """Publish data and metadata to all frontends. See the ``display_data`` message in the messaging documentation for more details about this message type. The following MIME types are currently implemented: * text/plain * text/html * text/markdown * text/latex * application/json * application/javascript * image/png * image/jpeg * image/svg+xml Parameters ---------- data : dict A dictionary having keys that are valid MIME types (like 'text/plain' or 'image/svg+xml') and values that are the data for that MIME type. The data itself must be a JSON'able data structure. Minimally all data should have the 'text/plain' data, which can be displayed by all frontends. If more than the plain text is given, it is up to the frontend to decide which representation to use. metadata : dict A dictionary for metadata related to the data. This can contain arbitrary key, value pairs that frontends can use to interpret the data. mime-type keys matching those in data can be used to specify metadata about particular representations. source : str, deprecated Unused. """ from IPython.core.interactiveshell import InteractiveShell InteractiveShell.instance().display_pub.publish( data=data, metadata=metadata, ) def display(*objs, **kwargs): """Display a Python object in all frontends. By default all representations will be computed and sent to the frontends. Frontends can decide which representation is used and how. Parameters ---------- objs : tuple of objects The Python objects to display. raw : bool, optional Are the objects to be displayed already mimetype-keyed dicts of raw display data, or Python objects that need to be formatted before display? [default: False] include : list or tuple, optional A list of format type strings (MIME types) to include in the format data dict. If this is set *only* the format types included in this list will be computed. exclude : list or tuple, optional A list of format type strings (MIME types) to exclude in the format data dict. If this is set all format types will be computed, except for those included in this argument. metadata : dict, optional A dictionary of metadata to associate with the output. mime-type keys in this dictionary will be associated with the individual representation formats, if they exist. """ raw = kwargs.get('raw', False) include = kwargs.get('include') exclude = kwargs.get('exclude') metadata = kwargs.get('metadata') from IPython.core.interactiveshell import InteractiveShell if not raw: format = InteractiveShell.instance().display_formatter.format for obj in objs: if raw: publish_display_data(data=obj, metadata=metadata) else: format_dict, md_dict = format(obj, include=include, exclude=exclude) if not format_dict: # nothing to display (e.g. _ipython_display_ took over) continue if metadata: # kwarg-specified metadata gets precedence _merge(md_dict, metadata) publish_display_data(data=format_dict, metadata=md_dict) def display_pretty(*objs, **kwargs): """Display the pretty (default) representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw text data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/plain', objs, **kwargs) def display_html(*objs, **kwargs): """Display the HTML representation of an object. Note: If raw=False and the object does not have a HTML representation, no HTML will be shown. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw HTML data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/html', objs, **kwargs) def display_markdown(*objs, **kwargs): """Displays the Markdown representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw markdown data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/markdown', objs, **kwargs) def display_svg(*objs, **kwargs): """Display the SVG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw svg data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/svg+xml', objs, **kwargs) def display_png(*objs, **kwargs): """Display the PNG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw png data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/png', objs, **kwargs) def display_jpeg(*objs, **kwargs): """Display the JPEG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw JPEG data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/jpeg', objs, **kwargs) def display_latex(*objs, **kwargs): """Display the LaTeX representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw latex data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/latex', objs, **kwargs) def display_json(*objs, **kwargs): """Display the JSON representation of an object. Note that not many frontends support displaying JSON. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw json data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/json', objs, **kwargs) def display_javascript(*objs, **kwargs): """Display the Javascript representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw javascript data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/javascript', objs, **kwargs) def display_pdf(*objs, **kwargs): """Display the PDF representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw javascript data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/pdf', objs, **kwargs) #----------------------------------------------------------------------------- # Smart classes #----------------------------------------------------------------------------- class DisplayObject(object): """An object that wraps data to be displayed.""" _read_flags = 'r' _show_mem_addr = False def __init__(self, data=None, url=None, filename=None): """Create a display object given raw data. When this object is returned by an expression or passed to the display function, it will result in the data being displayed in the frontend. The MIME type of the data should match the subclasses used, so the Png subclass should be used for 'image/png' data. If the data is a URL, the data will first be downloaded and then displayed. If Parameters ---------- data : unicode, str or bytes The raw data or a URL or file to load the data from url : unicode A URL to download the data from. filename : unicode Path to a local file to load the data from. """ if data is not None and isinstance(data, string_types): if data.startswith('http') and url is None: url = data filename = None data = None elif _safe_exists(data) and filename is None: url = None filename = data data = None self.data = data self.url = url self.filename = None if filename is None else unicode_type(filename) self.reload() self._check_data() def __repr__(self): if not self._show_mem_addr: cls = self.__class__ r = "<%s.%s object>" % (cls.__module__, cls.__name__) else: r = super(DisplayObject, self).__repr__() return r def _check_data(self): """Override in subclasses if there's something to check.""" pass def reload(self): """Reload the raw data from file or URL.""" if self.filename is not None: with open(self.filename, self._read_flags) as f: self.data = f.read() elif self.url is not None: try: try: from urllib.request import urlopen # Py3 except ImportError: from urllib2 import urlopen response = urlopen(self.url) self.data = response.read() # extract encoding from header, if there is one: encoding = None for sub in response.headers['content-type'].split(';'): sub = sub.strip() if sub.startswith('charset'): encoding = sub.split('=')[-1].strip() break # decode data, if an encoding was specified if encoding: self.data = self.data.decode(encoding, 'replace') except: self.data = None class TextDisplayObject(DisplayObject): """Validate that display data is text""" def _check_data(self): if self.data is not None and not isinstance(self.data, string_types): raise TypeError("%s expects text, not %r" % (self.__class__.__name__, self.data)) class Pretty(TextDisplayObject): def _repr_pretty_(self): return self.data class HTML(TextDisplayObject): def _repr_html_(self): return self.data def __html__(self): """ This method exists to inform other HTML-using modules (e.g. Markupsafe, htmltag, etc) that this object is HTML and does not need things like special characters (<>&) escaped. """ return self._repr_html_() class Markdown(TextDisplayObject): def _repr_markdown_(self): return self.data class Math(TextDisplayObject): def _repr_latex_(self): s = self.data.strip('$') return "$$%s$$" % s class Latex(TextDisplayObject): def _repr_latex_(self): return self.data class SVG(DisplayObject): _read_flags = 'rb' # wrap data in a property, which extracts the <svg> tag, discarding # document headers _data = None @property def data(self): return self._data @data.setter def data(self, svg): if svg is None: self._data = None return # parse into dom object from xml.dom import minidom svg = cast_bytes_py2(svg) x = minidom.parseString(svg) # get svg tag (should be 1) found_svg = x.getElementsByTagName('svg') if found_svg: svg = found_svg[0].toxml() else: # fallback on the input, trust the user # but this is probably an error. pass svg = cast_unicode(svg) self._data = svg def _repr_svg_(self): return self.data class JSON(DisplayObject): """JSON expects a JSON-able dict or list not an already-serialized JSON string. Scalar types (None, number, string) are not allowed, only dict or list containers. """ # wrap data in a property, which warns about passing already-serialized JSON _data = None def _check_data(self): if self.data is not None and not isinstance(self.data, (dict, list)): raise TypeError("%s expects JSONable dict or list, not %r" % (self.__class__.__name__, self.data)) @property def data(self): return self._data @data.setter def data(self, data): if isinstance(data, string_types): warnings.warn("JSON expects JSONable dict or list, not JSON strings") data = json.loads(data) self._data = data def _repr_json_(self): return self.data css_t = """$("head").append($("<link/>").attr({ rel: "stylesheet", type: "text/css", href: "%s" })); """ lib_t1 = """$.getScript("%s", function () { """ lib_t2 = """}); """ class Javascript(TextDisplayObject): def __init__(self, data=None, url=None, filename=None, lib=None, css=None): """Create a Javascript display object given raw data. When this object is returned by an expression or passed to the display function, it will result in the data being displayed in the frontend. If the data is a URL, the data will first be downloaded and then displayed. In the Notebook, the containing element will be available as `element`, and jQuery will be available. Content appended to `element` will be visible in the output area. Parameters ---------- data : unicode, str or bytes The Javascript source code or a URL to download it from. url : unicode A URL to download the data from. filename : unicode Path to a local file to load the data from. lib : list or str A sequence of Javascript library URLs to load asynchronously before running the source code. The full URLs of the libraries should be given. A single Javascript library URL can also be given as a string. css: : list or str A sequence of css files to load before running the source code. The full URLs of the css files should be given. A single css URL can also be given as a string. """ if isinstance(lib, string_types): lib = [lib] elif lib is None: lib = [] if isinstance(css, string_types): css = [css] elif css is None: css = [] if not isinstance(lib, (list,tuple)): raise TypeError('expected sequence, got: %r' % lib) if not isinstance(css, (list,tuple)): raise TypeError('expected sequence, got: %r' % css) self.lib = lib self.css = css super(Javascript, self).__init__(data=data, url=url, filename=filename) def _repr_javascript_(self): r = '' for c in self.css: r += css_t % c for l in self.lib: r += lib_t1 % l r += self.data r += lib_t2*len(self.lib) return r # constants for identifying png/jpeg data _PNG = b'\x89PNG\r\n\x1a\n' _JPEG = b'\xff\xd8' def _pngxy(data): """read the (width, height) from a PNG header""" ihdr = data.index(b'IHDR') # next 8 bytes are width/height w4h4 = data[ihdr+4:ihdr+12] return struct.unpack('>ii', w4h4) def _jpegxy(data): """read the (width, height) from a JPEG header""" # adapted from http://www.64lines.com/jpeg-width-height idx = 4 while True: block_size = struct.unpack('>H', data[idx:idx+2])[0] idx = idx + block_size if data[idx:idx+2] == b'\xFF\xC0': # found Start of Frame iSOF = idx break else: # read another block idx += 2 h, w = struct.unpack('>HH', data[iSOF+5:iSOF+9]) return w, h class Image(DisplayObject): _read_flags = 'rb' _FMT_JPEG = u'jpeg' _FMT_PNG = u'png' _ACCEPTABLE_EMBEDDINGS = [_FMT_JPEG, _FMT_PNG] def __init__(self, data=None, url=None, filename=None, format=None, embed=None, width=None, height=None, retina=False, unconfined=False, metadata=None): """Create a PNG/JPEG image object given raw data. When this object is returned by an input cell or passed to the display function, it will result in the image being displayed in the frontend. Parameters ---------- data : unicode, str or bytes The raw image data or a URL or filename to load the data from. This always results in embedded image data. url : unicode A URL to download the data from. If you specify `url=`, the image data will not be embedded unless you also specify `embed=True`. filename : unicode Path to a local file to load the data from. Images from a file are always embedded. format : unicode The format of the image data (png/jpeg/jpg). If a filename or URL is given for format will be inferred from the filename extension. embed : bool Should the image data be embedded using a data URI (True) or be loaded using an <img> tag. Set this to True if you want the image to be viewable later with no internet connection in the notebook. Default is `True`, unless the keyword argument `url` is set, then default value is `False`. Note that QtConsole is not able to display images if `embed` is set to `False` width : int Width in pixels to which to constrain the image in html height : int Height in pixels to which to constrain the image in html retina : bool Automatically set the width and height to half of the measured width and height. This only works for embedded images because it reads the width/height from image data. For non-embedded images, you can just set the desired display width and height directly. unconfined: bool Set unconfined=True to disable max-width confinement of the image. metadata: dict Specify extra metadata to attach to the image. Examples -------- # embedded image data, works in qtconsole and notebook # when passed positionally, the first arg can be any of raw image data, # a URL, or a filename from which to load image data. # The result is always embedding image data for inline images. Image('http://www.google.fr/images/srpr/logo3w.png') Image('/path/to/image.jpg') Image(b'RAW_PNG_DATA...') # Specifying Image(url=...) does not embed the image data, # it only generates `<img>` tag with a link to the source. # This will not work in the qtconsole or offline. Image(url='http://www.google.fr/images/srpr/logo3w.png') """ if filename is not None: ext = self._find_ext(filename) elif url is not None: ext = self._find_ext(url) elif data is None: raise ValueError("No image data found. Expecting filename, url, or data.") elif isinstance(data, string_types) and ( data.startswith('http') or _safe_exists(data) ): ext = self._find_ext(data) else: ext = None if format is None: if ext is not None: if ext == u'jpg' or ext == u'jpeg': format = self._FMT_JPEG if ext == u'png': format = self._FMT_PNG else: format = ext.lower() elif isinstance(data, bytes): # infer image type from image data header, # only if format has not been specified. if data[:2] == _JPEG: format = self._FMT_JPEG # failed to detect format, default png if format is None: format = 'png' if format.lower() == 'jpg': # jpg->jpeg format = self._FMT_JPEG self.format = unicode_type(format).lower() self.embed = embed if embed is not None else (url is None) if self.embed and self.format not in self._ACCEPTABLE_EMBEDDINGS: raise ValueError("Cannot embed the '%s' image format" % (self.format)) self.width = width self.height = height self.retina = retina self.unconfined = unconfined self.metadata = metadata super(Image, self).__init__(data=data, url=url, filename=filename) if retina: self._retina_shape() def _retina_shape(self): """load pixel-doubled width and height from image data""" if not self.embed: return if self.format == 'png': w, h = _pngxy(self.data) elif self.format == 'jpeg': w, h = _jpegxy(self.data) else: # retina only supports png return self.width = w // 2 self.height = h // 2 def reload(self): """Reload the raw data from file or URL.""" if self.embed: super(Image,self).reload() if self.retina: self._retina_shape() def _repr_html_(self): if not self.embed: width = height = klass = '' if self.width: width = ' width="%d"' % self.width if self.height: height = ' height="%d"' % self.height if self.unconfined: klass = ' class="unconfined"' return u'<img src="{url}"{width}{height}{klass}/>'.format( url=self.url, width=width, height=height, klass=klass, ) def _data_and_metadata(self): """shortcut for returning metadata with shape information, if defined""" md = {} if self.width: md['width'] = self.width if self.height: md['height'] = self.height if self.unconfined: md['unconfined'] = self.unconfined if self.metadata: md.update(self.metadata) if md: return self.data, md else: return self.data def _repr_png_(self): if self.embed and self.format == u'png': return self._data_and_metadata() def _repr_jpeg_(self): if self.embed and (self.format == u'jpeg' or self.format == u'jpg'): return self._data_and_metadata() def _find_ext(self, s): return unicode_type(s.split('.')[-1].lower()) class Video(DisplayObject): def __init__(self, data=None, url=None, filename=None, embed=False, mimetype=None): """Create a video object given raw data or an URL. When this object is returned by an input cell or passed to the display function, it will result in the video being displayed in the frontend. Parameters ---------- data : unicode, str or bytes The raw video data or a URL or filename to load the data from. Raw data will require passing `embed=True`. url : unicode A URL for the video. If you specify `url=`, the image data will not be embedded. filename : unicode Path to a local file containing the video. Will be interpreted as a local URL unless `embed=True`. embed : bool Should the video be embedded using a data URI (True) or be loaded using a <video> tag (False). Since videos are large, embedding them should be avoided, if possible. You must confirm embedding as your intention by passing `embed=True`. Local files can be displayed with URLs without embedding the content, via:: Video('./video.mp4') mimetype: unicode Specify the mimetype for embedded videos. Default will be guessed from file extension, if available. Examples -------- Video('https://archive.org/download/Sita_Sings_the_Blues/Sita_Sings_the_Blues_small.mp4') Video('path/to/video.mp4') Video('path/to/video.mp4', embed=True) Video(b'raw-videodata', embed=True) """ if url is None and isinstance(data, string_types) and data.startswith(('http:', 'https:')): url = data data = None elif os.path.exists(data): filename = data data = None if data and not embed: msg = ''.join([ "To embed videos, you must pass embed=True ", "(this may make your notebook files huge)\n", "Consider passing Video(url='...')", ]) raise ValueError(msg) self.mimetype = mimetype self.embed = embed super(Video, self).__init__(data=data, url=url, filename=filename) def _repr_html_(self): # External URLs and potentially local files are not embedded into the # notebook output. if not self.embed: url = self.url if self.url is not None else self.filename output = """<video src="{0}" controls> Your browser does not support the <code>video</code> element. </video>""".format(url) return output # Embedded videos are base64-encoded. mimetype = self.mimetype if self.filename is not None: if not mimetype: mimetype, _ = mimetypes.guess_type(self.filename) with open(self.filename, 'rb') as f: video = f.read() else: video = self.data if isinstance(video, unicode_type): # unicode input is already b64-encoded b64_video = video else: b64_video = base64_encode(video).decode('ascii').rstrip() output = """<video controls> <source src="data:{0};base64,{1}" type="{0}"> Your browser does not support the video tag. </video>""".format(mimetype, b64_video) return output def reload(self): # TODO pass def _repr_png_(self): # TODO pass def _repr_jpeg_(self): # TODO pass def clear_output(wait=False): """Clear the output of the current cell receiving output. Parameters ---------- wait : bool [default: false] Wait to clear the output until new output is available to replace it.""" from IPython.core.interactiveshell import InteractiveShell if InteractiveShell.initialized(): InteractiveShell.instance().display_pub.clear_output(wait) else: print('\033[2K\r', end='') sys.stdout.flush() print('\033[2K\r', end='') sys.stderr.flush() @skip_doctest def set_matplotlib_formats(*formats, **kwargs): """Select figure formats for the inline backend. Optionally pass quality for JPEG. For example, this enables PNG and JPEG output with a JPEG quality of 90%:: In [1]: set_matplotlib_formats('png', 'jpeg', quality=90) To set this in your config files use the following:: c.InlineBackend.figure_formats = {'png', 'jpeg'} c.InlineBackend.print_figure_kwargs.update({'quality' : 90}) Parameters ---------- *formats : strs One or more figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. **kwargs : Keyword args will be relayed to ``figure.canvas.print_figure``. """ from IPython.core.interactiveshell import InteractiveShell from IPython.core.pylabtools import select_figure_formats # build kwargs, starting with InlineBackend config kw = {} from ipykernel.pylab.config import InlineBackend cfg = InlineBackend.instance() kw.update(cfg.print_figure_kwargs) kw.update(**kwargs) shell = InteractiveShell.instance() select_figure_formats(shell, formats, **kw) @skip_doctest def set_matplotlib_close(close=True): """Set whether the inline backend closes all figures automatically or not. By default, the inline backend used in the IPython Notebook will close all matplotlib figures automatically after each cell is run. This means that plots in different cells won't interfere. Sometimes, you may want to make a plot in one cell and then refine it in later cells. This can be accomplished by:: In [1]: set_matplotlib_close(False) To set this in your config files use the following:: c.InlineBackend.close_figures = False Parameters ---------- close : bool Should all matplotlib figures be automatically closed after each cell is run? """ from ipykernel.pylab.config import InlineBackend cfg = InlineBackend.instance() cfg.close_figures = close
gpl-3.0
saltastro/salt-data-quality-site
app/main/pages/instrument/hrs/environment/focus/plots.py
1
6305
import pandas as pd from bokeh.embed import components from bokeh.models import HoverTool from bokeh.models.formatters import DatetimeTickFormatter from bokeh.plotting import figure, ColumnDataSource from app import db from app.decorators import data_quality # creates your plot date_formatter = DatetimeTickFormatter(microseconds=['%f'], milliseconds=['%S.%2Ns'], seconds=[':%Ss'], minsec=[':%Mm:%Ss'], minutes=['%H:%M:%S'], hourmin=['%H:%M:'], hours=["%H:%M"], days=["%d %b"], months=["%d %b %Y"], years=["%b %Y"]) @data_quality(name='focus_bmir', caption='') def bmir_focus_plot(start_date, end_date): """Return a <div> element with a HRS focus plot. The plot shows the HRS focus for the period between start_date (inclusive) and end_date (exclusive). Params: ------- start_date: date Earliest date to include in the plot. end_date: date Earliest date not to include in the plot. Return: ------- str: A <div> element with the focus plot. """ title = "BMIR Focus" y_axis_label = 'Focus' # creates your query table = 'FitsHeaderHrs' column = 'FOC_BMIR' logic = " " sql = "select UTStart, {column} as FOCUS, FileName, CONVERT(UTStart,char) AS Time " \ " from {table} join FileData using (FileData_Id) " \ " where UTStart > '{start_date}' and UTStart <'{end_date}' {logic}"\ .format(column=column, start_date=start_date, end_date=end_date, table=table, logic=logic) df = pd.read_sql(sql, db.engine) df2 = pd.read_sql(sql, db.engine) source = ColumnDataSource(df) source2 = ColumnDataSource(df2) tool_list = "pan,reset,save,wheel_zoom, box_zoom" _hover = HoverTool( tooltips=""" <div> <div> <span style="font-size: 15px; font-weight: bold;">Date: </span> <span style="font-size: 15px;"> @Time</span> </div> <div> <span style="font-size: 15px; font-weight: bold;">Focus: </span> <span style="font-size: 15px;"> @FOCUS</span> </div> <div> <span style="font-size: 15px; font-weight: bold;">Filename: </span> <span style="font-size: 15px;"> @FileName</span> </div> </div> """ ) p = figure(title=title, x_axis_label='Date', y_axis_label=y_axis_label, x_axis_type='datetime', tools=[tool_list, _hover]) p.scatter(source=source, x='UTStart', y='FOCUS', color='blue', fill_alpha=0.2, size=12, legend='Blue Arm') p.scatter(source=source2, x='UTStart', y='FOCUS', color='red', fill_alpha=0.2, size=10, legend='Red Arm') p.legend.location = "top_right" p.legend.click_policy = "hide" p.legend.background_fill_alpha = 0.3 p.legend.inactive_fill_alpha = 0.8 p.xaxis[0].formatter = date_formatter return p @data_quality(name='focus_rmir', caption='') def rmir_focus_plot(start_date, end_date): """Return a <div> element with a HRS focus plot. The plot shows the HRS focus for the period between start_date (inclusive) and end_date (exclusive). Params: ------- start_date: date Earliest date to include in the plot. end_date: date Earliest date not to include in the plot. Return: ------- str: A <div> element with the focus plot. """ title = "RMIR Focus" y_axis_label = 'Focus' # creates your query table = 'FitsHeaderHrs' column = 'FOC_RMIR' logic = " and FileName like 'H%%' " logic2 = " and FileName like 'R%%' " sql = "select UTStart, {column} as FOCUS, FileName, CONVERT(UTStart,char) AS Time " \ " from {table} join FileData using (FileData_Id) " \ " where UTStart > '{start_date}' and UTStart <'{end_date}' {logic}" sql1 = sql.format(column=column, start_date=start_date, end_date=end_date, table=table, logic=logic) sql2 = sql.format(column=column, start_date=start_date, end_date=end_date, table=table, logic=logic2) df = pd.read_sql(sql1, db.engine) df2 = pd.read_sql(sql2, db.engine) source = ColumnDataSource(df) source2 = ColumnDataSource(df2) tool_list = "pan,reset,save,wheel_zoom, box_zoom" _hover = HoverTool( tooltips=""" <div> <div> <span style="font-size: 15px; font-weight: bold;">Date: </span> <span style="font-size: 15px;"> @Time</span> </div> <div> <span style="font-size: 15px; font-weight: bold;">Focus: </span> <span style="font-size: 15px;"> @FOCUS</span> </div> <div> <span style="font-size: 15px; font-weight: bold;">Filename: </span> <span style="font-size: 15px;"> @FileName</span> </div> </div> """ ) p = figure(title=title, x_axis_label='Date', y_axis_label=y_axis_label, x_axis_type='datetime', tools=[tool_list, _hover]) p.scatter(source=source, x='UTStart', y='FOCUS', color='blue', fill_alpha=0.2, size=12, legend='Blue Arm') p.scatter(source=source2, x='UTStart', y='FOCUS', color='red', fill_alpha=0.2, size=10, legend='Red Arm') p.legend.location = "top_right" p.legend.click_policy = "hide" p.legend.background_fill_alpha = 0.3 p.legend.inactive_fill_alpha = 0.8 p.xaxis[0].formatter = date_formatter return p
mit
imaculate/scikit-learn
sklearn/utils/setup.py
24
2920
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
Achuth17/scikit-learn
sklearn/tree/tests/test_export.py
76
9318
""" Testing for export functions of decision trees (sklearn.tree.export). """ from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[])
bsd-3-clause
thomasantony/CarND-Projects
Exercises/Term1/alexnet-feature-extraction/feature_extraction.py
2
1499
import time import tensorflow as tf import numpy as np import pandas as pd from scipy.misc import imread from alexnet import AlexNet sign_names = pd.read_csv('signnames.csv') nb_classes = 43 x = tf.placeholder(tf.float32, (None, 32, 32, 3)) resized = tf.image.resize_images(x, (227, 227)) # NOTE: By setting `feature_extract` to `True` we return # the second to last layer. fc7 = AlexNet(resized, feature_extract=True) # TODO: Define a new fully connected layer followed by a softmax activation to classify # the traffic signs. Assign the result of the softmax activation to `probs` below. shape = (fc7.get_shape().as_list()[-1], nb_classes) # use this shape for the weight matrix fc8W = tf.Variable(tf.truncated_normal(shape, stddev=1e-2)) fc8b = tf.Variable(tf.zeros(nb_classes)) logits = tf.nn.xw_plus_b(fc7, fc8W, fc8b) probs = tf.nn.softmax(logits) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # Read Images im1 = imread("construction.jpg").astype(np.float32) im1 = im1 - np.mean(im1) im2 = imread("stop.jpg").astype(np.float32) im2 = im2 - np.mean(im2) # Run Inference t = time.time() output = sess.run(probs, feed_dict={x: [im1, im2]}) # Print Output for input_im_ind in range(output.shape[0]): inds = np.argsort(output)[input_im_ind, :] print("Image", input_im_ind) for i in range(5): print("%s: %.3f" % (sign_names.ix[inds[-1 - i]][1], output[input_im_ind, inds[-1 - i]])) print() print("Time: %.3f seconds" % (time.time() - t))
mit
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/internals/test_internals.py
1
46804
from collections import OrderedDict from datetime import date, datetime from distutils.version import LooseVersion import itertools import operator import re import sys import numpy as np import pytest from pandas._libs.internals import BlockPlacement import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, SparseArray, ) import pandas.core.algorithms as algos from pandas.core.arrays import DatetimeArray, TimedeltaArray from pandas.core.internals import BlockManager, SingleBlockManager, make_block import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, randn, ) # in 3.6.1 a c-api slicing function changed, see src/compat_helper.h PY361 = LooseVersion(sys.version) >= LooseVersion("3.6.1") @pytest.fixture def mgr(): return create_mgr( "a: f8; b: object; c: f8; d: object; e: f8;" "f: bool; g: i8; h: complex; i: datetime-1; j: datetime-2;" "k: M8[ns, US/Eastern]; l: M8[ns, CET];" ) def assert_block_equal(left, right): tm.assert_numpy_array_equal(left.values, right.values) assert left.dtype == right.dtype assert isinstance(left.mgr_locs, BlockPlacement) assert isinstance(right.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(left.mgr_locs.as_array, right.mgr_locs.as_array) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided( x=arr, shape=shape, strides=(arr.itemsize,) + (0,) * (len(shape) - 1) ).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt, M8[ns], M8[ns, tz] * timedelta, td, m8[ns] * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) * category, category2 """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N,) shape = (num_items,) + item_shape mat = get_numeric_mat(shape) if typestr in ( "float", "f8", "f4", "f2", "int", "i8", "i4", "i2", "i1", "uint", "u8", "u4", "u2", "u1", ): values = mat.astype(typestr) + num_offset elif typestr in ("complex", "c16", "c8"): values = 1.0j * (mat.astype(typestr) + num_offset) elif typestr in ("object", "string", "O"): values = np.reshape( ["A{i:d}".format(i=i) for i in mat.ravel() + num_offset], shape ) elif typestr in ("b", "bool"): values = np.ones(shape, dtype=np.bool_) elif typestr in ("datetime", "dt", "M8[ns]"): values = (mat * 1e9).astype("M8[ns]") elif typestr.startswith("M8[ns"): # datetime with tz m = re.search(r"M8\[ns,\s*(\w+\/?\w*)\]", typestr) assert m is not None, "incompatible typestr -> {0}".format(typestr) tz = m.groups()[0] assert num_items == 1, "must have only 1 num items for a tz-aware" values = DatetimeIndex(np.arange(N) * 1e9, tz=tz) elif typestr in ("timedelta", "td", "m8[ns]"): values = (mat * 1).astype("m8[ns]") elif typestr in ("category",): values = Categorical([1, 1, 2, 2, 3, 3, 3, 3, 4, 4]) elif typestr in ("category2",): values = Categorical(["a", "a", "a", "a", "b", "b", "c", "c", "c", "d"]) elif typestr in ("sparse", "sparse_na"): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith("_na"): fill_value = np.nan else: fill_value = 0.0 values = SparseArray( [fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value, ) arr = values.sp_values.view() arr += num_offset - 1 else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows), ) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N,) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(";"): d = d.strip() if not len(d): continue names, blockstr = d.partition(":")[::2] blockstr = blockstr.strip() names = names.strip().split(",") mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items = Index(mgr_items) blocks = [] num_offset = 0 for blockstr, placement in block_placements.items(): typestr = blockstr.split("-")[0] blocks.append( create_block( typestr, placement, item_shape=item_shape, num_offset=num_offset ) ) num_offset += len(placement) return BlockManager( sorted(blocks, key=lambda b: b.mgr_locs[0]), [mgr_items] + [np.arange(n) for n in item_shape], ) class TestBlock: def setup_method(self, method): # self.fblock = get_float_ex() # a,c,e # self.cblock = get_complex_ex() # # self.oblock = get_obj_ex() # self.bool_block = get_bool_ex() # self.int_block = get_int_ex() self.fblock = create_block("float", [0, 2, 4]) self.cblock = create_block("complex", [7]) self.oblock = create_block("object", [1, 3]) self.bool_block = create_block("bool", [5]) self.int_block = create_block("int", [6]) def test_constructor(self): int32block = create_block("i4", [0]) assert int32block.dtype == np.int32 def test_pickle(self): def _check(blk): assert_block_equal(tm.round_trip_pickle(blk), blk) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_mgr_locs(self): assert isinstance(self.fblock.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal( self.fblock.mgr_locs.as_array, np.array([0, 2, 4], dtype=np.int64) ) def test_attrs(self): assert self.fblock.shape == self.fblock.values.shape assert self.fblock.dtype == self.fblock.values.dtype assert len(self.fblock) == len(self.fblock.values) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = Index(["e", "a", "b", "d", "f"]) ablock = make_block(avals, ref_cols.get_indexer(["e", "b"])) bblock = make_block(bvals, ref_cols.get_indexer(["a", "d"])) merged = ablock.merge(bblock) tm.assert_numpy_array_equal( merged.mgr_locs.as_array, np.array([0, 1, 2, 3], dtype=np.int64) ) tm.assert_numpy_array_equal(merged.values[[0, 2]], np.array(avals)) tm.assert_numpy_array_equal(merged.values[[1, 3]], np.array(bvals)) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() assert cop is not self.fblock assert_block_equal(self.fblock, cop) def test_reindex_index(self): pass def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.copy() newb.delete(0) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal( newb.mgr_locs.as_array, np.array([2, 4], dtype=np.int64) ) assert (newb.values[0] == 1).all() newb = self.fblock.copy() newb.delete(1) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal( newb.mgr_locs.as_array, np.array([0, 4], dtype=np.int64) ) assert (newb.values[1] == 2).all() newb = self.fblock.copy() newb.delete(2) tm.assert_numpy_array_equal( newb.mgr_locs.as_array, np.array([0, 2], dtype=np.int64) ) assert (newb.values[1] == 1).all() newb = self.fblock.copy() with pytest.raises(Exception): newb.delete(3) def test_make_block_same_class(self): # issue 19431 block = create_block("M8[ns, US/Eastern]", [3]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): block.make_block_same_class(block.values, dtype=block.values.dtype) class TestDatetimeBlock: def test_try_coerce_arg(self): block = create_block("datetime", [0]) # coerce None none_coerced = block._try_coerce_args(None) assert pd.Timestamp(none_coerced) is pd.NaT # coerce different types of date bojects vals = (np.datetime64("2010-10-10"), datetime(2010, 10, 10), date(2010, 10, 10)) for val in vals: coerced = block._try_coerce_args(val) assert np.int64 == type(coerced) assert pd.Timestamp("2010-10-10") == pd.Timestamp(coerced) class TestBlockManager: def test_constructor_corner(self): pass def test_attrs(self): mgr = create_mgr("a,b,c: f8-1; d,e,f: f8-2") assert mgr.nblocks == 2 assert len(mgr) == 6 def test_is_mixed_dtype(self): assert not create_mgr("a,b:f8").is_mixed_type assert not create_mgr("a:f8-1; b:f8-2").is_mixed_type assert create_mgr("a,b:f8; c,d: f4").is_mixed_type assert create_mgr("a,b:f8; c,d: object").is_mixed_type def test_duplicate_ref_loc_failure(self): tmp_mgr = create_mgr("a:bool; a: f8") axes, blocks = tmp_mgr.axes, tmp_mgr.blocks blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([0]) # test trying to create block manager with overlapping ref locs with pytest.raises(AssertionError): BlockManager(blocks, axes) blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([1]) mgr = BlockManager(blocks, axes) mgr.iget(1) def test_contains(self, mgr): assert "a" in mgr assert "baz" not in mgr def test_pickle(self, mgr): mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) # share ref_items # assert mgr2.blocks[0].ref_items is mgr2.blocks[1].ref_items # GH2431 assert hasattr(mgr2, "_is_consolidated") assert hasattr(mgr2, "_known_consolidated") # reset to False on load assert not mgr2._is_consolidated assert not mgr2._known_consolidated def test_non_unique_pickle(self): mgr = create_mgr("a,a,a:f8") mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) mgr = create_mgr("a: f8; a: i8") mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) def test_categorical_block_pickle(self): mgr = create_mgr("a: category") mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) smgr = create_single_mgr("category") smgr2 = tm.round_trip_pickle(smgr) assert_series_equal(Series(smgr), Series(smgr2)) def test_get(self): cols = Index(list("abc")) values = np.random.rand(3, 3) block = make_block(values=values.copy(), placement=np.arange(3)) mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)]) assert_almost_equal(mgr.get("a").internal_values(), values[0]) assert_almost_equal(mgr.get("b").internal_values(), values[1]) assert_almost_equal(mgr.get("c").internal_values(), values[2]) def test_set(self): mgr = create_mgr("a,b,c: int", item_shape=(3,)) mgr.set("d", np.array(["foo"] * 3)) mgr.set("b", np.array(["bar"] * 3)) tm.assert_numpy_array_equal(mgr.get("a").internal_values(), np.array([0] * 3)) tm.assert_numpy_array_equal( mgr.get("b").internal_values(), np.array(["bar"] * 3, dtype=np.object_) ) tm.assert_numpy_array_equal(mgr.get("c").internal_values(), np.array([2] * 3)) tm.assert_numpy_array_equal( mgr.get("d").internal_values(), np.array(["foo"] * 3, dtype=np.object_) ) def test_set_change_dtype(self, mgr): mgr.set("baz", np.zeros(N, dtype=bool)) mgr.set("baz", np.repeat("foo", N)) assert mgr.get("baz").dtype == np.object_ mgr2 = mgr.consolidate() mgr2.set("baz", np.repeat("foo", N)) assert mgr2.get("baz").dtype == np.object_ mgr2.set("quux", randn(N).astype(int)) assert mgr2.get("quux").dtype == np.int_ mgr2.set("quux", randn(N)) assert mgr2.get("quux").dtype == np.float_ def test_set_change_dtype_slice(self): # GH8850 cols = MultiIndex.from_tuples([("1st", "a"), ("2nd", "b"), ("3rd", "c")]) df = DataFrame([[1.0, 2, 3], [4.0, 5, 6]], columns=cols) df["2nd"] = df["2nd"] * 2.0 blocks = df._to_dict_of_blocks() assert sorted(blocks.keys()) == ["float64", "int64"] assert_frame_equal( blocks["float64"], DataFrame([[1.0, 4.0], [4.0, 10.0]], columns=cols[:2]) ) assert_frame_equal(blocks["int64"], DataFrame([[3], [6]], columns=cols[2:])) def test_copy(self, mgr): cp = mgr.copy(deep=False) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # view assertion assert cp_blk.equals(blk) if isinstance(blk.values, np.ndarray): assert cp_blk.values.base is blk.values.base else: # DatetimeTZBlock has DatetimeIndex values assert cp_blk.values._data.base is blk.values._data.base cp = mgr.copy(deep=True) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # copy assertion we either have a None for a base or in case of # some blocks it is an array (e.g. datetimetz), but was copied assert cp_blk.equals(blk) if not isinstance(cp_blk.values, np.ndarray): assert cp_blk.values._data.base is not blk.values._data.base else: assert cp_blk.values.base is None and blk.values.base is None def test_sparse(self): mgr = create_mgr("a: sparse-1; b: sparse-2") # what to test here? assert mgr.as_array().dtype == np.float64 def test_sparse_mixed(self): mgr = create_mgr("a: sparse-1; b: sparse-2; c: f8") assert len(mgr.blocks) == 3 assert isinstance(mgr, BlockManager) # what to test here? def test_as_array_float(self): mgr = create_mgr("c: f4; d: f2; e: f8") assert mgr.as_array().dtype == np.float64 mgr = create_mgr("c: f4; d: f2") assert mgr.as_array().dtype == np.float32 def test_as_array_int_bool(self): mgr = create_mgr("a: bool-1; b: bool-2") assert mgr.as_array().dtype == np.bool_ mgr = create_mgr("a: i8-1; b: i8-2; c: i4; d: i2; e: u1") assert mgr.as_array().dtype == np.int64 mgr = create_mgr("c: i4; d: i2; e: u1") assert mgr.as_array().dtype == np.int32 def test_as_array_datetime(self): mgr = create_mgr("h: datetime-1; g: datetime-2") assert mgr.as_array().dtype == "M8[ns]" def test_as_array_datetime_tz(self): mgr = create_mgr("h: M8[ns, US/Eastern]; g: M8[ns, CET]") assert mgr.get("h").dtype == "datetime64[ns, US/Eastern]" assert mgr.get("g").dtype == "datetime64[ns, CET]" assert mgr.as_array().dtype == "object" def test_astype(self): # coerce all mgr = create_mgr("c: f4; d: f2; e: f8") for t in ["float16", "float32", "float64", "int32", "int64"]: t = np.dtype(t) tmgr = mgr.astype(t) assert tmgr.get("c").dtype.type == t assert tmgr.get("d").dtype.type == t assert tmgr.get("e").dtype.type == t # mixed mgr = create_mgr("a,b: object; c: bool; d: datetime; e: f4; f: f2; g: f8") for t in ["float16", "float32", "float64", "int32", "int64"]: t = np.dtype(t) tmgr = mgr.astype(t, errors="ignore") assert tmgr.get("c").dtype.type == t assert tmgr.get("e").dtype.type == t assert tmgr.get("f").dtype.type == t assert tmgr.get("g").dtype.type == t assert tmgr.get("a").dtype.type == np.object_ assert tmgr.get("b").dtype.type == np.object_ if t != np.int64: assert tmgr.get("d").dtype.type == np.datetime64 else: assert tmgr.get("d").dtype.type == t def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) assert len(old_blocks) == len(new_blocks) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break assert found for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break assert found # noops mgr = create_mgr("f: i8; g: f8") new_mgr = mgr.convert() _compare(mgr, new_mgr) mgr = create_mgr("a, b: object; f: i8; g: f8") new_mgr = mgr.convert() _compare(mgr, new_mgr) # convert mgr = create_mgr("a,b,foo: object; f: i8; g: f8") mgr.set("a", np.array(["1"] * N, dtype=np.object_)) mgr.set("b", np.array(["2."] * N, dtype=np.object_)) mgr.set("foo", np.array(["foo."] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get("a").dtype == np.int64 assert new_mgr.get("b").dtype == np.float64 assert new_mgr.get("foo").dtype == np.object_ assert new_mgr.get("f").dtype == np.int64 assert new_mgr.get("g").dtype == np.float64 mgr = create_mgr( "a,b,foo: object; f: i4; bool: bool; dt: datetime; i: i8; g: f8; h: f2" ) mgr.set("a", np.array(["1"] * N, dtype=np.object_)) mgr.set("b", np.array(["2."] * N, dtype=np.object_)) mgr.set("foo", np.array(["foo."] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get("a").dtype == np.int64 assert new_mgr.get("b").dtype == np.float64 assert new_mgr.get("foo").dtype == np.object_ assert new_mgr.get("f").dtype == np.int32 assert new_mgr.get("bool").dtype == np.bool_ assert new_mgr.get("dt").dtype.type, np.datetime64 assert new_mgr.get("i").dtype == np.int64 assert new_mgr.get("g").dtype == np.float64 assert new_mgr.get("h").dtype == np.float16 def test_interleave(self): # self for dtype in ["f8", "i8", "object", "bool", "complex", "M8[ns]", "m8[ns]"]: mgr = create_mgr("a: {0}".format(dtype)) assert mgr.as_array().dtype == dtype mgr = create_mgr("a: {0}; b: {0}".format(dtype)) assert mgr.as_array().dtype == dtype # will be converted according the actual dtype of the underlying mgr = create_mgr("a: category") assert mgr.as_array().dtype == "i8" mgr = create_mgr("a: category; b: category") assert mgr.as_array().dtype == "i8" mgr = create_mgr("a: category; b: category2") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: category2") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: category2; b: category2") assert mgr.as_array().dtype == "object" # combinations mgr = create_mgr("a: f8") assert mgr.as_array().dtype == "f8" mgr = create_mgr("a: f8; b: i8") assert mgr.as_array().dtype == "f8" mgr = create_mgr("a: f4; b: i8") assert mgr.as_array().dtype == "f8" mgr = create_mgr("a: f4; b: i8; d: object") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: bool; b: i8") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: complex") assert mgr.as_array().dtype == "complex" mgr = create_mgr("a: f8; b: category") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: M8[ns]; b: category") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: M8[ns]; b: bool") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: M8[ns]; b: i8") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: m8[ns]; b: bool") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: m8[ns]; b: i8") assert mgr.as_array().dtype == "object" mgr = create_mgr("a: M8[ns]; b: m8[ns]") assert mgr.as_array().dtype == "object" def test_interleave_non_unique_cols(self): df = DataFrame( [[pd.Timestamp("20130101"), 3.5], [pd.Timestamp("20130102"), 4.5]], columns=["x", "x"], index=[1, 2], ) df_unique = df.copy() df_unique.columns = ["x", "y"] assert df_unique.values.shape == df.values.shape tm.assert_numpy_array_equal(df_unique.values[0], df.values[0]) tm.assert_numpy_array_equal(df_unique.values[1], df.values[1]) def test_consolidate(self): pass def test_consolidate_ordering_issues(self, mgr): mgr.set("f", randn(N)) mgr.set("d", randn(N)) mgr.set("b", randn(N)) mgr.set("g", randn(N)) mgr.set("h", randn(N)) # we have datetime/tz blocks in mgr cons = mgr.consolidate() assert cons.nblocks == 4 cons = mgr.consolidate().get_numeric_data() assert cons.nblocks == 1 assert isinstance(cons.blocks[0].mgr_locs, BlockPlacement) tm.assert_numpy_array_equal( cons.blocks[0].mgr_locs.as_array, np.arange(len(cons.items), dtype=np.int64) ) def test_reindex_index(self): # TODO: should this be pytest.skip? pass def test_reindex_items(self): # mgr is not consolidated, f8 & f8-2 blocks mgr = create_mgr("a: f8; b: i8; c: f8; d: i8; e: f8; f: bool; g: f8-2") reindexed = mgr.reindex_axis(["g", "c", "a", "d"], axis=0) assert reindexed.nblocks == 2 tm.assert_index_equal(reindexed.items, pd.Index(["g", "c", "a", "d"])) assert_almost_equal( mgr.get("g").internal_values(), reindexed.get("g").internal_values() ) assert_almost_equal( mgr.get("c").internal_values(), reindexed.get("c").internal_values() ) assert_almost_equal( mgr.get("a").internal_values(), reindexed.get("a").internal_values() ) assert_almost_equal( mgr.get("d").internal_values(), reindexed.get("d").internal_values() ) def test_get_numeric_data(self): mgr = create_mgr( "int: int; float: float; complex: complex;" "str: object; bool: bool; obj: object; dt: datetime", item_shape=(3,), ) mgr.set("obj", np.array([1, 2, 3], dtype=np.object_)) numeric = mgr.get_numeric_data() tm.assert_index_equal( numeric.items, pd.Index(["int", "float", "complex", "bool"]) ) assert_almost_equal( mgr.get("float").internal_values(), numeric.get("float").internal_values() ) # Check sharing numeric.set("float", np.array([100.0, 200.0, 300.0])) assert_almost_equal( mgr.get("float").internal_values(), np.array([100.0, 200.0, 300.0]) ) numeric2 = mgr.get_numeric_data(copy=True) tm.assert_index_equal( numeric.items, pd.Index(["int", "float", "complex", "bool"]) ) numeric2.set("float", np.array([1000.0, 2000.0, 3000.0])) assert_almost_equal( mgr.get("float").internal_values(), np.array([100.0, 200.0, 300.0]) ) def test_get_bool_data(self): mgr = create_mgr( "int: int; float: float; complex: complex;" "str: object; bool: bool; obj: object; dt: datetime", item_shape=(3,), ) mgr.set("obj", np.array([True, False, True], dtype=np.object_)) bools = mgr.get_bool_data() tm.assert_index_equal(bools.items, pd.Index(["bool"])) assert_almost_equal( mgr.get("bool").internal_values(), bools.get("bool").internal_values() ) bools.set("bool", np.array([True, False, True])) tm.assert_numpy_array_equal( mgr.get("bool").internal_values(), np.array([True, False, True]) ) # Check sharing bools2 = mgr.get_bool_data(copy=True) bools2.set("bool", np.array([False, True, False])) tm.assert_numpy_array_equal( mgr.get("bool").internal_values(), np.array([True, False, True]) ) def test_unicode_repr_doesnt_raise(self): repr(create_mgr("b,\u05d0: object")) def test_missing_unicode_key(self): df = DataFrame({"a": [1]}) try: df.loc[:, "\u05d0"] # should not raise UnicodeEncodeError except KeyError: pass # this is the expected exception def test_equals(self): # unique items bm1 = create_mgr("a,b,c: i8-1; d,e,f: i8-2") bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) bm1 = create_mgr("a,a,a: i8-1; b,b,b: i8-2") bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) def test_equals_block_order_different_dtypes(self): # GH 9330 mgr_strings = [ "a:i8;b:f8", # basic case "a:i8;b:f8;c:c8;d:b", # many types "a:i8;e:dt;f:td;g:string", # more types "a:i8;b:category;c:category2;d:category2", # categories "c:sparse;d:sparse_na;b:f8", # sparse ] for mgr_string in mgr_strings: bm = create_mgr(mgr_string) block_perms = itertools.permutations(bm.blocks) for bm_perm in block_perms: bm_this = BlockManager(bm_perm, bm.axes) assert bm.equals(bm_this) assert bm_this.equals(bm) def test_single_mgr_ctor(self): mgr = create_single_mgr("f8", num_rows=5) assert mgr.as_array().tolist() == [0.0, 1.0, 2.0, 3.0, 4.0] def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] bm1 = create_mgr("a,b,c: i8-1; d,e,f: i8-2") for value in invalid_values: with pytest.raises(ValueError): bm1.replace_list([1], [2], inplace=value) class TestIndexing: # Nosetests-style data-driven tests. # # This test applies different indexing routines to block managers and # compares the outcome to the result of same operations on np.ndarray. # # NOTE: sparse (SparseBlock with fill_value != np.nan) fail a lot of tests # and are disabled. MANAGERS = [ create_single_mgr("f8", N), create_single_mgr("i8", N), # 2-dim create_mgr("a,b,c,d,e,f: f8", item_shape=(N,)), create_mgr("a,b,c,d,e,f: i8", item_shape=(N,)), create_mgr("a,b: f8; c,d: i8; e,f: string", item_shape=(N,)), create_mgr("a,b: f8; c,d: i8; e,f: f8", item_shape=(N,)), # 3-dim create_mgr("a,b,c,d,e,f: f8", item_shape=(N, N)), create_mgr("a,b,c,d,e,f: i8", item_shape=(N, N)), create_mgr("a,b: f8; c,d: i8; e,f: string", item_shape=(N, N)), create_mgr("a,b: f8; c,d: i8; e,f: f8", item_shape=(N, N)), ] # MANAGERS = [MANAGERS[6]] def test_get_slice(self): def assert_slice_ok(mgr, axis, slobj): mat = mgr.as_array() # we maybe using an ndarray to test slicing and # might not be the full length of the axis if isinstance(slobj, np.ndarray): ax = mgr.axes[axis] if len(ax) and len(slobj) and len(slobj) != len(ax): slobj = np.concatenate( [slobj, np.zeros(len(ax) - len(slobj), dtype=bool)] ) sliced = mgr.get_slice(slobj, axis=axis) mat_slobj = (slice(None),) * axis + (slobj,) tm.assert_numpy_array_equal( mat[mat_slobj], sliced.as_array(), check_dtype=False ) tm.assert_index_equal(mgr.axes[axis][slobj], sliced.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # slice assert_slice_ok(mgr, ax, slice(None)) assert_slice_ok(mgr, ax, slice(3)) assert_slice_ok(mgr, ax, slice(100)) assert_slice_ok(mgr, ax, slice(1, 4)) assert_slice_ok(mgr, ax, slice(3, 0, -2)) # boolean mask assert_slice_ok(mgr, ax, np.array([], dtype=np.bool_)) assert_slice_ok(mgr, ax, np.ones(mgr.shape[ax], dtype=np.bool_)) assert_slice_ok(mgr, ax, np.zeros(mgr.shape[ax], dtype=np.bool_)) if mgr.shape[ax] >= 3: assert_slice_ok(mgr, ax, np.arange(mgr.shape[ax]) % 3 == 0) assert_slice_ok( mgr, ax, np.array([True, True, False], dtype=np.bool_) ) # fancy indexer assert_slice_ok(mgr, ax, []) assert_slice_ok(mgr, ax, list(range(mgr.shape[ax]))) if mgr.shape[ax] >= 3: assert_slice_ok(mgr, ax, [0, 1, 2]) assert_slice_ok(mgr, ax, [-1, -2, -3]) def test_take(self): def assert_take_ok(mgr, axis, indexer): mat = mgr.as_array() taken = mgr.take(indexer, axis) tm.assert_numpy_array_equal( np.take(mat, indexer, axis), taken.as_array(), check_dtype=False ) tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # take/fancy indexer assert_take_ok(mgr, ax, indexer=[]) assert_take_ok(mgr, ax, indexer=[0, 0, 0]) assert_take_ok(mgr, ax, indexer=list(range(mgr.shape[ax]))) if mgr.shape[ax] >= 3: assert_take_ok(mgr, ax, indexer=[0, 1, 2]) assert_take_ok(mgr, ax, indexer=[-1, -2, -3]) def test_reindex_axis(self): def assert_reindex_axis_is_ok(mgr, axis, new_labels, fill_value): mat = mgr.as_array() indexer = mgr.axes[axis].get_indexer_for(new_labels) reindexed = mgr.reindex_axis(new_labels, axis, fill_value=fill_value) tm.assert_numpy_array_equal( algos.take_nd(mat, indexer, axis, fill_value=fill_value), reindexed.as_array(), check_dtype=False, ) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.0): assert_reindex_axis_is_ok(mgr, ax, pd.Index([]), fill_value) assert_reindex_axis_is_ok(mgr, ax, mgr.axes[ax], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 0, 0]], fill_value ) assert_reindex_axis_is_ok( mgr, ax, pd.Index(["foo", "bar", "baz"]), fill_value ) assert_reindex_axis_is_ok( mgr, ax, pd.Index(["foo", mgr.axes[ax][0], "baz"]), fill_value ) if mgr.shape[ax] >= 3: assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][:-3], fill_value ) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][-3::-1], fill_value ) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 1, 2, 0, 1, 2]], fill_value ) def test_reindex_indexer(self): def assert_reindex_indexer_is_ok(mgr, axis, new_labels, indexer, fill_value): mat = mgr.as_array() reindexed_mat = algos.take_nd(mat, indexer, axis, fill_value=fill_value) reindexed = mgr.reindex_indexer( new_labels, indexer, axis, fill_value=fill_value ) tm.assert_numpy_array_equal( reindexed_mat, reindexed.as_array(), check_dtype=False ) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.0): assert_reindex_indexer_is_ok(mgr, ax, pd.Index([]), [], fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax]), fill_value ) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(["foo"] * mgr.shape[ax]), np.arange(mgr.shape[ax]), fill_value, ) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax][::-1], np.arange(mgr.shape[ax]), fill_value, ) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax])[::-1], fill_value, ) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(["foo", "bar", "baz"]), [0, 0, 0], fill_value ) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(["foo", "bar", "baz"]), [-1, 0, -1], fill_value, ) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(["foo", mgr.axes[ax][0], "baz"]), [-1, -1, -1], fill_value, ) if mgr.shape[ax] >= 3: assert_reindex_indexer_is_ok( mgr, ax, pd.Index(["foo", "bar", "baz"]), [0, 1, 2], fill_value, ) # test_get_slice(slice_like, axis) # take(indexer, axis) # reindex_axis(new_labels, axis) # reindex_indexer(new_labels, indexer, axis) class TestBlockPlacement: def test_slice_len(self): assert len(BlockPlacement(slice(0, 4))) == 4 assert len(BlockPlacement(slice(0, 4, 2))) == 2 assert len(BlockPlacement(slice(0, 3, 2))) == 2 assert len(BlockPlacement(slice(0, 1, 2))) == 1 assert len(BlockPlacement(slice(1, 0, -1))) == 1 def test_zero_step_raises(self): with pytest.raises(ValueError): BlockPlacement(slice(1, 1, 0)) with pytest.raises(ValueError): BlockPlacement(slice(1, 2, 0)) def test_unbounded_slice_raises(self): def assert_unbounded_slice_error(slc): with pytest.raises(ValueError, match="unbounded slice"): BlockPlacement(slc) assert_unbounded_slice_error(slice(None, None)) assert_unbounded_slice_error(slice(10, None)) assert_unbounded_slice_error(slice(None, None, -1)) assert_unbounded_slice_error(slice(None, 10, -1)) # These are "unbounded" because negative index will change depending on # container shape. assert_unbounded_slice_error(slice(-1, None)) assert_unbounded_slice_error(slice(None, -1)) assert_unbounded_slice_error(slice(-1, -1)) assert_unbounded_slice_error(slice(-1, None, -1)) assert_unbounded_slice_error(slice(None, -1, -1)) assert_unbounded_slice_error(slice(-1, -1, -1)) def test_not_slice_like_slices(self): def assert_not_slice_like(slc): assert not BlockPlacement(slc).is_slice_like assert_not_slice_like(slice(0, 0)) assert_not_slice_like(slice(100, 0)) assert_not_slice_like(slice(100, 100, -1)) assert_not_slice_like(slice(0, 100, -1)) assert not BlockPlacement(slice(0, 0)).is_slice_like assert not BlockPlacement(slice(100, 100)).is_slice_like def test_array_to_slice_conversion(self): def assert_as_slice_equals(arr, slc): assert BlockPlacement(arr).as_slice == slc assert_as_slice_equals([0], slice(0, 1, 1)) assert_as_slice_equals([100], slice(100, 101, 1)) assert_as_slice_equals([0, 1, 2], slice(0, 3, 1)) assert_as_slice_equals([0, 5, 10], slice(0, 15, 5)) assert_as_slice_equals([0, 100], slice(0, 200, 100)) assert_as_slice_equals([2, 1], slice(2, 0, -1)) if not PY361: assert_as_slice_equals([2, 1, 0], slice(2, None, -1)) assert_as_slice_equals([100, 0], slice(100, None, -100)) def test_not_slice_like_arrays(self): def assert_not_slice_like(arr): assert not BlockPlacement(arr).is_slice_like assert_not_slice_like([]) assert_not_slice_like([-1]) assert_not_slice_like([-1, -2, -3]) assert_not_slice_like([-10]) assert_not_slice_like([-1]) assert_not_slice_like([-1, 0, 1, 2]) assert_not_slice_like([-2, 0, 2, 4]) assert_not_slice_like([1, 0, -1]) assert_not_slice_like([1, 1, 1]) def test_slice_iter(self): assert list(BlockPlacement(slice(0, 3))) == [0, 1, 2] assert list(BlockPlacement(slice(0, 0))) == [] assert list(BlockPlacement(slice(3, 0))) == [] if not PY361: assert list(BlockPlacement(slice(3, 0, -1))) == [3, 2, 1] assert list(BlockPlacement(slice(3, None, -1))) == [3, 2, 1, 0] def test_slice_to_array_conversion(self): def assert_as_array_equals(slc, asarray): tm.assert_numpy_array_equal( BlockPlacement(slc).as_array, np.asarray(asarray, dtype=np.int64) ) assert_as_array_equals(slice(0, 3), [0, 1, 2]) assert_as_array_equals(slice(0, 0), []) assert_as_array_equals(slice(3, 0), []) assert_as_array_equals(slice(3, 0, -1), [3, 2, 1]) if not PY361: assert_as_array_equals(slice(3, None, -1), [3, 2, 1, 0]) assert_as_array_equals(slice(31, None, -10), [31, 21, 11, 1]) def test_blockplacement_add(self): bpl = BlockPlacement(slice(0, 5)) assert bpl.add(1).as_slice == slice(1, 6, 1) assert bpl.add(np.arange(5)).as_slice == slice(0, 10, 2) assert list(bpl.add(np.arange(5, 0, -1))) == [5, 5, 5, 5, 5] def test_blockplacement_add_int(self): def assert_add_equals(val, inc, result): assert list(BlockPlacement(val).add(inc)) == result assert_add_equals(slice(0, 0), 0, []) assert_add_equals(slice(1, 4), 0, [1, 2, 3]) assert_add_equals(slice(3, 0, -1), 0, [3, 2, 1]) assert_add_equals([1, 2, 4], 0, [1, 2, 4]) assert_add_equals(slice(0, 0), 10, []) assert_add_equals(slice(1, 4), 10, [11, 12, 13]) assert_add_equals(slice(3, 0, -1), 10, [13, 12, 11]) assert_add_equals([1, 2, 4], 10, [11, 12, 14]) assert_add_equals(slice(0, 0), -1, []) assert_add_equals(slice(1, 4), -1, [0, 1, 2]) assert_add_equals([1, 2, 4], -1, [0, 1, 3]) with pytest.raises(ValueError): BlockPlacement(slice(1, 4)).add(-10) with pytest.raises(ValueError): BlockPlacement([1, 2, 4]).add(-10) if not PY361: assert_add_equals(slice(3, 0, -1), -1, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 0, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 10, [12, 11, 10]) with pytest.raises(ValueError): BlockPlacement(slice(2, None, -1)).add(-1) class DummyElement: def __init__(self, value, dtype): self.value = value self.dtype = np.dtype(dtype) def __array__(self): return np.array(self.value, dtype=self.dtype) def __str__(self): return "DummyElement({}, {})".format(self.value, self.dtype) def __repr__(self): return str(self) def astype(self, dtype, copy=False): self.dtype = dtype return self def view(self, dtype): return type(self)(self.value.view(dtype), dtype) def any(self, axis=None): return bool(self.value) class TestCanHoldElement: @pytest.mark.parametrize( "value, dtype", [ (1, "i8"), (1.0, "f8"), (2 ** 63, "f8"), (1j, "complex128"), (2 ** 63, "complex128"), (True, "bool"), (np.timedelta64(20, "ns"), "<m8[ns]"), (np.datetime64(20, "ns"), "<M8[ns]"), ], ) @pytest.mark.parametrize( "op", [ operator.add, operator.sub, operator.mul, operator.truediv, operator.mod, operator.pow, ], ids=lambda x: x.__name__, ) def test_binop_other(self, op, value, dtype): skip = { (operator.add, "bool"), (operator.sub, "bool"), (operator.mul, "bool"), (operator.truediv, "bool"), (operator.mod, "i8"), (operator.mod, "complex128"), (operator.pow, "bool"), } if (op, dtype) in skip: pytest.skip("Invalid combination {},{}".format(op, dtype)) e = DummyElement(value, dtype) s = pd.DataFrame({"A": [e.value, e.value]}, dtype=e.dtype) invalid = { (operator.pow, "<M8[ns]"), (operator.mod, "<M8[ns]"), (operator.truediv, "<M8[ns]"), (operator.mul, "<M8[ns]"), (operator.add, "<M8[ns]"), (operator.pow, "<m8[ns]"), (operator.mul, "<m8[ns]"), } if (op, dtype) in invalid: with pytest.raises(TypeError): op(s, e.value) else: # FIXME: Since dispatching to Series, this test no longer # asserts anything meaningful result = op(s, e.value).dtypes expected = op(s, value).dtypes assert_series_equal(result, expected) @pytest.mark.parametrize( "typestr, holder", [ ("category", Categorical), ("M8[ns]", DatetimeArray), ("M8[ns, US/Central]", DatetimeArray), ("m8[ns]", TimedeltaArray), ("sparse", SparseArray), ], ) def test_holder(typestr, holder): blk = create_block(typestr, [1]) assert blk._holder is holder def test_deprecated_fastpath(): # GH#19265 values = np.random.rand(3, 3) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): make_block(values, placement=np.arange(3), fastpath=True) def test_validate_ndim(): values = np.array([1.0, 2.0]) placement = slice(2) msg = r"Wrong number of dimensions. values.ndim != ndim \[1 != 2\]" with pytest.raises(ValueError, match=msg): make_block(values, placement, ndim=2) def test_block_shape(): idx = pd.Index([0, 1, 2, 3, 4]) a = pd.Series([1, 2, 3]).reindex(idx) b = pd.Series(pd.Categorical([1, 2, 3])).reindex(idx) assert a._data.blocks[0].mgr_locs.indexer == b._data.blocks[0].mgr_locs.indexer def test_make_block_no_pandas_array(): # https://github.com/pandas-dev/pandas/pull/24866 arr = pd.array([1, 2]) # PandasArray, no dtype result = make_block(arr, slice(len(arr))) assert result.is_integer is True assert result.is_extension is False # PandasArray, PandasDtype result = make_block(arr, slice(len(arr)), dtype=arr.dtype) assert result.is_integer is True assert result.is_extension is False # ndarray, PandasDtype result = make_block(arr.to_numpy(), slice(len(arr)), dtype=arr.dtype) assert result.is_integer is True assert result.is_extension is False
apache-2.0
manashmndl/scikit-learn
examples/model_selection/plot_roc.py
146
3697
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() # Plot ROC curve plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"])) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
ToniRV/Learning-to-navigate-without-a-map
rlvision/tests/vin_po_export_value_reward_28.py
1
3042
"""Export Value and Reward Map. Get a model and export all the path and score for grid 28x28 Author: Yuhuang Hu Email : [email protected] """ from __future__ import print_function import os import cPickle as pickle import numpy as np import keras.backend as K import matplotlib.pyplot as plt import rlvision from rlvision import utils from rlvision.vin import vin_model, get_layer_output from rlvision.utils import process_map_data from rlvision.grid import GridSampler def get_action(a): if a == 0: return -1, -1 if a == 1: return 0, -1 if a == 2: return 1, -1 if a == 3: return -1, 0 if a == 4: return 1, 0 if a == 5: return -1, 1 if a == 6: return 0, 1 if a == 7: return 1, 1 return None def find_goal(m): return np.argwhere(m.max() == m)[0][::-1] def predict(im, pos, model, k): im_ary = np.array([im]).transpose((0, 2, 3, 1)) \ if K.image_data_format() == 'channels_last' else np.array([im]) res = model.predict([im_ary, np.array([pos])]) action = np.argmax(res) reward = get_layer_output(model, 'reward', im_ary) value = get_layer_output(model, 'value{}'.format(k), im_ary) reward = np.reshape(reward, im.shape[1:]) value = np.reshape(value, im.shape[1:]) return action, reward, value file_name = os.path.join(rlvision.RLVISION_DATA, "chain_data", "grid28_with_idx.pkl") model_file = os.path.join( rlvision.RLVISION_MODEL, "grid28-po", "vin-model-po-28-77-0.89.h5") im_data, state_data, label_data, sample_idx = process_map_data( file_name, return_full=True) model = vin_model(l_s=im_data.shape[2], k=20) model.load_weights(model_file) sampler = GridSampler(im_data, state_data, label_data, sample_idx, (28, 28)) gt_collector = [] po_collector = [] diff_collector = [] grid, state, label, goal = sampler.get_grid(77) gt_collector.append(state) step_map = np.zeros((2, 28, 28)) step_map[0] = np.ones((28, 28)) step_map[1] = grid[1] pos = [state[0, 0], state[0, 1]] path = [(pos[0], pos[1])] start = (pos[0], pos[1]) for step in xrange(32): masked_img = utils.mask_grid((pos[1], pos[0]), grid[0], 3, one_is_free=False) step_map[0] = utils.accumulate_map(step_map[0], masked_img, one_is_free=False) action, reward, value = predict(step_map, pos, model, 20) dx, dy = get_action(action) pos[0] = pos[0] + dx pos[1] = pos[1] + dy path.append((pos[0], pos[1])) plt.figure() plt.imshow(value, cmap="jet") plt.colorbar() plt.scatter(x=[start[0]], y=[start[1]], marker="*", c="orange", s=50) plt.scatter(x=[pos[0]], y=[pos[1]], marker=".", c="purple", s=50) plt.scatter(x=[goal[0]], y=[goal[1]], marker="*", c="black", s=50) plt.savefig("grid28-77-%d.png" % (step), dpi=300) if pos[0] == goal[0] and pos[1] == goal[1]: print ("[MESSAGE] Found the path!") break
mit
soulmachine/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
20
4491
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that caracterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
HesselTjeerdsma/Cyber-Physical-Pacman-Game
Algor/flask/lib/python2.7/site-packages/numpy/lib/function_base.py
7
169604
from __future__ import division, absolute_import, print_function import collections import operator import re import sys import warnings import numpy as np import numpy.core.numeric as _nx from numpy.core import linspace, atleast_1d, atleast_2d, transpose from numpy.core.numeric import ( ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, empty_like, ndarray, around, floor, ceil, take, dot, where, intp, integer, isscalar, absolute, AxisError ) from numpy.core.umath import ( pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, mod, exp, log10 ) from numpy.core.fromnumeric import ( ravel, nonzero, sort, partition, mean, any, sum ) from numpy.core.numerictypes import typecodes, number from numpy.lib.twodim_base import diag from .utils import deprecate from numpy.core.multiarray import ( _insert, add_docstring, digitize, bincount, normalize_axis_index, interp as compiled_interp, interp_complex as compiled_interp_complex ) from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc from numpy.compat import long from numpy.compat.py3k import basestring if sys.version_info[0] < 3: # Force range to be a generator, for np.delete's usage. range = xrange import __builtin__ as builtins else: import builtins __all__ = [ 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'flip', 'rot90', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' ] def rot90(m, k=1, axes=(0,1)): """ Rotate an array by 90 degrees in the plane specified by axes. Rotation direction is from the first towards the second axis. .. versionadded:: 1.12.0 Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. axes: (2,) array_like The array is rotated in the plane defined by the axes. Axes must be different. Returns ------- y : ndarray A rotated view of `m`. See Also -------- flip : Reverse the order of elements in an array along the given axis. fliplr : Flip an array horizontally. flipud : Flip an array vertically. Notes ----- rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1)) Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) >>> m = np.arange(8).reshape((2,2,2)) >>> np.rot90(m, 1, (1,2)) array([[[1, 3], [0, 2]], [[5, 7], [4, 6]]]) """ axes = tuple(axes) if len(axes) != 2: raise ValueError("len(axes) must be 2.") m = asanyarray(m) if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim: raise ValueError("Axes must be different.") if (axes[0] >= m.ndim or axes[0] < -m.ndim or axes[1] >= m.ndim or axes[1] < -m.ndim): raise ValueError("Axes={} out of range for array of ndim={}." .format(axes, m.ndim)) k %= 4 if k == 0: return m[:] if k == 2: return flip(flip(m, axes[0]), axes[1]) axes_list = arange(0, m.ndim) (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]], axes_list[axes[0]]) if k == 1: return transpose(flip(m,axes[1]), axes_list) else: # k == 3 return flip(transpose(m, axes_list), axes[1]) def flip(m, axis): """ Reverse the order of elements in an array along the given axis. The shape of the array is preserved, but the elements are reordered. .. versionadded:: 1.12.0 Parameters ---------- m : array_like Input array. axis : integer Axis in array, which entries are reversed. Returns ------- out : array_like A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. See Also -------- flipud : Flip an array vertically (axis=0). fliplr : Flip an array horizontally (axis=1). Notes ----- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. Examples -------- >>> A = np.arange(8).reshape((2,2,2)) >>> A array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> flip(A, 0) array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> flip(A, 1) array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> A = np.random.randn(3,4,5) >>> np.all(flip(A,2) == A[:,:,::-1,...]) True """ if not hasattr(m, 'ndim'): m = asarray(m) indexer = [slice(None)] * m.ndim try: indexer[axis] = slice(None, None, -1) except IndexError: raise ValueError("axis=%i is invalid for the %i-dimensional input array" % (axis, m.ndim)) return m[tuple(indexer)] def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : bool Return ``True`` if the object has an iterator method or is a sequence and ``False`` otherwise. Examples -------- >>> np.iterable([1, 2, 3]) True >>> np.iterable(2) False """ try: iter(y) except TypeError: return False return True def _hist_bin_sqrt(x): """ Square root histogram bin estimator. Bin width is inversely proportional to the data size. Used by many programs for its simplicity. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ return x.ptp() / np.sqrt(x.size) def _hist_bin_sturges(x): """ Sturges histogram bin estimator. A very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ return x.ptp() / (np.log2(x.size) + 1.0) def _hist_bin_rice(x): """ Rice histogram bin estimator. Another simple estimator with no normality assumption. It has better performance for large data than Sturges, but tends to overestimate the number of bins. The number of bins is proportional to the cube root of data size (asymptotically optimal). The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ return x.ptp() / (2.0 * x.size ** (1.0 / 3)) def _hist_bin_scott(x): """ Scott histogram bin estimator. The binwidth is proportional to the standard deviation of the data and inversely proportional to the cube root of data size (asymptotically optimal). Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) def _hist_bin_doane(x): """ Doane's histogram bin estimator. Improved version of Sturges' formula which works better for non-normal data. See stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ if x.size > 2: sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) sigma = np.std(x) if sigma > 0.0: # These three operations add up to # g1 = np.mean(((x - np.mean(x)) / sigma)**3) # but use only one temp array instead of three temp = x - np.mean(x) np.true_divide(temp, sigma, temp) np.power(temp, 3, temp) g1 = np.mean(temp) return x.ptp() / (1.0 + np.log2(x.size) + np.log2(1.0 + np.absolute(g1) / sg1)) return 0.0 def _hist_bin_fd(x): """ The Freedman-Diaconis histogram bin estimator. The Freedman-Diaconis rule uses interquartile range (IQR) to estimate binwidth. It is considered a variation of the Scott rule with more robustness as the IQR is less affected by outliers than the standard deviation. However, the IQR depends on fewer points than the standard deviation, so it is less accurate, especially for long tailed distributions. If the IQR is 0, this function returns 1 for the number of bins. Binwidth is inversely proportional to the cube root of data size (asymptotically optimal). Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ iqr = np.subtract(*np.percentile(x, [75, 25])) return 2.0 * iqr * x.size ** (-1.0 / 3.0) def _hist_bin_auto(x): """ Histogram bin estimator that uses the minimum width of the Freedman-Diaconis and Sturges estimators. The FD estimator is usually the most robust method, but its width estimate tends to be too large for small `x`. The Sturges estimator is quite good for small (<1000) datasets and is the default in the R language. This method gives good off the shelf behaviour. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. See Also -------- _hist_bin_fd, _hist_bin_sturges """ # There is no need to check for zero here. If ptp is, so is IQR and # vice versa. Either both are zero or neither one is. return min(_hist_bin_fd(x), _hist_bin_sturges(x)) # Private dict initialized at module load time _hist_bin_selectors = {'auto': _hist_bin_auto, 'doane': _hist_bin_doane, 'fd': _hist_bin_fd, 'rice': _hist_bin_rice, 'scott': _hist_bin_scott, 'sqrt': _hist_bin_sqrt, 'sturges': _hist_bin_sturges} def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): r""" Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars or str, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. .. versionadded:: 1.11.0 If `bins` is a string from the list below, `histogram` will use the method chosen to calculate the optimal bin width and consequently the number of bins (see `Notes` for more detail on the estimators) from the data that falls within the requested range. While the bin width will be optimal for the actual data in the range, the number of bins will be computed to fill the entire range, including the empty portions. For visualisation, using the 'auto' option is suggested. Weighted data is not supported for automated bin size selection. 'auto' Maximum of the 'sturges' and 'fd' estimators. Provides good all around performance. 'fd' (Freedman Diaconis Estimator) Robust (resilient to outliers) estimator that takes into account data variability and data size. 'doane' An improved version of Sturges' estimator that works better with non-normal datasets. 'scott' Less robust estimator that that takes into account data variability and data size. 'rice' Estimator does not take variability into account, only data size. Commonly overestimates number of bins required. 'sturges' R's default method, only accounts for data size. Only optimal for gaussian data and underestimates number of bins for large non-gaussian datasets. 'sqrt' Square root (of data size) estimator, used by Excel and other programs for its speed and simplicity. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. The first element of the range must be less than or equal to the second. `range` affects the automatic bin computation as well. While bin width is computed to be optimal based on the actual data within `range`, the bin count will fill the entire range including portions containing no data. normed : bool, optional This keyword is deprecated in NumPy 1.6.0 due to confusing/buggy behavior. It will be removed in NumPy 2.0.0. Use the ``density`` keyword instead. If ``False``, the result will contain the number of samples in each bin. If ``True``, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use ``density`` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `density` is True, the weights are normalized, so that the integral of the density over the range remains 1. density : bool, optional If ``False``, the result will contain the number of samples in each bin. If ``True``, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the ``normed`` keyword if given. Returns ------- hist : array The values of the histogram. See `density` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 1.11.0 The methods to estimate the optimal number of bins are well founded in literature, and are inspired by the choices R provides for histogram visualisation. Note that having the number of bins proportional to :math:`n^{1/3}` is asymptotically optimal, which is why it appears in most estimators. These are simply plug-in methods that give good starting points for number of bins. In the equations below, :math:`h` is the binwidth and :math:`n_h` is the number of bins. All estimators that compute bin counts are recast to bin width using the `ptp` of the data. The final bin count is obtained from ``np.round(np.ceil(range / h))`. 'Auto' (maximum of the 'Sturges' and 'FD' estimators) A compromise to get a good value. For small datasets the Sturges value will usually be chosen, while larger datasets will usually default to FD. Avoids the overly conservative behaviour of FD and Sturges for small and large datasets respectively. Switchover point is usually :math:`a.size \approx 1000`. 'FD' (Freedman Diaconis Estimator) .. math:: h = 2 \frac{IQR}{n^{1/3}} The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very robust to outliers. 'Scott' .. math:: h = \sigma \sqrt[3]{\frac{24 * \sqrt{\pi}}{n}} The binwidth is proportional to the standard deviation of the data and inversely proportional to cube root of ``x.size``. Can be too conservative for small datasets, but is quite good for large datasets. The standard deviation is not very robust to outliers. Values are very similar to the Freedman-Diaconis estimator in the absence of outliers. 'Rice' .. math:: n_h = 2n^{1/3} The number of bins is only proportional to cube root of ``a.size``. It tends to overestimate the number of bins and it does not take into account data variability. 'Sturges' .. math:: n_h = \log _{2}n+1 The number of bins is the base 2 log of ``a.size``. This estimator assumes normality of data and is too conservative for larger, non-normal datasets. This is the default method in R's ``hist`` method. 'Doane' .. math:: n_h = 1 + \log_{2}(n) + \log_{2}(1 + \frac{|g_1|}{\sigma_{g_1}}) g_1 = mean[(\frac{x - \mu}{\sigma})^3] \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} An improved version of Sturges' formula that produces better estimates for non-normal datasets. This estimator attempts to account for the skew of the data. 'Sqrt' .. math:: n_h = \sqrt n The simplest and fastest estimator. Only takes into account the data size. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist * np.diff(bin_edges)) 1.0 .. versionadded:: 1.11.0 Automated Bin Selection Methods example, using 2 peak random data with 2000 points: >>> import matplotlib.pyplot as plt >>> rng = np.random.RandomState(10) # deterministic random data >>> a = np.hstack((rng.normal(size=1000), ... rng.normal(loc=5, scale=2, size=1000))) >>> plt.hist(a, bins='auto') # arguments are passed to np.histogram >>> plt.title("Histogram with 'auto' bins") >>> plt.show() """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() # Do not modify the original value of range so we can check for `None` if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. mn, mx = 0.0, 1.0 else: mn, mx = a.min() + 0.0, a.max() + 0.0 else: mn, mx = [mi + 0.0 for mi in range] if mn > mx: raise ValueError( 'max must be larger than min in range parameter.') if not np.all(np.isfinite([mn, mx])): raise ValueError( 'range parameter must be finite.') if mn == mx: mn -= 0.5 mx += 0.5 if isinstance(bins, basestring): # if `bins` is a string for an automatic method, # this will replace it with the number of bins calculated if bins not in _hist_bin_selectors: raise ValueError("{0} not a valid estimator for bins".format(bins)) if weights is not None: raise TypeError("Automated estimation of the number of " "bins is not supported for weighted data") # Make a reference to `a` b = a # Update the reference if the range needs truncation if range is not None: keep = (a >= mn) keep &= (a <= mx) if not np.logical_and.reduce(keep): b = a[keep] if b.size == 0: bins = 1 else: # Do not call selectors on empty arrays width = _hist_bin_selectors[bins](b) if width: bins = int(np.ceil((mx - mn) / width)) else: # Width can be zero for some estimators, e.g. FD when # the IQR of the data is zero. bins = 1 # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = np.dtype(np.intp) else: ntype = weights.dtype # We set a block size, as this allows us to iterate over chunks when # computing histograms, to minimize memory usage. BLOCK = 65536 if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError( '`bins` should be a positive integer.') # At this point, if the weights are not integer, floating point, or # complex, we have to use the slow algorithm. if weights is not None and not (np.can_cast(weights.dtype, np.double) or np.can_cast(weights.dtype, np.complex)): bins = linspace(mn, mx, bins + 1, endpoint=True) if not iterable(bins): # We now convert values of a to bin indices, under the assumption of # equal bin widths (which is valid here). # Initialize empty histogram n = np.zeros(bins, ntype) # Pre-compute histogram scaling factor norm = bins / (mx - mn) # Compute the bin edges for potential correction. bin_edges = linspace(mn, mx, bins + 1, endpoint=True) # We iterate over blocks here for two reasons: the first is that for # large arrays, it is actually faster (for example for a 10^8 array it # is 2x as fast) and it results in a memory footprint 3x lower in the # limit of large arrays. for i in arange(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] if weights is None: tmp_w = None else: tmp_w = weights[i:i + BLOCK] # Only include values in the right range keep = (tmp_a >= mn) keep &= (tmp_a <= mx) if not np.logical_and.reduce(keep): tmp_a = tmp_a[keep] if tmp_w is not None: tmp_w = tmp_w[keep] tmp_a_data = tmp_a.astype(float) tmp_a = tmp_a_data - mn tmp_a *= norm # Compute the bin indices, and for values that lie exactly on mx we # need to subtract one indices = tmp_a.astype(np.intp) indices[indices == bins] -= 1 # The index computation is not guaranteed to give exactly # consistent results within ~1 ULP of the bin edges. decrement = tmp_a_data < bin_edges[indices] indices[decrement] -= 1 # The last bin includes the right edge. The other bins do not. increment = ((tmp_a_data >= bin_edges[indices + 1]) & (indices != bins - 1)) indices[increment] += 1 # We now compute the histogram using bincount if ntype.kind == 'c': n.real += np.bincount(indices, weights=tmp_w.real, minlength=bins) n.imag += np.bincount(indices, weights=tmp_w.imag, minlength=bins) else: n += np.bincount(indices, weights=tmp_w, minlength=bins).astype(ntype) # Rename the bin edges for return. bins = bin_edges else: bins = asarray(bins) if np.any(bins[:-1] > bins[1:]): raise ValueError( 'bins must increase monotonically.') # Initialize empty histogram n = np.zeros(bins.shape, ntype) if weights is None: for i in arange(0, len(a), BLOCK): sa = sort(a[i:i+BLOCK]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] tmp_w = weights[i:i+BLOCK] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero, ], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for NumPy 2.0.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. weights : (N,) array_like, optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise ValueError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: if not np.all(np.isfinite(range)): raise ValueError( 'range parameter must be finite.') smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # avoid rounding issues for comparisons when dealing with inexact types if np.issubdtype(sample.dtype, np.inexact): edge_dt = sample.dtype else: edge_dt = float # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError( "Element at index %s in `bins` should be a positive " "integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) else: edges[i] = asarray(bins[i], edge_dt) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError( "Found bin edge of size <= 0. Did you specify `bins` with" "non-monotonic sequence?") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal)) # Shift these points one bin to the left. Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1, -1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which to average `a`. The default, axis=None, will average over all of the elements of the input array. If axis is negative it counts from the last to the first axis. .. versionadded:: 1.7.0 If axis is a tuple of ints, averaging is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : array_type or double Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ a = np.asanyarray(a) if weights is None: avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else: wgt = np.asanyarray(weights) if issubclass(a.dtype.type, (np.integer, np.bool_)): result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') else: result_dtype = np.result_type(a.dtype, wgt.dtype) # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape) wgt = wgt.swapaxes(-1, axis) scl = wgt.sum(axis=axis, dtype=result_dtype) if np.any(scl == 0.0): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl if returned: if scl.shape != avg.shape: scl = np.broadcast_to(scl, avg.shape).copy() return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print('ValueError') ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray or scalar The input domain. condlist : list of bool arrays or bool scalars Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., alpha=1)``, then each function is called as ``f(x, alpha=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have a default value of 0. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) Apply the same function to a scalar value. >>> y = -2 >>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) array(2) """ x = asanyarray(x) n2 = len(funclist) if (isscalar(condlist) or not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray))): if not isscalar(condlist) and x.size == 1 and x.ndim == 0: condlist = [[c] for c in condlist] else: condlist = [condlist] condlist = array(condlist, dtype=bool) n = len(condlist) # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars zerod = False if x.ndim == 0: x = x[None] zerod = True if n == n2 - 1: # compute the "otherwise" condition. totlist = np.logical_or.reduce(condlist, axis=0) # Only able to stack vertically if the array is 1d or less if x.ndim <= 1: condlist = np.vstack([condlist, ~totlist]) else: condlist = [asarray(c, dtype=bool) for c in condlist] totlist = condlist[0] for k in range(1, n): totlist |= condlist[k] condlist.append(~totlist) n += 1 y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections.Callable): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ # Check the size of condlist and choicelist are the same, or abort. if len(condlist) != len(choicelist): raise ValueError( 'list of cases must be same length as list of conditions') # Now that the dtype is known, handle the deprecated select([], []) case if len(condlist) == 0: # 2014-02-24, 1.9 warnings.warn("select with an empty condition list is not possible" "and will be deprecated", DeprecationWarning, stacklevel=2) return np.asarray(default)[()] choicelist = [np.asarray(choice) for choice in choicelist] choicelist.append(np.asarray(default)) # need to get the result type before broadcasting for correct scalar # behaviour dtype = np.result_type(*choicelist) # Convert conditions to arrays and broadcast conditions and choices # as the shape is needed for the result. Doing it separately optimizes # for example when all choices are scalars. condlist = np.broadcast_arrays(*condlist) choicelist = np.broadcast_arrays(*choicelist) # If cond array is not an ndarray in boolean format or scalar bool, abort. deprecated_ints = False for i in range(len(condlist)): cond = condlist[i] if cond.dtype.type is not np.bool_: if np.issubdtype(cond.dtype, np.integer): # A previous implementation accepted int ndarrays accidentally. # Supported here deliberately, but deprecated. condlist[i] = condlist[i].astype(bool) deprecated_ints = True else: raise ValueError( 'invalid entry in choicelist: should be boolean ndarray') if deprecated_ints: # 2014-02-24, 1.9 msg = "select condlists containing integer ndarrays is deprecated " \ "and will be removed in the future. Use `.astype(bool)` to " \ "convert to bools." warnings.warn(msg, DeprecationWarning, stacklevel=2) if choicelist[0].ndim == 0: # This may be common, so avoid the call. result_shape = condlist[0].shape else: result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape result = np.full(result_shape, choicelist[-1], dtype) # Use np.copyto to burn each choicelist array onto result, using the # corresponding condlist as a boolean mask. This is done in reverse # order since the first choice should take precedence. choicelist = choicelist[-2::-1] condlist = condlist[::-1] for choice, cond in zip(choicelist, condlist): np.copyto(result, choice, where=cond) return result def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:`ndarray.copy` are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to: >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. The gradient is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. varargs : list of scalar or array, optional Spacing between f values. Default unitary spacing for all dimensions. Spacing can be specified using: 1. single scalar to specify a sample distance for all dimensions. 2. N scalars to specify a constant sample distance for each dimension. i.e. `dx`, `dy`, `dz`, ... 3. N arrays to specify the coordinates of the values along each dimension of F. The length of the array must match the size of the corresponding dimension 4. Any combination of N scalars/arrays with the meaning of 2. and 3. If `axis` is given, the number of varargs must equal the number of axes. Default: 1. edge_order : {1, 2}, optional Gradient is calculated using N-th order accurate differences at the boundaries. Default: 1. .. versionadded:: 1.9.1 axis : None or int or tuple of ints, optional Gradient is calculated only along the given axis or axes The default (axis = None) is to calculate the gradient for all the axes of the input array. axis may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.11.0 Returns ------- gradient : ndarray or list of ndarray A set of ndarrays (or a single ndarray if there is only one dimension) corresponding to the derivatives of f with respect to each dimension. Each derivative has the same shape as f. Examples -------- >>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(f) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(f, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) Spacing can be also specified with an array that represents the coordinates of the values F along the dimensions. For instance a uniform spacing: >>> x = np.arange(f.size) >>> np.gradient(f, x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) Or a non uniform one: >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=np.float) >>> np.gradient(f, x) array([ 1. , 3. , 3.5, 6.7, 6.9, 2.5]) For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands for the gradient in rows and the second one in columns direction: >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] In this example the spacing is also specified: uniform for axis=0 and non uniform for axis=1 >>> dx = 2. >>> y = [1., 1.5, 3.5] >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), dx, y) [array([[ 1. , 1. , -0.5], [ 1. , 1. , -0.5]]), array([[ 2. , 2. , 2. ], [ 2. , 1.7, 0.5]])] It is possible to specify how boundaries are treated using `edge_order` >>> x = np.array([0, 1, 2, 3, 4]) >>> f = x**2 >>> np.gradient(f, edge_order=1) array([ 1., 2., 4., 6., 7.]) >>> np.gradient(f, edge_order=2) array([-0., 2., 4., 6., 8.]) The `axis` keyword can be used to specify a subset of axes of which the gradient is calculated >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), axis=0) array([[ 2., 2., -1.], [ 2., 2., -1.]]) Notes ----- Assuming that :math:`f\\in C^{3}` (i.e., :math:`f` has at least 3 continuous derivatives) and let be :math:`h_{*}` a non homogeneous stepsize, the spacing the finite difference coefficients are computed by minimising the consistency error :math:`\\eta_{i}`: .. math:: \\eta_{i} = f_{i}^{\\left(1\\right)} - \\left[ \\alpha f\\left(x_{i}\\right) + \\beta f\\left(x_{i} + h_{d}\\right) + \\gamma f\\left(x_{i}-h_{s}\\right) \\right] By substituting :math:`f(x_{i} + h_{d})` and :math:`f(x_{i} - h_{s})` with their Taylor series expansion, this translates into solving the following the linear system: .. math:: \\left\\{ \\begin{array}{r} \\alpha+\\beta+\\gamma=0 \\\\ -\\beta h_{d}+\\gamma h_{s}=1 \\\\ \\beta h_{d}^{2}+\\gamma h_{s}^{2}=0 \\end{array} \\right. The resulting approximation of :math:`f_{i}^{(1)}` is the following: .. math:: \\hat f_{i}^{(1)} = \\frac{ h_{s}^{2}f\\left(x_{i} + h_{d}\\right) + \\left(h_{d}^{2} - h_{s}^{2}\\right)f\\left(x_{i}\\right) - h_{d}^{2}f\\left(x_{i}-h_{s}\\right)} { h_{s}h_{d}\\left(h_{d} + h_{s}\\right)} + \\mathcal{O}\\left(\\frac{h_{d}h_{s}^{2} + h_{s}h_{d}^{2}}{h_{d} + h_{s}}\\right) It is worth noting that if :math:`h_{s}=h_{d}` (i.e., data are evenly spaced) we find the standard second order approximation: .. math:: \\hat f_{i}^{(1)}= \\frac{f\\left(x_{i+1}\\right) - f\\left(x_{i-1}\\right)}{2h} + \\mathcal{O}\\left(h^{2}\\right) With a similar procedure the forward/backward approximations used for boundaries can be derived. References ---------- .. [1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics (Texts in Applied Mathematics). New York: Springer. .. [2] Durran D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York: Springer. .. [3] Fornberg B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Mathematics of Computation 51, no. 184 : 699-706. `PDF <http://www.ams.org/journals/mcom/1988-51-184/ S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_. """ f = np.asanyarray(f) N = f.ndim # number of dimensions axes = kwargs.pop('axis', None) if axes is None: axes = tuple(range(N)) else: axes = _nx.normalize_axis_tuple(axes, N) len_axes = len(axes) n = len(varargs) if n == 0: # no spacing argument - use 1 in all axes dx = [1.0] * len_axes elif n == 1 and np.ndim(varargs[0]) == 0: # single scalar for all axes dx = varargs * len_axes elif n == len_axes: # scalar or 1d array for each axis dx = list(varargs) for i, distances in enumerate(dx): if np.ndim(distances) == 0: continue elif np.ndim(distances) != 1: raise ValueError("distances must be either scalars or 1d") if len(distances) != f.shape[axes[i]]: raise ValueError("when 1d, distances must match " "the length of the corresponding dimension") diffx = np.diff(distances) # if distances are constant reduce to the scalar case # since it brings a consistent speedup if (diffx == diffx[0]).all(): diffx = diffx[0] dx[i] = diffx else: raise TypeError("invalid number of arguments") edge_order = kwargs.pop('edge_order', 1) if kwargs: raise TypeError('"{}" are not valid keyword arguments.'.format( '", "'.join(kwargs.keys()))) if edge_order > 2: raise ValueError("'edge_order' greater than 2 not supported") # use central differences on interior and one-sided differences on the # endpoints. This preserves second order-accuracy over the full domain. outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N slice4 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M': # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm': # Needs to keep the specific units, can't be a general unit otype = f.dtype # Convert datetime64 data into ints. Make dummy variable `y` # that is a view of ints if the data is datetime64, otherwise # just set y equal to the array `f`. if f.dtype.char in ["M", "m"]: y = f.view('int64') else: y = f for i, axis in enumerate(axes): if y.shape[axis] < edge_order + 1: raise ValueError( "Shape of array too small to calculate a numerical gradient, " "at least (edge_order + 1) elements are required.") # result allocation out = np.empty_like(y, dtype=otype) uniform_spacing = np.ndim(dx[i]) == 0 # Numerical differentiation: 2nd order interior slice1[axis] = slice(1, -1) slice2[axis] = slice(None, -2) slice3[axis] = slice(1, -1) slice4[axis] = slice(2, None) if uniform_spacing: out[slice1] = (f[slice4] - f[slice2]) / (2. * dx[i]) else: dx1 = dx[i][0:-1] dx2 = dx[i][1:] a = -(dx2)/(dx1 * (dx1 + dx2)) b = (dx2 - dx1) / (dx1 * dx2) c = dx1 / (dx2 * (dx1 + dx2)) # fix the shape for broadcasting shape = np.ones(N, dtype=int) shape[axis] = -1 a.shape = b.shape = c.shape = shape # 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:] out[slice1] = a * f[slice2] + b * f[slice3] + c * f[slice4] # Numerical differentiation: 1st order edges if edge_order == 1: slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 dx_0 = dx[i] if uniform_spacing else dx[i][0] # 1D equivalent -- out[0] = (y[1] - y[0]) / (x[1] - x[0]) out[slice1] = (y[slice2] - y[slice3]) / dx_0 slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 dx_n = dx[i] if uniform_spacing else dx[i][-1] # 1D equivalent -- out[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2]) out[slice1] = (y[slice2] - y[slice3]) / dx_n # Numerical differentiation: 2nd order edges else: slice1[axis] = 0 slice2[axis] = 0 slice3[axis] = 1 slice4[axis] = 2 if uniform_spacing: a = -1.5 / dx[i] b = 2. / dx[i] c = -0.5 / dx[i] else: dx1 = dx[i][0] dx2 = dx[i][1] a = -(2. * dx1 + dx2)/(dx1 * (dx1 + dx2)) b = (dx1 + dx2) / (dx1 * dx2) c = - dx1 / (dx2 * (dx1 + dx2)) # 1D equivalent -- out[0] = a * y[0] + b * y[1] + c * y[2] out[slice1] = a * y[slice2] + b * y[slice3] + c * y[slice4] slice1[axis] = -1 slice2[axis] = -3 slice3[axis] = -2 slice4[axis] = -1 if uniform_spacing: a = 0.5 / dx[i] b = -2. / dx[i] c = 1.5 / dx[i] else: dx1 = dx[i][-2] dx2 = dx[i][-1] a = (dx2) / (dx1 * (dx1 + dx2)) b = - (dx2 + dx1) / (dx1 * dx2) c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2)) # 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1] out[slice1] = a * y[slice2] + b * y[slice3] + c * y[slice4] outvals.append(out) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) slice4[axis] = slice(None) if len_axes == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th discrete difference along given axis. The first difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The n-th differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. The type of the output is the same as that of the input. See Also -------- gradient, ediff1d, cumsum Notes ----- For boolean arrays, the preservation of type means that the result will contain `False` when consecutive elements are the same and `True` when they differ. For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is consistent with calculating the difference directly: >>> u8_arr = np.array([1, 0], dtype=np.uint8) >>> np.diff(u8_arr) array([255], dtype=uint8) >>> u8_arr[1,...] - u8_arr[0,...] array(255, np.uint8) If this is not desirable, then the array should be cast to a larger integer type first: >>> i16_arr = u8_arr.astype(np.int16) >>> np.diff(i16_arr) array([-1], dtype=int16) Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = a.ndim slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None, period=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing if argument `period` is not specified. Otherwise, `xp` is internally sorted after normalizing the periodic boundaries with ``xp = xp % period``. fp : 1-D sequence of float or complex The y-coordinates of the data points, same length as `xp`. left : optional float or complex corresponding to fp Value to return for `x < xp[0]`, default is `fp[0]`. right : optional float or complex corresponding to fp Value to return for `x > xp[-1]`, default is `fp[-1]`. period : None or float, optional A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters `left` and `right` are ignored if `period` is specified. .. versionadded:: 1.10.0 Returns ------- y : float or complex (corresponding to fp) or ndarray The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length If `xp` or `fp` are not 1-D sequences If `period == 0` Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() Interpolation with periodic x-coordinates: >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] >>> xp = [190, -190, 350, -350] >>> fp = [5, 10, 3, 4] >>> np.interp(x, xp, fp, period=360) array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]) Complex interpolation >>> x = [1.5, 4.0] >>> xp = [2,3,5] >>> fp = [1.0j, 0, 2+3j] >>> np.interp(x, xp, fp) array([ 0.+1.j , 1.+1.5j]) """ fp = np.asarray(fp) if np.iscomplexobj(fp): interp_func = compiled_interp_complex input_dtype = np.complex128 else: interp_func = compiled_interp input_dtype = np.float64 if period is None: if isinstance(x, (float, int, number)): return interp_func([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return interp_func([x], xp, fp, left, right).item() else: return interp_func(x, xp, fp, left, right) else: if period == 0: raise ValueError("period must be a non-zero value") period = abs(period) left = None right = None return_array = True if isinstance(x, (float, int, number)): return_array = False x = [x] x = np.asarray(x, dtype=np.float64) xp = np.asarray(xp, dtype=np.float64) fp = np.asarray(fp, dtype=input_dtype) if xp.ndim != 1 or fp.ndim != 1: raise ValueError("Data points must be 1-D sequences") if xp.shape[0] != fp.shape[0]: raise ValueError("fp and xp are not of the same length") # normalizing periodic boundaries x = x % period xp = xp % period asort_xp = np.argsort(xp) xp = xp[asort_xp] fp = fp[asort_xp] xp = np.concatenate((xp[-1:]-period, xp, xp[0:1]+period)) fp = np.concatenate((fp[-1:], fp, fp[0:1])) if return_array: return interp_func(x, xp, fp, left, right) else: return interp_func(x, xp, fp, left, right).item() def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : ndarray or scalar The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = p.ndim dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd + pi, 2*pi) - pi _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) ph_correct = ddmod - dd _nx.copyto(ph_correct, 0, where=abs(dd) < discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a, copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True], tmp[1:] != tmp[:-1])) return tmp[idx] except AttributeError: items = sorted(set(x)) return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Note that `place` does the exact opposite of `extract`. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress, place Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N, it will be repeated, and if elements of `a` are to be masked, this sequence must be non-empty. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ if not isinstance(arr, np.ndarray): raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(arr).__name__)) return _insert(arr, mask, vals) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return # See http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html _DIMENSION_NAME = r'\w+' _CORE_DIMENSION_LIST = '(?:{0:}(?:,{0:})*)?'.format(_DIMENSION_NAME) _ARGUMENT = r'\({}\)'.format(_CORE_DIMENSION_LIST) _ARGUMENT_LIST = '{0:}(?:,{0:})*'.format(_ARGUMENT) _SIGNATURE = '^{0:}->{0:}$'.format(_ARGUMENT_LIST) def _parse_gufunc_signature(signature): """ Parse string signatures for a generalized universal function. Arguments --------- signature : string Generalized universal function signature, e.g., ``(m,n),(n,p)->(m,p)`` for ``np.matmul``. Returns ------- Tuple of input and output core dimensions parsed from the signature, each of the form List[Tuple[str, ...]]. """ if not re.match(_SIGNATURE, signature): raise ValueError( 'not a valid gufunc signature: {}'.format(signature)) return tuple([tuple(re.findall(_DIMENSION_NAME, arg)) for arg in re.findall(_ARGUMENT, arg_list)] for arg_list in signature.split('->')) def _update_dim_sizes(dim_sizes, arg, core_dims): """ Incrementally check and update core dimension sizes for a single argument. Arguments --------- dim_sizes : Dict[str, int] Sizes of existing core dimensions. Will be updated in-place. arg : ndarray Argument to examine. core_dims : Tuple[str, ...] Core dimensions for this argument. """ if not core_dims: return num_core_dims = len(core_dims) if arg.ndim < num_core_dims: raise ValueError( '%d-dimensional argument does not have enough ' 'dimensions for all core dimensions %r' % (arg.ndim, core_dims)) core_shape = arg.shape[-num_core_dims:] for dim, size in zip(core_dims, core_shape): if dim in dim_sizes: if size != dim_sizes[dim]: raise ValueError( 'inconsistent size for core dimension %r: %r vs %r' % (dim, size, dim_sizes[dim])) else: dim_sizes[dim] = size def _parse_input_dimensions(args, input_core_dims): """ Parse broadcast and core dimensions for vectorize with a signature. Arguments --------- args : Tuple[ndarray, ...] Tuple of input arguments to examine. input_core_dims : List[Tuple[str, ...]] List of core dimensions corresponding to each input. Returns ------- broadcast_shape : Tuple[int, ...] Common shape to broadcast all non-core dimensions to. dim_sizes : Dict[str, int] Common sizes for named core dimensions. """ broadcast_args = [] dim_sizes = {} for arg, core_dims in zip(args, input_core_dims): _update_dim_sizes(dim_sizes, arg, core_dims) ndim = arg.ndim - len(core_dims) dummy_array = np.lib.stride_tricks.as_strided(0, arg.shape[:ndim]) broadcast_args.append(dummy_array) broadcast_shape = np.lib.stride_tricks._broadcast_shape(*broadcast_args) return broadcast_shape, dim_sizes def _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims): """Helper for calculating broadcast shapes with core dimensions.""" return [broadcast_shape + tuple(dim_sizes[dim] for dim in core_dims) for core_dims in list_of_core_dims] def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes): """Helper for creating output arrays in vectorize.""" shapes = _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims) arrays = tuple(np.empty(shape, dtype=dtype) for shape, dtype in zip(shapes, dtypes)) return arrays class vectorize(object): """ vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns an single or tuple of numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 signature : string, optional Generalized universal function signature, e.g., ``(m,n),(n)->(m)`` for vectorized matrix-vector multiplication. If provided, ``pyfunc`` will be called with (and expected to return) arrays with shapes given by the size of corresponding core dimensions. By default, ``pyfunc`` is assumed to take scalars as input and output. .. versionadded:: 1.12.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified: >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified: >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) The `signature` argument allows for vectorizing functions that act on non-scalar arrays of fixed length. For example, you can use it for a vectorized calculation of Pearson correlation coefficient and its p-value: >>> import scipy.stats >>> pearsonr = np.vectorize(scipy.stats.pearsonr, ... signature='(n),(n)->(),()') >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) (array([ 1., -1.]), array([ 0., 0.])) Or for a vectorized convolution: >>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') >>> convolve(np.eye(4), [1, 2, 1]) array([[ 1., 2., 1., 0., 0., 0.], [ 0., 1., 2., 1., 0., 0.], [ 0., 0., 1., 2., 1., 0.], [ 0., 0., 0., 1., 2., 1.]]) See Also -------- frompyfunc : Takes an arbitrary Python function and returns a ufunc Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. References ---------- .. [1] NumPy Reference, section `Generalized Universal Function API <http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html>`_. """ def __init__(self, pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None): self.pyfunc = pyfunc self.cache = cache self.signature = signature self._ufunc = None # Caching to improve default performance if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): for char in otypes: if char not in typecodes['All']: raise ValueError("Invalid otype specified: %s" % (char,)) elif iterable(otypes): otypes = ''.join([_nx.dtype(x).char for x in otypes]) elif otypes is not None: raise ValueError("Invalid otype specification") self.otypes = otypes # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) if signature is not None: self._in_and_out_core_dims = _parse_gufunc_signature(signature) else: self._in_and_out_core_dims = None def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty if not args: raise ValueError('args can not be empty') if self.otypes is not None: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) args = [asarray(arg) for arg in args] if builtins.any(arg.size == 0 for arg in args): raise ValueError('cannot call `vectorize` on size 0 inputs ' 'unless `otypes` is set') inputs = [arg.flat[0] for arg in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple # functions at least -- this wrapping can almost double the # execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if self.signature is not None: res = self._vectorize_call_with_signature(func, args) elif not args: res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(a, copy=False, subok=True, dtype=object) for a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: res = tuple([array(x, copy=False, subok=True, dtype=t) for x, t in zip(outputs, otypes)]) return res def _vectorize_call_with_signature(self, func, args): """Vectorized call over positional arguments with a signature.""" input_core_dims, output_core_dims = self._in_and_out_core_dims if len(args) != len(input_core_dims): raise TypeError('wrong number of positional arguments: ' 'expected %r, got %r' % (len(input_core_dims), len(args))) args = tuple(asanyarray(arg) for arg in args) broadcast_shape, dim_sizes = _parse_input_dimensions( args, input_core_dims) input_shapes = _calculate_shapes(broadcast_shape, dim_sizes, input_core_dims) args = [np.broadcast_to(arg, shape, subok=True) for arg, shape in zip(args, input_shapes)] outputs = None otypes = self.otypes nout = len(output_core_dims) for index in np.ndindex(*broadcast_shape): results = func(*(arg[index] for arg in args)) n_results = len(results) if isinstance(results, tuple) else 1 if nout != n_results: raise ValueError( 'wrong number of outputs from pyfunc: expected %r, got %r' % (nout, n_results)) if nout == 1: results = (results,) if outputs is None: for result, core_dims in zip(results, output_core_dims): _update_dim_sizes(dim_sizes, result, core_dims) if otypes is None: otypes = [asarray(result).dtype for result in results] outputs = _create_arrays(broadcast_shape, dim_sizes, output_core_dims, otypes) for output, result in zip(outputs, results): output[index] = result if outputs is None: # did not call the function even once if otypes is None: raise ValueError('cannot call `vectorize` on size 0 inputs ' 'unless `otypes` is set') if builtins.any(dim not in dim_sizes for dims in output_core_dims for dim in dims): raise ValueError('cannot call `vectorize` with a signature ' 'including new output dimensions on size 0 ' 'inputs') outputs = _create_arrays(broadcast_shape, dim_sizes, output_core_dims, otypes) return outputs[0] if nout == 1 else outputs def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None): """ Estimate a covariance matrix, given data and weights. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. See the notes for an outline of the algorithm. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : bool, optional If `rowvar` is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : bool, optional Default normalization (False) is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is True, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional If not ``None`` the default value implied by `bias` is overridden. Note that ``ddof=1`` will return the unbiased estimate, even if both `fweights` and `aweights` are specified, and ``ddof=0`` will return the simple average. See the notes for the details. The default value is ``None``. .. versionadded:: 1.5 fweights : array_like, int, optional 1-D array of integer freguency weights; the number of times each observation vector should be repeated. .. versionadded:: 1.10 aweights : array_like, optional 1-D array of observation vector weights. These relative weights are typically large for observations considered "important" and smaller for observations considered less "important". If ``ddof=0`` the array of weights can be used to assign probabilities to observation vectors. .. versionadded:: 1.10 Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Notes ----- Assume that the observations are in the columns of the observation array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The steps to compute the weighted covariance are as follows:: >>> w = f * a >>> v1 = np.sum(w) >>> v2 = np.sum(w * a) >>> m -= np.sum(m * w, axis=1, keepdims=True) / v1 >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2) Note that when ``a == 1``, the normalization factor ``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)`` as it should. Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print(np.cov(X)) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print(np.cov(x, y)) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print(np.cov(x)) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError( "ddof must be integer") # Handles complex arrays too m = np.asarray(m) if m.ndim > 2: raise ValueError("m has more than 2 dimensions") if y is None: dtype = np.result_type(m, np.float64) else: y = np.asarray(y) if y.ndim > 2: raise ValueError("y has more than 2 dimensions") dtype = np.result_type(m, y, np.float64) X = array(m, ndmin=2, dtype=dtype) if not rowvar and X.shape[0] != 1: X = X.T if X.shape[0] == 0: return np.array([]).reshape(0, 0) if y is not None: y = array(y, copy=False, ndmin=2, dtype=dtype) if not rowvar and y.shape[0] != 1: y = y.T X = np.vstack((X, y)) if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 # Get the product of frequencies and weights w = None if fweights is not None: fweights = np.asarray(fweights, dtype=np.float) if not np.all(fweights == np.around(fweights)): raise TypeError( "fweights must be integer") if fweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional fweights") if fweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and fweights") if any(fweights < 0): raise ValueError( "fweights cannot be negative") w = fweights if aweights is not None: aweights = np.asarray(aweights, dtype=np.float) if aweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional aweights") if aweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and aweights") if any(aweights < 0): raise ValueError( "aweights cannot be negative") if w is None: w = aweights else: w *= aweights avg, w_sum = average(X, axis=1, weights=w, returned=True) w_sum = w_sum[0] # Determine the normalization if w is None: fact = X.shape[1] - ddof elif ddof == 0: fact = w_sum elif aweights is None: fact = w_sum - ddof else: fact = w_sum - ddof*sum(w*aweights)/w_sum if fact <= 0: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=2) fact = 0.0 X -= avg[:, None] if w is None: X_T = X.T else: X_T = (X*w).T c = dot(X, X_T.conj()) c *= 1. / np.float64(fact) return c.squeeze() def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue): """ Return Pearson product-moment correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `R`, and the covariance matrix, `C`, is .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `R` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `x` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `x`. rowvar : bool, optional If `rowvar` is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.10.0 ddof : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.10.0 Returns ------- R : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix Notes ----- Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1, and the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the interval [-1, 1] in an attempt to improve on that situation but is not much help in the complex case. This function accepts but discards arguments `bias` and `ddof`. This is for backwards compatibility with previous versions of this function. These arguments had no effect on the return values of the function and can be safely ignored in this and previous versions of numpy. """ if bias is not np._NoValue or ddof is not np._NoValue: # 2015-03-15, 1.10 warnings.warn('bias and ddof have no effect and are deprecated', DeprecationWarning, stacklevel=2) c = cov(x, y, rowvar) try: d = diag(c) except ValueError: # scalar covariance # nan if incorrect value (nan, inf, 0), 1 otherwise return c / c stddev = sqrt(d.real) c /= stddev[:, None] c /= stddev[None, :] # Clip real and imaginary parts to [-1, 1]. This does not guarantee # abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without # excessive work. np.clip(c.real, -1, 1, out=c.real) if np.iscomplexobj(c): np.clip(c.imag, -1, 1, out=c.imag) return c def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x < 0) x[ind] = -x[ind] ind = (x <= 8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M, beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0, M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi * where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b def _ureduce(a, func, **kwargs): """ Internal Function. Call `func` with `a` as first argument swapping the axes to use extended axis on functions that don't support it natively. Returns result and a.shape with axis dims set to 1. Parameters ---------- a : array_like Input array or object that can be converted to an array. func : callable Reduction function capable of receiving a single axis argument. It is is called with `a` as first argument followed by `kwargs`. kwargs : keyword arguments additional keyword arguments to pass to `func`. Returns ------- result : tuple Result of func(a, **kwargs) and a.shape with axis dims set to 1 which can be used to reshape the result to the same shape a ufunc with keepdims=True would produce. """ a = np.asanyarray(a) axis = kwargs.get('axis', None) if axis is not None: keepdim = list(a.shape) nd = a.ndim axis = _nx.normalize_axis_tuple(axis, nd) for ax in axis: keepdim[ax] = 1 if len(axis) == 1: kwargs['axis'] = axis[0] else: keep = set(range(nd)) - set(axis) nkeep = len(keep) # swap axis that should not be reduced to front for i, s in enumerate(sorted(keep)): a = a.swapaxes(i, s) # merge reduced axis a = a.reshape(a.shape[:nkeep] + (-1,)) kwargs['axis'] = -1 else: keepdim = [1] * a.ndim r = func(a, **kwargs) return r, keepdim def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : {int, sequence of int, None}, optional Axis or axes along which the medians are computed. The default is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to `median`. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. If `overwrite_input` is ``True`` and `a` is not already an `ndarray`, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- median : ndarray A new array holding the result. If the input contains integers or floats smaller than ``float64``, then the output data-type is ``np.float64``. Otherwise, the data-type of the output is the same as that of the input. If `out` is specified, that array is returned instead. See Also -------- mean, percentile Notes ----- Given a vector ``V`` of length ``N``, the median of ``V`` is the middle value of a sorted copy of ``V``, ``V_sorted`` - i e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the two middle values of ``V_sorted`` when ``N`` is even. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ r, k = _ureduce(a, func=_median, axis=axis, out=out, overwrite_input=overwrite_input) if keepdims: return r.reshape(k) else: return r def _median(a, axis=None, out=None, overwrite_input=False): # can't be reasonably be implemented in terms of percentile as we have to # call mean to not break astropy a = np.asanyarray(a) # Set the partition indexes if axis is None: sz = a.size else: sz = a.shape[axis] if sz % 2 == 0: szh = sz // 2 kth = [szh - 1, szh] else: kth = [(sz - 1) // 2] # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): kth.append(-1) if overwrite_input: if axis is None: part = a.ravel() part.partition(kth) else: a.partition(kth, axis=axis) part = a else: part = partition(a, kth, axis=axis) if part.shape == (): # make 0-D arrays work return part.item() if axis is None: axis = 0 indexer = [slice(None)] * part.ndim index = part.shape[axis] // 2 if part.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact) and sz > 0: # warn and return nans like mean would rout = mean(part[indexer], axis=axis, out=out) return np.lib.utils._median_nancheck(part, rout, axis, out) else: # if there are no nans # Use mean in odd and even case to coerce data type # and check, use out array. return mean(part[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile(s) of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute, which must be between 0 and 100 inclusive. axis : {int, sequence of int, None}, optional Axis or axes along which the percentiles are computed. The default is to compute the percentile(s) along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` calculations. The input array will be modified by the call to `percentile`. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the contents of the input `a` after this function completes -- treat it as undefined. Default is False. If `a` is not already an array, this parameter will have no effect as `a` will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array `a`. .. versionadded:: 1.9.0 Returns ------- percentile : scalar or ndarray If `q` is a single percentile and `axis=None`, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the percentiles. The other axes are the axes that remain after the reduction of `a`. If the input contains integers or floats smaller than ``float64``, the output data-type is ``float64``. Otherwise, the output data-type is the same as that of the input. If `out` is specified, that array is returned instead. See Also -------- mean, median, nanpercentile Notes ----- Given a vector ``V`` of length ``N``, the ``q``-th percentile of ``V`` is the value ``q/100`` of the way from the minimum to the maximum in a sorted copy of ``V``. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match the location of ``q`` exactly. This function is the same as the median if ``q=50``, the same as the minimum if ``q=0`` and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) 3.5 >>> np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([ 7., 2.]) >>> np.percentile(a, 50, axis=1, keepdims=True) array([[ 7.], [ 2.]]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=out) array([[ 6.5, 4.5, 2.5]]) >>> m array([[ 6.5, 4.5, 2.5]]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a == b) """ q = array(q, dtype=np.float64, copy=True) r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation) if keepdims: if q.ndim == 0: return r.reshape(k) else: return r.reshape([len(q)] + k) else: return r def _percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): a = asarray(a) if q.ndim == 0: # Do not allow 0-d arrays because following code fails for scalar zerod = True q = q[None] else: zerod = False # avoid expensive reductions, relevant for arrays with < O(1000) elements if q.size < 10: for i in range(q.size): if q[i] < 0. or q[i] > 100.: raise ValueError("Percentiles must be in the range [0,100]") q[i] /= 100. else: # faster than any() if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): raise ValueError("Percentiles must be in the range [0,100]") q /= 100. # prepare a for partioning if overwrite_input: if axis is None: ap = a.ravel() else: ap = a else: if axis is None: ap = a.flatten() else: ap = a.copy() if axis is None: axis = 0 Nx = ap.shape[axis] indices = q * (Nx - 1) # round fractional indices according to interpolation method if interpolation == 'lower': indices = floor(indices).astype(intp) elif interpolation == 'higher': indices = ceil(indices).astype(intp) elif interpolation == 'midpoint': indices = 0.5 * (floor(indices) + ceil(indices)) elif interpolation == 'nearest': indices = around(indices).astype(intp) elif interpolation == 'linear': pass # keep index as fraction and interpolate else: raise ValueError( "interpolation can only be 'linear', 'lower' 'higher', " "'midpoint', or 'nearest'") n = np.array(False, dtype=bool) # check for nan's flag if indices.dtype == intp: # take the points along axis # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = concatenate((indices, [-1])) ap.partition(indices, axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices = indices[:-1] n = np.isnan(ap[-1:, ...]) if zerod: indices = indices[0] r = take(ap, indices, axis=axis, out=out) else: # weight the points above and below the indices indices_below = floor(indices).astype(intp) indices_above = indices_below + 1 indices_above[indices_above > Nx - 1] = Nx - 1 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = concatenate((indices_above, [-1])) weights_above = indices - indices_below weights_below = 1.0 - weights_above weights_shape = [1, ] * ap.ndim weights_shape[axis] = len(indices) weights_below.shape = weights_shape weights_above.shape = weights_shape ap.partition(concatenate((indices_below, indices_above)), axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) weights_below = np.rollaxis(weights_below, axis, 0) weights_above = np.rollaxis(weights_above, axis, 0) axis = 0 # Check if the array contains any nan's if np.issubdtype(a.dtype, np.inexact): indices_above = indices_above[:-1] n = np.isnan(ap[-1:, ...]) x1 = take(ap, indices_below, axis=axis) * weights_below x2 = take(ap, indices_above, axis=axis) * weights_above # ensure axis with qth is first x1 = np.rollaxis(x1, axis, 0) x2 = np.rollaxis(x2, axis, 0) if zerod: x1 = x1.squeeze(0) x2 = x2.squeeze(0) if out is not None: r = add(x1, x2, out=out) else: r = add(x1, x2) if np.any(n): warnings.warn("Invalid value encountered in percentile", RuntimeWarning, stacklevel=3) if zerod: if ap.ndim == 1: if out is not None: out[...] = a.dtype.type(np.nan) r = out else: r = a.dtype.type(np.nan) else: r[..., n.squeeze(0)] = a.dtype.type(np.nan) else: if r.ndim == 1: r[:] = a.dtype.type(np.nan) else: r[..., n.repeat(q.size, 0)] = a.dtype.type(np.nan) return r def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional The sample points corresponding to the `y` values. If `x` is None, the sample points are assumed to be evenly spaced `dx` apart. The default is None. dx : scalar, optional The spacing between sample points when `x` is None. The default is 1. axis : int, optional The axis along which to integrate. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = y.ndim slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) try: ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """ Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = getattr(__import__(place, globals(), {}, [obj]), obj) if isinstance(doc, str): add_docstring(new, doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new, doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new, val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = np.meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = np.meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:]) for i, x in enumerate(xi)] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + s0[2:] output[1].shape = (-1, 1) + s0[2:] if not sparse: # Return the full N-D matrix (not only the 1-D vector) output = np.broadcast_arrays(*output, subok=True) if copy_: output = [x.copy() for x in output] return output def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Notes ----- Often it is preferable to use a boolean mask. For example: >>> mask = np.ones(len(arr), dtype=bool) >>> mask[[0,2,4]] = False >>> result = arr[mask,...] Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further use of `mask`. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim arrorder = 'F' if arr.flags.fnc else 'C' if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = -1 if ndim == 0: # 2013-09-24, 1.9 warnings.warn( "in the future the special handling of scalars will be removed " "from delete and raise an error", DeprecationWarning, stacklevel=2) if wrap: return wrap(arr) else: return arr.copy(order=arrorder) axis = normalize_axis_index(axis, ndim) slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): start, stop, step = obj.indices(N) xr = range(start, stop, step) numtodel = len(xr) if numtodel <= 0: if wrap: return wrap(arr.copy(order=arrorder)) else: return arr.copy(order=arrorder) # Invert if step is negative: if step < 0: step = -step start = xr[-1] stop = xr[0] + 1 newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arrorder) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. keep = ones(stop-start, dtype=bool) keep[:stop-start:step] = False slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(start, stop) arr = arr[slobj2] slobj2[axis] = keep new[slobj] = arr[slobj2] if wrap: return wrap(new) else: return new _obj = obj obj = np.asarray(obj) # After removing the special handling of booleans and out of # bounds values, the conversion to the array can be removed. if obj.dtype == bool: warnings.warn("in the future insert will treat boolean arrays and " "array-likes as boolean index instead of casting it " "to integer", FutureWarning, stacklevel=2) obj = obj.astype(intp) if isinstance(_obj, (int, long, integer)): # optimization for a single value obj = obj.item() if (obj < -N or obj >= N): raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (obj < 0): obj += N newshape[axis] -= 1 new = empty(newshape, arr.dtype, arrorder) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1, None) new[slobj] = arr[slobj2] else: if obj.size == 0 and not isinstance(_obj, np.ndarray): obj = obj.astype(intp) if not np.can_cast(obj, intp, 'same_kind'): # obj.size = 1 special case always failed and would just # give superfluous warnings. # 2013-09-24, 1.9 warnings.warn( "using a non-integer array as obj in delete will result in an " "error in the future", DeprecationWarning, stacklevel=2) obj = obj.astype(intp) keep = ones(N, dtype=bool) # Test if there are out of bound indices, this is deprecated inside_bounds = (obj < N) & (obj >= -N) if not inside_bounds.all(): # 2013-09-24, 1.9 warnings.warn( "in the future out of bounds indices will raise an error " "instead of being ignored by `numpy.delete`.", DeprecationWarning, stacklevel=2) obj = obj[inside_bounds] positive_indices = obj >= 0 if not positive_indices.all(): warnings.warn( "in the future negative indices will not be ignored by " "`numpy.delete`.", FutureWarning, stacklevel=2) obj = obj[positive_indices] keep[obj, ] = False slobj[axis] = keep new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. .. versionadded:: 1.8.0 Support for multiple insertions when `obj` is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. `values` should be shaped so that ``arr[...,obj,...] = values`` is legal. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. concatenate : Join a sequence of arrays along an existing axis. delete : Delete elements from an array. Notes ----- Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim arrorder = 'F' if arr.flags.fnc else 'C' if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 elif ndim == 0: # 2013-09-24, 1.9 warnings.warn( "in the future the special handling of scalars will be removed " "from insert and raise an error", DeprecationWarning, stacklevel=2) arr = arr.copy(order=arrorder) arr[...] = values if wrap: return wrap(arr) else: return arr else: axis = normalize_axis_index(axis, ndim) slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): # turn it into a range object indices = arange(*obj.indices(N), **{'dtype': intp}) else: # need to copy obj, because indices will be changed in-place indices = np.array(obj) if indices.dtype == bool: # See also delete warnings.warn( "in the future insert will treat boolean arrays and " "array-likes as a boolean index instead of casting it to " "integer", FutureWarning, stacklevel=2) indices = indices.astype(intp) # Code after warning period: #if obj.ndim != 1: # raise ValueError('boolean array argument obj to insert ' # 'must be one dimensional') #indices = np.flatnonzero(obj) elif indices.ndim > 1: raise ValueError( "index array argument obj to insert must be one dimensional " "or scalar") if indices.size == 1: index = indices.item() if index < -N or index > N: raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (index < 0): index += N # There are some object array corner cases here, but we cannot avoid # that: values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) if indices.ndim == 0: # broadcasting is very different here, since a[:,0,:] = ... behaves # very different from a[:,[0],:] = ...! This changes values so that # it works likes the second case. (here a[:,0:1,:]) values = np.rollaxis(values, 0, (axis % values.ndim) + 1) numnew = values.shape[axis] newshape[axis] += numnew new = empty(newshape, arr.dtype, arrorder) slobj[axis] = slice(None, index) new[slobj] = arr[slobj] slobj[axis] = slice(index, index+numnew) new[slobj] = values slobj[axis] = slice(index+numnew, None) slobj2 = [slice(None)] * ndim slobj2[axis] = slice(index, None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif indices.size == 0 and not isinstance(obj, np.ndarray): # Can safely cast the empty list to intp indices = indices.astype(intp) if not np.can_cast(indices, intp, 'same_kind'): # 2013-09-24, 1.9 warnings.warn( "using a non-integer array as obj in insert will result in an " "error in the future", DeprecationWarning, stacklevel=2) indices = indices.astype(intp) indices[indices < 0] += N numnew = len(indices) order = indices.argsort(kind='mergesort') # stable sort indices[order] += np.arange(numnew) newshape[axis] += numnew old_mask = ones(newshape[axis], dtype=bool) old_mask[indices] = False new = empty(newshape, arr.dtype, arrorder) slobj2 = [slice(None)]*ndim slobj[axis] = indices slobj2[axis] = old_mask new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
apache-2.0
alephu5/Soundbyte
environment/lib/python3.3/site-packages/pandas/tseries/tests/test_timezones.py
1
34781
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, tzinfo, date import sys import os import nose import numpy as np import pytz from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp) from pandas import DatetimeIndex, Int64Index, to_datetime, NaT from pandas.core.daterange import DateRange import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets from pandas.tseries.index import bdate_range, date_range import pandas.tseries.tools as tools from pytz import NonExistentTimeError from pandas.util.testing import assert_series_equal, assert_almost_equal, assertRaisesRegexp import pandas.util.testing as tm import pandas.lib as lib import pandas.core.datetools as dt from numpy.random import rand from pandas.util.testing import assert_frame_equal import pandas.compat as compat from pandas.compat import range, lrange, zip, cPickle as pickle from pandas.core.datetools import BDay import pandas.core.common as com def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") try: import pytz except ImportError: pass class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, '-07:00') fixed_off_no_name = FixedOffset(-330, None) class TestTimeZoneSupport(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): _skip_if_no_pytz() def test_utc_to_local_no_modify(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') # Values are unmodified self.assert_(np.array_equal(rng.asi8, rng_eastern.asi8)) self.assert_(rng_eastern.tz == pytz.timezone('US/Eastern')) def test_localize_utc_conversion(self): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range('3/10/2012', '3/11/2012', freq='30T') converted = rng.tz_localize('US/Eastern') expected_naive = rng + offsets.Hour(5) self.assert_(np.array_equal(converted.asi8, expected_naive.asi8)) # DST ambiguity, this should fail rng = date_range('3/11/2012', '3/12/2012', freq='30T') # Is this really how it should fail?? self.assertRaises(NonExistentTimeError, rng.tz_localize, 'US/Eastern') def test_timestamp_tz_localize(self): stamp = Timestamp('3/11/2012 04:00') result = stamp.tz_localize('US/Eastern') expected = Timestamp('3/11/2012 04:00', tz='US/Eastern') self.assertEquals(result.hour, expected.hour) self.assertEquals(result, expected) def test_timestamp_constructed_by_date_and_tz(self): # Fix Issue 2993, Timestamp cannot be constructed by datetime.date # and tz correctly result = Timestamp(date(2012, 3, 11), tz='US/Eastern') expected = Timestamp('3/11/2012', tz='US/Eastern') self.assertEquals(result.hour, expected.hour) self.assertEquals(result, expected) def test_timestamp_to_datetime_tzoffset(self): # tzoffset from dateutil.tz import tzoffset tzinfo = tzoffset(None, 7200) expected = Timestamp('3/11/2012 04:00', tz=tzinfo) result = Timestamp(expected.to_datetime()) self.assertEquals(expected, result) def test_timedelta_push_over_dst_boundary(self): # #1389 # 4 hours before DST transition stamp = Timestamp('3/10/2012 22:00', tz='US/Eastern') result = stamp + timedelta(hours=6) # spring forward, + "7" hours expected = Timestamp('3/11/2012 05:00', tz='US/Eastern') self.assertEquals(result, expected) def test_tz_localize_dti(self): from pandas.tseries.offsets import Hour dti = DatetimeIndex(start='1/1/2005', end='1/1/2005 0:00:30.256', freq='L') dti2 = dti.tz_localize('US/Eastern') dti_utc = DatetimeIndex(start='1/1/2005 05:00', end='1/1/2005 5:00:30.256', freq='L', tz='utc') self.assert_(np.array_equal(dti2.values, dti_utc.values)) dti3 = dti2.tz_convert('US/Pacific') self.assert_(np.array_equal(dti3.values, dti_utc.values)) dti = DatetimeIndex(start='11/6/2011 1:59', end='11/6/2011 2:00', freq='L') self.assertRaises(pytz.AmbiguousTimeError, dti.tz_localize, 'US/Eastern') dti = DatetimeIndex(start='3/13/2011 1:59', end='3/13/2011 2:00', freq='L') self.assertRaises( pytz.NonExistentTimeError, dti.tz_localize, 'US/Eastern') def test_tz_localize_empty_series(self): # #2248 ts = Series() ts2 = ts.tz_localize('utc') self.assertTrue(ts2.index.tz == pytz.utc) ts2 = ts.tz_localize('US/Eastern') self.assertTrue(ts2.index.tz == pytz.timezone('US/Eastern')) def test_astimezone(self): utc = Timestamp('3/11/2012 22:00', tz='UTC') expected = utc.tz_convert('US/Eastern') result = utc.astimezone('US/Eastern') self.assertEquals(expected, result) tm.assert_isinstance(result, Timestamp) def test_create_with_tz(self): stamp = Timestamp('3/11/2012 05:00', tz='US/Eastern') self.assertEquals(stamp.hour, 5) rng = date_range( '3/11/2012 04:00', periods=10, freq='H', tz='US/Eastern') self.assertEquals(stamp, rng[1]) utc_stamp = Timestamp('3/11/2012 05:00', tz='utc') self.assert_(utc_stamp.tzinfo is pytz.utc) self.assertEquals(utc_stamp.hour, 5) stamp = Timestamp('3/11/2012 05:00').tz_localize('utc') self.assertEquals(utc_stamp.hour, 5) def test_create_with_fixed_tz(self): off = FixedOffset(420, '+07:00') start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) self.assertEqual(off, rng.tz) rng2 = date_range(start, periods=len(rng), tz=off) self.assert_(rng.equals(rng2)) rng3 = date_range( '3/11/2012 05:00:00+07:00', '6/11/2012 05:00:00+07:00') self.assert_((rng.values == rng3.values).all()) def test_create_with_fixedoffset_noname(self): off = fixed_off_no_name start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) self.assertEqual(off, rng.tz) idx = Index([start, end]) self.assertEqual(off, idx.tz) def test_date_range_localize(self): rng = date_range( '3/11/2012 03:00', periods=15, freq='H', tz='US/Eastern') rng2 = DatetimeIndex(['3/11/2012 03:00', '3/11/2012 04:00'], tz='US/Eastern') rng3 = date_range('3/11/2012 03:00', periods=15, freq='H') rng3 = rng3.tz_localize('US/Eastern') self.assert_(rng.equals(rng3)) # DST transition time val = rng[0] exp = Timestamp('3/11/2012 03:00', tz='US/Eastern') self.assertEquals(val.hour, 3) self.assertEquals(exp.hour, 3) self.assertEquals(val, exp) # same UTC value self.assert_(rng[:2].equals(rng2)) # Right before the DST transition rng = date_range( '3/11/2012 00:00', periods=2, freq='H', tz='US/Eastern') rng2 = DatetimeIndex(['3/11/2012 00:00', '3/11/2012 01:00'], tz='US/Eastern') self.assert_(rng.equals(rng2)) exp = Timestamp('3/11/2012 00:00', tz='US/Eastern') self.assertEquals(exp.hour, 0) self.assertEquals(rng[0], exp) exp = Timestamp('3/11/2012 01:00', tz='US/Eastern') self.assertEquals(exp.hour, 1) self.assertEquals(rng[1], exp) rng = date_range('3/11/2012 00:00', periods=10, freq='H', tz='US/Eastern') self.assert_(rng[2].hour == 3) def test_utc_box_timestamp_and_localize(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') tz = pytz.timezone('US/Eastern') expected = tz.normalize(rng[-1]) stamp = rng_eastern[-1] self.assertEquals(stamp, expected) self.assertEquals(stamp.tzinfo, expected.tzinfo) # right tzinfo rng = date_range('3/13/2012', '3/14/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') self.assert_('EDT' in repr(rng_eastern[0].tzinfo)) def test_timestamp_tz_convert(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates, tz='US/Eastern') conv = idx[0].tz_convert('US/Pacific') expected = idx.tz_convert('US/Pacific')[0] self.assertEquals(conv, expected) def test_pass_dates_localize_to_utc(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates) conv = idx.tz_localize('US/Eastern') fromdates = DatetimeIndex(strdates, tz='US/Eastern') self.assert_(conv.tz == fromdates.tz) self.assert_(np.array_equal(conv.values, fromdates.values)) def test_field_access_localize(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] rng = DatetimeIndex(strdates, tz='US/Eastern') self.assert_((rng.hour == 0).all()) # a more unusual time zone, #1946 dr = date_range('2011-10-02 00:00', freq='h', periods=10, tz='America/Atikokan') expected = np.arange(10) self.assert_(np.array_equal(dr.hour, expected)) def test_with_tz(self): tz = pytz.timezone('US/Central') # just want it to work start = datetime(2011, 3, 12, tzinfo=pytz.utc) dr = bdate_range(start, periods=50, freq=datetools.Hour()) self.assert_(dr.tz is pytz.utc) # DateRange with naive datetimes dr = bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc) dr = bdate_range('1/1/2005', '1/1/2009', tz=tz) # normalized central = dr.tz_convert(tz) self.assert_(central.tz is tz) self.assert_(central[0].tz is tz) # datetimes with tzinfo set dr = bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=pytz.utc) self.assertRaises(Exception, bdate_range, datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=tz) def test_tz_localize(self): dr = bdate_range('1/1/2009', '1/1/2010') dr_utc = bdate_range('1/1/2009', '1/1/2010', tz=pytz.utc) localized = dr.tz_localize(pytz.utc) self.assert_(np.array_equal(dr_utc, localized)) def test_with_tz_ambiguous_times(self): tz = pytz.timezone('US/Eastern') rng = bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1)) # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=datetools.Hour()) self.assertRaises(pytz.NonExistentTimeError, dr.tz_localize, tz) # after dst transition, it works dr = date_range(datetime(2011, 3, 13, 3, 30), periods=3, freq=datetools.Hour(), tz=tz) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=datetools.Hour()) self.assertRaises(pytz.AmbiguousTimeError, dr.tz_localize, tz) # UTC is OK dr = date_range(datetime(2011, 3, 13), periods=48, freq=datetools.Minute(30), tz=pytz.utc) def test_infer_dst(self): # November 6, 2011, fall back, repeat 2 AM hour # With no repeated hours, we cannot infer the transition tz = pytz.timezone('US/Eastern') dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=datetools.Hour()) self.assertRaises(pytz.AmbiguousTimeError, dr.tz_localize, tz, infer_dst=True) # With repeated hours, we can infer the transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=datetools.Hour(), tz=tz) di = DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00', '11/06/2011 01:00', '11/06/2011 02:00', '11/06/2011 03:00']) localized = di.tz_localize(tz, infer_dst=True) self.assert_(np.array_equal(dr, localized)) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=datetools.Hour()) localized = dr.tz_localize(tz) localized_infer = dr.tz_localize(tz, infer_dst=True) self.assert_(np.array_equal(localized, localized_infer)) # test utility methods def test_infer_tz(self): eastern = pytz.timezone('US/Eastern') utc = pytz.utc _start = datetime(2001, 1, 1) _end = datetime(2009, 1, 1) start = eastern.localize(_start) end = eastern.localize(_end) assert(tools._infer_tzinfo(start, end) is eastern) assert(tools._infer_tzinfo(start, None) is eastern) assert(tools._infer_tzinfo(None, end) is eastern) start = utc.localize(_start) end = utc.localize(_end) assert(tools._infer_tzinfo(start, end) is utc) end = eastern.localize(_end) self.assertRaises(Exception, tools._infer_tzinfo, start, end) self.assertRaises(Exception, tools._infer_tzinfo, end, start) def test_tz_string(self): result = date_range('1/1/2000', periods=10, tz='US/Eastern') expected = date_range('1/1/2000', periods=10, tz=pytz.timezone('US/Eastern')) self.assert_(result.equals(expected)) def test_take_dont_lose_meta(self): _skip_if_no_pytz() rng = date_range('1/1/2000', periods=20, tz='US/Eastern') result = rng.take(lrange(5)) self.assert_(result.tz == rng.tz) self.assert_(result.freq == rng.freq) def test_index_with_timezone_repr(self): rng = date_range('4/13/2010', '5/6/2010') rng_eastern = rng.tz_localize('US/Eastern') rng_repr = repr(rng_eastern) self.assert_('2010-04-13 00:00:00' in rng_repr) def test_index_astype_asobject_tzinfos(self): # #1345 # dates around a dst transition rng = date_range('2/13/2010', '5/6/2010', tz='US/Eastern') objs = rng.asobject for i, x in enumerate(objs): exval = rng[i] self.assertEquals(x, exval) self.assertEquals(x.tzinfo, exval.tzinfo) objs = rng.astype(object) for i, x in enumerate(objs): exval = rng[i] self.assertEquals(x, exval) self.assertEquals(x.tzinfo, exval.tzinfo) def test_localized_at_time_between_time(self): from datetime import time rng = date_range('4/16/2012', '5/1/2012', freq='H') ts = Series(np.random.randn(len(rng)), index=rng) ts_local = ts.tz_localize('US/Eastern') result = ts_local.at_time(time(10, 0)) expected = ts.at_time(time(10, 0)).tz_localize('US/Eastern') assert_series_equal(result, expected) self.assert_(result.index.tz.zone == 'US/Eastern') t1, t2 = time(10, 0), time(11, 0) result = ts_local.between_time(t1, t2) expected = ts.between_time(t1, t2).tz_localize('US/Eastern') assert_series_equal(result, expected) self.assert_(result.index.tz.zone == 'US/Eastern') def test_string_index_alias_tz_aware(self): rng = date_range('1/1/2000', periods=10, tz='US/Eastern') ts = Series(np.random.randn(len(rng)), index=rng) result = ts['1/3/2000'] self.assertAlmostEqual(result, ts[2]) def test_fixed_offset(self): dates = [datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off)] result = to_datetime(dates) self.assert_(result.tz == fixed_off) def test_fixedtz_topydatetime(self): dates = np.array([datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off)]) result = to_datetime(dates).to_pydatetime() self.assert_(np.array_equal(dates, result)) result = to_datetime(dates)._mpl_repr() self.assert_(np.array_equal(dates, result)) def test_convert_tz_aware_datetime_datetime(self): # #1581 tz = pytz.timezone('US/Eastern') dates = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)] dates_aware = [tz.localize(x) for x in dates] result = to_datetime(dates_aware) self.assert_(result.tz.zone == 'US/Eastern') converted = to_datetime(dates_aware, utc=True) ex_vals = [Timestamp(x).value for x in dates_aware] self.assert_(np.array_equal(converted.asi8, ex_vals)) self.assert_(converted.tz is pytz.utc) def test_to_datetime_utc(self): from dateutil.parser import parse arr = np.array([parse('2012-06-13T01:39:00Z')], dtype=object) result = to_datetime(arr, utc=True) self.assert_(result.tz is pytz.utc) def test_to_datetime_tzlocal(self): from dateutil.parser import parse from dateutil.tz import tzlocal dt = parse('2012-06-13T01:39:00Z') dt = dt.replace(tzinfo=tzlocal()) arr = np.array([dt], dtype=object) result = to_datetime(arr, utc=True) self.assert_(result.tz is pytz.utc) rng = date_range('2012-11-03 03:00', '2012-11-05 03:00', tz=tzlocal()) arr = rng.to_pydatetime() result = to_datetime(arr, utc=True) self.assert_(result.tz is pytz.utc) def test_frame_no_datetime64_dtype(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') dr_tz = dr.tz_localize('US/Eastern') e = DataFrame({'A': 'foo', 'B': dr_tz}, index=dr) self.assert_(e['B'].dtype == 'M8[ns]') # GH 2810 (with timezones) datetimes_naive = [ ts.to_pydatetime() for ts in dr ] datetimes_with_tz = [ ts.to_pydatetime() for ts in dr_tz ] df = DataFrame({'dr' : dr, 'dr_tz' : dr_tz, 'datetimes_naive': datetimes_naive, 'datetimes_with_tz' : datetimes_with_tz }) result = df.get_dtype_counts() expected = Series({ 'datetime64[ns]' : 3, 'object' : 1 }) assert_series_equal(result, expected) def test_hongkong_tz_convert(self): # #1673 dr = date_range( '2012-01-01', '2012-01-10', freq='D', tz='Hongkong') # it works! dr.hour def test_tz_convert_unsorted(self): dr = date_range('2012-03-09', freq='H', periods=100, tz='utc') dr = dr.tz_convert('US/Eastern') result = dr[::-1].hour exp = dr.hour[::-1] tm.assert_almost_equal(result, exp) def test_shift_localized(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') dr_tz = dr.tz_localize('US/Eastern') result = dr_tz.shift(1, '10T') self.assert_(result.tz == dr_tz.tz) def test_tz_aware_asfreq(self): dr = date_range( '2011-12-01', '2012-07-20', freq='D', tz='US/Eastern') s = Series(np.random.randn(len(dr)), index=dr) # it works! s.asfreq('T') def test_static_tzinfo(self): # it works! index = DatetimeIndex([datetime(2012, 1, 1)], tz='EST') index.hour index[0] def test_tzaware_datetime_to_index(self): d = [datetime(2012, 8, 19, tzinfo=pytz.timezone('US/Eastern'))] index = DatetimeIndex(d) self.assert_(index.tz.zone == 'US/Eastern') def test_date_range_span_dst_transition(self): # #1778 # Standard -> Daylight Savings Time dr = date_range('03/06/2012 00:00', periods=200, freq='W-FRI', tz='US/Eastern') self.assert_((dr.hour == 0).all()) dr = date_range('2012-11-02', periods=10, tz='US/Eastern') self.assert_((dr.hour == 0).all()) def test_convert_datetime_list(self): dr = date_range('2012-06-02', periods=10, tz='US/Eastern') dr2 = DatetimeIndex(list(dr), name='foo') self.assert_(dr.equals(dr2)) self.assert_(dr.tz == dr2.tz) self.assert_(dr2.name == 'foo') def test_frame_from_records_utc(self): rec = {'datum': 1.5, 'begin_time': datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index='begin_time') def test_frame_reset_index(self): dr = date_range('2012-06-02', periods=10, tz='US/Eastern') df = DataFrame(np.random.randn(len(dr)), dr) roundtripped = df.reset_index().set_index('index') xp = df.index.tz rs = roundtripped.index.tz self.assertEquals(xp, rs) def test_dateutil_tzoffset_support(self): from dateutil.tz import tzoffset values = [188.5, 328.25] tzinfo = tzoffset(None, 7200) index = [datetime(2012, 5, 11, 11, tzinfo=tzinfo), datetime(2012, 5, 11, 12, tzinfo=tzinfo)] series = Series(data=values, index=index) self.assertEquals(series.index.tz, tzinfo) # it works! #2443 repr(series.index[0]) def test_getitem_pydatetime_tz(self): index = date_range(start='2012-12-24 16:00', end='2012-12-24 18:00', freq='H', tz='Europe/Berlin') ts = Series(index=index, data=index.hour) time_pandas = Timestamp('2012-12-24 17:00', tz='Europe/Berlin') time_datetime = datetime(2012, 12, 24, 17, 0, tzinfo=pytz.timezone('Europe/Berlin')) self.assertEqual(ts[time_pandas], ts[time_datetime]) def test_index_drop_dont_lose_tz(self): # #2621 ind = date_range("2012-12-01", periods=10, tz="utc") ind = ind.drop(ind[-1]) self.assertTrue(ind.tz is not None) def test_datetimeindex_tz(self): """ Test different DatetimeIndex constructions with timezone Follow-up of #4229 """ arr = ['11/10/2005 08:00:00', '11/10/2005 09:00:00'] idx1 = to_datetime(arr).tz_localize('US/Eastern') idx2 = DatetimeIndex(start="2005-11-10 08:00:00", freq='H', periods=2, tz='US/Eastern') idx3 = DatetimeIndex(arr, tz='US/Eastern') idx4 = DatetimeIndex(np.array(arr), tz='US/Eastern') for other in [idx2, idx3, idx4]: self.assert_(idx1.equals(other)) def test_datetimeindex_tz_nat(self): idx = to_datetime([Timestamp("2013-1-1", tz='US/Eastern'), NaT]) self.assertTrue(isnull(idx[1])) self.assertTrue(idx[0].tzinfo is not None) class TestTimeZones(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): _skip_if_no_pytz() def test_index_equals_with_tz(self): left = date_range('1/1/2011', periods=100, freq='H', tz='utc') right = date_range('1/1/2011', periods=100, freq='H', tz='US/Eastern') self.assert_(not left.equals(right)) def test_tz_localize_naive(self): rng = date_range('1/1/2011', periods=100, freq='H') conv = rng.tz_localize('US/Pacific') exp = date_range('1/1/2011', periods=100, freq='H', tz='US/Pacific') self.assert_(conv.equals(exp)) def test_series_frame_tz_localize(self): rng = date_range('1/1/2011', periods=100, freq='H') ts = Series(1, index=rng) result = ts.tz_localize('utc') self.assert_(result.index.tz.zone == 'UTC') df = DataFrame({'a': 1}, index=rng) result = df.tz_localize('utc') expected = DataFrame({'a': 1}, rng.tz_localize('UTC')) self.assert_(result.index.tz.zone == 'UTC') assert_frame_equal(result, expected) df = df.T result = df.tz_localize('utc', axis=1) self.assert_(result.columns.tz.zone == 'UTC') assert_frame_equal(result, expected.T) # Can't localize if already tz-aware rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') ts = Series(1, index=rng) assertRaisesRegexp(TypeError, 'Already tz-aware', ts.tz_localize, 'US/Eastern') def test_series_frame_tz_convert(self): rng = date_range('1/1/2011', periods=200, freq='D', tz='US/Eastern') ts = Series(1, index=rng) result = ts.tz_convert('Europe/Berlin') self.assert_(result.index.tz.zone == 'Europe/Berlin') df = DataFrame({'a': 1}, index=rng) result = df.tz_convert('Europe/Berlin') expected = DataFrame({'a': 1}, rng.tz_convert('Europe/Berlin')) self.assert_(result.index.tz.zone == 'Europe/Berlin') assert_frame_equal(result, expected) df = df.T result = df.tz_convert('Europe/Berlin', axis=1) self.assert_(result.columns.tz.zone == 'Europe/Berlin') assert_frame_equal(result, expected.T) # can't convert tz-naive rng = date_range('1/1/2011', periods=200, freq='D') ts = Series(1, index=rng) assertRaisesRegexp(TypeError, "Cannot convert tz-naive", ts.tz_convert, 'US/Eastern') def test_join_utc_convert(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') left = rng.tz_convert('US/Eastern') right = rng.tz_convert('Europe/Berlin') for how in ['inner', 'outer', 'left', 'right']: result = left.join(left[:-5], how=how) tm.assert_isinstance(result, DatetimeIndex) self.assert_(result.tz == left.tz) result = left.join(right[:-5], how=how) tm.assert_isinstance(result, DatetimeIndex) self.assert_(result.tz.zone == 'UTC') def test_join_aware(self): rng = date_range('1/1/2011', periods=10, freq='H') ts = Series(np.random.randn(len(rng)), index=rng) ts_utc = ts.tz_localize('utc') self.assertRaises(Exception, ts.__add__, ts_utc) self.assertRaises(Exception, ts_utc.__add__, ts) test1 = DataFrame(np.zeros((6, 3)), index=date_range("2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central")) test2 = DataFrame(np.zeros((3, 3)), index=date_range("2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"), columns=lrange(3, 6)) result = test1.join(test2, how='outer') ex_index = test1.index.union(test2.index) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result.index.tz.zone == 'US/Central') # non-overlapping rng = date_range("2012-11-15 00:00:00", periods=6, freq="H", tz="US/Central") rng2 = date_range("2012-11-15 12:00:00", periods=6, freq="H", tz="US/Eastern") result = rng.union(rng2) self.assertTrue(result.tz.zone == 'UTC') def test_align_aware(self): idx1 = date_range('2001', periods=5, freq='H', tz='US/Eastern') idx2 = date_range('2001', periods=5, freq='2H', tz='US/Eastern') df1 = DataFrame(np.random.randn(len(idx1), 3), idx1) df2 = DataFrame(np.random.randn(len(idx2), 3), idx2) new1, new2 = df1.align(df2) self.assertEqual(df1.index.tz, new1.index.tz) self.assertEqual(df2.index.tz, new2.index.tz) def test_append_aware(self): rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='US/Eastern') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Eastern') ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) self.assertEqual(ts_result.index.tz, rng1.tz) rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='UTC') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='UTC') ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) utc = rng1.tz self.assertEqual(utc, ts_result.index.tz) rng1 = date_range('1/1/2011 01:00', periods=1, freq='H', tz='US/Eastern') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Central') ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) self.assertEqual(utc, ts_result.index.tz) def test_append_aware_naive(self): rng1 = date_range('1/1/2011 01:00', periods=1, freq='H') rng2 = date_range('1/1/2011 02:00', periods=1, freq='H', tz='US/Eastern') ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) self.assert_(ts_result.index.equals( ts1.index.asobject.append(ts2.index.asobject))) # mixed rng1 = date_range('1/1/2011 01:00', periods=1, freq='H') rng2 = lrange(100) ts1 = Series(np.random.randn(len(rng1)), index=rng1) ts2 = Series(np.random.randn(len(rng2)), index=rng2) ts_result = ts1.append(ts2) self.assert_(ts_result.index.equals( ts1.index.asobject.append(ts2.index))) def test_equal_join_ensure_utc(self): rng = date_range('1/1/2011', periods=10, freq='H', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), index=rng) ts_moscow = ts.tz_convert('Europe/Moscow') result = ts + ts_moscow self.assert_(result.index.tz is pytz.utc) result = ts_moscow + ts self.assert_(result.index.tz is pytz.utc) df = DataFrame({'a': ts}) df_moscow = df.tz_convert('Europe/Moscow') result = df + df_moscow self.assert_(result.index.tz is pytz.utc) result = df_moscow + df self.assert_(result.index.tz is pytz.utc) def test_arith_utc_convert(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') perm = np.random.permutation(100)[:90] ts1 = Series(np.random.randn(90), index=rng.take(perm).tz_convert('US/Eastern')) perm = np.random.permutation(100)[:90] ts2 = Series(np.random.randn(90), index=rng.take(perm).tz_convert('Europe/Berlin')) result = ts1 + ts2 uts1 = ts1.tz_convert('utc') uts2 = ts2.tz_convert('utc') expected = uts1 + uts2 self.assert_(result.index.tz == pytz.UTC) assert_series_equal(result, expected) def test_intersection(self): rng = date_range('1/1/2011', periods=100, freq='H', tz='utc') left = rng[10:90][::-1] right = rng[20:80][::-1] self.assert_(left.tz == rng.tz) result = left.intersection(right) self.assert_(result.tz == left.tz) def test_timestamp_equality_different_timezones(self): utc_range = date_range('1/1/2000', periods=20, tz='UTC') eastern_range = utc_range.tz_convert('US/Eastern') berlin_range = utc_range.tz_convert('Europe/Berlin') for a, b, c in zip(utc_range, eastern_range, berlin_range): self.assertEquals(a, b) self.assertEquals(b, c) self.assertEquals(a, c) self.assert_((utc_range == eastern_range).all()) self.assert_((utc_range == berlin_range).all()) self.assert_((berlin_range == eastern_range).all()) def test_datetimeindex_tz(self): rng = date_range('03/12/2012 00:00', periods=10, freq='W-FRI', tz='US/Eastern') rng2 = DatetimeIndex(data=rng, tz='US/Eastern') self.assert_(rng.equals(rng2)) def test_normalize_tz(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz='US/Eastern') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz='US/Eastern') self.assert_(result.equals(expected)) self.assert_(result.is_normalized) self.assert_(not rng.is_normalized) rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz='UTC') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz='UTC') self.assert_(result.equals(expected)) self.assert_(result.is_normalized) self.assert_(not rng.is_normalized) from dateutil.tz import tzlocal rng = date_range('1/1/2000 9:30', periods=10, freq='D', tz=tzlocal()) result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D', tz=tzlocal()) self.assert_(result.equals(expected)) self.assert_(result.is_normalized) self.assert_(not rng.is_normalized) def test_tzaware_offset(self): dates = date_range('2012-11-01', periods=3, tz='US/Pacific') offset = dates + offsets.Hour(5) self.assertEqual(dates[0] + offsets.Hour(5), offset[0]) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
shakamunyi/tensorflow
tensorflow/contrib/learn/python/learn/estimators/multioutput_test.py
136
1696
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-output tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators._sklearn import mean_squared_error from tensorflow.python.platform import test class MultiOutputTest(test.TestCase): """Multi-output tests.""" def testMultiRegression(self): random.seed(42) rng = np.random.RandomState(1) x = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T regressor = learn.LinearRegressor( feature_columns=learn.infer_real_valued_columns_from_input(x), label_dimension=2) regressor.fit(x, y, steps=100) score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y) self.assertLess(score, 10, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
vladpopovici/WSItk
WSItk/tools/wsi_bot_codebook3.py
1
7170
#!/usr/bin/env python2 # # wsi_bot_codebook3 # # Version 3 of codebook construction: # # -uses OpenCV for faster operation - but different local descriptors than in the 1st version; # -uses annotation files for defining the regions from where the descriptors are to be # extracted # - try to optimize the codebook with respect to some class labels from __future__ import (absolute_import, division, print_function, unicode_literals) __version__ = 0.1 __author__ = 'Vlad Popovici' import os import argparse as opt import numpy as np import numpy.linalg from scipy.stats import ttest_ind import skimage.draw import skimage.io from skimage.exposure import equalize_adapthist, rescale_intensity import cv2 import cv2.xfeatures2d from sklearn.cluster import MiniBatchKMeans from sklearn.lda import LDA from stain.he import rgb2he from util.storage import ModelPersistence def find_in_list(_value, _list): """ Returns the indexes of all occurrences of value in a list. """ return np.array([i for i, v in enumerate(_list) if v == _value], dtype=int) def main(): p = opt.ArgumentParser(description=""" Extracts features from annotated regions and constructs a codebook of a given size. """) p.add_argument('in_file', action='store', help='a file with image file, annotation file and label (0/1)') p.add_argument('out_file', action='store', help='resulting model file name') #p.add_argument('codebook_size', action='store', help='codebook size', type=int) p.add_argument('-t', '--threshold', action='store', type=int, default=5000, help='Hessian threshold for SURF features.') p.add_argument('-s', '--standardize', action='store_true', default=False, help='should the features be standardized before codebook construction?') p.add_argument('-v', '--verbose', action='store_true', help='verbose?') args = p.parse_args() th = args.threshold all_image_names, all_descriptors = [], [] all_roi = [] y = [] unique_image_names = [] with open(args.in_file, mode='r') as fin: for l in fin.readlines(): l = l.strip() if len(l) == 0: break img_file, annot_file, lbl = [z_ for z_ in l.split()][0:3] # file names: image and its annotation and label y.append(int(lbl)) if args.verbose: print("Image:", img_file) img = cv2.imread(img_file) coords = np.fromfile(annot_file, dtype=int, sep=' ') # x y - values coords = np.reshape(coords, (coords.size/2, 2), order='C') # get the bounding box: xmin, ymin = coords.min(axis=0) xmax, ymax = coords.max(axis=0) if args.verbose: print("\t...H&E extraction") img = img[ymin:ymax+2, xmin:xmax+2, :] # keep only the region of interest img_h, _ = rgb2he(img, normalize=True) # get the H- component img_h = equalize_adapthist(img_h) img_h = rescale_intensity(img_h, out_range=(0,255)) # make sure the dtype is right for image and the mask: OpenCV is sensitive to data type img_h = img_h.astype(np.uint8) if args.verbose: print("\t...building mask") mask = np.zeros(img_h.shape, dtype=np.uint8) r, c = skimage.draw.polygon(coords[:,1]-ymin, coords[:,0]-xmin) # adapt to new image... mask[r,c] = 1 # everything outside the region is black if args.verbose: print("\t...feature detection and computation") img_h *= mask feat = cv2.xfeatures2d.SURF_create(hessianThreshold=th) keyp, desc = feat.detectAndCompute(img_h, mask) if args.verbose: print("\t...", str(len(keyp)), "features extracted") all_descriptors.extend(desc) all_image_names.extend([img_file] * len(keyp)) unique_image_names.append(img_file) # end for X = np.hstack(all_descriptors) X = np.reshape(X, (len(all_descriptors), all_descriptors[0].size), order='C') if args.standardize: # make sure each variable (column) is mean-centered and has unit standard deviation Xm = np.mean(X, axis=0) Xs = np.std(X, axis=0) Xs[np.isclose(Xs, 1e-16)] = 1.0 X = (X - Xm) / Xs y = np.array(y, dtype=int) rng = np.random.RandomState(0) acc = [] # will keep accuracy of the classifier vqs = [] # all quantizers, to find the best for k in np.arange(10, 121, 10): # Method: # -generate a codebook with k codewords # -re-code the data # -compute frequencies # -estimate classification on best 10 features if args.verbose: print("\nK-means clustering (k =", str(k), ")") print("\t...with", str(X.shape[0]), "points") #-codebook and re-coding vq = MiniBatchKMeans(n_clusters=k, random_state=rng, batch_size=500, compute_labels=True, verbose=False) # vector quantizer vq.fit(X) vqs.append(vq) #-codeword frequencies frq = np.zeros((len(unique_image_names), k)) for i in range(vq.labels_.size): frq[unique_image_names.index(all_image_names[i]), vq.labels_[i]] += 1.0 for i in range(len(unique_image_names)): if frq[i, :].sum() > 0: frq[i, :] /= frq[i, :].sum() if args.verbose: print("...\tfeature selection (t-test)") pv = np.ones(k) for i in range(k): _, pv[i] = ttest_ind(frq[y == 0, i], frq[y == 1, i]) idx = np.argsort(pv) # order of the p-values if args.verbose: print("\t...classification performance estimation") clsf = LDA(solver='lsqr', shrinkage='auto').fit(frq[:,idx[:10]], y) # keep top 10 features acc.append(clsf.score(frq[:, idx[:10]], y)) acc = np.array(acc) k = np.arange(10, 121, 10)[acc.argmax()] # best k if args.verbose: print("\nOptimal codebook size:", str(k)) # final codebook: vq = vqs[acc.argmax()] # compute the average distance and std.dev. of the points in each cluster: avg_dist = np.zeros(k) sd_dist = np.zeros(k) for k in range(0, k): d = numpy.linalg.norm(X[vq.labels_ == k, :] - vq.cluster_centers_[k, :], axis=1) avg_dist[k] = d.mean() sd_dist[k] = d.std() with ModelPersistence(args.out_file, 'c', format='pickle') as d: d['codebook'] = vq d['shift'] = Xm d['scale'] = Xs d['standardize'] = args.standardize d['avg_dist_to_centroid'] = avg_dist d['stddev_dist_to_centroid'] = sd_dist return True if __name__ == '__main__': main()
mit
paladin74/neural-network-animation
matplotlib/backends/backend_svg.py
10
45804
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange from six import unichr import os, base64, tempfile, gzip, io, sys, codecs, re import numpy as np from hashlib import md5 from matplotlib import verbose, __version__, rcParams from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.backends.backend_mixed import MixedModeRenderer from matplotlib.cbook import is_string_like, is_writable_file_like, maxdict from matplotlib.colors import rgb2hex from matplotlib.figure import Figure from matplotlib.font_manager import findfont, FontProperties from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib import _path from matplotlib.transforms import Affine2D, Affine2DBase from matplotlib import _png from xml.sax.saxutils import escape as escape_xml_text backend_version = __version__ # ---------------------------------------------------------------------- # SimpleXMLWriter class # # Based on an original by Fredrik Lundh, but modified here to: # 1. Support modern Python idioms # 2. Remove encoding support (it's handled by the file writer instead) # 3. Support proper indentation # 4. Minify things a little bit # -------------------------------------------------------------------- # The SimpleXMLWriter module is # # Copyright (c) 2001-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- def escape_cdata(s): s = s.replace("&", "&amp;") s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") return s _escape_xml_comment = re.compile(r'-(?=-)') def escape_comment(s): s = escape_cdata(s) return _escape_xml_comment.sub('- ', s) def escape_attrib(s): s = s.replace("&", "&amp;") s = s.replace("'", "&apos;") s = s.replace("\"", "&quot;") s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") return s ## # XML writer class. # # @param file A file or file-like object. This object must implement # a <b>write</b> method that takes an 8-bit string. class XMLWriter: def __init__(self, file): self.__write = file.write if hasattr(file, "flush"): self.flush = file.flush self.__open = 0 # true if start tag is open self.__tags = [] self.__data = [] self.__indentation = " " * 64 def __flush(self, indent=True): # flush internal buffers if self.__open: if indent: self.__write(">\n") else: self.__write(">") self.__open = 0 if self.__data: data = ''.join(self.__data) self.__write(escape_cdata(data)) self.__data = [] ## Opens a new element. Attributes can be given as keyword # arguments, or as a string/string dictionary. The method returns # an opaque identifier that can be passed to the <b>close</b> # method, to close all open elements up to and including this one. # # @param tag Element tag. # @param attrib Attribute dictionary. Alternatively, attributes # can be given as keyword arguments. # @return An element identifier. def start(self, tag, attrib={}, **extra): self.__flush() tag = escape_cdata(tag) self.__data = [] self.__tags.append(tag) self.__write(self.__indentation[:len(self.__tags) - 1]) self.__write("<%s" % tag) if attrib or extra: attrib = attrib.copy() attrib.update(extra) attrib = list(six.iteritems(attrib)) attrib.sort() for k, v in attrib: if not v == '': k = escape_cdata(k) v = escape_attrib(v) self.__write(" %s=\"%s\"" % (k, v)) self.__open = 1 return len(self.__tags)-1 ## # Adds a comment to the output stream. # # @param comment Comment text, as a Unicode string. def comment(self, comment): self.__flush() self.__write(self.__indentation[:len(self.__tags)]) self.__write("<!-- %s -->\n" % escape_comment(comment)) ## # Adds character data to the output stream. # # @param text Character data, as a Unicode string. def data(self, text): self.__data.append(text) ## # Closes the current element (opened by the most recent call to # <b>start</b>). # # @param tag Element tag. If given, the tag must match the start # tag. If omitted, the current element is closed. def end(self, tag=None, indent=True): if tag: assert self.__tags, "unbalanced end(%s)" % tag assert escape_cdata(tag) == self.__tags[-1],\ "expected end(%s), got %s" % (self.__tags[-1], tag) else: assert self.__tags, "unbalanced end()" tag = self.__tags.pop() if self.__data: self.__flush(indent) elif self.__open: self.__open = 0 self.__write("/>\n") return if indent: self.__write(self.__indentation[:len(self.__tags)]) self.__write("</%s>\n" % tag) ## # Closes open elements, up to (and including) the element identified # by the given identifier. # # @param id Element identifier, as returned by the <b>start</b> method. def close(self, id): while len(self.__tags) > id: self.end() ## # Adds an entire element. This is the same as calling <b>start</b>, # <b>data</b>, and <b>end</b> in sequence. The <b>text</b> argument # can be omitted. def element(self, tag, text=None, attrib={}, **extra): self.start(*(tag, attrib), **extra) if text: self.data(text) self.end(indent=False) ## # Flushes the output stream. def flush(self): pass # replaced by the constructor # ---------------------------------------------------------------------- def generate_transform(transform_list=[]): if len(transform_list): output = io.StringIO() for type, value in transform_list: if type == 'scale' and (value == (1.0,) or value == (1.0, 1.0)): continue if type == 'translate' and value == (0.0, 0.0): continue if type == 'rotate' and value == (0.0,): continue if type == 'matrix' and isinstance(value, Affine2DBase): value = value.to_values() output.write('%s(%s)' % (type, ' '.join(str(x) for x in value))) return output.getvalue() return '' def generate_css(attrib={}): if attrib: output = io.StringIO() attrib = list(six.iteritems(attrib)) attrib.sort() for k, v in attrib: k = escape_attrib(k) v = escape_attrib(v) output.write("%s:%s;" % (k, v)) return output.getvalue() return '' _capstyle_d = {'projecting' : 'square', 'butt' : 'butt', 'round': 'round',} class RendererSVG(RendererBase): FONT_SCALE = 100.0 fontd = maxdict(50) def __init__(self, width, height, svgwriter, basename=None, image_dpi=72): self.width = width self.height = height self.writer = XMLWriter(svgwriter) self.image_dpi = image_dpi # the actual dpi we want to rasterize stuff with self._groupd = {} if not rcParams['svg.image_inline']: assert basename is not None self.basename = basename self._imaged = {} self._clipd = {} self._char_defs = {} self._markers = {} self._path_collection_id = 0 self._imaged = {} self._hatchd = {} self._has_gouraud = False self._n_gradients = 0 self._fonts = {} self.mathtext_parser = MathTextParser('SVG') RendererBase.__init__(self) self._glyph_map = dict() svgwriter.write(svgProlog) self._start_id = self.writer.start( 'svg', width='%ipt' % width, height='%ipt' % height, viewBox='0 0 %i %i' % (width, height), xmlns="http://www.w3.org/2000/svg", version="1.1", attrib={'xmlns:xlink': "http://www.w3.org/1999/xlink"}) self._write_default_style() def finalize(self): self._write_clips() self._write_hatches() self._write_svgfonts() self.writer.close(self._start_id) self.writer.flush() def _write_default_style(self): writer = self.writer default_style = generate_css({ 'stroke-linejoin': 'round', 'stroke-linecap': 'butt'}) writer.start('defs') writer.start('style', type='text/css') writer.data('*{%s}\n' % default_style) writer.end('style') writer.end('defs') def _make_id(self, type, content): content = str(content) if six.PY3: content = content.encode('utf8') return '%s%s' % (type, md5(content).hexdigest()[:10]) def _make_flip_transform(self, transform): return (transform + Affine2D() .scale(1.0, -1.0) .translate(0.0, self.height)) def _get_font(self, prop): key = hash(prop) font = self.fontd.get(key) if font is None: fname = findfont(prop) font = self.fontd.get(fname) if font is None: font = FT2Font(fname) self.fontd[fname] = font self.fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, 72.0) return font def _get_hatch(self, gc, rgbFace): """ Create a new hatch pattern """ if rgbFace is not None: rgbFace = tuple(rgbFace) edge = gc.get_rgb() if edge is not None: edge = tuple(edge) dictkey = (gc.get_hatch(), rgbFace, edge) oid = self._hatchd.get(dictkey) if oid is None: oid = self._make_id('h', dictkey) self._hatchd[dictkey] = ((gc.get_hatch_path(), rgbFace, edge), oid) else: _, oid = oid return oid def _write_hatches(self): if not len(self._hatchd): return HATCH_SIZE = 72 writer = self.writer writer.start('defs') for ((path, face, stroke), oid) in six.itervalues(self._hatchd): writer.start( 'pattern', id=oid, patternUnits="userSpaceOnUse", x="0", y="0", width=six.text_type(HATCH_SIZE), height=six.text_type(HATCH_SIZE)) path_data = self._convert_path( path, Affine2D().scale(HATCH_SIZE).scale(1.0, -1.0).translate(0, HATCH_SIZE), simplify=False) if face is None: fill = 'none' else: fill = rgb2hex(face) writer.element( 'rect', x="0", y="0", width=six.text_type(HATCH_SIZE+1), height=six.text_type(HATCH_SIZE+1), fill=fill) writer.element( 'path', d=path_data, style=generate_css({ 'fill': rgb2hex(stroke), 'stroke': rgb2hex(stroke), 'stroke-width': '1.0', 'stroke-linecap': 'butt', 'stroke-linejoin': 'miter' }) ) writer.end('pattern') writer.end('defs') def _get_style_dict(self, gc, rgbFace): """ return the style string. style is generated from the GraphicsContext and rgbFace """ attrib = {} forced_alpha = gc.get_forced_alpha() if gc.get_hatch() is not None: attrib['fill'] = "url(#%s)" % self._get_hatch(gc, rgbFace) if rgbFace is not None and len(rgbFace) == 4 and rgbFace[3] != 1.0 and not forced_alpha: attrib['fill-opacity'] = str(rgbFace[3]) else: if rgbFace is None: attrib['fill'] = 'none' else: if tuple(rgbFace[:3]) != (0, 0, 0): attrib['fill'] = rgb2hex(rgbFace) if len(rgbFace) == 4 and rgbFace[3] != 1.0 and not forced_alpha: attrib['fill-opacity'] = str(rgbFace[3]) if forced_alpha and gc.get_alpha() != 1.0: attrib['opacity'] = str(gc.get_alpha()) offset, seq = gc.get_dashes() if seq is not None: attrib['stroke-dasharray'] = ','.join(['%f' % val for val in seq]) attrib['stroke-dashoffset'] = six.text_type(float(offset)) linewidth = gc.get_linewidth() if linewidth: rgb = gc.get_rgb() attrib['stroke'] = rgb2hex(rgb) if not forced_alpha and rgb[3] != 1.0: attrib['stroke-opacity'] = str(rgb[3]) if linewidth != 1.0: attrib['stroke-width'] = str(linewidth) if gc.get_joinstyle() != 'round': attrib['stroke-linejoin'] = gc.get_joinstyle() if gc.get_capstyle() != 'butt': attrib['stroke-linecap'] = _capstyle_d[gc.get_capstyle()] return attrib def _get_style(self, gc, rgbFace): return generate_css(self._get_style_dict(gc, rgbFace)) def _get_clip(self, gc): cliprect = gc.get_clip_rectangle() clippath, clippath_trans = gc.get_clip_path() if clippath is not None: clippath_trans = self._make_flip_transform(clippath_trans) dictkey = (id(clippath), str(clippath_trans)) elif cliprect is not None: x, y, w, h = cliprect.bounds y = self.height-(y+h) dictkey = (x, y, w, h) else: return None clip = self._clipd.get(dictkey) if clip is None: oid = self._make_id('p', dictkey) if clippath is not None: self._clipd[dictkey] = ((clippath, clippath_trans), oid) else: self._clipd[dictkey] = (dictkey, oid) else: clip, oid = clip return oid def _write_clips(self): if not len(self._clipd): return writer = self.writer writer.start('defs') for clip, oid in six.itervalues(self._clipd): writer.start('clipPath', id=oid) if len(clip) == 2: clippath, clippath_trans = clip path_data = self._convert_path(clippath, clippath_trans, simplify=False) writer.element('path', d=path_data) else: x, y, w, h = clip writer.element('rect', x=six.text_type(x), y=six.text_type(y), width=six.text_type(w), height=six.text_type(h)) writer.end('clipPath') writer.end('defs') def _write_svgfonts(self): if not rcParams['svg.fonttype'] == 'svgfont': return writer = self.writer writer.start('defs') for font_fname, chars in six.iteritems(self._fonts): font = FT2Font(font_fname) font.set_size(72, 72) sfnt = font.get_sfnt() writer.start('font', id=sfnt[(1, 0, 0, 4)]) writer.element( 'font-face', attrib={ 'font-family': font.family_name, 'font-style': font.style_name.lower(), 'units-per-em': '72', 'bbox': ' '.join(six.text_type(x / 64.0) for x in font.bbox)}) for char in chars: glyph = font.load_char(char, flags=LOAD_NO_HINTING) verts, codes = font.get_path() path = Path(verts, codes) path_data = self._convert_path(path) # name = font.get_glyph_name(char) writer.element( 'glyph', d=path_data, attrib={ # 'glyph-name': name, 'unicode': unichr(char), 'horiz-adv-x': six.text_type(glyph.linearHoriAdvance / 65536.0)}) writer.end('font') writer.end('defs') def open_group(self, s, gid=None): """ Open a grouping element with label *s*. If *gid* is given, use *gid* as the id of the group. """ if gid: self.writer.start('g', id=gid) else: self._groupd[s] = self._groupd.get(s, 0) + 1 self.writer.start('g', id="%s_%d" % (s, self._groupd[s])) def close_group(self, s): self.writer.end('g') def option_image_nocomposite(self): """ if svg.image_noscale is True, compositing multiple images into one is prohibited """ return rcParams['svg.image_noscale'] def _convert_path(self, path, transform=None, clip=None, simplify=None): if clip: clip = (0.0, 0.0, self.width, self.height) else: clip = None return _path.convert_to_svg(path, transform, clip, simplify, 6) def draw_path(self, gc, path, transform, rgbFace=None): trans_and_flip = self._make_flip_transform(transform) clip = (rgbFace is None and gc.get_hatch_path() is None) simplify = path.should_simplify and clip path_data = self._convert_path( path, trans_and_flip, clip=clip, simplify=simplify) attrib = {} attrib['style'] = self._get_style(gc, rgbFace) clipid = self._get_clip(gc) if clipid is not None: attrib['clip-path'] = 'url(#%s)' % clipid if gc.get_url() is not None: self.writer.start('a', {'xlink:href': gc.get_url()}) self.writer.element('path', d=path_data, attrib=attrib) if gc.get_url() is not None: self.writer.end('a') def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): if not len(path.vertices): return writer = self.writer path_data = self._convert_path( marker_path, marker_trans + Affine2D().scale(1.0, -1.0), simplify=False) style = self._get_style_dict(gc, rgbFace) dictkey = (path_data, generate_css(style)) oid = self._markers.get(dictkey) for key in list(six.iterkeys(style)): if not key.startswith('stroke'): del style[key] style = generate_css(style) if oid is None: oid = self._make_id('m', dictkey) writer.start('defs') writer.element('path', id=oid, d=path_data, style=style) writer.end('defs') self._markers[dictkey] = oid attrib = {} clipid = self._get_clip(gc) if clipid is not None: attrib['clip-path'] = 'url(#%s)' % clipid writer.start('g', attrib=attrib) trans_and_flip = self._make_flip_transform(trans) attrib = {'xlink:href': '#%s' % oid} clip = (0, 0, self.width*72, self.height*72) for vertices, code in path.iter_segments( trans_and_flip, clip=clip, simplify=False): if len(vertices): x, y = vertices[-2:] attrib['x'] = six.text_type(x) attrib['y'] = six.text_type(y) attrib['style'] = self._get_style(gc, rgbFace) writer.element('use', attrib=attrib) writer.end('g') def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): # Is the optimization worth it? Rough calculation: # cost of emitting a path in-line is # (len_path + 5) * uses_per_path # cost of definition+use is # (len_path + 3) + 9 * uses_per_path len_path = len(paths[0].vertices) if len(paths) > 0 else 0 uses_per_path = self._iter_collection_uses_per_path( paths, all_transforms, offsets, facecolors, edgecolors) should_do_optimization = \ len_path + 9 * uses_per_path + 3 < (len_path + 5) * uses_per_path if not should_do_optimization: return RendererBase.draw_path_collection( self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position) writer = self.writer path_codes = [] writer.start('defs') for i, (path, transform) in enumerate(self._iter_collection_raw_paths( master_transform, paths, all_transforms)): transform = Affine2D(transform.get_matrix()).scale(1.0, -1.0) d = self._convert_path(path, transform, simplify=False) oid = 'C%x_%x_%s' % (self._path_collection_id, i, self._make_id('', d)) writer.element('path', id=oid, d=d) path_codes.append(oid) writer.end('defs') for xo, yo, path_id, gc0, rgbFace in self._iter_collection( gc, master_transform, all_transforms, path_codes, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): clipid = self._get_clip(gc0) url = gc0.get_url() if url is not None: writer.start('a', attrib={'xlink:href': url}) if clipid is not None: writer.start('g', attrib={'clip-path': 'url(#%s)' % clipid}) attrib = { 'xlink:href': '#%s' % path_id, 'x': six.text_type(xo), 'y': six.text_type(self.height - yo), 'style': self._get_style(gc0, rgbFace) } writer.element('use', attrib=attrib) if clipid is not None: writer.end('g') if url is not None: writer.end('a') self._path_collection_id += 1 def draw_gouraud_triangle(self, gc, points, colors, trans): # This uses a method described here: # # http://www.svgopen.org/2005/papers/Converting3DFaceToSVG/index.html # # that uses three overlapping linear gradients to simulate a # Gouraud triangle. Each gradient goes from fully opaque in # one corner to fully transparent along the opposite edge. # The line between the stop points is perpendicular to the # opposite edge. Underlying these three gradients is a solid # triangle whose color is the average of all three points. writer = self.writer if not self._has_gouraud: self._has_gouraud = True writer.start( 'filter', id='colorAdd') writer.element( 'feComposite', attrib={'in': 'SourceGraphic'}, in2='BackgroundImage', operator='arithmetic', k2="1", k3="1") writer.end('filter') avg_color = np.sum(colors[:, :], axis=0) / 3.0 # Just skip fully-transparent triangles if avg_color[-1] == 0.0: return trans_and_flip = self._make_flip_transform(trans) tpoints = trans_and_flip.transform(points) writer.start('defs') for i in range(3): x1, y1 = tpoints[i] x2, y2 = tpoints[(i + 1) % 3] x3, y3 = tpoints[(i + 2) % 3] c = colors[i][:] if x2 == x3: xb = x2 yb = y1 elif y2 == y3: xb = x1 yb = y2 else: m1 = (y2 - y3) / (x2 - x3) b1 = y2 - (m1 * x2) m2 = -(1.0 / m1) b2 = y1 - (m2 * x1) xb = (-b1 + b2) / (m1 - m2) yb = m2 * xb + b2 writer.start( 'linearGradient', id="GR%x_%d" % (self._n_gradients, i), x1=six.text_type(x1), y1=six.text_type(y1), x2=six.text_type(xb), y2=six.text_type(yb)) writer.element( 'stop', offset='0', style=generate_css({'stop-color': rgb2hex(c), 'stop-opacity': six.text_type(c[-1])})) writer.element( 'stop', offset='1', style=generate_css({'stop-color': rgb2hex(c), 'stop-opacity': "0"})) writer.end('linearGradient') writer.element( 'polygon', id='GT%x' % self._n_gradients, points=" ".join([six.text_type(x) for x in (x1, y1, x2, y2, x3, y3)])) writer.end('defs') avg_color = np.sum(colors[:, :], axis=0) / 3.0 href = '#GT%x' % self._n_gradients writer.element( 'use', attrib={'xlink:href': href, 'fill': rgb2hex(avg_color), 'fill-opacity': str(avg_color[-1])}) for i in range(3): writer.element( 'use', attrib={'xlink:href': href, 'fill': 'url(#GR%x_%d)' % (self._n_gradients, i), 'fill-opacity': '1', 'filter': 'url(#colorAdd)'}) self._n_gradients += 1 def draw_gouraud_triangles(self, gc, triangles_array, colors_array, transform): attrib = {} clipid = self._get_clip(gc) if clipid is not None: attrib['clip-path'] = 'url(#%s)' % clipid self.writer.start('g', attrib=attrib) transform = transform.frozen() for tri, col in zip(triangles_array, colors_array): self.draw_gouraud_triangle(gc, tri, col, transform) self.writer.end('g') def option_scale_image(self): return True def get_image_magnification(self): return self.image_dpi / 72.0 def draw_image(self, gc, x, y, im, dx=None, dy=None, transform=None): attrib = {} clipid = self._get_clip(gc) if clipid is not None: # Can't apply clip-path directly to the image because the # image has a transformation, which would also be applied # to the clip-path self.writer.start('g', attrib={'clip-path': 'url(#%s)' % clipid}) trans = [1,0,0,1,0,0] if rcParams['svg.image_noscale']: trans = list(im.get_matrix()) trans[5] = -trans[5] attrib['transform'] = generate_transform([('matrix', tuple(trans))]) assert trans[1] == 0 assert trans[2] == 0 numrows, numcols = im.get_size() im.reset_matrix() im.set_interpolation(0) im.resize(numcols, numrows) h,w = im.get_size_out() if dx is None: w = 72.0*w/self.image_dpi else: w = dx if dy is None: h = 72.0*h/self.image_dpi else: h = dy oid = getattr(im, '_gid', None) url = getattr(im, '_url', None) if url is not None: self.writer.start('a', attrib={'xlink:href': url}) if rcParams['svg.image_inline']: bytesio = io.BytesIO() im.flipud_out() rows, cols, buffer = im.as_rgba_str() _png.write_png(buffer, cols, rows, bytesio) im.flipud_out() oid = oid or self._make_id('image', bytesio) attrib['xlink:href'] = ( "data:image/png;base64,\n" + base64.b64encode(bytesio.getvalue()).decode('ascii')) else: self._imaged[self.basename] = self._imaged.get(self.basename,0) + 1 filename = '%s.image%d.png'%(self.basename, self._imaged[self.basename]) verbose.report( 'Writing image file for inclusion: %s' % filename) im.flipud_out() rows, cols, buffer = im.as_rgba_str() _png.write_png(buffer, cols, rows, filename) im.flipud_out() oid = oid or 'Im_' + self._make_id('image', filename) attrib['xlink:href'] = filename alpha = gc.get_alpha() if alpha != 1.0: attrib['opacity'] = str(alpha) attrib['id'] = oid if transform is None: self.writer.element( 'image', x=six.text_type(x/trans[0]), y=six.text_type((self.height-y)/trans[3]-h), width=six.text_type(w), height=six.text_type(h), attrib=attrib) else: flipped = self._make_flip_transform(transform) flipped = np.array(flipped.to_values()) y = y+dy if dy > 0.0: flipped[3] *= -1.0 y *= -1.0 attrib['transform'] = generate_transform( [('matrix', flipped)]) self.writer.element( 'image', x=six.text_type(x), y=six.text_type(y), width=six.text_type(dx), height=six.text_type(abs(dy)), attrib=attrib) if url is not None: self.writer.end('a') if clipid is not None: self.writer.end('g') def _adjust_char_id(self, char_id): return char_id.replace("%20", "_") def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath, mtext=None): """ draw the text by converting them to paths using textpath module. *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. If "TeX", use *usetex* mode. """ writer = self.writer writer.comment(s) glyph_map=self._glyph_map text2path = self._text2path color = rgb2hex(gc.get_rgb()) fontsize = prop.get_size_in_points() style = {} if color != '#000000': style['fill'] = color if gc.get_alpha() != 1.0: style['opacity'] = six.text_type(gc.get_alpha()) if not ismath: font = text2path._get_font(prop) _glyphs = text2path.get_glyphs_with_font( font, s, glyph_map=glyph_map, return_new_glyphs_only=True) glyph_info, glyph_map_new, rects = _glyphs if glyph_map_new: writer.start('defs') for char_id, glyph_path in six.iteritems(glyph_map_new): path = Path(*glyph_path) path_data = self._convert_path(path, simplify=False) writer.element('path', id=char_id, d=path_data) writer.end('defs') glyph_map.update(glyph_map_new) attrib = {} attrib['style'] = generate_css(style) font_scale = fontsize / text2path.FONT_SCALE attrib['transform'] = generate_transform([ ('translate', (x, y)), ('rotate', (-angle,)), ('scale', (font_scale, -font_scale))]) writer.start('g', attrib=attrib) for glyph_id, xposition, yposition, scale in glyph_info: attrib={'xlink:href': '#%s' % glyph_id} if xposition != 0.0: attrib['x'] = six.text_type(xposition) if yposition != 0.0: attrib['y'] = six.text_type(yposition) writer.element( 'use', attrib=attrib) writer.end('g') else: if ismath == "TeX": _glyphs = text2path.get_glyphs_tex(prop, s, glyph_map=glyph_map, return_new_glyphs_only=True) else: _glyphs = text2path.get_glyphs_mathtext(prop, s, glyph_map=glyph_map, return_new_glyphs_only=True) glyph_info, glyph_map_new, rects = _glyphs # we store the character glyphs w/o flipping. Instead, the # coordinate will be flipped when this characters are # used. if glyph_map_new: writer.start('defs') for char_id, glyph_path in six.iteritems(glyph_map_new): char_id = self._adjust_char_id(char_id) # Some characters are blank if not len(glyph_path[0]): path_data = "" else: path = Path(*glyph_path) path_data = self._convert_path(path, simplify=False) writer.element('path', id=char_id, d=path_data) writer.end('defs') glyph_map.update(glyph_map_new) attrib = {} font_scale = fontsize / text2path.FONT_SCALE attrib['style'] = generate_css(style) attrib['transform'] = generate_transform([ ('translate', (x, y)), ('rotate', (-angle,)), ('scale', (font_scale, -font_scale))]) writer.start('g', attrib=attrib) for char_id, xposition, yposition, scale in glyph_info: char_id = self._adjust_char_id(char_id) writer.element( 'use', transform=generate_transform([ ('translate', (xposition, yposition)), ('scale', (scale,)), ]), attrib={'xlink:href': '#%s' % char_id}) for verts, codes in rects: path = Path(verts, codes) path_data = self._convert_path(path, simplify=False) writer.element('path', d=path_data) writer.end('g') def _draw_text_as_text(self, gc, x, y, s, prop, angle, ismath, mtext=None): writer = self.writer color = rgb2hex(gc.get_rgb()) style = {} if color != '#000000': style['fill'] = color if gc.get_alpha() != 1.0: style['opacity'] = six.text_type(gc.get_alpha()) if not ismath: font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) fontsize = prop.get_size_in_points() fontfamily = font.family_name fontstyle = prop.get_style() attrib = {} # Must add "px" to workaround a Firefox bug style['font-size'] = six.text_type(fontsize) + 'px' style['font-family'] = six.text_type(fontfamily) style['font-style'] = prop.get_style().lower() attrib['style'] = generate_css(style) if mtext and (angle == 0 or mtext.get_rotation_mode() == "anchor"): # If text anchoring can be supported, get the original # coordinates and add alignment information. # Get anchor coordinates. transform = mtext.get_transform() ax, ay = transform.transform_point(mtext.get_position()) ay = self.height - ay # Don't do vertical anchor alignment. Most applications do not # support 'alignment-baseline' yet. Apply the vertical layout # to the anchor point manually for now. angle_rad = angle * np.pi / 180. dir_vert = np.array([np.sin(angle_rad), np.cos(angle_rad)]) v_offset = np.dot(dir_vert, [(x - ax), (y - ay)]) ax = ax + v_offset * dir_vert[0] ay = ay + v_offset * dir_vert[1] ha_mpl_to_svg = {'left': 'start', 'right': 'end', 'center': 'middle'} style['text-anchor'] = ha_mpl_to_svg[mtext.get_ha()] attrib['x'] = str(ax) attrib['y'] = str(ay) attrib['style'] = generate_css(style) attrib['transform'] = "rotate(%f, %f, %f)" % (-angle, ax, ay) writer.element('text', s, attrib=attrib) else: attrib['transform'] = generate_transform([ ('translate', (x, y)), ('rotate', (-angle,))]) writer.element('text', s, attrib=attrib) if rcParams['svg.fonttype'] == 'svgfont': fontset = self._fonts.setdefault(font.fname, set()) for c in s: fontset.add(ord(c)) else: writer.comment(s) width, height, descent, svg_elements, used_characters = \ self.mathtext_parser.parse(s, 72, prop) svg_glyphs = svg_elements.svg_glyphs svg_rects = svg_elements.svg_rects attrib = {} attrib['style'] = generate_css(style) attrib['transform'] = generate_transform([ ('translate', (x, y)), ('rotate', (-angle,))]) # Apply attributes to 'g', not 'text', because we likely # have some rectangles as well with the same style and # transformation writer.start('g', attrib=attrib) writer.start('text') # Sort the characters by font, and output one tspan for # each spans = {} for font, fontsize, thetext, new_x, new_y, metrics in svg_glyphs: style = generate_css({ 'font-size': six.text_type(fontsize) + 'px', 'font-family': font.family_name, 'font-style': font.style_name.lower()}) if thetext == 32: thetext = 0xa0 # non-breaking space spans.setdefault(style, []).append((new_x, -new_y, thetext)) if rcParams['svg.fonttype'] == 'svgfont': for font, fontsize, thetext, new_x, new_y, metrics in svg_glyphs: fontset = self._fonts.setdefault(font.fname, set()) fontset.add(thetext) for style, chars in list(six.iteritems(spans)): chars.sort() same_y = True if len(chars) > 1: last_y = chars[0][1] for i in xrange(1, len(chars)): if chars[i][1] != last_y: same_y = False break if same_y: ys = six.text_type(chars[0][1]) else: ys = ' '.join(six.text_type(c[1]) for c in chars) attrib = { 'style': style, 'x': ' '.join(six.text_type(c[0]) for c in chars), 'y': ys } writer.element( 'tspan', ''.join(unichr(c[2]) for c in chars), attrib=attrib) writer.end('text') if len(svg_rects): for x, y, width, height in svg_rects: writer.element( 'rect', x=six.text_type(x), y=six.text_type(-y + height), width=six.text_type(width), height=six.text_type(height) ) writer.end('g') def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): self._draw_text_as_path(gc, x, y, s, prop, angle, ismath="TeX") def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): clipid = self._get_clip(gc) if clipid is not None: # Cannot apply clip-path directly to the text, because # is has a transformation self.writer.start( 'g', attrib={'clip-path': 'url(#%s)' % clipid}) if gc.get_url() is not None: self.writer.start('a', {'xlink:href': gc.get_url()}) if rcParams['svg.fonttype'] == 'path': self._draw_text_as_path(gc, x, y, s, prop, angle, ismath, mtext) else: self._draw_text_as_text(gc, x, y, s, prop, angle, ismath, mtext) if gc.get_url() is not None: self.writer.end('a') if clipid is not None: self.writer.end('g') def flipy(self): return True def get_canvas_width_height(self): return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): return self._text2path.get_text_width_height_descent(s, prop, ismath) class FigureCanvasSVG(FigureCanvasBase): filetypes = {'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics'} fixed_dpi = 72 def print_svg(self, filename, *args, **kwargs): if is_string_like(filename): fh_to_close = svgwriter = io.open(filename, 'w', encoding='utf-8') elif is_writable_file_like(filename): if not isinstance(filename, io.TextIOBase): if six.PY3: svgwriter = io.TextIOWrapper(filename, 'utf-8') else: svgwriter = codecs.getwriter('utf-8')(filename) else: svgwriter = filename fh_to_close = None else: raise ValueError("filename must be a path or a file-like object") return self._print_svg(filename, svgwriter, fh_to_close, **kwargs) def print_svgz(self, filename, *args, **kwargs): if is_string_like(filename): fh_to_close = gzipwriter = gzip.GzipFile(filename, 'w') svgwriter = io.TextIOWrapper(gzipwriter, 'utf-8') elif is_writable_file_like(filename): fh_to_close = gzipwriter = gzip.GzipFile(fileobj=filename, mode='w') svgwriter = io.TextIOWrapper(gzipwriter, 'utf-8') else: raise ValueError("filename must be a path or a file-like object") return self._print_svg(filename, svgwriter, fh_to_close) def _print_svg(self, filename, svgwriter, fh_to_close=None, **kwargs): try: image_dpi = kwargs.pop("dpi", 72) self.figure.set_dpi(72.0) width, height = self.figure.get_size_inches() w, h = width*72, height*72 if rcParams['svg.image_noscale']: renderer = RendererSVG(w, h, svgwriter, filename, image_dpi) else: _bbox_inches_restore = kwargs.pop("bbox_inches_restore", None) renderer = MixedModeRenderer(self.figure, width, height, image_dpi, RendererSVG(w, h, svgwriter, filename, image_dpi), bbox_inches_restore=_bbox_inches_restore) self.figure.draw(renderer) renderer.finalize() finally: if fh_to_close is not None: svgwriter.close() def get_default_filetype(self): return 'svg' class FigureManagerSVG(FigureManagerBase): pass def new_figure_manager(num, *args, **kwargs): FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasSVG(figure) manager = FigureManagerSVG(canvas, num) return manager svgProlog = """\ <?xml version="1.0" encoding="utf-8" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <!-- Created with matplotlib (http://matplotlib.org/) --> """ FigureCanvas = FigureCanvasSVG FigureManager = FigureManagerSVG
mit
MSeifert04/astropy
astropy/time/tests/test_basic.py
1
81893
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import copy import functools import datetime from copy import deepcopy from decimal import Decimal, localcontext import numpy as np from numpy.testing import assert_allclose from astropy.tests.helper import catch_warnings, pytest from astropy.utils.exceptions import AstropyDeprecationWarning, ErfaWarning from astropy.utils import isiterable, iers from astropy.time import (Time, TimeDelta, ScaleValueError, STANDARD_TIME_SCALES, TimeString, TimezoneInfo) from astropy.coordinates import EarthLocation from astropy import units as u from astropy import _erfa as erfa from astropy.table import Column, Table try: import pytz HAS_PYTZ = True except ImportError: HAS_PYTZ = False allclose_jd = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=0) allclose_jd2 = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=np.finfo(float).eps) # 20 ps atol allclose_sec = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=np.finfo(float).eps * 24 * 3600) allclose_year = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=0.) # 14 microsec at current epoch def setup_function(func): func.FORMATS_ORIG = deepcopy(Time.FORMATS) def teardown_function(func): Time.FORMATS.clear() Time.FORMATS.update(func.FORMATS_ORIG) class TestBasic: """Basic tests stemming from initial example and API reference""" def test_simple(self): times = ['1999-01-01 00:00:00.123456789', '2010-01-01 00:00:00'] t = Time(times, format='iso', scale='utc') assert (repr(t) == "<Time object: scale='utc' format='iso' " "value=['1999-01-01 00:00:00.123' '2010-01-01 00:00:00.000']>") assert allclose_jd(t.jd1, np.array([2451180., 2455198.])) assert allclose_jd2(t.jd2, np.array([-0.5+1.4288980208333335e-06, -0.50000000e+00])) # Set scale to TAI t = t.tai assert (repr(t) == "<Time object: scale='tai' format='iso' " "value=['1999-01-01 00:00:32.123' '2010-01-01 00:00:34.000']>") assert allclose_jd(t.jd1, np.array([2451180., 2455198.])) assert allclose_jd2(t.jd2, np.array([-0.5+0.00037179926839122024, -0.5+0.00039351851851851852])) # Get a new ``Time`` object which is referenced to the TT scale # (internal JD1 and JD1 are now with respect to TT scale)""" assert (repr(t.tt) == "<Time object: scale='tt' format='iso' " "value=['1999-01-01 00:01:04.307' '2010-01-01 00:01:06.184']>") # Get the representation of the ``Time`` object in a particular format # (in this case seconds since 1998.0). This returns either a scalar or # array, depending on whether the input was a scalar or array""" assert allclose_sec(t.cxcsec, np.array([31536064.307456788, 378691266.18400002])) def test_different_dimensions(self): """Test scalars, vector, and higher-dimensions""" # scalar val, val1 = 2450000.0, 0.125 t1 = Time(val, val1, format='jd') assert t1.isscalar is True and t1.shape == () # vector val = np.arange(2450000., 2450010.) t2 = Time(val, format='jd') assert t2.isscalar is False and t2.shape == val.shape # explicitly check broadcasting for mixed vector, scalar. val2 = 0. t3 = Time(val, val2, format='jd') assert t3.isscalar is False and t3.shape == val.shape val2 = (np.arange(5.)/10.).reshape(5, 1) # now see if broadcasting to two-dimensional works t4 = Time(val, val2, format='jd') assert t4.isscalar is False assert t4.shape == np.broadcast(val, val2).shape @pytest.mark.parametrize('format_', Time.FORMATS) def test_empty_value(self, format_): t = Time([], format=format_) assert t.size == 0 assert t.shape == (0,) assert t.format == format_ t_value = t.value assert t_value.size == 0 assert t_value.shape == (0,) t2 = Time(t_value, format=format_) assert t2.size == 0 assert t2.shape == (0,) assert t2.format == format_ t3 = t2.tai assert t3.size == 0 assert t3.shape == (0,) assert t3.format == format_ assert t3.scale == 'tai' @pytest.mark.parametrize('value', [2455197.5, [2455197.5]]) def test_copy_time(self, value): """Test copying the values of a Time object by passing it into the Time initializer. """ t = Time(value, format='jd', scale='utc') t2 = Time(t, copy=False) assert np.all(t.jd - t2.jd == 0) assert np.all((t - t2).jd == 0) assert t._time.jd1 is t2._time.jd1 assert t._time.jd2 is t2._time.jd2 t2 = Time(t, copy=True) assert np.all(t.jd - t2.jd == 0) assert np.all((t - t2).jd == 0) assert t._time.jd1 is not t2._time.jd1 assert t._time.jd2 is not t2._time.jd2 # Include initializers t2 = Time(t, format='iso', scale='tai', precision=1) assert t2.value == '2010-01-01 00:00:34.0' t2 = Time(t, format='iso', scale='tai', out_subfmt='date') assert t2.value == '2010-01-01' def test_getitem(self): """Test that Time objects holding arrays are properly subscriptable, set isscalar as appropriate, and also subscript delta_ut1_utc, etc.""" mjd = np.arange(50000, 50010) t = Time(mjd, format='mjd', scale='utc', location=('45d', '50d')) t1 = t[3] assert t1.isscalar is True assert t1._time.jd1 == t._time.jd1[3] assert t1.location is t.location t1a = Time(mjd[3], format='mjd', scale='utc') assert t1a.isscalar is True assert np.all(t1._time.jd1 == t1a._time.jd1) t1b = Time(t[3]) assert t1b.isscalar is True assert np.all(t1._time.jd1 == t1b._time.jd1) t2 = t[4:6] assert t2.isscalar is False assert np.all(t2._time.jd1 == t._time.jd1[4:6]) assert t2.location is t.location t2a = Time(t[4:6]) assert t2a.isscalar is False assert np.all(t2a._time.jd1 == t._time.jd1[4:6]) t2b = Time([t[4], t[5]]) assert t2b.isscalar is False assert np.all(t2b._time.jd1 == t._time.jd1[4:6]) t2c = Time((t[4], t[5])) assert t2c.isscalar is False assert np.all(t2c._time.jd1 == t._time.jd1[4:6]) t.delta_tdb_tt = np.arange(len(t)) # Explicitly set (not testing .tdb) t3 = t[4:6] assert np.all(t3._delta_tdb_tt == t._delta_tdb_tt[4:6]) t4 = Time(mjd, format='mjd', scale='utc', location=(np.arange(len(mjd)), np.arange(len(mjd)))) t5 = t4[3] assert t5.location == t4.location[3] t6 = t4[4:6] assert np.all(t6.location == t4.location[4:6]) # check it is a view # (via ndarray, since quantity setter problematic for structured array) allzeros = np.array((0., 0., 0.), dtype=t4.location.dtype) assert t6.location.view(np.ndarray)[-1] != allzeros assert t4.location.view(np.ndarray)[5] != allzeros t6.location.view(np.ndarray)[-1] = allzeros assert t4.location.view(np.ndarray)[5] == allzeros # Test subscription also works for two-dimensional arrays. frac = np.arange(0., 0.999, 0.2) t7 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc', location=('45d', '50d')) assert t7[0, 0]._time.jd1 == t7._time.jd1[0, 0] assert t7[0, 0].isscalar is True assert np.all(t7[5]._time.jd1 == t7._time.jd1[5]) assert np.all(t7[5]._time.jd2 == t7._time.jd2[5]) assert np.all(t7[:, 2]._time.jd1 == t7._time.jd1[:, 2]) assert np.all(t7[:, 2]._time.jd2 == t7._time.jd2[:, 2]) assert np.all(t7[:, 0]._time.jd1 == t._time.jd1) assert np.all(t7[:, 0]._time.jd2 == t._time.jd2) # Get tdb to check that delta_tdb_tt attribute is sliced properly. t7_tdb = t7.tdb assert t7_tdb[0, 0].delta_tdb_tt == t7_tdb.delta_tdb_tt[0, 0] assert np.all(t7_tdb[5].delta_tdb_tt == t7_tdb.delta_tdb_tt[5]) assert np.all(t7_tdb[:, 2].delta_tdb_tt == t7_tdb.delta_tdb_tt[:, 2]) # Explicitly set delta_tdb_tt attribute. Now it should not be sliced. t7.delta_tdb_tt = 0.1 t7_tdb2 = t7.tdb assert t7_tdb2[0, 0].delta_tdb_tt == 0.1 assert t7_tdb2[5].delta_tdb_tt == 0.1 assert t7_tdb2[:, 2].delta_tdb_tt == 0.1 # Check broadcasting of location. t8 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc', location=(np.arange(len(frac)), np.arange(len(frac)))) assert t8[0, 0].location == t8.location[0, 0] assert np.all(t8[5].location == t8.location[5]) assert np.all(t8[:, 2].location == t8.location[:, 2]) # Finally check empty array. t9 = t[:0] assert t9.isscalar is False assert t9.shape == (0,) assert t9.size == 0 def test_properties(self): """Use properties to convert scales and formats. Note that the UT1 to UTC transformation requires a supplementary value (``delta_ut1_utc``) that can be obtained by interpolating from a table supplied by IERS. This is tested separately.""" t = Time('2010-01-01 00:00:00', format='iso', scale='utc') t.delta_ut1_utc = 0.3341 # Explicitly set one part of the xform assert allclose_jd(t.jd, 2455197.5) assert t.iso == '2010-01-01 00:00:00.000' assert t.tt.iso == '2010-01-01 00:01:06.184' assert t.tai.fits == '2010-01-01T00:00:34.000' assert allclose_jd(t.utc.jd, 2455197.5) assert allclose_jd(t.ut1.jd, 2455197.500003867) assert t.tcg.isot == '2010-01-01T00:01:06.910' assert allclose_sec(t.unix, 1262304000.0) assert allclose_sec(t.cxcsec, 378691266.184) assert allclose_sec(t.gps, 946339215.0) assert t.datetime == datetime.datetime(2010, 1, 1) def test_precision(self): """Set the output precision which is used for some formats. This is also a test of the code that provides a dict for global and instance options.""" t = Time('2010-01-01 00:00:00', format='iso', scale='utc') # Uses initial class-defined precision=3 assert t.iso == '2010-01-01 00:00:00.000' # Set instance precision to 9 t.precision = 9 assert t.iso == '2010-01-01 00:00:00.000000000' assert t.tai.utc.iso == '2010-01-01 00:00:00.000000000' def test_transforms(self): """Transform from UTC to all supported time scales (TAI, TCB, TCG, TDB, TT, UT1, UTC). This requires auxiliary information (latitude and longitude).""" lat = 19.48125 lon = -155.933222 t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc', precision=6, location=(lon, lat)) t.delta_ut1_utc = 0.3341 # Explicitly set one part of the xform assert t.utc.iso == '2006-01-15 21:24:37.500000' assert t.ut1.iso == '2006-01-15 21:24:37.834100' assert t.tai.iso == '2006-01-15 21:25:10.500000' assert t.tt.iso == '2006-01-15 21:25:42.684000' assert t.tcg.iso == '2006-01-15 21:25:43.322690' assert t.tdb.iso == '2006-01-15 21:25:42.684373' assert t.tcb.iso == '2006-01-15 21:25:56.893952' def test_location(self): """Check that location creates an EarthLocation object, and that such objects can be used as arguments. """ lat = 19.48125 lon = -155.933222 t = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=(lon, lat)) assert isinstance(t.location, EarthLocation) location = EarthLocation(lon, lat) t2 = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=location) assert isinstance(t2.location, EarthLocation) assert t2.location == t.location t3 = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=(location.x, location.y, location.z)) assert isinstance(t3.location, EarthLocation) assert t3.location == t.location def test_location_array(self): """Check that location arrays are checked for size and used for the corresponding times. Also checks that erfa can handle array-valued locations, and can broadcast these if needed. """ lat = 19.48125 lon = -155.933222 t = Time(['2006-01-15 21:24:37.5']*2, format='iso', scale='utc', precision=6, location=(lon, lat)) assert np.all(t.utc.iso == '2006-01-15 21:24:37.500000') assert np.all(t.tdb.iso[0] == '2006-01-15 21:25:42.684373') t2 = Time(['2006-01-15 21:24:37.5']*2, format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) assert np.all(t2.utc.iso == '2006-01-15 21:24:37.500000') assert t2.tdb.iso[0] == '2006-01-15 21:25:42.684373' assert t2.tdb.iso[1] != '2006-01-15 21:25:42.684373' with pytest.raises(ValueError): # 1 time, but two locations Time('2006-01-15 21:24:37.5', format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) with pytest.raises(ValueError): # 3 times, but two locations Time(['2006-01-15 21:24:37.5']*3, format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) # multidimensional mjd = np.arange(50000., 50008.).reshape(4, 2) t3 = Time(mjd, format='mjd', scale='utc', location=(lon, lat)) assert t3.shape == (4, 2) assert t3.location.shape == () assert t3.tdb.shape == t3.shape t4 = Time(mjd, format='mjd', scale='utc', location=(np.array([lon, 0]), np.array([lat, 0]))) assert t4.shape == (4, 2) assert t4.location.shape == t4.shape assert t4.tdb.shape == t4.shape t5 = Time(mjd, format='mjd', scale='utc', location=(np.array([[lon], [0], [0], [0]]), np.array([[lat], [0], [0], [0]]))) assert t5.shape == (4, 2) assert t5.location.shape == t5.shape assert t5.tdb.shape == t5.shape def test_all_scale_transforms(self): """Test that standard scale transforms work. Does not test correctness, except reversibility [#2074]. Also tests that standard scales can't be converted to local scales""" lat = 19.48125 lon = -155.933222 with iers.conf.set_temp('auto_download', False): for scale1 in STANDARD_TIME_SCALES: t1 = Time('2006-01-15 21:24:37.5', format='iso', scale=scale1, location=(lon, lat)) for scale2 in STANDARD_TIME_SCALES: t2 = getattr(t1, scale2) t21 = getattr(t2, scale1) assert allclose_jd(t21.jd, t1.jd) # test for conversion to local scale scale3 = 'local' with pytest.raises(ScaleValueError): t2 = getattr(t1, scale3) def test_creating_all_formats(self): """Create a time object using each defined format""" Time(2000.5, format='decimalyear') Time(100.0, format='cxcsec') Time(100.0, format='unix') Time(100.0, format='gps') Time(1950.0, format='byear', scale='tai') Time(2000.0, format='jyear', scale='tai') Time('B1950.0', format='byear_str', scale='tai') Time('J2000.0', format='jyear_str', scale='tai') Time('2000-01-01 12:23:34.0', format='iso', scale='tai') Time('2000-01-01 12:23:34.0Z', format='iso', scale='utc') Time('2000-01-01T12:23:34.0', format='isot', scale='tai') Time('2000-01-01T12:23:34.0Z', format='isot', scale='utc') Time('2000-01-01T12:23:34.0', format='fits') Time('2000-01-01T12:23:34.0', format='fits', scale='tdb') Time(2400000.5, 51544.0333981, format='jd', scale='tai') Time(0.0, 51544.0333981, format='mjd', scale='tai') Time('2000:001:12:23:34.0', format='yday', scale='tai') Time('2000:001:12:23:34.0Z', format='yday', scale='utc') dt = datetime.datetime(2000, 1, 2, 3, 4, 5, 123456) Time(dt, format='datetime', scale='tai') Time([dt, dt], format='datetime', scale='tai') dt64 = np.datetime64('2012-06-18T02:00:05.453000000', format='datetime64') Time(dt64, format='datetime64', scale='tai') Time([dt64, dt64], format='datetime64', scale='tai') def test_local_format_transforms(self): """ Test trasformation of local time to different formats Transformation to formats with reference time should give ScalevalueError """ t = Time('2006-01-15 21:24:37.5', scale='local') assert_allclose(t.jd, 2453751.3921006946, atol=0.001/3600./24., rtol=0.) assert_allclose(t.mjd, 53750.892100694444, atol=0.001/3600./24., rtol=0.) assert_allclose(t.decimalyear, 2006.0408002758752, atol=0.001/3600./24./365., rtol=0.) assert t.datetime == datetime.datetime(2006, 1, 15, 21, 24, 37, 500000) assert t.isot == '2006-01-15T21:24:37.500' assert t.yday == '2006:015:21:24:37.500' assert t.fits == '2006-01-15T21:24:37.500' assert_allclose(t.byear, 2006.04217888831, atol=0.001/3600./24./365., rtol=0.) assert_allclose(t.jyear, 2006.0407723496082, atol=0.001/3600./24./365., rtol=0.) assert t.byear_str == 'B2006.042' assert t.jyear_str == 'J2006.041' # epochTimeFormats with pytest.raises(ScaleValueError): t2 = t.gps with pytest.raises(ScaleValueError): t2 = t.unix with pytest.raises(ScaleValueError): t2 = t.cxcsec with pytest.raises(ScaleValueError): t2 = t.plot_date def test_datetime(self): """ Test datetime format, including guessing the format from the input type by not providing the format keyword to Time. """ dt = datetime.datetime(2000, 1, 2, 3, 4, 5, 123456) dt2 = datetime.datetime(2001, 1, 1) t = Time(dt, scale='utc', precision=9) assert t.iso == '2000-01-02 03:04:05.123456000' assert t.datetime == dt assert t.value == dt t2 = Time(t.iso, scale='utc') assert t2.datetime == dt t = Time([dt, dt2], scale='utc') assert np.all(t.value == [dt, dt2]) t = Time('2000-01-01 01:01:01.123456789', scale='tai') assert t.datetime == datetime.datetime(2000, 1, 1, 1, 1, 1, 123457) # broadcasting dt3 = (dt + (dt2-dt)*np.arange(12)).reshape(4, 3) t3 = Time(dt3, scale='utc') assert t3.shape == (4, 3) assert t3[2, 1].value == dt3[2, 1] assert t3[2, 1] == Time(dt3[2, 1]) assert np.all(t3.value == dt3) assert np.all(t3[1].value == dt3[1]) assert np.all(t3[:, 2] == Time(dt3[:, 2])) assert Time(t3[2, 0]) == t3[2, 0] def test_datetime64(self): dt64 = np.datetime64('2000-01-02T03:04:05.123456789') dt64_2 = np.datetime64('2000-01-02') t = Time(dt64, scale='utc', precision=9, format='datetime64') assert t.iso == '2000-01-02 03:04:05.123456789' assert t.datetime64 == dt64 assert t.value == dt64 t2 = Time(t.iso, scale='utc') assert t2.datetime64 == dt64 t = Time(dt64_2, scale='utc', precision=3, format='datetime64') assert t.iso == '2000-01-02 00:00:00.000' assert t.datetime64 == dt64_2 assert t.value == dt64_2 t2 = Time(t.iso, scale='utc') assert t2.datetime64 == dt64_2 t = Time([dt64, dt64_2], scale='utc', format='datetime64') assert np.all(t.value == [dt64, dt64_2]) t = Time('2000-01-01 01:01:01.123456789', scale='tai') assert t.datetime64 == np.datetime64('2000-01-01T01:01:01.123456789') # broadcasting dt3 = (dt64 + (dt64_2-dt64)*np.arange(12)).reshape(4, 3) t3 = Time(dt3, scale='utc', format='datetime64') assert t3.shape == (4, 3) assert t3[2, 1].value == dt3[2, 1] assert t3[2, 1] == Time(dt3[2, 1], format='datetime64') assert np.all(t3.value == dt3) assert np.all(t3[1].value == dt3[1]) assert np.all(t3[:, 2] == Time(dt3[:, 2], format='datetime64')) assert Time(t3[2, 0], format='datetime64') == t3[2, 0] def test_epoch_transform(self): """Besselian and julian epoch transforms""" jd = 2457073.05631 t = Time(jd, format='jd', scale='tai', precision=6) assert allclose_year(t.byear, 2015.1365941020817) assert allclose_year(t.jyear, 2015.1349933196439) assert t.byear_str == 'B2015.136594' assert t.jyear_str == 'J2015.134993' t2 = Time(t.byear, format='byear', scale='tai') assert allclose_jd(t2.jd, jd) t2 = Time(t.jyear, format='jyear', scale='tai') assert allclose_jd(t2.jd, jd) t = Time('J2015.134993', scale='tai', precision=6) assert np.allclose(t.jd, jd, rtol=1e-10, atol=0) # J2015.134993 has 10 digit precision assert t.byear_str == 'B2015.136594' def test_input_validation(self): """Wrong input type raises error""" times = [10, 20] with pytest.raises(ValueError): Time(times, format='iso', scale='utc') with pytest.raises(ValueError): Time('2000:001', format='jd', scale='utc') with pytest.raises(ValueError): # unguessable Time([]) with pytest.raises(ValueError): Time([50000.0], ['bad'], format='mjd', scale='tai') with pytest.raises(ValueError): Time(50000.0, 'bad', format='mjd', scale='tai') with pytest.raises(ValueError): Time('2005-08-04T00:01:02.000Z', scale='tai') # regression test against #3396 with pytest.raises(ValueError): Time(np.nan, format='jd', scale='utc') with pytest.raises(ValueError): with pytest.warns(AstropyDeprecationWarning): Time('2000-01-02T03:04:05(TAI)', scale='utc') with pytest.raises(ValueError): Time('2000-01-02T03:04:05(TAI') with pytest.raises(ValueError): Time('2000-01-02T03:04:05(UT(NIST)') def test_utc_leap_sec(self): """Time behaves properly near or in UTC leap second. This uses the 2012-06-30 leap second for testing.""" for year, month, day in ((2012, 6, 30), (2016, 12, 31)): # Start with a day without a leap second and note rollover yyyy_mm = f'{year:04d}-{month:02d}' yyyy_mm_dd = f'{year:04d}-{month:02d}-{day:02d}' with pytest.warns(ErfaWarning): t1 = Time(yyyy_mm + '-01 23:59:60.0', scale='utc') assert t1.iso == yyyy_mm + '-02 00:00:00.000' # Leap second is different t1 = Time(yyyy_mm_dd + ' 23:59:59.900', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:59.900' t1 = Time(yyyy_mm_dd + ' 23:59:60.000', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:60.000' t1 = Time(yyyy_mm_dd + ' 23:59:60.999', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:60.999' if month == 6: yyyy_mm_dd_plus1 = f'{year:04d}-07-01' else: yyyy_mm_dd_plus1 = '{:04d}-01-01'.format(year+1) with pytest.warns(ErfaWarning): t1 = Time(yyyy_mm_dd + ' 23:59:61.0', scale='utc') assert t1.iso == yyyy_mm_dd_plus1 + ' 00:00:00.000' # Delta time gives 2 seconds here as expected t0 = Time(yyyy_mm_dd + ' 23:59:59', scale='utc') t1 = Time(yyyy_mm_dd_plus1 + ' 00:00:00', scale='utc') assert allclose_sec((t1 - t0).sec, 2.0) def test_init_from_time_objects(self): """Initialize from one or more Time objects""" t1 = Time('2007:001', scale='tai') t2 = Time(['2007-01-02', '2007-01-03'], scale='utc') # Init from a list of Time objects without an explicit scale t3 = Time([t1, t2]) # Test that init appropriately combines a scalar (t1) and list (t2) # and that scale and format are same as first element. assert len(t3) == 3 assert t3.scale == t1.scale assert t3.format == t1.format # t1 format is yday assert np.all(t3.value == np.concatenate([[t1.yday], t2.tai.yday])) # Init from a single Time object without a scale t3 = Time(t1) assert t3.isscalar assert t3.scale == t1.scale assert t3.format == t1.format assert np.all(t3.value == t1.value) # Init from a single Time object with scale specified t3 = Time(t1, scale='utc') assert t3.scale == 'utc' assert np.all(t3.value == t1.utc.value) # Init from a list of Time object with scale specified t3 = Time([t1, t2], scale='tt') assert t3.scale == 'tt' assert t3.format == t1.format # yday assert np.all(t3.value == np.concatenate([[t1.tt.yday], t2.tt.yday])) # OK, how likely is this... but might as well test. mjd = np.arange(50000., 50006.) frac = np.arange(0., 0.999, 0.2) t4 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc') t5 = Time([t4[:2], t4[4:5]]) assert t5.shape == (3, 5) # throw error when deriving local scale time # from non local time scale with pytest.raises(ValueError): t6 = Time(t1, scale='local') class TestVal2: """Tests related to val2""" @pytest.mark.parametrize("d", [ dict(val="2001:001", val2="ignored", scale="utc"), dict(val={'year': 2015, 'month': 2, 'day': 3, 'hour': 12, 'minute': 13, 'second': 14.567}, val2="ignored", scale="utc"), dict(val=np.datetime64('2005-02-25'), val2="ignored", scale="utc"), dict(val=datetime.datetime(2000, 1, 2, 12, 0, 0), val2="ignored", scale="utc"), ]) def test_unused_val2_raises(self, d): """Test that providing val2 is for string input lets user know we won't use it""" with pytest.raises(ValueError): Time(**d) def test_val2(self): """Various tests of the val2 input""" t = Time([0.0, 50000.0], [50000.0, 0.0], format='mjd', scale='tai') assert t.mjd[0] == t.mjd[1] assert t.jd[0] == t.jd[1] def test_val_broadcasts_against_val2(self): mjd = np.arange(50000., 50007.) frac = np.arange(0., 0.999, 0.2) t = Time(mjd[:, np.newaxis], frac, format='mjd', scale='utc') assert t.shape == (7, 5) with pytest.raises(ValueError): Time([0.0, 50000.0], [0.0, 1.0, 2.0], format='mjd', scale='tai') def test_broadcast_not_writable(self): val = (2458000 + np.arange(3))[:, None] val2 = np.linspace(0, 1, 4, endpoint=False) t = Time(val=val, val2=val2, format="jd", scale="tai") t_b = Time(val=val+0*val2, val2=0*val+val2, format="jd", scale="tai") t_i = Time(val=57990, val2=0.3, format="jd", scale="tai") t_b[1, 2] = t_i t[1, 2] = t_i assert t_b[1, 2] == t[1, 2], "writing worked" assert t_b[0, 2] == t[0, 2], "broadcasting didn't cause problems" assert t_b[1, 1] == t[1, 1], "broadcasting didn't cause problems" assert np.all(t_b == t), "behaved as expected" def test_broadcast_one_not_writable(self): val = (2458000 + np.arange(3)) val2 = np.arange(1) t = Time(val=val, val2=val2, format="jd", scale="tai") t_b = Time(val=val+0*val2, val2=0*val+val2, format="jd", scale="tai") t_i = Time(val=57990, val2=0.3, format="jd", scale="tai") t_b[1] = t_i t[1] = t_i assert t_b[1] == t[1], "writing worked" assert t_b[0] == t[0], "broadcasting didn't cause problems" assert np.all(t_b == t), "behaved as expected" class TestSubFormat: """Test input and output subformat functionality""" def test_input_subformat(self): """Input subformat selection""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai') assert np.all(t.iso == np.array(['2000-01-01 00:00:00.000', '2000-01-01 01:01:00.000', '2000-01-01 01:01:01.000', '2000-01-01 01:01:01.123'])) # Heterogeneous input formats with in_subfmt='date_*' times = ['2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai', in_subfmt='date_*') assert np.all(t.iso == np.array(['2000-01-01 01:01:00.000', '2000-01-01 01:01:01.000', '2000-01-01 01:01:01.123'])) def test_input_subformat_fail(self): """Failed format matching""" with pytest.raises(ValueError): Time('2000-01-01 01:01', format='iso', scale='tai', in_subfmt='date') def test_bad_input_subformat(self): """Non-existent input subformat""" with pytest.raises(ValueError): Time('2000-01-01 01:01', format='iso', scale='tai', in_subfmt='doesnt exist') def test_output_subformat(self): """Input subformat selection""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai', out_subfmt='date_hm') assert np.all(t.iso == np.array(['2000-01-01 00:00', '2000-01-01 01:01', '2000-01-01 01:01', '2000-01-01 01:01'])) def test_fits_format(self): """FITS format includes bigger years.""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01T01:01:01', '2000-01-01T01:01:01.123'] t = Time(times, format='fits', scale='tai') assert np.all(t.fits == np.array(['2000-01-01T00:00:00.000', '2000-01-01T01:01:01.000', '2000-01-01T01:01:01.123'])) # Explicit long format for output, default scale is UTC. t2 = Time(times, format='fits', out_subfmt='long*') assert np.all(t2.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '+02000-01-01T01:01:01.123'])) # Implicit long format for output, because of negative year. times[2] = '-00594-01-01' t3 = Time(times, format='fits', scale='tai') assert np.all(t3.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '-00594-01-01T00:00:00.000'])) # Implicit long format for output, because of large positive year. times[2] = '+10594-01-01' t4 = Time(times, format='fits', scale='tai') assert np.all(t4.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '+10594-01-01T00:00:00.000'])) def test_yday_format(self): """Year:Day_of_year format""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-12-01', '2001-12-01 01:01:01.123'] t = Time(times, format='iso', scale='tai') t.out_subfmt = 'date_hm' assert np.all(t.yday == np.array(['2000:336:00:00', '2001:335:01:01'])) t.out_subfmt = '*' assert np.all(t.yday == np.array(['2000:336:00:00:00.000', '2001:335:01:01:01.123'])) def test_scale_input(self): """Test for issues related to scale input""" # Check case where required scale is defined by the TimeFormat. # All three should work. t = Time(100.0, format='cxcsec', scale='utc') assert t.scale == 'utc' t = Time(100.0, format='unix', scale='tai') assert t.scale == 'tai' t = Time(100.0, format='gps', scale='utc') assert t.scale == 'utc' # Check that bad scale is caught when format is specified with pytest.raises(ScaleValueError): Time(1950.0, format='byear', scale='bad scale') # Check that bad scale is caught when format is auto-determined with pytest.raises(ScaleValueError): Time('2000:001:00:00:00', scale='bad scale') def test_fits_scale(self): """Test that the previous FITS-string formatting can still be handled but with a DeprecationWarning.""" for inputs in (("2000-01-02(TAI)", "tai"), ("1999-01-01T00:00:00.123(ET(NIST))", "tt"), ("2014-12-12T01:00:44.1(UTC)", "utc")): with catch_warnings(AstropyDeprecationWarning): t = Time(inputs[0]) assert t.scale == inputs[1] # Create Time using normal ISOT syntax and compare with FITS t2 = Time(inputs[0][:inputs[0].index("(")], format="isot", scale=inputs[1]) assert t == t2 # Explicit check that conversions still work despite warning with catch_warnings(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:00.123456789(UTC)') t = t.tai assert t.isot == '1999-01-01T00:00:32.123' with catch_warnings(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(TAI)') t = t.utc assert t.isot == '1999-01-01T00:00:00.123' # Check scale consistency with catch_warnings(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(TAI)', scale="tai") assert t.scale == "tai" with catch_warnings(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(ET)', scale="tt") assert t.scale == "tt" with pytest.raises(ValueError): t = Time('1999-01-01T00:00:32.123456789(TAI)', scale="utc") def test_scale_default(self): """Test behavior when no scale is provided""" # These first three are TimeFromEpoch and have an intrinsic time scale t = Time(100.0, format='cxcsec') assert t.scale == 'tt' t = Time(100.0, format='unix') assert t.scale == 'utc' t = Time(100.0, format='gps') assert t.scale == 'tai' for date in ('2000:001', '2000-01-01T00:00:00'): t = Time(date) assert t.scale == 'utc' t = Time(2000.1, format='byear') assert t.scale == 'tt' t = Time('J2000') assert t.scale == 'tt' def test_epoch_times(self): """Test time formats derived from EpochFromTime""" t = Time(0.0, format='cxcsec', scale='tai') assert t.tt.iso == '1998-01-01 00:00:00.000' # Create new time object from this one and change scale, format t2 = Time(t, scale='tt', format='iso') assert t2.value == '1998-01-01 00:00:00.000' # Value take from Chandra.Time.DateTime('2010:001:00:00:00').secs t_cxcsec = 378691266.184 t = Time(t_cxcsec, format='cxcsec', scale='utc') assert allclose_sec(t.value, t_cxcsec) assert allclose_sec(t.cxcsec, t_cxcsec) assert allclose_sec(t.tt.value, t_cxcsec) assert allclose_sec(t.tt.cxcsec, t_cxcsec) assert t.yday == '2010:001:00:00:00.000' t = Time('2010:001:00:00:00.000', scale='utc') assert allclose_sec(t.cxcsec, t_cxcsec) assert allclose_sec(t.tt.cxcsec, t_cxcsec) # Value from: # d = datetime.datetime(2000, 1, 1) # matplotlib.pylab.dates.date2num(d) t = Time('2000-01-01 00:00:00', scale='utc') assert np.allclose(t.plot_date, 730120.0, atol=1e-5, rtol=0) # Round trip through epoch time for scale in ('utc', 'tt'): t = Time('2000:001', scale=scale) t2 = Time(t.unix, scale=scale, format='unix') assert getattr(t2, scale).iso == '2000-01-01 00:00:00.000' # Test unix time. Values taken from http://en.wikipedia.org/wiki/Unix_time t = Time('2013-05-20 21:18:46', scale='utc') assert allclose_sec(t.unix, 1369084726.0) assert allclose_sec(t.tt.unix, 1369084726.0) # Values from issue #1118 t = Time('2004-09-16T23:59:59', scale='utc') assert allclose_sec(t.unix, 1095379199.0) class TestNumericalSubFormat: def test_explicit_example(self): t = Time('54321.000000000001', format='mjd') assert t == Time(54321, 1e-12, format='mjd') assert t.mjd == 54321. # Lost precision! assert t.value == 54321. # Lost precision! assert t.to_value('mjd') == 54321. # Lost precision! assert t.to_value('mjd', subfmt='str') == '54321.000000000001' assert t.to_value('mjd', 'bytes') == b'54321.000000000001' expected_long = np.longdouble(54321.) + np.longdouble(1e-12) # Check we're the same to within the double holding jd2 # (which is less precise than longdouble on arm64). assert np.allclose(t.to_value('mjd', subfmt='long'), expected_long, rtol=0, atol=np.finfo(float).eps) t.out_subfmt = 'str' assert t.value == '54321.000000000001' assert t.to_value('mjd') == 54321. # Lost precision! assert t.mjd == '54321.000000000001' assert t.to_value('mjd', subfmt='bytes') == b'54321.000000000001' assert t.to_value('mjd', subfmt='float') == 54321. # Lost precision! t.out_subfmt = 'long' assert np.allclose(t.value, expected_long, rtol=0., atol=np.finfo(float).eps) assert np.allclose(t.to_value('mjd', subfmt=None), expected_long, rtol=0., atol=np.finfo(float).eps) assert np.allclose(t.mjd, expected_long, rtol=0., atol=np.finfo(float).eps) assert t.to_value('mjd', subfmt='str') == '54321.000000000001' assert t.to_value('mjd', subfmt='float') == 54321. # Lost precision! @pytest.mark.skipif(np.finfo(np.longdouble).eps >= np.finfo(float).eps, reason="long double is the same as float") def test_explicit_longdouble(self): i = 54321 # Create a different long double (which will give a different jd2 # even when long doubles are more precise than Time, as on arm64). f = max(2.**(-np.finfo(np.longdouble).nmant) * 65536, np.finfo(float).eps) mjd_long = np.longdouble(i) + np.longdouble(f) assert mjd_long != i, "longdouble failure!" t = Time(mjd_long, format='mjd') expected = Time(i, f, format='mjd') assert abs(t - expected) <= 20.*u.ps t_float = Time(i+f, format='mjd') assert t_float == Time(i, format='mjd') assert t_float != t assert t.value == 54321. # Lost precision! assert np.allclose(t.to_value('mjd', subfmt='long'), mjd_long, rtol=0., atol=np.finfo(float).eps) t2 = Time(mjd_long, format='mjd', out_subfmt='long') assert np.allclose(t2.value, mjd_long, rtol=0., atol=np.finfo(float).eps) @pytest.mark.skipif(np.finfo(np.longdouble).eps >= np.finfo(float).eps, reason="long double is the same as float") @pytest.mark.parametrize("fmt", ["mjd", "unix", "cxcsec"]) def test_longdouble_for_other_types(self, fmt): t_fmt = getattr(Time(58000, format="mjd"), fmt) # Get regular float t_fmt_long = np.longdouble(t_fmt) # Create a different long double (ensuring it will give a different jd2 # even when long doubles are more precise than Time, as on arm64). atol = np.finfo(float).eps * (1. if fmt == 'mjd' else 24.*3600.) t_fmt_long2 = t_fmt_long + max( t_fmt_long * np.finfo(np.longdouble).eps * 2, atol) assert t_fmt_long != t_fmt_long2, "longdouble weird!" tm = Time(t_fmt_long, format=fmt) tm2 = Time(t_fmt_long2, format=fmt) assert tm != tm2 tm_long2 = tm2.to_value(fmt, subfmt='long') assert np.allclose(tm_long2, t_fmt_long2, rtol=0., atol=atol) def test_subformat_input(self): s = '54321.01234567890123456789' i, f = s.split('.') # Note, OK only for fraction < 0.5 t = Time(float(i), float('.'+f), format='mjd') t_str = Time(s, format='mjd') t_bytes = Time(s.encode('ascii'), format='mjd') t_decimal = Time(Decimal(s), format='mjd') assert t_str == t assert t_bytes == t assert t_decimal == t @pytest.mark.parametrize('out_subfmt', ('str', 'bytes')) def test_subformat_output(self, out_subfmt): i = 54321 f = np.array([0., 1e-9, 1e-12]) t = Time(i, f, format='mjd', out_subfmt=out_subfmt) t_value = t.value expected = np.array(['54321.0', '54321.000000001', '54321.000000000001'], dtype=out_subfmt) assert np.all(t_value == expected) assert np.all(Time(expected, format='mjd') == t) # Explicit sub-format. t = Time(i, f, format='mjd') t_mjd_subfmt = t.to_value('mjd', subfmt=out_subfmt) assert np.all(t_mjd_subfmt == expected) @pytest.mark.parametrize('fmt,string,val1,val2', [ ('jd', '2451544.5333981', 2451544.5, .0333981), ('decimalyear', '2000.54321', 2000., .54321), ('cxcsec', '100.0123456', 100.0123456, None), ('unix', '100.0123456', 100.0123456, None), ('gps', '100.0123456', 100.0123456, None), ('byear', '1950.1', 1950.1, None), ('jyear', '2000.1', 2000.1, None)]) def test_explicit_string_other_formats(self, fmt, string, val1, val2): t = Time(string, format=fmt) assert t == Time(val1, val2, format=fmt) assert t.to_value(fmt, subfmt='str') == string def test_basic_subformat_setting(self): t = Time('2001', format='jyear', scale='tai') t.format = "mjd" t.out_subfmt = "str" assert t.value.startswith("5") def test_basic_subformat_cache_does_not_crash(self): t = Time('2001', format='jyear', scale='tai') t.to_value('mjd', subfmt='str') assert ('mjd', 'str') in t.cache['format'] t.to_value('mjd', 'str') @pytest.mark.parametrize("fmt", ["jd", "mjd", "cxcsec", "unix", "gps", "jyear"]) def test_decimal_context_does_not_affect_string(self, fmt): t = Time('2001', format='jyear', scale='tai') t.format = fmt with localcontext() as ctx: ctx.prec = 2 t_s_2 = t.to_value(fmt, "str") t2 = Time('2001', format='jyear', scale='tai') t2.format = fmt with localcontext() as ctx: ctx.prec = 40 t2_s_40 = t.to_value(fmt, "str") assert t_s_2 == t2_s_40, "String representation should not depend on Decimal context" def test_decimal_context_caching(self): t = Time(val=58000, val2=1e-14, format='mjd', scale='tai') with localcontext() as ctx: ctx.prec = 2 t_s_2 = t.to_value('mjd', subfmt='decimal') t2 = Time(val=58000, val2=1e-14, format='mjd', scale='tai') with localcontext() as ctx: ctx.prec = 40 t_s_40 = t.to_value('mjd', subfmt='decimal') t2_s_40 = t2.to_value('mjd', subfmt='decimal') assert t_s_2 == t_s_40, "Should be the same but cache might make this automatic" assert t_s_2 == t2_s_40, "Different precision should produce the same results" @pytest.mark.parametrize("f, s, t", [("sec", "long", np.longdouble), ("sec", "decimal", Decimal), ("sec", "str", str)]) def test_timedelta_basic(self, f, s, t): dt = (Time("58000", format="mjd", scale="tai") - Time("58001", format="mjd", scale="tai")) value = dt.to_value(f, s) assert isinstance(value, t) dt.format = f dt.out_subfmt = s assert isinstance(dt.value, t) assert isinstance(dt.to_value(f, None), t) def test_need_format_argument(self): t = Time('J2000') with pytest.raises(TypeError, match="missing.*required.*'format'"): t.to_value() with pytest.raises(ValueError, match='format must be one of'): t.to_value('julian') def test_wrong_in_subfmt(self): with pytest.raises(ValueError, match='not among selected'): Time("58000", format='mjd', in_subfmt='float') with pytest.raises(ValueError, match='not among selected'): Time(np.longdouble(58000), format='mjd', in_subfmt='float') with pytest.raises(ValueError, match='not among selected'): Time(58000., format='mjd', in_subfmt='str') with pytest.raises(ValueError, match='not among selected'): Time(58000., format='mjd', in_subfmt='long') def test_wrong_out_subfmt(self): t = Time(58000., format='mjd') with pytest.raises(ValueError, match='must match one'): t.to_value('mjd', subfmt='parrot') t.out_subfmt = 'parrot' with pytest.raises(ValueError): t.value class TestSofaErrors: """Test that erfa status return values are handled correctly""" def test_bad_time(self): iy = np.array([2000], dtype=np.intc) im = np.array([2000], dtype=np.intc) # bad month id = np.array([2000], dtype=np.intc) # bad day with pytest.raises(ValueError): # bad month, fatal error djm0, djm = erfa.cal2jd(iy, im, id) iy[0] = -5000 im[0] = 2 with pytest.raises(ValueError): # bad year, fatal error djm0, djm = erfa.cal2jd(iy, im, id) iy[0] = 2000 with catch_warnings() as w: djm0, djm = erfa.cal2jd(iy, im, id) assert len(w) == 1 assert 'bad day (JD computed)' in str(w[0].message) assert allclose_jd(djm0, [2400000.5]) assert allclose_jd(djm, [53574.]) class TestCopyReplicate: """Test issues related to copying and replicating data""" def test_immutable_input(self): """Internals are never mutable.""" jds = np.array([2450000.5], dtype=np.double) t = Time(jds, format='jd', scale='tai') assert allclose_jd(t.jd, jds) jds[0] = 2458654 assert not allclose_jd(t.jd, jds) mjds = np.array([50000.0], dtype=np.double) t = Time(mjds, format='mjd', scale='tai') assert allclose_jd(t.jd, [2450000.5]) mjds[0] = 0.0 assert allclose_jd(t.jd, [2450000.5]) def test_replicate(self): """Test replicate method""" t = Time(['2000:001'], format='yday', scale='tai', location=('45d', '45d')) t_yday = t.yday t_loc_x = t.location.x.copy() t2 = t.replicate() assert t.yday == t2.yday assert t.format == t2.format assert t.scale == t2.scale assert t.location == t2.location # This is not allowed publicly, but here we hack the internal time # and location values to show that t and t2 are sharing references. t2._time.jd1 += 100.0 # Need to delete the cached yday attributes (only an issue because # of the internal _time hack). del t.cache del t2.cache assert t.yday == t2.yday assert t.yday != t_yday # prove that it changed t2_loc_x_view = t2.location.x t2_loc_x_view[()] = 0 # use 0 to avoid having to give units assert t2.location.x == t2_loc_x_view assert t.location.x == t2.location.x assert t.location.x != t_loc_x # prove that it changed def test_copy(self): """Test copy method""" t = Time('2000:001', format='yday', scale='tai', location=('45d', '45d')) t_yday = t.yday t_loc_x = t.location.x.copy() t2 = t.copy() assert t.yday == t2.yday # This is not allowed publicly, but here we hack the internal time # and location values to show that t and t2 are not sharing references. t2._time.jd1 += 100.0 # Need to delete the cached yday attributes (only an issue because # of the internal _time hack). del t.cache del t2.cache assert t.yday != t2.yday assert t.yday == t_yday # prove that it did not change t2_loc_x_view = t2.location.x t2_loc_x_view[()] = 0 # use 0 to avoid having to give units assert t2.location.x == t2_loc_x_view assert t.location.x != t2.location.x assert t.location.x == t_loc_x # prove that it changed class TestStardate: """Sync chronometers with Starfleet Command""" def test_iso_to_stardate(self): assert str(Time('2320-01-01', scale='tai').stardate)[:7] == '1368.99' assert str(Time('2330-01-01', scale='tai').stardate)[:8] == '10552.76' assert str(Time('2340-01-01', scale='tai').stardate)[:8] == '19734.02' @pytest.mark.parametrize('dates', [(10000, '2329-05-26 03:02'), (20000, '2340-04-15 19:05'), (30000, '2351-03-07 11:08')]) def test_stardate_to_iso(self, dates): stardate, iso = dates t_star = Time(stardate, format='stardate') t_iso = Time(t_star, format='iso', out_subfmt='date_hm') assert t_iso.value == iso def test_python_builtin_copy(): t = Time('2000:001', format='yday', scale='tai') t2 = copy.copy(t) t3 = copy.deepcopy(t) assert t.jd == t2.jd assert t.jd == t3.jd def test_now(): """ Tests creating a Time object with the `now` class method. """ now = datetime.datetime.utcnow() t = Time.now() assert t.format == 'datetime' assert t.scale == 'utc' dt = t.datetime - now # a datetime.timedelta object # this gives a .1 second margin between the `utcnow` call and the `Time` # initializer, which is really way more generous than necessary - typical # times are more like microseconds. But it seems safer in case some # platforms have slow clock calls or something. assert dt.total_seconds() < 0.1 def test_decimalyear(): t = Time('2001:001', format='yday') assert t.decimalyear == 2001.0 t = Time(2000.0, [0.5, 0.75], format='decimalyear') assert np.all(t.value == [2000.5, 2000.75]) jd0 = Time('2000:001').jd jd1 = Time('2001:001').jd d_jd = jd1 - jd0 assert np.all(t.jd == [jd0 + 0.5 * d_jd, jd0 + 0.75 * d_jd]) def test_fits_year0(): t = Time(1721425.5, format='jd', scale='tai') assert t.fits == '0001-01-01T00:00:00.000' t = Time(1721425.5 - 366., format='jd', scale='tai') assert t.fits == '+00000-01-01T00:00:00.000' t = Time(1721425.5 - 366. - 365., format='jd', scale='tai') assert t.fits == '-00001-01-01T00:00:00.000' def test_fits_year10000(): t = Time(5373484.5, format='jd', scale='tai') assert t.fits == '+10000-01-01T00:00:00.000' t = Time(5373484.5 - 365., format='jd', scale='tai') assert t.fits == '9999-01-01T00:00:00.000' t = Time(5373484.5, -1./24./3600., format='jd', scale='tai') assert t.fits == '9999-12-31T23:59:59.000' def test_dir(): t = Time('2000:001', format='yday', scale='tai') assert 'utc' in dir(t) def test_bool(): """Any Time object should evaluate to True unless it is empty [#3520].""" t = Time(np.arange(50000, 50010), format='mjd', scale='utc') assert bool(t) is True assert bool(t[0]) is True assert bool(t[:0]) is False def test_len_size(): """Check length of Time objects and that scalar ones do not have one.""" t = Time(np.arange(50000, 50010), format='mjd', scale='utc') assert len(t) == 10 and t.size == 10 t1 = Time(np.arange(50000, 50010).reshape(2, 5), format='mjd', scale='utc') assert len(t1) == 2 and t1.size == 10 # Can have length 1 or length 0 arrays. t2 = t[:1] assert len(t2) == 1 and t2.size == 1 t3 = t[:0] assert len(t3) == 0 and t3.size == 0 # But cannot get length from scalar. t4 = t[0] with pytest.raises(TypeError) as err: len(t4) # Ensure we're not just getting the old error of # "object of type 'float' has no len()". assert 'Time' in str(err.value) def test_TimeFormat_scale(): """guard against recurrence of #1122, where TimeFormat class looses uses attributes (delta_ut1_utc here), preventing conversion to unix, cxc""" t = Time('1900-01-01', scale='ut1') t.delta_ut1_utc = 0.0 with pytest.warns(ErfaWarning): t.unix assert t.unix == t.utc.unix @pytest.mark.remote_data def test_scale_conversion(): Time(Time.now().cxcsec, format='cxcsec', scale='ut1') def test_byteorder(): """Ensure that bigendian and little-endian both work (closes #2942)""" mjd = np.array([53000.00, 54000.00]) big_endian = mjd.astype('>f8') little_endian = mjd.astype('<f8') time_mjd = Time(mjd, format='mjd') time_big = Time(big_endian, format='mjd') time_little = Time(little_endian, format='mjd') assert np.all(time_big == time_mjd) assert np.all(time_little == time_mjd) def test_datetime_tzinfo(): """ Test #3160 that time zone info in datetime objects is respected. """ class TZm6(datetime.tzinfo): def utcoffset(self, dt): return datetime.timedelta(hours=-6) d = datetime.datetime(2002, 1, 2, 10, 3, 4, tzinfo=TZm6()) t = Time(d) assert t.value == datetime.datetime(2002, 1, 2, 16, 3, 4) def test_subfmts_regex(): """ Test having a custom subfmts with a regular expression """ class TimeLongYear(TimeString): name = 'longyear' subfmts = (('date', r'(?P<year>[+-]\d{5})-%m-%d', # hybrid '{year:+06d}-{mon:02d}-{day:02d}'),) t = Time('+02000-02-03', format='longyear') assert t.value == '+02000-02-03' assert t.jd == Time('2000-02-03').jd def test_set_format_basic(): """ Test basics of setting format attribute. """ for format, value in (('jd', 2451577.5), ('mjd', 51577.0), ('cxcsec', 65923264.184), # confirmed with Chandra.Time ('datetime', datetime.datetime(2000, 2, 3, 0, 0)), ('iso', '2000-02-03 00:00:00.000')): t = Time('+02000-02-03', format='fits') t0 = t.replicate() t.format = format assert t.value == value # Internal jd1 and jd2 are preserved assert t._time.jd1 is t0._time.jd1 assert t._time.jd2 is t0._time.jd2 def test_set_format_shares_subfmt(): """ Set format and round trip through a format that shares out_subfmt """ t = Time('+02000-02-03', format='fits', out_subfmt='date_hms', precision=5) tc = t.copy() t.format = 'isot' assert t.precision == 5 assert t.out_subfmt == 'date_hms' assert t.value == '2000-02-03T00:00:00.00000' t.format = 'fits' assert t.value == tc.value assert t.precision == 5 def test_set_format_does_not_share_subfmt(): """ Set format and round trip through a format that does not share out_subfmt """ t = Time('+02000-02-03', format='fits', out_subfmt='longdate') t.format = 'isot' assert t.out_subfmt == '*' # longdate_hms not there, goes to default assert t.value == '2000-02-03T00:00:00.000' t.format = 'fits' assert t.out_subfmt == '*' assert t.value == '2000-02-03T00:00:00.000' # date_hms def test_replicate_value_error(): """ Passing a bad format to replicate should raise ValueError, not KeyError. PR #3857. """ t1 = Time('2007:001', scale='tai') with pytest.raises(ValueError) as err: t1.replicate(format='definitely_not_a_valid_format') assert 'format must be one of' in str(err.value) def test_remove_astropy_time(): """ Make sure that 'astropy_time' format is really gone after #3857. Kind of silly test but just to be sure. """ t1 = Time('2007:001', scale='tai') assert 'astropy_time' not in t1.FORMATS with pytest.raises(ValueError) as err: Time(t1, format='astropy_time') assert 'format must be one of' in str(err.value) def test_isiterable(): """ Ensure that scalar `Time` instances are not reported as iterable by the `isiterable` utility. Regression test for https://github.com/astropy/astropy/issues/4048 """ t1 = Time.now() assert not isiterable(t1) t2 = Time(['1999-01-01 00:00:00.123456789', '2010-01-01 00:00:00'], format='iso', scale='utc') assert isiterable(t2) def test_to_datetime(): tz = TimezoneInfo(utc_offset=-10*u.hour, tzname='US/Hawaii') # The above lines produces a `datetime.tzinfo` object similar to: # tzinfo = pytz.timezone('US/Hawaii') time = Time('2010-09-03 00:00:00') tz_aware_datetime = time.to_datetime(tz) assert tz_aware_datetime.time() == datetime.time(14, 0) forced_to_astropy_time = Time(tz_aware_datetime) assert tz.tzname(time.datetime) == tz_aware_datetime.tzname() assert time == forced_to_astropy_time # Test non-scalar time inputs: time = Time(['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1990-09-03 06:00:00']) tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) for dt, tz_dt in zip(time.datetime, tz_aware_datetime): assert tz.tzname(dt) == tz_dt.tzname() assert np.all(time == forced_to_astropy_time) with pytest.raises(ValueError, match=r'does not support leap seconds'): Time('2015-06-30 23:59:60.000').to_datetime() @pytest.mark.skipif('not HAS_PYTZ') def test_to_datetime_pytz(): tz = pytz.timezone('US/Hawaii') time = Time('2010-09-03 00:00:00') tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) assert tz_aware_datetime.time() == datetime.time(14, 0) assert tz.tzname(time.datetime) == tz_aware_datetime.tzname() assert time == forced_to_astropy_time # Test non-scalar time inputs: time = Time(['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1990-09-03 06:00:00']) tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) for dt, tz_dt in zip(time.datetime, tz_aware_datetime): assert tz.tzname(dt) == tz_dt.tzname() assert np.all(time == forced_to_astropy_time) def test_cache(): t = Time('2010-09-03 00:00:00') t2 = Time('2010-09-03 00:00:00') # Time starts out without a cache assert 'cache' not in t._time.__dict__ # Access the iso format and confirm that the cached version is as expected t.iso assert t.cache['format']['iso'] == t2.iso # Access the TAI scale and confirm that the cached version is as expected t.tai assert t.cache['scale']['tai'] == t2.tai # New Time object after scale transform does not have a cache yet assert 'cache' not in t.tt._time.__dict__ # Clear the cache del t.cache assert 'cache' not in t._time.__dict__ # Check accessing the cache creates an empty dictionary assert not t.cache assert 'cache' in t._time.__dict__ def test_epoch_date_jd_is_day_fraction(): """ Ensure that jd1 and jd2 of an epoch Time are respect the (day, fraction) convention (see #6638) """ t0 = Time("J2000", scale="tdb") assert t0.jd1 == 2451545.0 assert t0.jd2 == 0.0 t1 = Time(datetime.datetime(2000, 1, 1, 12, 0, 0), scale="tdb") assert t1.jd1 == 2451545.0 assert t1.jd2 == 0.0 def test_sum_is_equivalent(): """ Ensure that two equal dates defined in different ways behave equally (#6638) """ t0 = Time("J2000", scale="tdb") t1 = Time("2000-01-01 12:00:00", scale="tdb") assert t0 == t1 assert (t0 + 1 * u.second) == (t1 + 1 * u.second) def test_string_valued_columns(): # Columns have a nice shim that translates bytes to string as needed. # Ensure Time can handle these. Use multi-d array just to be sure. times = [[[f'{y:04d}-{m:02d}-{d:02d}' for d in range(1, 3)] for m in range(5, 7)] for y in range(2012, 2014)] cutf32 = Column(times) cbytes = cutf32.astype('S') tutf32 = Time(cutf32) tbytes = Time(cbytes) assert np.all(tutf32 == tbytes) tutf32 = Time(Column(['B1950'])) tbytes = Time(Column([b'B1950'])) assert tutf32 == tbytes # Regression tests for arrays with entries with unequal length. gh-6903. times = Column([b'2012-01-01', b'2012-01-01T00:00:00']) assert np.all(Time(times) == Time(['2012-01-01', '2012-01-01T00:00:00'])) def test_bytes_input(): tstring = '2011-01-02T03:04:05' tbytes = b'2011-01-02T03:04:05' assert tbytes.decode('ascii') == tstring t0 = Time(tstring) t1 = Time(tbytes) assert t1 == t0 tarray = np.array(tbytes) assert tarray.dtype.kind == 'S' t2 = Time(tarray) assert t2 == t0 def test_writeable_flag(): t = Time([1, 2, 3], format='cxcsec') t[1] = 5.0 assert allclose_sec(t[1].value, 5.0) t.writeable = False with pytest.raises(ValueError) as err: t[1] = 5.0 assert 'Time object is read-only. Make a copy()' in str(err.value) with pytest.raises(ValueError) as err: t[:] = 5.0 assert 'Time object is read-only. Make a copy()' in str(err.value) t.writeable = True t[1] = 10.0 assert allclose_sec(t[1].value, 10.0) # Scalar is writeable because it gets boxed into a zero-d array t = Time('2000:001', scale='utc') t[()] = '2000:002' assert t.value.startswith('2000:002') # Transformed attribute is not writeable t = Time(['2000:001', '2000:002'], scale='utc') t2 = t.tt # t2 is read-only now because t.tt is cached with pytest.raises(ValueError) as err: t2[0] = '2005:001' assert 'Time object is read-only. Make a copy()' in str(err.value) def test_setitem_location(): loc = EarthLocation(x=[1, 2] * u.m, y=[3, 4] * u.m, z=[5, 6] * u.m) t = Time([[1, 2], [3, 4]], format='cxcsec', location=loc) # Succeeds because the right hand side makes no implication about # location and just inherits t.location t[0, 0] = 0 assert allclose_sec(t.value, [[0, 2], [3, 4]]) # Fails because the right hand side has location=None with pytest.raises(ValueError) as err: t[0, 0] = Time(-1, format='cxcsec') assert ('cannot set to Time with different location: ' 'expected location={} and ' 'got location=None'.format(loc[0])) in str(err.value) # Succeeds because the right hand side correctly sets location t[0, 0] = Time(-2, format='cxcsec', location=loc[0]) assert allclose_sec(t.value, [[-2, 2], [3, 4]]) # Fails because the right hand side has different location with pytest.raises(ValueError) as err: t[0, 0] = Time(-2, format='cxcsec', location=loc[1]) assert ('cannot set to Time with different location: ' 'expected location={} and ' 'got location={}'.format(loc[0], loc[1])) in str(err.value) # Fails because the Time has None location and RHS has defined location t = Time([[1, 2], [3, 4]], format='cxcsec') with pytest.raises(ValueError) as err: t[0, 0] = Time(-2, format='cxcsec', location=loc[1]) assert ('cannot set to Time with different location: ' 'expected location=None and ' 'got location={}'.format(loc[1])) in str(err.value) # Broadcasting works t = Time([[1, 2], [3, 4]], format='cxcsec', location=loc) t[0, :] = Time([-3, -4], format='cxcsec', location=loc) assert allclose_sec(t.value, [[-3, -4], [3, 4]]) def test_setitem_from_python_objects(): t = Time([[1, 2], [3, 4]], format='cxcsec') assert t.cache == {} t.iso assert 'iso' in t.cache['format'] assert np.all(t.iso == [['1998-01-01 00:00:01.000', '1998-01-01 00:00:02.000'], ['1998-01-01 00:00:03.000', '1998-01-01 00:00:04.000']]) # Setting item clears cache t[0, 1] = 100 assert t.cache == {} assert allclose_sec(t.value, [[1, 100], [3, 4]]) assert np.all(t.iso == [['1998-01-01 00:00:01.000', '1998-01-01 00:01:40.000'], ['1998-01-01 00:00:03.000', '1998-01-01 00:00:04.000']]) # Set with a float value t.iso t[1, :] = 200 assert t.cache == {} assert allclose_sec(t.value, [[1, 100], [200, 200]]) # Array of strings in yday format t[:, 1] = ['1998:002', '1998:003'] assert allclose_sec(t.value, [[1, 86400 * 1], [200, 86400 * 2]]) # Incompatible numeric value t = Time(['2000:001', '2000:002']) t[0] = '2001:001' with pytest.raises(ValueError) as err: t[0] = 100 assert 'cannot convert value to a compatible Time object' in str(err.value) def test_setitem_from_time_objects(): """Set from existing Time object. """ # Set from time object with different scale t = Time(['2000:001', '2000:002'], scale='utc') t2 = Time(['2000:010'], scale='tai') t[1] = t2[0] assert t.value[1] == t2.utc.value[0] # Time object with different scale and format t = Time(['2000:001', '2000:002'], scale='utc') t2.format = 'jyear' t[1] = t2[0] assert t.yday[1] == t2.utc.yday[0] def test_setitem_bad_item(): t = Time([1, 2], format='cxcsec') with pytest.raises(IndexError): t['asdf'] = 3 def test_setitem_deltas(): """Setting invalidates any transform deltas""" t = Time([1, 2], format='cxcsec') t.delta_tdb_tt = [1, 2] t.delta_ut1_utc = [3, 4] t[1] = 3 assert not hasattr(t, '_delta_tdb_tt') assert not hasattr(t, '_delta_ut1_utc') def test_subclass(): """Check that we can initialize subclasses with a Time instance.""" # Ref: Issue gh-#7449 and PR gh-#7453. class _Time(Time): pass t1 = Time('1999-01-01T01:01:01') t2 = _Time(t1) assert t2.__class__ == _Time assert t1 == t2 def test_strftime_scalar(): """Test of Time.strftime """ time_string = '2010-09-03 06:00:00' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S') == time_string def test_strftime_array(): tstrings = ['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1995-12-31 23:59:60'] t = Time(tstrings) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S').tolist() == tstrings def test_strftime_array_2(): tstrings = [['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1995-12-31 23:59:60']] tstrings = np.array(tstrings) t = Time(tstrings) for format in t.FORMATS: t.format = format assert np.all(t.strftime('%Y-%m-%d %H:%M:%S') == tstrings) assert t.strftime('%Y-%m-%d %H:%M:%S').shape == tstrings.shape def test_strftime_leapsecond(): time_string = '1995-12-31 23:59:60' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S') == time_string def test_strptime_scalar(): """Test of Time.strptime """ time_string = '2007-May-04 21:08:12' time_object = Time('2007-05-04 21:08:12') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S') assert t == time_object def test_strptime_array(): """Test of Time.strptime """ tstrings = [['1998-Jan-01 00:00:01', '1998-Jan-01 00:00:02'], ['1998-Jan-01 00:00:03', '1998-Jan-01 00:00:04']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1998-01-01 00:00:04']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strptime_badinput(): tstrings = [1, 2, 3] with pytest.raises(TypeError): Time.strptime(tstrings, '%S') def test_strptime_input_bytes_scalar(): time_string = b'2007-May-04 21:08:12' time_object = Time('2007-05-04 21:08:12') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S') assert t == time_object def test_strptime_input_bytes_array(): tstrings = [[b'1998-Jan-01 00:00:01', b'1998-Jan-01 00:00:02'], [b'1998-Jan-01 00:00:03', b'1998-Jan-01 00:00:04']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1998-01-01 00:00:04']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strptime_leapsecond(): time_obj1 = Time('1995-12-31T23:59:60', format='isot') time_obj2 = Time.strptime('1995-Dec-31 23:59:60', '%Y-%b-%d %H:%M:%S') assert time_obj1 == time_obj2 def test_strptime_3_digit_year(): time_obj1 = Time('0995-12-31T00:00:00', format='isot', scale='tai') time_obj2 = Time.strptime('0995-Dec-31 00:00:00', '%Y-%b-%d %H:%M:%S', scale='tai') assert time_obj1 == time_obj2 def test_strptime_fracsec_scalar(): time_string = '2007-May-04 21:08:12.123' time_object = Time('2007-05-04 21:08:12.123') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S.%f') assert t == time_object def test_strptime_fracsec_array(): """Test of Time.strptime """ tstrings = [['1998-Jan-01 00:00:01.123', '1998-Jan-01 00:00:02.000001'], ['1998-Jan-01 00:00:03.000900', '1998-Jan-01 00:00:04.123456']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01.123', '1998-01-01 00:00:02.000001'], ['1998-01-01 00:00:03.000900', '1998-01-01 00:00:04.123456']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S.%f') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strftime_scalar_fracsec(): """Test of Time.strftime """ time_string = '2010-09-03 06:00:00.123' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == time_string def test_strftime_scalar_fracsec_precision(): time_string = '2010-09-03 06:00:00.123123123' t = Time(time_string) assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == '2010-09-03 06:00:00.123' t.precision = 9 assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == '2010-09-03 06:00:00.123123123' def test_strftime_array_fracsec(): tstrings = ['2010-09-03 00:00:00.123000', '2005-09-03 06:00:00.000001', '1995-12-31 23:59:60.000900'] t = Time(tstrings) t.precision = 6 for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S.%f').tolist() == tstrings def test_insert_time(): tm = Time([1, 2], format='unix') # Insert a scalar using an auto-parsed string tm2 = tm.insert(1, '1970-01-01 00:01:00') assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert scalar using a Time value tm2 = tm.insert(1, Time('1970-01-01 00:01:00')) assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert length=1 array with a Time value tm2 = tm.insert(1, [Time('1970-01-01 00:01:00')]) assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert length=2 list with float values matching unix format. # Also actually provide axis=0 unlike all other tests. tm2 = tm.insert(1, [10, 20], axis=0) assert np.all(tm2 == Time([1, 10, 20, 2], format='unix')) # Insert length=2 np.array with float values matching unix format tm2 = tm.insert(1, np.array([10, 20])) assert np.all(tm2 == Time([1, 10, 20, 2], format='unix')) # Insert length=2 np.array with float values at the end tm2 = tm.insert(2, np.array([10, 20])) assert np.all(tm2 == Time([1, 2, 10, 20], format='unix')) # Insert length=2 np.array with float values at the beginning # with a negative index tm2 = tm.insert(-2, np.array([10, 20])) assert np.all(tm2 == Time([10, 20, 1, 2], format='unix')) def test_insert_exceptions(): tm = Time(1, format='unix') with pytest.raises(TypeError) as err: tm.insert(0, 50) assert 'cannot insert into scalar' in str(err.value) tm = Time([1, 2], format='unix') with pytest.raises(ValueError) as err: tm.insert(0, 50, axis=1) assert 'axis must be 0' in str(err.value) with pytest.raises(TypeError) as err: tm.insert(slice(None), 50) assert 'obj arg must be an integer' in str(err.value) with pytest.raises(IndexError) as err: tm.insert(-100, 50) assert 'index -100 is out of bounds for axis 0 with size 2' in str(err.value) def test_datetime64_no_format(): dt64 = np.datetime64('2000-01-02T03:04:05.123456789') t = Time(dt64, scale='utc', precision=9) assert t.iso == '2000-01-02 03:04:05.123456789' assert t.datetime64 == dt64 assert t.value == dt64 def test_hash_time(): loc1 = EarthLocation(1 * u.m, 2 * u.m, 3 * u.m) for loc in None, loc1: t = Time([1, 1, 2, 3], format='cxcsec', location=loc) t[3] = np.ma.masked h1 = hash(t[0]) h2 = hash(t[1]) h3 = hash(t[2]) assert h1 == h2 assert h1 != h3 with pytest.raises(TypeError) as exc: hash(t) assert exc.value.args[0] == "unhashable type: 'Time' (must be scalar)" with pytest.raises(TypeError) as exc: hash(t[3]) assert exc.value.args[0] == "unhashable type: 'Time' (value is masked)" t = Time(1, format='cxcsec', location=loc) t2 = Time(1, format='cxcsec') assert hash(t) != hash(t2) t = Time('2000:180', scale='utc') t2 = Time(t, scale='tai') assert t == t2 assert hash(t) != hash(t2) def test_hash_time_delta(): t = TimeDelta([1, 1, 2, 3], format='sec') t[3] = np.ma.masked h1 = hash(t[0]) h2 = hash(t[1]) h3 = hash(t[2]) assert h1 == h2 assert h1 != h3 with pytest.raises(TypeError) as exc: hash(t) assert exc.value.args[0] == "unhashable type: 'TimeDelta' (must be scalar)" with pytest.raises(TypeError) as exc: hash(t[3]) assert exc.value.args[0] == "unhashable type: 'TimeDelta' (value is masked)" def test_get_time_fmt_exception_messages(): with pytest.raises(ValueError) as err: Time(10) assert "No time format was given, and the input is" in str(err.value) with pytest.raises(ValueError) as err: Time('2000:001', format='not-a-format') assert "Format 'not-a-format' is not one of the allowed" in str(err.value) with pytest.raises(ValueError) as err: Time('200') assert 'Input values did not match any of the formats where' in str(err.value) with pytest.raises(ValueError) as err: Time('200', format='iso') assert ('Input values did not match the format class iso:' + os.linesep + 'ValueError: Time 200 does not match iso format') == str(err.value) with pytest.raises(ValueError) as err: Time(200, format='iso') assert ('Input values did not match the format class iso:' + os.linesep + 'TypeError: Input values for iso class must be strings') == str(err.value) def test_ymdhms_defaults(): t1 = Time({'year': 2001}, format='ymdhms') assert t1 == Time('2001-01-01') times_dict_ns = { 'year': [2001, 2002], 'month': [2, 3], 'day': [4, 5], 'hour': [6, 7], 'minute': [8, 9], 'second': [10, 11] } table_ns = Table(times_dict_ns) struct_array_ns = table_ns.as_array() rec_array_ns = struct_array_ns.view(np.recarray) ymdhms_names = ('year', 'month', 'day', 'hour', 'minute', 'second') @pytest.mark.parametrize('tm_input', [table_ns, struct_array_ns, rec_array_ns]) @pytest.mark.parametrize('kwargs', [{}, {'format': 'ymdhms'}]) @pytest.mark.parametrize('as_row', [False, True]) def test_ymdhms_init_from_table_like(tm_input, kwargs, as_row): time_ns = Time(['2001-02-04 06:08:10', '2002-03-05 07:09:11']) if as_row: tm_input = tm_input[0] time_ns = time_ns[0] tm = Time(tm_input, **kwargs) assert np.all(tm == time_ns) assert tm.value.dtype.names == ymdhms_names def test_ymdhms_init_from_dict_array(): times_dict_shape = { 'year': [[2001, 2002], [2003, 2004]], 'month': [2, 3], 'day': 4 } time_shape = Time( [['2001-02-04', '2002-03-04'], ['2003-02-04', '2004-03-04']] ) time = Time(times_dict_shape, format='ymdhms') assert np.all(time == time_shape) assert time.ymdhms.shape == time_shape.shape @pytest.mark.parametrize('kwargs', [{}, {'format': 'ymdhms'}]) def test_ymdhms_init_from_dict_scalar(kwargs): """ Test YMDHMS functionality for a dict input. This includes ensuring that key and attribute access work. For extra fun use a time within a leap second. """ time_dict = { 'year': 2016, 'month': 12, 'day': 31, 'hour': 23, 'minute': 59, 'second': 60.123456789} tm = Time(time_dict, **kwargs) assert tm == Time('2016-12-31T23:59:60.123456789') for attr in time_dict: for value in (tm.value[attr], getattr(tm.value, attr)): if attr == 'second': assert allclose_sec(time_dict[attr], value) else: assert time_dict[attr] == value # Now test initializing from a YMDHMS format time using the object tm_rt = Time(tm) assert tm_rt == tm assert tm_rt.format == 'ymdhms' # Test initializing from a YMDHMS value (np.void, i.e. recarray row) # without specified format. tm_rt = Time(tm.ymdhms) assert tm_rt == tm assert tm_rt.format == 'ymdhms' def test_ymdhms_exceptions(): with pytest.raises(ValueError, match='input must be dict or table-like'): Time(10, format='ymdhms') match = "'wrong' not allowed as YMDHMS key name(s)" # NB: for reasons unknown, using match=match in pytest.raises() fails, so we # fall back to old school ``match in str(err.value)``. with pytest.raises(ValueError) as err: Time({'year': 2019, 'wrong': 1}, format='ymdhms') assert match in str(err.value) match = "for 2 input key names you must supply 'year', 'month'" with pytest.raises(ValueError, match=match): Time({'year': 2019, 'minute': 1}, format='ymdhms') def test_ymdhms_masked(): tm = Time({'year': [2000, 2001]}, format='ymdhms') tm[0] = np.ma.masked assert isinstance(tm.value[0], np.ma.core.mvoid) for name in ymdhms_names: assert tm.value[0][name] is np.ma.masked # Converted from doctest in astropy/test/formats.py for debugging def test_ymdhms_output(): t = Time({'year': 2015, 'month': 2, 'day': 3, 'hour': 12, 'minute': 13, 'second': 14.567}, scale='utc') # NOTE: actually comes back as np.void for some reason # NOTE: not necessarily a python int; might be an int32 assert t.ymdhms.year == 2015 # There are two stages of validation now - one on input into a format, so that # the format conversion code has tidy matched arrays to work with, and the # other when object construction does not go through a format object. Or at # least, the format object is constructed with "from_jd=True". In this case the # normal input validation does not happen but the new input validation does, # and can ensure that strange broadcasting anomalies can't happen. # This form of construction uses from_jd=True. def test_broadcasting_writeable(): t = Time('J2015') + np.linspace(-1, 1, 10)*u.day t[2] = Time(58000, format="mjd")
bsd-3-clause
jakob-skinner/Orbit-Fitting
fitter.py
2
8223
#import-libraries-and-data---------------------------------------------------------------------------------------# import os, numpy as np, functions as f from matplotlib.gridspec import GridSpec from matplotlib import pyplot as plt, rcParams #rcParams.update({'figure.autolayout' : True}) # Select the file. file = 'data/2144+4211/2144+4211.tbl' # Create the data variable. data = np.genfromtxt(file, skip_header=1, usecols=(1, 2, 3, 4, 5)) # Extract the shorthand name. system = file.replace('.tbl', '')[5:14] #define-variables------------------------------------------------------------------------------------------------# JD, RVp, RVs = [datum[0] for datum in data], [datum[1] for datum in data], [datum[3] for datum in data] p_err, s_err = [datum[2] for datum in data], [datum[4] for datum in data] JDp, JDs = JD, JD period_samples = 10000 max_period = 3.32 nwalkers, nsteps= 4000, 2000 #minimum nwalker: 14, minimum nsteps determined by the convergence cutoff cutoff = 1000 #define-functions------------------------------------------------------------------------------------------------# periodogram, dataWindow, phases, wilson = f.periodogram, f.dataWindow, f.phases, f.wilson adjustment, RV, residuals, MCMC, walkers = f.adjustment, f.RV, f.residuals, f.MCMC, f.walkers corner, massLimit, coverage, transform = f.corner, f.massLimit, f.coverage, f.transform #now-do-things!--------------------------------------------------------------------------------------------------# #plot Wilson plot (mass ratio) mass_ratio, intercept, standard_error = wilson(data) fig = plt.figure(figsize=(5,5)) x, y = np.array([np.nanmin(RVs), np.nanmax(RVs)]), -mass_ratio*np.array([np.nanmin(RVs),np.nanmax(RVs)])+intercept plt.errorbar(RVs, RVp, p_err, s_err, 'k.') plt.plot(x, y) #ax.set_title('Wilson plot for 2M17204248+4205070') plt.text(0, 20, 'q = %s $\pm$ %s' %(round(mass_ratio, 3), round(standard_error, 3))) plt.ylabel('Primary Velocity ($\\frac{km}{s}$)')#, size='15') plt.xlabel('Secondary Velocity ($\\frac{km}{s}$)')#, size='15') plt.title('q = %s $\pm$ %s'%(round(mass_ratio, 3), round(standard_error, 3))) plt.savefig(file + ' mass ratio.pdf', bbox_inches='tight') #plt.show() #check for invalid values JDp, RVp, p_err = adjustment(JD, RVp, p_err) JDs, RVs, s_err = adjustment(JD, RVs, s_err) print(coverage(RVp, RVs)) #calculate periodograms x, y, delta_x = periodogram(JDp, RVp, period_samples, max_period) y2 = periodogram(JDs, RVs, period_samples, max_period)[1] y3,y4 = dataWindow(JDp, period_samples, max_period)[1], dataWindow(JDs, period_samples, max_period)[1] #plot periodogram - data window fig = plt.figure(figsize=(8,3)) #plt.plot(x, y*y2, 'b', alpha = 0.5) #plt.plot(x, y3*y4, 'r', alpha = 0.5) plt.plot(x, (y*y2-y3*y4), 'k') plt.ylabel('Periodogram Power')#, size='15') plt.xlabel('Period (days)')#, size='15') plt.ylim(0,1) plt.xscale('log') plt.xlim(1,max_period) plt.title(system) plt.savefig(file + ' adjusted periodogram.pdf', bbox_inches='tight') #plt.show() plt.close('all') #-----------------------MCMC------------------------# import time start = time.time() #start timer #constrain parameters lower_bounds = [0, -0.1, 0, np.median(np.asarray(JD))-0.5*max_period, 3.28, min(min(RVs), min(RVp))] upper_bounds = [100, 0.2, 4, np.median(np.asarray(JD))+0.5*max_period, 3.32, max(max(RVs), max(RVp))] #take a walk print('\nwalking...') sampler = MCMC(mass_ratio, RVp, p_err, RVs, s_err, JDp, JDs, lower_bounds, upper_bounds, 6, nwalkers, nsteps, 4) print('Walk complete.\n') print('Acceptance Fraction: ', np.mean(sampler.acceptance_fraction), '\n') #save the results of the walk samples = transform(sampler.chain[:, cutoff:, :].reshape((-1, 6))) results = np.asarray(list(map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(samples, [16, 50, 84], axis=0))))) parms = [x for x in np.transpose(results)[0]] print('RMS error: ', round(residuals([results[0][0], results[1][0], results[2][0], results[3][0], results[4][0], results[5][0]], mass_ratio, RVp, RVs, JDp, JDs), 3)) print('BIC = %s'%(np.log(len(RVp)+len(RVs))*7 - 2*f.logLikelihood(parms, mass_ratio, RVp, p_err, RVs, s_err, JDp, JDs, lower_bounds, upper_bounds))) print('Minimum primary mass: ', massLimit(mass_ratio, parms[0], parms[1], parms[-2]), ' Solar masses.\n') #create walkers plot print('plotting walk...') walkers(nsteps, 6, cutoff, sampler).savefig(file + ' 6 dimension walk plot.png', bbox_inches='tight', dpi=300) plt.close() print('Walk Plotted\n') del sampler #create the corner plot print('cornering...') corner(6, samples, parms).savefig(file + ' 6 dimension corner plot.pdf', bbox_inches='tight') plt.close() print('Corner plotted.\n') # Write the samples to disk. print('writing samples to disk...') np.savetxt(file + ' %s error samples.gz'%(round(residuals(parms, mass_ratio, RVp, RVs, JDp, JDs), 3)), samples, delimiter=',') print('Samples written!\n') del samples #write results to console #print('Results:') #for i in range(6): # print(results[i][0], '+',results[i][1], '-',results[i][2]) #write results to log file table = open('log.txt', 'a+') labels = ('K', 'e', 'w', 'T', 'P', 'y') print('\n' , system, " Results:", file = table) print('RMS error: ', residuals(np.transpose(results)[0], mass_ratio, RVp, RVs, JDp, JDs), file = table) print('q = ', mass_ratio, ' +/- ', standard_error , file = table) for i in range(6): print(labels[i], ' = ', results[i][0], ' +', results[i][1], ' -', results[i][2], file = table) table.close() #end timer end = time.time() elapsed = end-start print('Fitting time was ', int(elapsed), ' seconds.\n') #-------------circular---MCMC---------------# start = time.time() #start timer #take a walk print('walking...') sampler = MCMC(mass_ratio, RVp, p_err, RVs, s_err, JDp, JDs, lower_bounds, upper_bounds, 4, nwalkers, nsteps, 4) print('Walk complete.\n') print('Acceptance Fraction: ', np.mean(sampler.acceptance_fraction), '\n') #save the results of the walk samples = sampler.chain[:, cutoff:, :].reshape((-1, 4)) results = np.asarray(list(map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(samples, [16, 50, 84], axis=0))))) parms = [x for x in np.transpose(results)[0]] print('RMS error: ', round(residuals([parms[0], 0, 0, parms[1],parms[2], parms[3]], mass_ratio, RVp, RVs, JDp, JDs), 3)) print('BIC = %s'%(np.log(len(RVp)+len(RVs))*7 - 2*f.logLikelihood(parms, mass_ratio, RVp, p_err, RVs, s_err, JDp, JDs, lower_bounds, upper_bounds))) print('Minimum primary mass: ', massLimit(mass_ratio, parms[0], 0, parms[-2]), ' Solar masses.\n') #create the walkers plot print('plotting walk...') walkers(nsteps, 4, cutoff, sampler).savefig(file + ' 4 dimension walk plot.png', bbox_inches='tight', dpi=300) plt.close() print('Walk plotted.\n') del sampler # Write the samples to disk. #create the corner plot print('cornerning...') corner(4, samples, parms).savefig(file + ' 4 dimension corner plot.pdf', bbox_inches='tight') plt.close() print('Corner plotted.\n') print('writing samples to disk...') np.savetxt(file + ' %s error samples.gz'%(round(residuals([parms[0], 0, 0, parms[1],parms[2], parms[3]], mass_ratio, RVp, RVs, JDp, JDs), 3)), samples, delimiter=',') print('Samples written!\n') del samples #write results to console #print('Results:') #for i in range(4): # print(results[i][0], '+',results[i][1], '-',results[i][2]) #write results to log file table = open('log.txt', 'a+') labels = ('K', 'T', 'P', 'y') print('\n' , system, " Results:", file = table) print('RMS error: ', residuals([parms[0],0, 0, parms[1],parms[2], parms[3]], mass_ratio, RVp, RVs, JDp, JDs), file = table) print('q = ', mass_ratio, ' +/- ', standard_error , file = table) for i in range(4): print(labels[i], ' = ', results[i][0], ' +', results[i][1], ' -', results[i][2], file = table) table.close() #end timer end = time.time() elapsed = end-start print('Fitting time was ', int(elapsed), ' seconds.\n')
gpl-3.0
hitszxp/scikit-learn
sklearn/decomposition/tests/test_nmf.py
33
6189
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): """Test NNDSVD behaviour on negative input""" nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): """Test that NNDSVD does not return negative values""" data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): """Test NNDSVD error Test that _initialize_nmf error is less than the standard deviation of the entries in the matrix. """ A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): """Test NNDSVD variants correctness Test that the variants 'a' and 'ar' differ from basic NNDSVD only where the basic version has zeros. """ data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): """Test model fit behaviour on negative input""" A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): """Test that the decomposition does not contain negative values""" A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): """Test that the fit is not too far away""" pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): """Test that NLS solver doesn't return negative values""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): """Test that the NLS results should be close""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): """Test that NMF.transform returns close values (transform uses scipy.optimize.nnls for now) """ A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): """Smoke test for the case of more components than features.""" A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): """Test sparseness Test that sparsity constraints actually increase sparseness in the part where they are applied. """ A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): """Test that sparse matrices are accepted as input""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): """Test that transform works on sparse data. Issue #2124""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF() A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
davek44/Basset
src/basset_sick_gain.py
1
10809
#!/usr/bin/env python from __future__ import print_function from optparse import OptionParser import os import random import subprocess import matplotlib matplotlib.use('Agg') import numpy as np import matplotlib.pyplot as plt import pysam from scipy.stats.mstats import mquantiles import seaborn as sns import stats ################################################################################ # basset_sick_gain.py # # Shuffle SNPs outside of DNase sites and compare the SAD distributions. # # Todo: # -Properly handle indels. ################################################################################ ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <vcf_file> <excl_bed_file> <model_file>' parser = OptionParser(usage) parser.add_option('-c', dest='cuda', default=False, action='store_true', help='Run on GPU [Default: %default]') parser.add_option('-e', dest='add_excl_bed', default='%s/assembly/hg19_gaps.bed'%os.environ['HG19'], help='Additional genomic regions to exclude from the shuffle [Default: %default]') parser.add_option('-f', dest='genome_fasta', default='%s/assembly/hg19.fa'%os.environ['HG19'], help='Genome FASTA [Default: %default]') parser.add_option('-g', dest='genome_file', default='%s/assembly/human.hg19.core.genome'%os.environ['HG19'], help='Genome file for shuffling [Default: %default]') parser.add_option('-l', dest='seq_len', type='int', default=600, help='Sequence length provided to the model [Default: %default]') parser.add_option('-o', dest='out_dir', default='sad_shuffle', help='Output directory') parser.add_option('-r', dest='replot', default=False, action='store_true', help='Re-plot only, without re-computing [Default: %default]') parser.add_option('-s', dest='num_shuffles', default=1, type='int', help='Number of SNP shuffles [Default: %default]') parser.add_option('-t', dest='targets_file', default=None, help='Target index, sample name table for targets to plot [Default: %default]') (options,args) = parser.parse_args() if len(args) != 3: parser.error('Must provide VCF file, excluded BED file, and model file') else: vcf_file = args[0] excl_bed_file = args[1] model_file = args[2] if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) ######################################### # supplement the excluded sites ######################################### if options.add_excl_bed is not None: supp_excl_bed_file = '%s/excl.bed' % options.out_dir supp_excl_bed_out = open(supp_excl_bed_file, 'w') # copy exclusion BED file for line in open(excl_bed_file): a = line.split() print('\t'.join(a[:3]), file=supp_excl_bed_out) # add on additional sites for line in open(options.add_excl_bed): a = line.split() print('\t'.join(a[:3]), file=supp_excl_bed_out) supp_excl_bed_out.close() excl_bed_file = supp_excl_bed_file ######################################### # compute SAD ######################################### # filter VCF to excluded SNPs excl_vcf_file = '%s/excl.vcf' % options.out_dir if not options.replot: exclude_vcf(vcf_file, excl_bed_file, excl_vcf_file) # compute SADs true_sad = compute_sad(excl_vcf_file, model_file, '%s/excl_sad'%options.out_dir, options.seq_len, options.cuda, options.replot) ######################################### # compute shuffled SAD ######################################### # open reference genome genome_open = pysam.Fastafile(options.genome_fasta) shuffle_sad = np.zeros((true_sad.shape[0],true_sad.shape[1],options.num_shuffles)) for ni in range(options.num_shuffles): # shuffle the SNPs shuf_vcf_file = '%s/shuf%d.vcf' % (options.out_dir, ni) shuffle_snps(excl_vcf_file, shuf_vcf_file, excl_bed_file, options.genome_file, genome_open) # compute SAD scores for shuffled SNPs shuffle_sad[:,:,ni] = compute_sad(shuf_vcf_file, model_file, '%s/shuf%d_sad'%(options.out_dir,ni), options.seq_len, options.cuda, options.replot) # compute shuffle means shuffle_sad_mean = shuffle_sad.mean(axis=2) ######################################### # stats and plots ######################################### targets = {} if options.targets_file: for line in open(options.targets_file): a = line.split() targets[int(a[0])] = a[1] else: for ti in range(true_sad.shape[1]): targets[ti] = 't%d' % ti mw_out = open('%s/mannwhitney.txt' % options.out_dir, 'w') # plot defaults sns.set(font_scale=1.5, style='ticks') for ti in targets: # plot CDFs sns_colors = sns.color_palette('deep') plt.figure() plt.hist(true_sad[:,ti], 1000, normed=1, histtype='step', cumulative=True, color=sns_colors[0], linewidth=1, label='SNPs') plt.hist(shuffle_sad[:,ti,:].flatten(), 1000, normed=1, histtype='step', cumulative=True, color=sns_colors[2], linewidth=1, label='Shuffle') ax = plt.gca() ax.grid(True, linestyle=':') ax.set_xlim(-.15, .15) plt.legend() plt.savefig('%s/%s_cdf.pdf' % (options.out_dir,targets[ti])) plt.close() # plot Q-Q true_q = mquantiles(true_sad[:,ti], np.linspace(0,1,min(10000,true_sad.shape[0]))) shuf_q = mquantiles(shuffle_sad_mean[:,ti], np.linspace(0,1,min(10000,true_sad.shape[0]))) plt.figure() plt.scatter(true_q, shuf_q, color=sns_colors[0]) pmin = 1.05*min(true_q[0], shuf_q[0]) pmax = 1.05*max(true_q[-1], shuf_q[-1]) plt.plot([pmin,pmax], [pmin,pmax], color='black', linewidth=1) ax = plt.gca() ax.set_xlim(pmin,pmax) ax.set_ylim(pmin,pmax) ax.set_xlabel('True SAD') ax.set_ylabel('Shuffled SAD') ax.grid(True, linestyle=':') plt.savefig('%s/%s_qq.pdf' % (options.out_dir,targets[ti])) plt.close() # compute Mann-Whitney mw_z, mw_p = stats.mannwhitneyu(true_sad[:,ti], shuffle_sad[:,ti,:].flatten()) cols = (ti, targets[ti], true_sad.shape[0], true_sad[:,ti].mean(), shuffle_sad[:,ti,:].mean(), mw_z, mw_p) print('%3d %20s %5d %7.4f %7.4f %6.2f %6.1e' % cols, file=mw_out) mw_out.close() def compute_sad(vcf_file, model_file, out_dir, seq_len, gpu, replot): ''' Run basset_sad.py to compute scores. ''' cuda_str = '' if gpu: cuda_str = '--cudnn' cmd = 'basset_sad.py %s -l %d -o %s %s %s' % (cuda_str, seq_len, out_dir, model_file, vcf_file) if not replot: subprocess.call(cmd, shell=True) sad_table = [] sad_table_in = open('%s/sad_table.txt' % out_dir) sad_table_in.readline() last_snpid = None for line in sad_table_in: a = line.split() snpid = a[0] sad = float(a[-1]) if last_snpid == snpid: sad_table[-1].append(sad) else: sad_table.append([sad]) last_snpid = snpid return np.array(sad_table) def exclude_vcf(vcf_file, excl_bed_file, excl_vcf_file): ''' Filter for SNPs outside of the excluded regions and remove indels. ''' # copy header excl_vcf_out = open(excl_vcf_file, 'w') for line in open(vcf_file): if line.startswith('#'): print(line, file=excl_vcf_out, end='') else: break # intersect p = subprocess.Popen('bedtools intersect -v -a %s -b %s' % (vcf_file, excl_bed_file), stdout=subprocess.PIPE, shell=True) for line in p.stdout: a = line.split() # filter for SNPs only if len(a[3]) == len(a[4]) == 1: print(line, file=excl_vcf_out, end='') excl_vcf_out.close() def shuffle_snps(vcf_file, shuf_vcf_file, excl_bed_file, genome_file, genome_open): ''' Shuffle the given SNPs. ''' # extract header header_lines = [] for line in open(vcf_file): if line.startswith('#'): header_lines.append(line) else: break # open shuffled VCF shuf_vcf_out = open(shuf_vcf_file, 'w') # unset SNPs unset_vcf_file = vcf_file unset = 1 # anything > 0 si = 0 while unset > 0: print('Shuffle %d, %d remain' % (si, unset)) # shuffle w/ BEDtools cmd = 'bedtools shuffle -excl %s -i %s -g %s' % (excl_bed_file, unset_vcf_file, genome_file) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) # update and open next unset VCF unset_vcf_file = '%s.%d' % (shuf_vcf_file,si) unset_vcf_out = open(unset_vcf_file, 'w') # print header for line in header_lines: print(line, file=unset_vcf_out, end='') # zero unset counter unset = 0 # fix alleles before printing for line in p.stdout: a = line.split() chrom = a[0] pos = int(a[1]) snp_nt = a[3] # get reference allele ref_nt = genome_open.fetch(chrom, pos-1, pos) if ref_nt == snp_nt: # save to final VCF print(line, file=shuf_vcf_out, end='') else: # write to next unset print(line, file=unset_vcf_out, end='') unset += 1 unset_vcf_out.close() si += 1 shuf_vcf_out.close() # clean up temp files for ci in range(si): os.remove('%s.%d' % (shuf_vcf_file,ci)) def shuffle_snps_old(vcf_file, shuf_vcf_file, excl_bed_file, genome_file, genome_open): ''' Shuffle the given SNPs. ''' # open shuffled VCF shuf_vcf_out = open(shuf_vcf_file, 'w') # shuffle w/ BEDtools cmd = 'bedtools shuffle -excl %s -i %s -g %s' % (excl_bed_file, vcf_file, genome_file) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) # fix alleles before printing for line in p.stdout: a = line.split() chrom = a[0] pos = int(a[1]) snp_nt = a[3] # set reference allele ref_nt = genome_open.fetch(chrom, pos-1, pos) # I accidentally deleted sampling the alt_nt # write into column a[3] = ref_nt a[4] = alt_nt print('\t'.join(a), file=shuf_vcf_out) shuf_vcf_out.close() ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main()
mit
shravya-ks/ECN-ns3
src/flow-monitor/examples/wifi-olsr-flowmon.py
59
7427
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <[email protected]> import sys import ns.applications import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi try: import ns.visualizer except ImportError: pass DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.WifiMacHelper() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=1]")) onOffHelper.SetAttribute("OffTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0]")) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) urv = ns.core.UniformRandomVariable() app.Start(ns.core.Seconds(urv.GetValue(20, 30))) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
fbagirov/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
85
8565
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
jdfekete/progressivis
tests/test_02_table_eval.py
1
3593
from . import ProgressiveTest, skip from progressivis import Scheduler from progressivis.table.table import Table import numpy as np import pandas as pd class TestTableEval(ProgressiveTest): def setUp(self): super(TestTableEval, self).setUp() self.scheduler = Scheduler.default def test_filtering(self): t = Table('table_filtering', dshape="{a: int, b: float32}", create=True) t.resize(20) ivalues = np.random.randint(100,size=20) t['a'] = ivalues fvalues = np.random.rand(20)*100 t['b'] = fvalues df = pd.DataFrame(t.to_dict()) def small_fun(expr, r): te = t.eval(expr, result_object=r) dfe = df.eval(expr) self.assertTrue(np.array_equal(te['a'].loc[:], df[dfe]['a'])) self.assertTrue(np.allclose(te['b'].loc[:], df[dfe]['b'])) def small_fun_ne(expr): r = 'raw_numexpr' te = t.eval(expr, result_object=r) dfe = df.eval(expr) self.assertTrue(np.array_equal(te, dfe.values)) small_fun_ne('(a>10) & (a <80)') small_fun_ne('(b>10) & (b <80)') small_fun_ne('a>=b') small_fun('(a>10) & (a <80)', 'table') small_fun('(b>10) & (b <80)', 'table') small_fun('a>=b', 'table') small_fun('(a>10) & (a <80)', 'view') def test_filtering2(self): t = Table('table_filtering', dshape="{a: int, b: float32}", create=True) sz = 1000 sz_del = 100 t.resize(sz) np.random.seed(42) ivalues = np.random.randint(100,size=sz) t['a'] = ivalues fvalues = np.random.rand(sz)*100 t['b'] = fvalues df = pd.DataFrame(t.to_dict()) to_del = np.random.randint(len(t)-1, size=sz_del) del t.loc[to_del] df = df.drop(to_del) self.assertListEqual(list(t.index), list(df.index)) def small_fun_index(expr): ix = t.eval(expr) dfe = df.eval(expr) self.assertSetEqual(set(ix), set(df.index[dfe])) small_fun_index('(a>10) & (a <80)') def test_assign(self): t = Table('table_eval_assign', dshape="{a: int, b: float32}", create=True) t.resize(20) ivalues = np.random.randint(100,size=20) t['a'] = ivalues fvalues = np.random.rand(20)*100 t['b'] = fvalues df = pd.DataFrame(t.to_dict()) t2 = t.eval('a = a+2*b', inplace=False) df2 = df.eval('a = a+2*b', inplace=False) self.assertTrue(np.allclose(t2['a'], df2['a'])) self.assertTrue(np.allclose(t2['b'], df2['b'])) t.eval('b = a+2*b', inplace=True) df.eval('b = a+2*b', inplace=True) self.assertTrue(np.allclose(t['a'], df['a'])) self.assertTrue(np.allclose(t['b'], df['b'])) @skip def test_user_dict(self): t = Table('table_user_dict', dshape="{a: int, b: float32}", create=True) t.resize(20) ivalues = np.random.randint(100,size=20) t['a'] = ivalues fvalues = np.random.rand(20)*100 t['b'] = fvalues df = pd.DataFrame(t.to_dict()) t2 = t.eval('a = a+2*b', inplace=False) df2 = df.eval('x = a.loc[3]+2*b.loc[3]', inplace=False) #print(df2.x) #self.assertTrue(np.allclose(t2['a'], df2['a'])) #self.assertTrue(np.allclose(t2['b'], df2['b'])) #t.eval('b = a+2*b', inplace=True) #df.eval('b = a+2*b', inplace=True) #self.assertTrue(np.allclose(t['a'], df['a'])) #self.assertTrue(np.allclose(t['b'], df['b']))
bsd-2-clause
tdhopper/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
341
2620
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
bsd-3-clause
pramitchoudhary/Experiments
modelinterpretation/random_forest_intepretation_treeinterpreter.py
2
1585
# coding: utf-8 # In[1]: # Reference: https://github.com/andosa/treeinterpreter # Blog: http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/ from treeinterpreter import treeinterpreter as ti from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import numpy as np # In[2]: from sklearn.datasets import load_boston boston = load_boston() rf = RandomForestRegressor() # In[13]: boston.data[:300,].shape # In[16]: rf = RandomForestRegressor() fit1 = rf.fit(boston.data[:300], boston.target[:300]) # In[17]: fit1 # In[37]: instances = boston.data[[300, 309]] print "Instance 0 prediction:", rf.predict(instances[0].reshape(1,13)) print "Instance 1 prediction:", rf.predict(instances[1].reshape(1,13)) # In[38]: prediction, bias, contributions = ti.predict(rf, instances) # In[40]: for i in range(len(instances)): print "Instance", i print "Bias (trainset mean)", bias[i] print "Feature contributions:" for c, feature in sorted(zip(contributions[i], boston.feature_names), key=lambda x: -abs(x[0])): print feature, round(c, 2) print "-"*20 # In[42]: print prediction print bias + np.sum(contributions, axis=1) # In[43]: # the basic feature importance feature provided by sklearn fit1.feature_importances_ # In[44]: # treeinterpreter uses the apply function to retrieve the leave indicies with the help of which, # the tree path is retrieved rf.apply # In[47]: rf.apply(instances) # In[ ]:
unlicense
Windy-Ground/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
chrsrds/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
127
1270
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import matplotlib.pyplot as plt from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) plt.figure('scikit-learn parallel %s benchmark results' % func.__name__) plt.plot(sample_sizes, one_core, label="one core") plt.plot(sample_sizes, multi_core, label="multi core") plt.xlabel('n_samples') plt.ylabel('Time (s)') plt.title('Parallel %s' % func.__name__) plt.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) plt.show()
bsd-3-clause
nicolas998/Op_Radar
06_Codigos/Actualiza_MeanStorage_Hist.py
2
4715
#!/usr/bin/env python from wmf import wmf import numpy as np import pickle import pandas as pnd import pylab as pl import argparse import textwrap import netCDF4 from multiprocessing import Pool import os #------------------------------------------------------------------- #FUNCIONES LOCALES #------------------------------------------------------------------- #------------------------------------------------------------------- #PARSEADOR DE ARGUMENTOS #------------------------------------------------------------------- #Parametros de entrada del trazador parser=argparse.ArgumentParser( prog='Actualiza_Caudales_Hist', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ Actualiza las series de almacenamiento medio estimadas por el modelo para la cuenca en la cual se este simulando, existen tantos archivos de almacenamiento medio como calibraciones para el proyecto de la cuenca existan. ''')) #Parametros obligatorios parser.add_argument("rutaShist",help="(Obligatorio) Carpeta con la serie historica de almacenamientos .StoHist simulados por el modelo ") parser.add_argument("rutaSsim",help="(Obligatorio) Carpeta con las series de almacenamientos .StOhdr simulados en el ultimo intervalo") parser.add_argument("-n", "--newhist", help="(Opcional) Con esta opcion el script genera un nuevo punto de generacion de historicos", action = 'store_true', default = False) parser.add_argument("-i", "--fechai", help="(Opcional) Fecha de inicio de nuevo punto de historicos (YYYY-MM-DD HH:MM)") parser.add_argument("-f", "--fechaf", help="(Opcional) Fecha de fin de nuevo punto de historicos (YYYY-MM-DD HH:MM)") parser.add_argument("-v","--verbose",help="(Opcional) Hace que el modelo indique en que porcentaje de ejecucion va", action = 'store_true', default = False) args=parser.parse_args() #------------------------------------------------------------------- # LISTA DE CAUDALES SIMULADOS #------------------------------------------------------------------- #Lista caudales simulados sin repetir L = os.listdir(args.rutaSsim) L = [i for i in L if i.endswith('StOhdr')] Lhist = [i[:-7] + '.StoHist' for i in L] #------------------------------------------------------------------- # NUEVO PUNTO DE HISTORIA (solo si se habilita) #------------------------------------------------------------------- if args.newhist: #Fechas de inicio y fin FechaI = args.fechai FechaF = args.fechaf #Genera el Data Frame vacio desde el inicio hasta el punto de ejecucion DifIndex = pnd.date_range(FechaI, FechaF, freq='5min') Sh = pnd.DataFrame(np.zeros((DifIndex.size, 5))*np.nan, index=pnd.date_range(FechaI, FechaF, freq='5min'), columns = ['Tanque_'+str(i) for i in range(1,6)]) Lold = os.listdir(args.rutaShist) for i in Lhist: #Pregunta si esta try: pos = Lold.index(i) flag = raw_input('Aviso: El archivo historico : '+i+' ya existe, desea sobre-escribirlo, perdera la historia de este!! (S o N): ') if flag == 'S': flag = True else: flag = False except: flag = True #Guardado if flag: Sh.to_msgpack(args.rutaShist + i) #------------------------------------------------------------------- # ACTUALIZACION DE CAUDALES #------------------------------------------------------------------- #busca que este el archivo base en la carpeta for act, hist in zip(L, Lhist): try: #Lee el almacenamiento actual Sactual = pnd.read_csv(args.rutaSsim+act, header = 4, index_col = 5, parse_dates = True, usecols=(1,2,3,4,5,6)) St = pnd.DataFrame(Sactual[Sactual.index == Sactual.index[0]].values, index=[Sactual.index[0],], columns = ['Tanque_'+str(i) for i in range(1,6)]) #Lee el historico Shist = pnd.read_msgpack(args.rutaShist + hist) # encuentra el pedazo que falta entre ambos Gap = pnd.date_range(Shist.index[-1], Sactual.index[0], freq='5min') #Genera el pedazo con faltantes GapData = pnd.DataFrame(np.zeros((Gap.size - 2, 5))*np.nan, index= Gap[1:-1], columns = ['Tanque_'+str(i) for i in range(1,6)]) #pega la informacion Shist = Shist.append(GapData) Shist = Shist.append(St) #Guarda el archivo historico Shist.to_msgpack(args.rutaShist + hist) #Aviso print 'Aviso: Se ha actualizado el archivo de estados historicos: '+hist except: print 'Aviso: No se encuentra el historico de estados: '+hist+' Por lo tanto no se actualiza'
gpl-3.0
jschuecker/nest-simulator
topology/doc/user_manual_scripts/connections.py
8
18562
# -*- coding: utf-8 -*- # # connections.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # create connectivity figures for topology manual import nest import nest.topology as tp import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D import numpy as np # seed NumPy RNG to ensure identical results for runs with random placement np.random.seed(7654321) def beautify_layer(l, fig=plt.gcf(), xlabel=None, ylabel=None, xlim=None, ylim=None, xticks=None, yticks=None, dx=0, dy=0): """Assume either x and ylims/ticks given or none""" top = nest.GetStatus(l)[0]['topology'] ctr = top['center'] ext = top['extent'] if xticks is None: if 'rows' in top: dx = float(ext[0]) / top['columns'] dy = float(ext[1]) / top['rows'] xticks = ctr[0] - ext[0] / 2. + dx / 2. + dx * np.arange( top['columns']) yticks = ctr[1] - ext[1] / 2. + dy / 2. + dy * np.arange( top['rows']) if xlim is None: xlim = [ctr[0] - ext[0] / 2. - dx / 2., ctr[0] + ext[ 0] / 2. + dx / 2.] # extra space so extent is visible ylim = [ctr[1] - ext[1] / 2. - dy / 2., ctr[1] + ext[1] / 2. + dy / 2.] else: ext = [xlim[1] - xlim[0], ylim[1] - ylim[0]] ax = fig.gca() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_aspect('equal', 'box') ax.set_xticks(xticks) ax.set_yticks(yticks) ax.grid(True) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return def conn_figure(fig, layer, connd, targets=None, showmask=True, showkern=False, xticks=range(-5, 6), yticks=range(-5, 6), xlim=[-5.5, 5.5], ylim=[-5.5, 5.5]): if targets is None: targets = ((tp.FindCenterElement(layer), 'red'),) tp.PlotLayer(layer, fig=fig, nodesize=60) for src, clr in targets: if showmask: mask = connd['mask'] else: mask = None if showkern: kern = connd['kernel'] else: kern = None tp.PlotTargets(src, layer, fig=fig, mask=mask, kernel=kern, src_size=250, tgt_color=clr, tgt_size=20, kernel_color='green') beautify_layer(layer, fig, xlim=xlim, ylim=ylim, xticks=xticks, yticks=yticks, xlabel='', ylabel='') fig.gca().grid(False) # ----------------------------------------------- # Simple connection #{ conn1 #} l = tp.CreateLayer({'rows': 11, 'columns': 11, 'extent': [11., 11.], 'elements': 'iaf_psc_alpha'}) conndict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-2., -1.], 'upper_right': [2., 1.]}}} tp.ConnectLayers(l, l, conndict) #{ end #} fig = plt.figure() fig.add_subplot(121) conn_figure(fig, l, conndict, targets=((tp.FindCenterElement(l), 'red'), (tp.FindNearestElement(l, [4., 5.]), 'yellow'))) # same another time, with periodic bcs lpbc = tp.CreateLayer({'rows': 11, 'columns': 11, 'extent': [11., 11.], 'elements': 'iaf_psc_alpha', 'edge_wrap': True}) tp.ConnectLayers(lpbc, lpbc, conndict) fig.add_subplot(122) conn_figure(fig, lpbc, conndict, showmask=False, targets=((tp.FindCenterElement(lpbc), 'red'), (tp.FindNearestElement(lpbc, [4., 5.]), 'yellow'))) plt.savefig('../user_manual_figures/conn1.png', bbox_inches='tight') # ----------------------------------------------- # free masks def free_mask_fig(fig, loc, cdict): nest.ResetKernel() l = tp.CreateLayer({'rows': 11, 'columns': 11, 'extent': [11., 11.], 'elements': 'iaf_psc_alpha'}) tp.ConnectLayers(l, l, cdict) fig.add_subplot(loc) conn_figure(fig, l, cdict, xticks=range(-5, 6, 2), yticks=range(-5, 6, 2)) fig = plt.figure() #{ conn2r #} conndict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-2., -1.], 'upper_right': [2., 1.]}}} #{ end #} free_mask_fig(fig, 231, conndict) #{ conn2ro #} conndict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-2., -1.], 'upper_right': [2., 1.]}, 'anchor': [-1.5, -1.5]}} #{ end #} free_mask_fig(fig, 234, conndict) #{ conn2c #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 2.0}}} #{ end #} free_mask_fig(fig, 232, conndict) #{ conn2co #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 2.0}, 'anchor': [-2.0, 0.0]}} #{ end #} free_mask_fig(fig, 235, conndict) #{ conn2d #} conndict = {'connection_type': 'divergent', 'mask': {'doughnut': {'inner_radius': 1.5, 'outer_radius': 3.}}} #{ end #} free_mask_fig(fig, 233, conndict) #{ conn2do #} conndict = {'connection_type': 'divergent', 'mask': {'doughnut': {'inner_radius': 1.5, 'outer_radius': 3.}, 'anchor': [1.5, 1.5]}} #{ end #} free_mask_fig(fig, 236, conndict) plt.savefig('../user_manual_figures/conn2.png', bbox_inches='tight') # ----------------------------------------------- # 3d masks def conn_figure_3d(fig, layer, connd, targets=None, showmask=True, showkern=False, xticks=range(-5, 6), yticks=range(-5, 6), xlim=[-5.5, 5.5], ylim=[-5.5, 5.5]): if targets is None: targets = ((tp.FindCenterElement(layer), 'red'),) tp.PlotLayer(layer, fig=fig, nodesize=20, nodecolor=(.5, .5, 1.)) for src, clr in targets: if showmask: mask = connd['mask'] else: mask = None if showkern: kern = connd['kernel'] else: kern = None tp.PlotTargets(src, layer, fig=fig, mask=mask, kernel=kern, src_size=250, tgt_color=clr, tgt_size=60, kernel_color='green') ax = fig.gca() ax.set_aspect('equal', 'box') plt.draw() def free_mask_3d_fig(fig, loc, cdict): nest.ResetKernel() l = tp.CreateLayer( {'rows': 11, 'columns': 11, 'layers': 11, 'extent': [11., 11., 11.], 'elements': 'iaf_psc_alpha'}) tp.ConnectLayers(l, l, cdict) fig.add_subplot(loc, projection='3d') conn_figure_3d(fig, l, cdict, xticks=range(-5, 6, 2), yticks=range(-5, 6, 2)) fig = plt.figure() #{ conn_3d_a #} conndict = {'connection_type': 'divergent', 'mask': {'box': {'lower_left': [-2., -1., -1.], 'upper_right': [2., 1., 1.]}}} #{ end #} free_mask_3d_fig(fig, 121, conndict) #{ conn_3d_b #} conndict = {'connection_type': 'divergent', 'mask': {'spherical': {'radius': 2.5}}} #{ end #} free_mask_3d_fig(fig, 122, conndict) plt.savefig('../user_manual_figures/conn_3d.png', bbox_inches='tight') # ----------------------------------------------- # grid masks def grid_mask_fig(fig, loc, cdict): nest.ResetKernel() l = tp.CreateLayer({'rows': 11, 'columns': 11, 'extent': [11., 11.], 'elements': 'iaf_psc_alpha'}) tp.ConnectLayers(l, l, cdict) fig.add_subplot(loc) conn_figure(fig, l, cdict, xticks=range(-5, 6, 2), yticks=range(-5, 6, 2), showmask=False) fig = plt.figure() #{ conn3 #} conndict = {'connection_type': 'divergent', 'mask': {'grid': {'rows': 3, 'columns': 5}}} #{ end #} grid_mask_fig(fig, 131, conndict) #{ conn3c #} conndict = {'connection_type': 'divergent', 'mask': {'grid': {'rows': 3, 'columns': 5}, 'anchor': {'row': 1, 'column': 2}}} #{ end #} grid_mask_fig(fig, 132, conndict) #{ conn3x #} conndict = {'connection_type': 'divergent', 'mask': {'grid': {'rows': 3, 'columns': 5}, 'anchor': {'row': -1, 'column': 2}}} #{ end #} grid_mask_fig(fig, 133, conndict) plt.savefig('../user_manual_figures/conn3.png', bbox_inches='tight') # ----------------------------------------------- # free masks def kernel_fig(fig, loc, cdict, showkern=True): nest.ResetKernel() l = tp.CreateLayer({'rows': 11, 'columns': 11, 'extent': [11., 11.], 'elements': 'iaf_psc_alpha'}) tp.ConnectLayers(l, l, cdict) fig.add_subplot(loc) conn_figure(fig, l, cdict, xticks=range(-5, 6, 2), yticks=range(-5, 6, 2), showkern=showkern) fig = plt.figure() #{ conn4cp #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 4.}}, 'kernel': 0.5} #{ end #} kernel_fig(fig, 231, conndict) #{ conn4g #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 4.}}, 'kernel': {'gaussian': {'p_center': 1.0, 'sigma': 1.}}} #{ end #} kernel_fig(fig, 232, conndict) #{ conn4gx #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 4.}, 'anchor': [1.5, 1.5]}, 'kernel': {'gaussian': {'p_center': 1.0, 'sigma': 1., 'anchor': [1.5, 1.5]}}} #{ end #} kernel_fig(fig, 233, conndict) plt.draw() #{ conn4cut #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 4.}}, 'kernel': {'gaussian': {'p_center': 1.0, 'sigma': 1., 'cutoff': 0.5}}} #{ end #} kernel_fig(fig, 234, conndict) #{ conn42d #} conndict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 4.}}, 'kernel': {'gaussian2D': {'p_center': 1.0, 'sigma_x': 1., 'sigma_y': 3.}}} #{ end #} kernel_fig(fig, 235, conndict, showkern=False) plt.savefig('../user_manual_figures/conn4.png', bbox_inches='tight') # ----------------------------------------------- def wd_fig(fig, loc, ldict, cdict, what, rpos=None, xlim=[-1, 51], ylim=[0, 1], xticks=range(0, 51, 5), yticks=np.arange(0., 1.1, 0.2), clr='blue', label=''): nest.ResetKernel() l = tp.CreateLayer(ldict) tp.ConnectLayers(l, l, cdict) ax = fig.add_subplot(loc) if rpos is None: rn = nest.GetLeaves(l)[0][:1] # first node else: rn = tp.FindNearestElement(l, rpos) conns = nest.GetConnections(rn) cstat = nest.GetStatus(conns) vals = np.array([sd[what] for sd in cstat]) tgts = [sd['target'] for sd in cstat] locs = np.array(tp.GetPosition(tgts)) ax.plot(locs[:, 0], vals, 'o', mec='none', mfc=clr, label=label) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticks(xticks) ax.set_yticks(yticks) fig = plt.figure() #{ conn5lin #} ldict = {'rows': 1, 'columns': 51, 'extent': [51., 1.], 'center': [25., 0.], 'elements': 'iaf_psc_alpha'} cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'linear': {'c': 1.0, 'a': -0.05, 'cutoff': 0.0}}, 'delays': {'linear': {'c': 0.1, 'a': 0.02}}} #{ end #} wd_fig(fig, 311, ldict, cdict, 'weight', label='Weight') wd_fig(fig, 311, ldict, cdict, 'delay', label='Delay', clr='red') fig.gca().legend() lpdict = {'rows': 1, 'columns': 51, 'extent': [51., 1.], 'center': [25., 0.], 'elements': 'iaf_psc_alpha', 'edge_wrap': True} #{ conn5linpbc #} cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'linear': {'c': 1.0, 'a': -0.05, 'cutoff': 0.0}}, 'delays': {'linear': {'c': 0.1, 'a': 0.02}}} #{ end #} wd_fig(fig, 312, lpdict, cdict, 'weight', label='Weight') wd_fig(fig, 312, lpdict, cdict, 'delay', label='Delay', clr='red') fig.gca().legend() cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'linear': {'c': 1.0, 'a': -0.05, 'cutoff': 0.0}}} wd_fig(fig, 313, ldict, cdict, 'weight', label='Linear', rpos=[25., 0.], clr='orange') #{ conn5exp #} cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'exponential': {'a': 1., 'tau': 5.}}} #{ end #} wd_fig(fig, 313, ldict, cdict, 'weight', label='Exponential', rpos=[25., 0.]) #{ conn5gauss #} cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'gaussian': {'p_center': 1., 'sigma': 5.}}} #{ end #} wd_fig(fig, 313, ldict, cdict, 'weight', label='Gaussian', clr='green', rpos=[25., 0.]) #{ conn5uniform #} cdict = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-25.5, -0.5], 'upper_right': [25.5, 0.5]}}, 'weights': {'uniform': {'min': 0.2, 'max': 0.8}}} #{ end #} wd_fig(fig, 313, ldict, cdict, 'weight', label='Uniform', clr='red', rpos=[25., 0.]) fig.gca().legend() plt.savefig('../user_manual_figures/conn5.png', bbox_inches='tight') # -------------------------------- def pn_fig(fig, loc, ldict, cdict, xlim=[0., .5], ylim=[0, 3.5], xticks=range(0, 51, 5), yticks=np.arange(0., 1.1, 0.2), clr='blue', label=''): nest.ResetKernel() l = tp.CreateLayer(ldict) tp.ConnectLayers(l, l, cdict) ax = fig.add_subplot(loc) rn = nest.GetLeaves(l)[0] conns = nest.GetConnections(rn) cstat = nest.GetStatus(conns) srcs = [sd['source'] for sd in cstat] tgts = [sd['target'] for sd in cstat] dist = np.array(tp.Distance(srcs, tgts)) ax.hist(dist, bins=50, histtype='stepfilled', normed=True) r = np.arange(0., 0.51, 0.01) plt.plot(r, 2 * np.pi * r * (1 - 2 * r) * 12 / np.pi, 'r-', lw=3, zorder=-10) ax.set_xlim(xlim) ax.set_ylim(ylim) """ax.set_xticks(xticks) ax.set_yticks(yticks)""" # ax.set_aspect(100, 'box') ax.set_xlabel('Source-target distance d') ax.set_ylabel('Connection probability pconn(d)') fig = plt.figure() #{ conn6 #} pos = [[np.random.uniform(-1., 1.), np.random.uniform(-1., 1.)] for j in range(1000)] ldict = {'positions': pos, 'extent': [2., 2.], 'elements': 'iaf_psc_alpha', 'edge_wrap': True} cdict = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 1.0}}, 'kernel': {'linear': {'c': 1., 'a': -2., 'cutoff': 0.0}}, 'number_of_connections': 50, 'allow_multapses': True, 'allow_autapses': False} #{ end #} pn_fig(fig, 111, ldict, cdict) plt.savefig('../user_manual_figures/conn6.png', bbox_inches='tight') # ----------------------------- #{ conn7 #} nest.ResetKernel() nest.CopyModel('iaf_psc_alpha', 'pyr') nest.CopyModel('iaf_psc_alpha', 'in') ldict = {'rows': 10, 'columns': 10, 'elements': ['pyr', 'in']} cdict_p2i = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 0.5}}, 'kernel': 0.8, 'sources': {'model': 'pyr'}, 'targets': {'model': 'in'}} cdict_i2p = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-0.2, -0.2], 'upper_right': [0.2, 0.2]}}, 'sources': {'model': 'in'}, 'targets': {'model': 'pyr'}} l = tp.CreateLayer(ldict) tp.ConnectLayers(l, l, cdict_p2i) tp.ConnectLayers(l, l, cdict_i2p) #{ end #} # ---------------------------- #{ conn8 #} nest.ResetKernel() nest.CopyModel('iaf_psc_alpha', 'pyr') nest.CopyModel('iaf_psc_alpha', 'in') nest.CopyModel('static_synapse', 'exc', {'weight': 2.0}) nest.CopyModel('static_synapse', 'inh', {'weight': -8.0}) ldict = {'rows': 10, 'columns': 10, 'elements': ['pyr', 'in']} cdict_p2i = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 0.5}}, 'kernel': 0.8, 'sources': {'model': 'pyr'}, 'targets': {'model': 'in'}, 'synapse_model': 'exc'} cdict_i2p = {'connection_type': 'divergent', 'mask': {'rectangular': {'lower_left': [-0.2, -0.2], 'upper_right': [0.2, 0.2]}}, 'sources': {'model': 'in'}, 'targets': {'model': 'pyr'}, 'synapse_model': 'inh'} l = tp.CreateLayer(ldict) tp.ConnectLayers(l, l, cdict_p2i) tp.ConnectLayers(l, l, cdict_i2p) #{ end #} # ---------------------------- #{ conn9 #} nrn_layer = tp.CreateLayer({'rows': 20, 'columns': 20, 'elements': 'iaf_psc_alpha'}) stim = tp.CreateLayer({'rows': 1, 'columns': 1, 'elements': 'poisson_generator'}) cdict_stim = {'connection_type': 'divergent', 'mask': {'circular': {'radius': 0.1}, 'anchor': [0.2, 0.2]}} tp.ConnectLayers(stim, nrn_layer, cdict_stim) #{ end #} # ---------------------------- #{ conn10 #} rec = tp.CreateLayer({'rows': 1, 'columns': 1, 'elements': 'spike_detector'}) cdict_rec = {'connection_type': 'convergent', 'mask': {'circular': {'radius': 0.1}, 'anchor': [-0.2, 0.2]}} tp.ConnectLayers(nrn_layer, rec, cdict_rec) #{ end #} # ---------------------------- #{ conn11 #} rec = nest.Create('spike_detector') nrns = nest.GetLeaves(nrn_layer, local_only=True)[0] nest.Connect(nrns, rec) #{ end #}
gpl-2.0
chengjun/iching
iching/iching.py
2
4912
# -*- coding: utf-8 -*- """ Created on Sun Feb 22 14:19:41 2015 @author: chengjun """ import random import matplotlib.cm as cm import matplotlib.pyplot as plt from collections import defaultdict def ichingDate(d): random.seed(d) try: print 'Your birthday & your prediction time: ', str(d) except: print('Your birthday & your prediction time: ', str(d)) def sepSkyEarth(data): sky = random.randint(1, data-2) earth = data - sky earth -= 1 return sky , earth def getRemainder(num): rm = num % 4 if rm == 0: rm = 4 return rm def getChange(data): sky, earth = sepSkyEarth(data) skyRemainder = getRemainder(sky) earthRemainder = getRemainder(earth) change = skyRemainder + earthRemainder + 1 data = data - change return sky, earth, change, data def getYao(data): sky, earth, firstChange, data = getChange(data) sky, earth, secondChange, data = getChange(data) sky, earth, thirdChange, data = getChange(data) yao = data/4 return yao, firstChange, secondChange, thirdChange def sixYao(): yao1 = getYao(data = 50 - 1)[0] yao2 = getYao(data = 50 - 1)[0] yao3 = getYao(data = 50 - 1)[0] yao4 = getYao(data = 50 - 1)[0] yao5 = getYao(data = 50 - 1)[0] yao6 = getYao(data = 50 - 1)[0] return[yao1, yao2, yao3, yao4, yao5, yao6] def fixYao(num): if num == 6 or num == 9: try: # for python 2.x print "there is a changing predict! Also run changePredict()" except: # for python 3.x print("there is a changing predict! Also run changePredict()") return num % 2 def changeYao(num): if num == 6: num = 1 elif num == 9: num = 2 num = num % 2 return(num) def fixPredict(pred): fixprd = [fixYao(i) for i in pred] fixprd = list2str(fixprd) return fixprd def list2str(l): si = '' for i in l: si = si + str(i) return si def changePredict(pred): changeprd = [changeYao(i) for i in pred] changeprd = list2str(changeprd) return changeprd def getPredict(): pred = sixYao() fixPred = fixPredict(pred) if 6 in pred or 9 in pred: changePred = changePredict(pred) else: changePred = None return fixPred, changePred def ichingName(now, future): dt = {'111111':u'乾','011111':u'夬','000000':u'坤','010001':u'屯','100010':u'蒙','010111':u'需','111010':u'讼','000010': u'师', '010000':u'比','110111':u'小畜','111011':u'履','000111':u'泰','111000':u'否','111101':u'同人','101111':u'大有','000100':u'谦', '001000':u'豫','011001':u'随','100110':u'蛊','000011':u'临','110000':u'观','101001':u'噬嗑','100101':u'贲','100000':u'剥', '000001':u'复','111001':u'无妄','100111':u'大畜','100001':u'颐','011110':u'大过','010010':u'坎','101101':u'离','011100':u'咸', '001110':u'恒','111100':u'遁','001111':u'大壮','101000':u'晋','000101':u'明夷','110101':u'家人','101011':u'睽','010100':u'蹇', '001010':u'解','100011':u'损','110001':u'益','111110':u'姤','011000':u'萃','000110':u'升','011010':u'困','010110':u'井', '011101':u'革','101110':u'鼎','001001':u'震','100100':u'艮','110100':u'渐','001011':u'归妹','001101':u'丰','101100':u'旅', '110110':u'巽','011011':u'兑','110010':u'涣','010011':u'节','110011':u'中孚','001100':u'小过','010101':u'既济','101010':u'未济'} if future: name = dt[now] + ' & ' + dt[future] else: name = dt[now] return name def ichingText(k, iching): path = iching.__file__ path = path.split('iching')[0] import json dat = json.load(open(path + 'iching/package_data.dat'), encoding = 'utf-8') return dat[k] def plotTransition(N, w): import matplotlib.cm as cm import matplotlib.pyplot as plt from collections import defaultdict changes = {} for i in range(N): sky, earth, firstChange, data = getChange(data = 50 -1) sky, earth, secondChange, data = getChange(data) sky, earth, thirdChange, data = getChange(data) changes[i]=[firstChange, secondChange, thirdChange, data/4] ichanges = changes.values() firstTransition = defaultdict(int) for i in ichanges: firstTransition[i[0], i[1]]+=1 secondTransition = defaultdict(int) for i in ichanges: secondTransition[i[1], i[2]]+=1 thirdTransition = defaultdict(int) for i in ichanges: thirdTransition[i[2], i[3]]+=1 cmap = cm.get_cmap('Accent_r', len(ichanges)) for k, v in firstTransition.iteritems(): plt.plot([1, 2], k, linewidth = v*w/N) for k, v in secondTransition.iteritems(): plt.plot([2, 3], k, linewidth = v*w/N) for k, v in thirdTransition.iteritems(): plt.plot([3, 4], k, linewidth = v*w/N) plt.xlabel(u'Time') plt.ylabel(u'Changes')
mit
vybstat/scikit-learn
examples/linear_model/plot_sparse_recovery.py
243
7461
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.utils import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause
francesco-mannella/dmp-esn
parametric/parametric_dmp/bin/tr_datasets/e_cursive_curves_angles/data/plot.py
8
2377
#!/usr/bin/env python import glob import numpy as np import matplotlib import matplotlib.pyplot as plt import os import sys matplotlib.use("cairo") pathname = os.path.dirname(sys.argv[0]) if pathname: os.chdir(pathname) coords = None if len(sys.argv) == 5: try : coords = [ float(sys.argv[x]) for x in range(1,5) ] except ValueError: pass n_dim = None def get_trajectories(pattern): trs = [] names = glob.glob(pattern) names.sort() for fname in names: t = np.loadtxt(fname) trs.append(t) return trs trains = get_trajectories("trajectories/tl*") tests = get_trajectories("trajectories/tt*") train_results = get_trajectories("results/rtl*") test_results = get_trajectories("results/rtt*") ltrain = None ltest = None lall = [] idcs = np.arange(len(trains)) theo_train = { 'color': [.6,.6,1], 'lw': 5, 'zorder': 2, 'label': "Training" } repr_train = { 'color': [0,0,.3], 'lw': 1.5, 'zorder': 3, 'label': "Training repr." } theo_test = { 'color': [1,.6,.6], 'lw': 5, 'zorder': 2, 'label': "Test" } repr_test = { 'color': [.3,0,0], 'lw': 1.5, 'zorder': 3, 'label': "Test repr" } def common_plot(ax, d, label, color, lw, zorder): h, = ax.plot(d[:,1]+d[:,7]*6, d[:,2]+d[:,8]*6, color=color, lw=lw, zorder=zorder, label=label) return h def plot_trajectories(ax, ttype, lall, **kargs): idcs = np.arange(len(ttype)) for d,i in zip(ttype, idcs): if i == 0: lplot = common_plot(ax, d, **kargs) lall.append(lplot) else: common_plot(ax, d, **kargs) fig = plt.figure("DMP Stulp", figsize=(8,8)) ax = fig.add_subplot(111, aspect="equal") plot_trajectories(ax, trains, lall, **theo_train) plot_trajectories(ax, train_results, lall, **repr_train) plot_trajectories(ax, tests, lall, **theo_test) plot_trajectories(ax, test_results, lall, **repr_test) print coords if coords == None: ax.set_xlim([-0.5,10.2]) ax.set_ylim([-0.5,7.2]) else: ax.set_xlim([coords[0], coords[1]]) ax.set_ylim([coords[2], coords[3]]) ax.set_xticks([]) ax.set_yticks([]) ax.legend(handles=lall) plt.tight_layout() plt.show()
gpl-2.0
daodaoliang/bokeh
bokeh/models/sources.py
9
11157
from __future__ import absolute_import from ..plot_object import PlotObject from ..properties import HasProps from ..properties import Any, Int, String, Instance, List, Dict, Either, Bool, Enum from ..validation.errors import COLUMN_LENGTHS from .. import validation from ..util.serialization import transform_column_source_data from .callbacks import Callback from bokeh.deprecate import deprecated class DataSource(PlotObject): """ A base class for data source types. ``DataSource`` is not generally useful to instantiate on its own. """ column_names = List(String, help=""" An list of names for all the columns in this DataSource. """) selected = Dict(String, Dict(String, Any), default={ '0d': {'flag': False, 'indices': []}, '1d': {'indices': []}, '2d': {'indices': []} }, help=""" A dict to indicate selected indices on different dimensions on this DataSource. Keys are: - 0d: indicates whether a Line or Patch glyphs have been hit. Value is a dict with the following keys: - flag (boolean): true if glyph was with false otherwise - indices (list): indices hit (if applicable) - 1d: indicates whether any of all other glyph (except [multi]line or patches) was hit: - indices (list): indices that were hit/selected - 2d: indicates whether a [multi]line or patches) were hit: - indices (list(list)): indices of the lines/patches that were hit/selected """) callback = Instance(Callback, help=""" A callback to run in the browser whenever the selection is changed. """) def columns(self, *columns): """ Returns a ColumnsRef object for a column or set of columns on this data source. Args: *columns Returns: ColumnsRef """ return ColumnsRef(source=self, columns=list(columns)) class ColumnsRef(HasProps): """ A utility object to allow referring to a collection of columns from a specified data source, all together. """ source = Instance(DataSource, help=""" A data source to reference. """) columns = List(String, help=""" A list of column names to reference from ``source``. """) class ColumnDataSource(DataSource): """ Maps names of columns to sequences or arrays. If the ColumnDataSource initializer is called with a single argument that is a dict or pandas.DataFrame, that argument is used as the value for the "data" attribute. For example:: ColumnDataSource(mydict) # same as ColumnDataSource(data=mydict) ColumnDataSource(df) # same as ColumnDataSource(data=df) .. note:: There is an implicit assumption that all the columns in a a given ColumnDataSource have the same length. """ data = Dict(String, Any, help=""" Mapping of column names to sequences of data. The data can be, e.g, Python lists or tuples, NumPy arrays, etc. """) def __init__(self, *args, **kw): """ If called with a single argument that is a dict or pandas.DataFrame, treat that implicitly as the "data" attribute. """ if len(args) == 1 and "data" not in kw: kw["data"] = args[0] # TODO (bev) invalid to pass args and "data", check and raise exception raw_data = kw.pop("data", {}) if not isinstance(raw_data, dict): import pandas as pd if isinstance(raw_data, pd.DataFrame): raw_data = self._data_from_df(raw_data) else: raise ValueError("expected a dict or pandas.DataFrame, got %s" % raw_data) for name, data in raw_data.items(): self.add(data, name) super(ColumnDataSource, self).__init__(**kw) @staticmethod def _data_from_df(df): """ Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: df (DataFrame) : data to convert Returns: dict(str, list) """ index = df.index new_data = {} for colname in df: new_data[colname] = df[colname].tolist() if index.name: new_data[index.name] = index.tolist() elif index.names and not all([x is None for x in index.names]): new_data["_".join(index.names)] = index.tolist() else: new_data["index"] = index.tolist() return new_data @classmethod @deprecated("Bokeh 0.9.3", "ColumnDataSource initializer") def from_df(cls, data): """ Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: data (DataFrame) : data to convert Returns: dict(str, list) """ import warnings warnings.warn("Method deprecated in Bokeh 0.9.3") return cls._data_from_df(data) def to_df(self): """ Convert this data source to pandas dataframe. If ``column_names`` is set, use those. Otherwise let Pandas infer the column names. The ``column_names`` property can be used both to order and filter the columns. Returns: DataFrame """ import pandas as pd if self.column_names: return pd.DataFrame(self.data, columns=self.column_names) else: return pd.DataFrame(self.data) def add(self, data, name=None): """ Appends a new column of data to the data source. Args: data (seq) : new data to add name (str, optional) : column name to use. If not supplied, generate a name go the form "Series ####" Returns: str: the column name used """ if name is None: n = len(self.data) while "Series %d"%n in self.data: n += 1 name = "Series %d"%n self.column_names.append(name) self.data[name] = data return name def vm_serialize(self, changed_only=True): attrs = super(ColumnDataSource, self).vm_serialize(changed_only=changed_only) if 'data' in attrs: attrs['data'] = transform_column_source_data(attrs['data']) return attrs def remove(self, name): """ Remove a column of data. Args: name (str) : name of the column to remove Returns: None .. note:: If the column name does not exist, a warning is issued. """ try: self.column_names.remove(name) del self.data[name] except (ValueError, KeyError): import warnings warnings.warn("Unable to find column '%s' in data source" % name) def push_notebook(self): """ Update date for a plot in the IPthon notebook in place. This function can be be used to update data in plot data sources in the IPython notebook, without having to use the Bokeh server. Returns: None .. warning:: The current implementation leaks memory in the IPython notebook, due to accumulating JS code. This function typically works well with light UI interactions, but should not be used for continuously updating data. See :bokeh-issue:`1732` for more details and to track progress on potential fixes. """ from IPython.core import display from bokeh.protocol import serialize_json id = self.ref['id'] model = self.ref['type'] json = serialize_json(self.vm_serialize()) js = """ var ds = Bokeh.Collections('{model}').get('{id}'); var data = {json}; ds.set(data); """.format(model=model, id=id, json=json) display.display_javascript(js, raw=True) @validation.error(COLUMN_LENGTHS) def _check_column_lengths(self): lengths = set(len(x) for x in self.data.values()) if len(lengths) > 1: return str(self) class RemoteSource(DataSource): data_url = String(help=""" The URL to the endpoint for the data. """) data = Dict(String, Any, help=""" Additional data to include directly in this data source object. The columns provided here are merged with those from the Bokeh server. """) polling_interval = Int(help=""" polling interval for updating data source in milliseconds """) class AjaxDataSource(RemoteSource): method = Enum('POST', 'GET', help="http method - GET or POST") mode = Enum("replace", "append", help=""" Whether to append new data to existing data (up to ``max_size``), or to replace existing data entirely. """) max_size = Int(help=""" Maximum size of the data array being kept after each pull requests. Larger than that size, the data will be right shifted. """) if_modified = Bool(False, help=""" Whether to include an ``If-Modified-Since`` header in AJAX requests to the server. If this header is supported by the server, then only new data since the last request will be returned. """) class BlazeDataSource(RemoteSource): #blaze parts expr = Dict(String, Any(), help=""" blaze expression graph in json form """) namespace = Dict(String, Any(), help=""" namespace in json form for evaluating blaze expression graph """) local = Bool(help=""" Whether this data source is hosted by the bokeh server or not. """) def from_blaze(self, remote_blaze_obj, local=True): from blaze.server import to_tree # only one Client object, can hold many datasets assert len(remote_blaze_obj._leaves()) == 1 leaf = remote_blaze_obj._leaves()[0] blaze_client = leaf.data json_expr = to_tree(remote_blaze_obj, {leaf : ':leaf'}) self.data_url = blaze_client.url + "/compute.json" self.local = local self.expr = json_expr def to_blaze(self): from blaze.server.client import Client from blaze.server import from_tree from blaze import Data # hacky - blaze urls have `compute.json` in it, but we need to strip it off # to feed it into the blaze client lib c = Client(self.data_url.rsplit('compute.json', 1)[0]) d = Data(c) return from_tree(self.expr, {':leaf' : d}) class ServerDataSource(BlazeDataSource): """ A data source that referes to data located on a Bokeh server. The data from the server is loaded on-demand by the client. """ # Paramters of data transformation operations # The 'Any' is used to pass primtives around. # TODO: (jc) Find/create a property type for 'any primitive/atomic value' transform = Dict(String,Either(Instance(PlotObject), Any), help=""" Paramters of the data transformation operations. The associated valuse is minimally a tag that says which downsample routine to use. For some downsamplers, parameters are passed this way too. """)
bsd-3-clause
IamJeffG/geopandas
geopandas/tools/util.py
11
1552
import pandas as pd import geopandas as gpd from shapely.geometry import ( Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon ) from shapely.geometry.base import BaseGeometry _multi_type_map = { 'Point': MultiPoint, 'LineString': MultiLineString, 'Polygon': MultiPolygon } def collect(x, multi=False): """ Collect single part geometries into their Multi* counterpart Parameters ---------- x : an iterable or Series of Shapely geometries, a GeoSeries, or a single Shapely geometry multi : boolean, default False if True, force returned geometries to be Multi* even if they only have one component. """ if isinstance(x, BaseGeometry): x = [x] elif isinstance(x, pd.Series): x = list(x) # We cannot create GeometryCollection here so all types # must be the same. If there is more than one element, # they cannot be Multi*, i.e., can't pass in combination of # Point and MultiPoint... or even just MultiPoint t = x[0].type if not all(g.type == t for g in x): raise ValueError('Geometry type must be homogenous') if len(x) > 1 and t.startswith('Multi'): raise ValueError( 'Cannot collect {0}. Must have single geometries'.format(t)) if len(x) == 1 and (t.startswith('Multi') or not multi): # If there's only one single part geom and we're not forcing to # multi, then just return it return x[0] return _multi_type_map[t](x)
bsd-3-clause
nickgentoo/scikit-learn-graph
scripts/cross_validation_from_matrix_norm.py
1
3317
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..', '','')) import numpy as np #from skgraph import datasets from sklearn import svm #from skgraph.ioskgraph import * from math import sqrt import sys #"sys.path.append('..\\..\\Multiple Kernel Learning\\Framework')" if len(sys.argv)<4: sys.exit("python cross_validation_from_matrix_norm.py inputMatrix.libsvm C outfile") c=float(sys.argv[2]) ##TODO read from libsvm format from sklearn.datasets import load_svmlight_file km, target_array = load_svmlight_file(sys.argv[1]) #print km #tolgo indice kmgood=km[:,1:].todense() gram=km[:,1:].todense() for i in xrange(len(target_array)): for j in xrange(0,len(target_array)): #print i,j,kmgood[i,j],kmgood[i,i],kmgood[j,j] if kmgood[i,i]*kmgood[j,j]==0: print "WARNING: avoided divizion by zero" gram[i,j]=0 else: gram[i,j]=kmgood[i,j]/sqrt(kmgood[i,i]*kmgood[j,j]) #print gram from sklearn import cross_validation for rs in range(42,53): f=open(str(sys.argv[3]+".seed"+str(rs)+".c"+str(c)),'w') kf = cross_validation.StratifiedKFold(target_array, n_folds=10, shuffle=True,random_state=rs) #print kf #remove column zero because #first entry of each line is the index #gram=km[:,1:].todense() f.write("Total examples "+str(len(gram))+"\n") f.write("CV\t test_acc\n") #print gram # normalization from math import sqrt #for i in range(len(gram)): # for j in range(len(gram)): # gram[i,j]=gram[i,j]/sqrt(gram[i,i]+gram[j,j]) sc=[] for train_index, test_index in kf: #print("TRAIN:", train_index, "TEST:", test_index) #generated train and test lists, incuding indices of the examples in training/test #for the specific fold. Indices starts from 0 now clf = svm.SVC(C=c, kernel='precomputed') train_gram = [] #[[] for x in xrange(0,len(train))] test_gram = []# [[] for x in xrange(0,len(test))] #generate train matrix and test matrix index=-1 for row in gram: index+=1 if index in train_index: train_gram.append([gram[index,i] for i in train_index]) else: test_gram.append([gram[index,i] for i in train_index]) #print gram X_train, X_test, y_train, y_test = np.array(train_gram), np.array(test_gram), target_array[train_index], target_array[test_index] #COMPUTE INNERKFOLD kf = cross_validation.StratifiedKFold(y_train, n_folds=10, shuffle=True,random_state=rs) inner_scores= cross_validation.cross_val_score( clf, X_train, y_train, cv=kf) #print "inner scores", inner_scores print "Inner Accuracy: %0.4f (+/- %0.4f)" % (inner_scores.mean(), inner_scores.std() / 2) f.write(str(inner_scores.mean())+"\t") clf.fit(X_train, y_train) from sklearn.metrics import accuracy_score # predict on test examples y_test_predicted=clf.predict(X_test) sc.append(accuracy_score(y_test, y_test_predicted)) f.write(str(accuracy_score(y_test, y_test_predicted))+"\n") f.close() scores=np.array(sc) print "Accuracy: %0.4f (+/- %0.4f)" % (scores.mean(), scores.std() / 2)
gpl-3.0
legacysurvey/obiwan
py/obiwan/common.py
1
4465
""" Commonly used functions """ import matplotlib import matplotlib.pyplot as plt import os import pandas as pd import fitsio # Sphinx build would crash # try: from astrometry.util.fits import fits_table, merge_tables # except ImportError: # pass def inJupyter(): return 'inline' in matplotlib.get_backend() def save_png(outdir,fig_id, tight=True): path= os.path.join(outdir,fig_id + ".png") if not os.path.isdir(outdir): os.makedirs(dirname) print("Saving figure", path) if tight: plt.tight_layout() plt.savefig(path, format='png', dpi=150) #plt.savefig(path, format='png',box_extra_artists=[xlab,ylab], # bbox_inches='tight',dpi=150) if not inJupyter(): plt.close() def dobash(cmd): print('UNIX cmd: %s' % cmd) if os.system(cmd): raise ValueError def stack_tables(fn_list,textfile=True, shuffle=None): '''concatenates fits tables Args: shuffle: set to an integer to randomly reads up to the first "shuffle" cats only ''' if shuffle: assert( isinstance(shuffle, int)) if textfile: fns=read_lines(fn_list) else: fns= fn_list if len(fns) < 1: raise ValueError('Error: fns=',fns) if shuffle: print('shuffling %d' % shuffle) seed=7 np.random.seed(seed) inds= np.arange(len(fns)) np.random.shuffle(inds) fns= fns[inds] cats= [] for i,fn in enumerate(fns): print('reading %s %d/%d' % (fn,i+1,len(fns))) if shuffle and i >= shuffle: print('shuffle_1000 turned ON, stopping read') break try: tab= fits_table(fn) cats.append( tab ) except IOError: print('Fits file does not exist: %s' % fn) return merge_tables(cats, columns='fillzero') def writelist(lis,fn): if os.path.exists(fn): os.remove(fn) with open(fn,'w') as foo: for li in lis: foo.write('%s\n' % li) print('Wrote %s' % fn) if len(lis) == 0: print('Warning: %s is empty list' % fn) def to_csv(d,fn='test.csv'): df= pd.dataframe(d) #df= df.round({}) df.to_csv(fn,index=False) print('Wrote %s' % fn) def fits2pandas(tab,attrs=None): """converts a fits_table into a pandas DataFrame Args: tab: fits_table() attrs: attributes or column names want in the DF """ d={} if attrs is None: attrs= tab.get_columns() for col in attrs: d[col]= tab.get(col) df= pd.DataFrame(d) # Fix byte ordering from fits # https://stackoverflow.com/questions/18599579/pulling-multiple-non-consecutive-index-values-from-a-pandas-dataframe df= df.apply(lambda x: x.values.byteswap().newbyteorder()) return df def get_brickdir(outdir,obj,brick): return os.path.join(outdir,obj,brick[:3],brick) def get_rsdir(rowstart, do_skipids='no',do_more='no'): """Returns string like rs0 or skip_rs0 Args: rowstart: 0, 300, etc do_skipids,do_more: yes or no """ # Either rs or skip_rs if do_skipids == 'no': final_dir= "rs%s" % str(rowstart) elif do_skipids == 'yes': final_dir= "skip_rs%s" % str(rowstart) # if specified minimum id, running more randoms if do_more == 'yes': final_dir= "more_"+final_dir return final_dir def get_outdir_runbrick(outdir,brick,rowstart, do_skipids='no',do_more='no'): """diretory obiwan/runbrick will write results to Returns path to like outdir/obj/bri/brick/rs0 """ return os.path.join(outdir,brick[:3],brick, get_rsdir(rowstart, do_skipids=do_skipids, do_more=do_more)) def get_brickinfo_hack(survey,brickname): """when in ipython and reading single row survey-bricks table, astroometry.net's fits_table() can break, handle this case Returns: brickinfo: the single row fits_table """ try: brickinfo = survey.get_brick_by_name(brickname) except AttributeError: # can happen inside: ipython %run hdu=fitsio.FITS(survey.find_file('bricks')) data= hdu[1].read() data= data[data['brickname'] == brickname][0] brickinfo= fits_table() for col in data.dtype.fields.keys(): brickinfo.set(col,data[col]) return brickinfo
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/qtconsole/rich_jupyter_widget.py
7
17139
# Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from base64 import decodestring import os import re from warnings import warn from qtconsole.qt import QtCore, QtGui from ipython_genutils.path import ensure_dir_exists from traitlets import Bool from qtconsole.svg import save_svg, svg_to_clipboard, svg_to_image from .jupyter_widget import JupyterWidget try: from IPython.lib.latextools import latex_to_png except ImportError: latex_to_png = None class LatexError(Exception): """Exception for Latex errors""" class RichIPythonWidget(JupyterWidget): """Dummy class for config inheritance. Destroyed below.""" class RichJupyterWidget(RichIPythonWidget): """ An JupyterWidget that supports rich text, including lists, images, and tables. Note that raw performance will be reduced compared to the plain text version. """ # RichJupyterWidget protected class variables. _payload_source_plot = 'ipykernel.pylab.backend_payload.add_plot_payload' _jpg_supported = Bool(False) # Used to determine whether a given html export attempt has already # displayed a warning about being unable to convert a png to svg. _svg_warning_displayed = False #--------------------------------------------------------------------------- # 'object' interface #--------------------------------------------------------------------------- def __init__(self, *args, **kw): """ Create a RichJupyterWidget. """ kw['kind'] = 'rich' super(RichJupyterWidget, self).__init__(*args, **kw) # Configure the ConsoleWidget HTML exporter for our formats. self._html_exporter.image_tag = self._get_image_tag # Dictionary for resolving document resource names to SVG data. self._name_to_svg_map = {} # Do we support jpg ? # it seems that sometime jpg support is a plugin of QT, so try to assume # it is not always supported. _supported_format = map(str, QtGui.QImageReader.supportedImageFormats()) self._jpg_supported = 'jpeg' in _supported_format #--------------------------------------------------------------------------- # 'ConsoleWidget' public interface overides #--------------------------------------------------------------------------- def export_html(self): """ Shows a dialog to export HTML/XML in various formats. Overridden in order to reset the _svg_warning_displayed flag prior to the export running. """ self._svg_warning_displayed = False super(RichJupyterWidget, self).export_html() #--------------------------------------------------------------------------- # 'ConsoleWidget' protected interface #--------------------------------------------------------------------------- def _context_menu_make(self, pos): """ Reimplemented to return a custom context menu for images. """ format = self._control.cursorForPosition(pos).charFormat() name = format.stringProperty(QtGui.QTextFormat.ImageName) if name: menu = QtGui.QMenu() menu.addAction('Copy Image', lambda: self._copy_image(name)) menu.addAction('Save Image As...', lambda: self._save_image(name)) menu.addSeparator() svg = self._name_to_svg_map.get(name, None) if svg is not None: menu.addSeparator() menu.addAction('Copy SVG', lambda: svg_to_clipboard(svg)) menu.addAction('Save SVG As...', lambda: save_svg(svg, self._control)) else: menu = super(RichJupyterWidget, self)._context_menu_make(pos) return menu #--------------------------------------------------------------------------- # 'BaseFrontendMixin' abstract interface #--------------------------------------------------------------------------- def _pre_image_append(self, msg, prompt_number): """Append the Out[] prompt and make the output nicer Shared code for some the following if statement """ self._append_plain_text(self.output_sep, True) self._append_html(self._make_out_prompt(prompt_number), True) self._append_plain_text('\n', True) def _handle_execute_result(self, msg): """Overridden to handle rich data types, like SVG.""" self.log.debug("execute_result: %s", msg.get('content', '')) if self.include_output(msg): self.flush_clearoutput() content = msg['content'] prompt_number = content.get('execution_count', 0) data = content['data'] metadata = msg['content']['metadata'] if 'image/svg+xml' in data: self._pre_image_append(msg, prompt_number) self._append_svg(data['image/svg+xml'], True) self._append_html(self.output_sep2, True) elif 'image/png' in data: self._pre_image_append(msg, prompt_number) png = decodestring(data['image/png'].encode('ascii')) self._append_png(png, True, metadata=metadata.get('image/png', None)) self._append_html(self.output_sep2, True) elif 'image/jpeg' in data and self._jpg_supported: self._pre_image_append(msg, prompt_number) jpg = decodestring(data['image/jpeg'].encode('ascii')) self._append_jpg(jpg, True, metadata=metadata.get('image/jpeg', None)) self._append_html(self.output_sep2, True) elif 'text/latex' in data: self._pre_image_append(msg, prompt_number) try: self._append_latex(data['text/latex'], True) except LatexError: return super(RichJupyterWidget, self)._handle_display_data(msg) self._append_html(self.output_sep2, True) else: # Default back to the plain text representation. return super(RichJupyterWidget, self)._handle_execute_result(msg) def _handle_display_data(self, msg): """Overridden to handle rich data types, like SVG.""" self.log.debug("display_data: %s", msg.get('content', '')) if self.include_output(msg): self.flush_clearoutput() data = msg['content']['data'] metadata = msg['content']['metadata'] # Try to use the svg or html representations. # FIXME: Is this the right ordering of things to try? self.log.debug("display: %s", msg.get('content', '')) if 'image/svg+xml' in data: svg = data['image/svg+xml'] self._append_svg(svg, True) elif 'image/png' in data: # PNG data is base64 encoded as it passes over the network # in a JSON structure so we decode it. png = decodestring(data['image/png'].encode('ascii')) self._append_png(png, True, metadata=metadata.get('image/png', None)) elif 'image/jpeg' in data and self._jpg_supported: jpg = decodestring(data['image/jpeg'].encode('ascii')) self._append_jpg(jpg, True, metadata=metadata.get('image/jpeg', None)) elif 'text/latex' in data and latex_to_png: try: self._append_latex(data['text/latex'], True) except LatexError: return super(RichJupyterWidget, self)._handle_display_data(msg) else: # Default back to the plain text representation. return super(RichJupyterWidget, self)._handle_display_data(msg) #--------------------------------------------------------------------------- # 'RichJupyterWidget' protected interface #--------------------------------------------------------------------------- def _is_latex_math(self, latex): """ Determine if a Latex string is in math mode This is the only mode supported by qtconsole """ basic_envs = ['math', 'displaymath'] starable_envs = ['equation', 'eqnarray' 'multline', 'gather', 'align', 'flalign', 'alignat'] star_envs = [env + '*' for env in starable_envs] envs = basic_envs + starable_envs + star_envs env_syntax = [r'\begin{{{0}}} \end{{{0}}}'.format(env).split() for env in envs] math_syntax = [ (r'\[', r'\]'), (r'\(', r'\)'), ('$$', '$$'), ('$', '$'), ] for start, end in math_syntax + env_syntax: inner = latex[len(start):-len(end)] if start in inner or end in inner: return False if latex.startswith(start) and latex.endswith(end): return True return False def _append_latex(self, latex, before_prompt=False, metadata=None): """ Append latex data to the widget.""" png = None if self._is_latex_math(latex): png = latex_to_png(latex, wrap=False, backend='dvipng') if png is None and latex.startswith('$') and latex.endswith('$'): # matplotlib only supports strings enclosed in dollar signs png = latex_to_png(latex, wrap=False, backend='matplotlib') if png: self._append_png(png, before_prompt, metadata) else: raise LatexError def _append_jpg(self, jpg, before_prompt=False, metadata=None): """ Append raw JPG data to the widget.""" self._append_custom(self._insert_jpg, jpg, before_prompt, metadata=metadata) def _append_png(self, png, before_prompt=False, metadata=None): """ Append raw PNG data to the widget. """ self._append_custom(self._insert_png, png, before_prompt, metadata=metadata) def _append_svg(self, svg, before_prompt=False): """ Append raw SVG data to the widget. """ self._append_custom(self._insert_svg, svg, before_prompt) def _add_image(self, image): """ Adds the specified QImage to the document and returns a QTextImageFormat that references it. """ document = self._control.document() name = str(image.cacheKey()) document.addResource(QtGui.QTextDocument.ImageResource, QtCore.QUrl(name), image) format = QtGui.QTextImageFormat() format.setName(name) return format def _copy_image(self, name): """ Copies the ImageResource with 'name' to the clipboard. """ image = self._get_image(name) QtGui.QApplication.clipboard().setImage(image) def _get_image(self, name): """ Returns the QImage stored as the ImageResource with 'name'. """ document = self._control.document() image = document.resource(QtGui.QTextDocument.ImageResource, QtCore.QUrl(name)) return image def _get_image_tag(self, match, path = None, format = "png"): """ Return (X)HTML mark-up for the image-tag given by match. Parameters ---------- match : re.SRE_Match A match to an HTML image tag as exported by Qt, with match.group("Name") containing the matched image ID. path : string|None, optional [default None] If not None, specifies a path to which supporting files may be written (e.g., for linked images). If None, all images are to be included inline. format : "png"|"svg"|"jpg", optional [default "png"] Format for returned or referenced images. """ if format in ("png","jpg"): try: image = self._get_image(match.group("name")) except KeyError: return "<b>Couldn't find image %s</b>" % match.group("name") if path is not None: ensure_dir_exists(path) relpath = os.path.basename(path) if image.save("%s/qt_img%s.%s" % (path, match.group("name"), format), "PNG"): return '<img src="%s/qt_img%s.%s">' % (relpath, match.group("name"),format) else: return "<b>Couldn't save image!</b>" else: ba = QtCore.QByteArray() buffer_ = QtCore.QBuffer(ba) buffer_.open(QtCore.QIODevice.WriteOnly) image.save(buffer_, format.upper()) buffer_.close() return '<img src="data:image/%s;base64,\n%s\n" />' % ( format,re.sub(r'(.{60})',r'\1\n',str(ba.toBase64()))) elif format == "svg": try: svg = str(self._name_to_svg_map[match.group("name")]) except KeyError: if not self._svg_warning_displayed: QtGui.QMessageBox.warning(self, 'Error converting PNG to SVG.', 'Cannot convert PNG images to SVG, export with PNG figures instead. ' 'If you want to export matplotlib figures as SVG, add ' 'to your ipython config:\n\n' '\tc.InlineBackend.figure_format = \'svg\'\n\n' 'And regenerate the figures.', QtGui.QMessageBox.Ok) self._svg_warning_displayed = True return ("<b>Cannot convert PNG images to SVG.</b> " "You must export this session with PNG images. " "If you want to export matplotlib figures as SVG, add to your config " "<span>c.InlineBackend.figure_format = 'svg'</span> " "and regenerate the figures.") # Not currently checking path, because it's tricky to find a # cross-browser way to embed external SVG images (e.g., via # object or embed tags). # Chop stand-alone header from matplotlib SVG offset = svg.find("<svg") assert(offset > -1) return svg[offset:] else: return '<b>Unrecognized image format</b>' def _insert_jpg(self, cursor, jpg, metadata=None): """ Insert raw PNG data into the widget.""" self._insert_img(cursor, jpg, 'jpg', metadata=metadata) def _insert_png(self, cursor, png, metadata=None): """ Insert raw PNG data into the widget. """ self._insert_img(cursor, png, 'png', metadata=metadata) def _insert_img(self, cursor, img, fmt, metadata=None): """ insert a raw image, jpg or png """ if metadata: width = metadata.get('width', None) height = metadata.get('height', None) else: width = height = None try: image = QtGui.QImage() image.loadFromData(img, fmt.upper()) if width and height: image = image.scaled(width, height, transformMode=QtCore.Qt.SmoothTransformation) elif width and not height: image = image.scaledToWidth(width, transformMode=QtCore.Qt.SmoothTransformation) elif height and not width: image = image.scaledToHeight(height, transformMode=QtCore.Qt.SmoothTransformation) except ValueError: self._insert_plain_text(cursor, 'Received invalid %s data.'%fmt) else: format = self._add_image(image) cursor.insertBlock() cursor.insertImage(format) cursor.insertBlock() def _insert_svg(self, cursor, svg): """ Insert raw SVG data into the widet. """ try: image = svg_to_image(svg) except ValueError: self._insert_plain_text(cursor, 'Received invalid SVG data.') else: format = self._add_image(image) self._name_to_svg_map[format.name()] = svg cursor.insertBlock() cursor.insertImage(format) cursor.insertBlock() def _save_image(self, name, format='PNG'): """ Shows a save dialog for the ImageResource with 'name'. """ dialog = QtGui.QFileDialog(self._control, 'Save Image') dialog.setAcceptMode(QtGui.QFileDialog.AcceptSave) dialog.setDefaultSuffix(format.lower()) dialog.setNameFilter('%s file (*.%s)' % (format, format.lower())) if dialog.exec_(): filename = dialog.selectedFiles()[0] image = self._get_image(name) image.save(filename, format) # clobber RichIPythonWidget above: class RichIPythonWidget(RichJupyterWidget): """Deprecated class. Use RichJupyterWidget""" def __init__(self, *a, **kw): warn("RichIPythonWidget is deprecated, use RichJupyterWidget") super(RichIPythonWidget, self).__init__(*a, **kw)
gpl-3.0
adammenges/statsmodels
statsmodels/tsa/filters/filtertools.py
25
12438
# -*- coding: utf-8 -*- """Linear Filters for time series analysis and testing TODO: * check common sequence in signature of filter functions (ar,ma,x) or (x,ar,ma) Created on Sat Oct 23 17:18:03 2010 Author: Josef-pktd """ #not original copied from various experimental scripts #version control history is there from statsmodels.compat.python import range import numpy as np import scipy.fftpack as fft from scipy import signal from scipy.signal.signaltools import _centered as trim_centered from ._utils import _maybe_get_pandas_wrapper def _pad_nans(x, head=None, tail=None): if np.ndim(x) == 1: if head is None and tail is None: return x elif head and tail: return np.r_[[np.nan] * head, x, [np.nan] * tail] elif tail is None: return np.r_[[np.nan] * head, x] elif head is None: return np.r_[x, [np.nan] * tail] elif np.ndim(x) == 2: if head is None and tail is None: return x elif head and tail: return np.r_[[[np.nan] * x.shape[1]] * head, x, [[np.nan] * x.shape[1]] * tail] elif tail is None: return np.r_[[[np.nan] * x.shape[1]] * head, x] elif head is None: return np.r_[x, [[np.nan] * x.shape[1]] * tail] else: raise ValueError("Nan-padding for ndim > 2 not implemented") #original changes and examples in sandbox.tsa.try_var_convolve # don't do these imports, here just for copied fftconvolve #get rid of these imports #from scipy.fftpack import fft, ifft, ifftshift, fft2, ifft2, fftn, \ # ifftn, fftfreq #from numpy import product,array def fftconvolveinv(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. See convolve. copied from scipy.signal.signaltools, but here used to try out inverse filter doesn't work or I can't get it to work 2010-10-23: looks ok to me for 1d, from results below with padded data array (fftp) but it doesn't work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn """ s1 = np.array(in1.shape) s2 = np.array(in2.shape) complex_result = (np.issubdtype(in1.dtype, np.complex) or np.issubdtype(in2.dtype, np.complex)) size = s1+s2-1 # Always use 2**n-sized FFT fsize = 2**np.ceil(np.log2(size)) IN1 = fft.fftn(in1,fsize) #IN1 *= fftn(in2,fsize) #JP: this looks like the only change I made IN1 /= fft.fftn(in2,fsize) # use inverse filter # note the inverse is elementwise not matrix inverse # is this correct, NO doesn't seem to work for VARMA fslice = tuple([slice(0, int(sz)) for sz in size]) ret = fft.ifftn(IN1)[fslice].copy() del IN1 if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": if np.product(s1,axis=0) > np.product(s2,axis=0): osize = s1 else: osize = s2 return trim_centered(ret,osize) elif mode == "valid": return trim_centered(ret,abs(s2-s1)+1) #code duplication with fftconvolveinv def fftconvolve3(in1, in2=None, in3=None, mode="full"): """Convolve two N-dimensional arrays using FFT. See convolve. for use with arma (old version: in1=num in2=den in3=data * better for consistency with other functions in1=data in2=num in3=den * note in2 and in3 need to have consistent dimension/shape since I'm using max of in2, in3 shapes and not the sum copied from scipy.signal.signaltools, but here used to try out inverse filter doesn't work or I can't get it to work 2010-10-23 looks ok to me for 1d, from results below with padded data array (fftp) but it doesn't work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn """ if (in2 is None) and (in3 is None): raise ValueError('at least one of in2 and in3 needs to be given') s1 = np.array(in1.shape) if not in2 is None: s2 = np.array(in2.shape) else: s2 = 0 if not in3 is None: s3 = np.array(in3.shape) s2 = max(s2, s3) # try this looks reasonable for ARMA #s2 = s3 complex_result = (np.issubdtype(in1.dtype, np.complex) or np.issubdtype(in2.dtype, np.complex)) size = s1+s2-1 # Always use 2**n-sized FFT fsize = 2**np.ceil(np.log2(size)) #convolve shorter ones first, not sure if it matters if not in2 is None: IN1 = fft.fftn(in2, fsize) if not in3 is None: IN1 /= fft.fftn(in3, fsize) # use inverse filter # note the inverse is elementwise not matrix inverse # is this correct, NO doesn't seem to work for VARMA IN1 *= fft.fftn(in1, fsize) fslice = tuple([slice(0, int(sz)) for sz in size]) ret = fft.ifftn(IN1)[fslice].copy() del IN1 if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": if np.product(s1,axis=0) > np.product(s2,axis=0): osize = s1 else: osize = s2 return trim_centered(ret,osize) elif mode == "valid": return trim_centered(ret,abs(s2-s1)+1) #original changes and examples in sandbox.tsa.try_var_convolve #examples and tests are there def recursive_filter(x, ar_coeff, init=None): ''' Autoregressive, or recursive, filtering. Parameters ---------- x : array-like Time-series data. Should be 1d or n x 1. ar_coeff : array-like AR coefficients in reverse time order. See Notes init : array-like Initial values of the time-series prior to the first value of y. The default is zero. Returns ------- y : array Filtered array, number of columns determined by x and ar_coeff. If a pandas object is given, a pandas object is returned. Notes ----- Computes the recursive filter :: y[n] = ar_coeff[0] * y[n-1] + ... + ar_coeff[n_coeff - 1] * y[n - n_coeff] + x[n] where n_coeff = len(n_coeff). ''' _pandas_wrapper = _maybe_get_pandas_wrapper(x) x = np.asarray(x).squeeze() ar_coeff = np.asarray(ar_coeff).squeeze() if x.ndim > 1 or ar_coeff.ndim > 1: raise ValueError('x and ar_coeff have to be 1d') if init is not None: # integer init are treated differently in lfiltic if len(init) != len(ar_coeff): raise ValueError("ar_coeff must be the same length as init") init = np.asarray(init, dtype=float) if init is not None: zi = signal.lfiltic([1], np.r_[1, -ar_coeff], init, x) else: zi = None y = signal.lfilter([1.], np.r_[1, -ar_coeff], x, zi=zi) if init is not None: result = y[0] else: result = y if _pandas_wrapper: return _pandas_wrapper(result) return result def convolution_filter(x, filt, nsides=2): ''' Linear filtering via convolution. Centered and backward displaced moving weighted average. Parameters ---------- x : array_like data array, 1d or 2d, if 2d then observations in rows filt : array_like Linear filter coefficients in reverse time-order. Should have the same number of dimensions as x though if 1d and ``x`` is 2d will be coerced to 2d. nsides : int, optional If 2, a centered moving average is computed using the filter coefficients. If 1, the filter coefficients are for past values only. Both methods use scipy.signal.convolve. Returns ------- y : ndarray, 2d Filtered array, number of columns determined by x and filt. If a pandas object is given, a pandas object is returned. The index of the return is the exact same as the time period in ``x`` Notes ----- In nsides == 1, x is filtered :: y[n] = filt[0]*x[n-1] + ... + filt[n_filt-1]*x[n-n_filt] where n_filt is len(filt). If nsides == 2, x is filtered around lag 0 :: y[n] = filt[0]*x[n - n_filt/2] + ... + filt[n_filt / 2] * x[n] + ... + x[n + n_filt/2] where n_filt is len(filt). If n_filt is even, then more of the filter is forward in time than backward. If filt is 1d or (nlags,1) one lag polynomial is applied to all variables (columns of x). If filt is 2d, (nlags, nvars) each series is independently filtered with its own lag polynomial, uses loop over nvar. This is different than the usual 2d vs 2d convolution. Filtering is done with scipy.signal.convolve, so it will be reasonably fast for medium sized data. For large data fft convolution would be faster. ''' # for nsides shift the index instead of using 0 for 0 lag this # allows correct handling of NaNs if nsides == 1: trim_head = len(filt) - 1 trim_tail = None elif nsides == 2: trim_head = int(np.ceil(len(filt)/2.) - 1) or None trim_tail = int(np.ceil(len(filt)/2.) - len(filt) % 2) or None else: # pragma : no cover raise ValueError("nsides must be 1 or 2") _pandas_wrapper = _maybe_get_pandas_wrapper(x) x = np.asarray(x) filt = np.asarray(filt) if x.ndim > 1 and filt.ndim == 1: filt = filt[:, None] if x.ndim > 2: raise ValueError('x array has to be 1d or 2d') if filt.ndim == 1 or min(filt.shape) == 1: result = signal.convolve(x, filt, mode='valid') elif filt.ndim == 2: nlags = filt.shape[0] nvar = x.shape[1] result = np.zeros((x.shape[0] - nlags + 1, nvar)) if nsides == 2: for i in range(nvar): # could also use np.convolve, but easier for swiching to fft result[:, i] = signal.convolve(x[:, i], filt[:, i], mode='valid') elif nsides == 1: for i in range(nvar): result[:, i] = signal.convolve(x[:, i], np.r_[0, filt[:, i]], mode='valid') result = _pad_nans(result, trim_head, trim_tail) if _pandas_wrapper: return _pandas_wrapper(result) return result #copied from sandbox.tsa.garch def miso_lfilter(ar, ma, x, useic=False): #[0.1,0.1]): ''' use nd convolution to merge inputs, then use lfilter to produce output arguments for column variables return currently 1d Parameters ---------- ar : array_like, 1d, float autoregressive lag polynomial including lag zero, ar(L)y_t ma : array_like, same ndim as x, currently 2d moving average lag polynomial ma(L)x_t x : array_like, 2d input data series, time in rows, variables in columns Returns ------- y : array, 1d filtered output series inp : array, 1d combined input series Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that:: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs,nvars), ar (narlags,), ma (narlags,nvars) ''' ma = np.asarray(ma) ar = np.asarray(ar) #inp = signal.convolve(x, ma, mode='valid') #inp = signal.convolve(x, ma)[:, (x.shape[1]+1)//2] #Note: convolve mixes up the variable left-right flip #I only want the flip in time direction #this might also be a mistake or problem in other code where I #switched from correlate to convolve # correct convolve version, for use with fftconvolve in other cases #inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] inp = signal.correlate(x, ma[::-1,:])[:, (x.shape[1]+1)//2] #for testing 2d equivalence between convolve and correlate #np.testing.assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end #todo initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, #zi=signal.lfilter_ic(np.array([1.,0.]),ar, ic))[0][:nobs], inp[:nobs] zi=signal.lfiltic(np.array([1.,0.]),ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs] #return signal.lfilter([1], ar, inp), inp
bsd-3-clause
lo-co/atm-py
atmPy/aerosols/size_distr/sizedistribution.py
6
80435
import datetime import warnings from copy import deepcopy import numpy as np import pandas as pd import pylab as plt import scipy.optimize as optimization from matplotlib.colors import LogNorm from scipy import integrate from scipy import stats from atmPy.atmos import vertical_profile, timeseries from atmPy.aerosols import hygroscopic_growth as hg from atmPy.for_removal.mie import bhmie from atmPy.tools import pandas_tools from atmPy.tools import plt_tools, math_functions, array_tools # Todo: rotate the plots of the layerseries (e.g. plot_particle_concentration) to have the altitude as the y-axes # TODO: Fix distrTypes so they are consistent with our understanding. distTypes = {'log normal': ['dNdlogDp', 'dSdlogDp', 'dVdlogDp'], 'natural': ['dNdDp', 'dSdDp', 'dVdDp'], 'number': ['dNdlogDp', 'dNdDp'], 'surface': ['dSdlogDp', 'dSdDp'], 'volume': ['dVdlogDp', 'dVdDp']} axes_types = ('AxesSubplot', 'AxesHostAxes') def fit_normal_dist(x, y, log=True, p0=[10, 180, 0.2]): """Fits a normal distribution to a """ param = p0[:] x = x[~ np.isnan(y)] y = y[~ np.isnan(y)] if log: x = np.log10(x) param[1] = np.log10(param[1]) # todo: write a bug report for the fact that I have to call the y.max() function to make the fit to work!!!!! y.max() ############ para = optimization.curve_fit(math_functions.gauss, x, y, p0=param) amp = para[0][0] sigma = para[0][2] if log: pos = 10 ** para[0][1] sigma_high = 10 ** (para[0][1] + para[0][2]) sigma_low = 10 ** (para[0][1] - para[0][2]) else: pos = para[0][1] sigma_high = (para[0][1] + para[0][2]) sigma_low = (para[0][1] - para[0][2]) return [amp, pos, sigma, sigma_high, sigma_low] def read_csv(fname, fixGaps=True): headerNo = 50 rein = open(fname, 'r') nol = ['distributionType', 'objectType'] outDict = {} for i in range(headerNo): split = rein.readline().split('=') variable = split[0].strip() if split[0][0] == '#': break value = split[1].strip() if variable in nol: outDict[variable] = value else: outDict[variable] = np.array(eval(value)) if i == headerNo - 1: raise TypeError('Sure this is a size distribution?') rein.close() data = pd.read_csv(fname, header=i + 1, index_col=0) data.index = pd.to_datetime(data.index) if outDict['objectType'] == 'SizeDist_TS': distRein = SizeDist_TS(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) elif outDict['objectType'] == 'SizeDist': distRein = SizeDist(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) elif outDict['objectType'] == 'SizeDist_LS': distRein = SizeDist_LS(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) else: raise TypeError('not a valid object type') return distRein def read_hdf(f_name, keep_open = False, populate_namespace = False): hdf = pd.HDFStore(f_name) content = hdf.keys() out = [] for i in content: # print(i) storer = hdf.get_storer(i) attrs = storer.attrs.atmPy_attrs if not attrs: continue elif attrs['type'].__name__ == 'SizeDist_TS': dist_new = SizeDist_TS(hdf[i], attrs['bins'], attrs['distributionType']) elif attrs['type'].__name__ == 'SizeDist': dist_new = SizeDist(hdf[i], attrs['bins'], attrs['distributionType']) elif attrs['type'].__name__ == 'SizeDist_LS': dist_new = SizeDist_LS(hdf[i], attrs['bins'], attrs['distributionType'], attrs['layerbounderies']) else: txt = 'Unknown data type: %s'%attrs['type'].__name__ raise TypeError(txt) fit_res = i+'/data_fit_normal' if fit_res in content: dist_new.data_fit_normal = hdf[fit_res] if populate_namespace: if attrs['variable_name']: populate_namespace[attrs['variable_name']] = dist_new out.append(dist_new) if keep_open: return hdf,out else: hdf.close() return out def get_label(distType): """ Return the appropriate label for a particular distribution type """ if distType == 'dNdDp': label = '$\mathrm{d}N\,/\,\mathrm{d}D_{P}$ (nm$^{-1}\,$cm$^{-3}$)' elif distType == 'dNdlogDp': label = '$\mathrm{d}N\,/\,\mathrm{d}log(D_{P})$ (cm$^{-3}$)' elif distType == 'dSdDp': label = '$\mathrm{d}S\,/\,\mathrm{d}D_{P}$ (nm$\,$cm$^{-3}$)' elif distType == 'dSdlogDp': label = '$\mathrm{d}S\,/\,\mathrm{d}log(D_{P})$ (nm$^2\,$cm$^{-3}$)' elif distType == 'dVdDp': label = '$\mathrm{d}V\,/\,\mathrm{d}D_{P}$ (nm$^2\,$cm$^{-3}$)' elif distType == 'dVdlogDp': label = '$\mathrm{d}V\,/\,\mathrm{d}log(D_{P})$ (nm$^3\,$cm$^{-3}$)' elif distType == 'calibration': label = '$\mathrm{d}N\,/\,\mathrm{d}Amp$ (bin$^{-1}\,$cm$^{-3}$)' elif distType == 'numberConcentration': label = 'Particle number in bin' else: raise ValueError('%s is not really an option!?!' % distType) return label # Todo: Docstring is wrong # Todo: implement into the Layer Series def _calculate_optical_properties(sd, wavelength, n, aod=False, noOfAngles=100): """ !!!Tis Docstring need fixn Calculates the extinction crossection, AOD, phase function, and asymmetry Parameter for each layer. plotting the layer and diameter dependent extinction coefficient gives you an idea what dominates the overall AOD. Parameters ---------- wavelength: float. wavelength of the scattered light, unit: nm n: float. Index of refraction of the scattering particles noOfAngles: int, optional. Number of scattering angles to be calculated. This mostly effects calculations which depend on the phase function. Returns ------- OpticalProperty instance """ out = {} out['n'] = n out['wavelength'] = wavelength sdls = sd.convert2numberconcentration() index = sdls.data.index if isinstance(n, pd.DataFrame): n_multi = True else: n_multi = False if not n_multi: mie, angular_scatt_func = _perform_Miecalculations(np.array(sdls.bincenters / 1000.), wavelength / 1000., n, noOfAngles=noOfAngles) if aod: AOD_layer = np.zeros((len(sdls.layercenters))) extCoeffPerLayer = np.zeros((len(sdls.data.index.values), len(sdls.bincenters))) angular_scatt_func_effective = pd.DataFrame() asymmetry_parameter_LS = np.zeros((len(sdls.data.index.values))) # print('\n oben mie.extinction_crossection: %s \n'%(mie.extinction_crossection)) for i, lc in enumerate(sdls.data.index.values): laydata = sdls.data.iloc[i].values # print('laydata: ',laydata.shape) # print(laydata) if n_multi: mie, angular_scatt_func = _perform_Miecalculations(np.array(sdls.bincenters / 1000.), wavelength / 1000., n.iloc[i].values[0], noOfAngles=noOfAngles) extinction_coefficient = _get_coefficients(mie.extinction_crossection, laydata) # print('\n oben ext_coef %s \n'%extinction_coefficient) # print('mie.extinction_crossection ', mie.extinction_crossection.shape) # print('extinction_coefficient: ', extinction_coefficient.shape) # scattering_coefficient = _get_coefficients(mie.scattering_crossection, laydata) if aod: layerThickness = sdls.layerbounderies[i][1] - sdls.layerbounderies[i][0] AOD_perBin = extinction_coefficient * layerThickness AOD_layer[i] = AOD_perBin.values.sum() extCoeffPerLayer[i] = extinction_coefficient # return laydata, mie.scattering_crossection scattering_cross_eff = laydata * mie.scattering_crossection pfe = (laydata * angular_scatt_func).sum(axis=1) # sum of all angular_scattering_intensities # pfe2 = pfe.copy() # angular_scatt_func_effective[lc] = pfe # asymmetry_parameter_LS[i] = (pfe.values*np.cos(pfe.index.values)).sum()/pfe.values.sum() x_2p = pfe.index.values y_2p = pfe.values # limit to [0,pi] y_1p = y_2p[x_2p < np.pi] x_1p = x_2p[x_2p < np.pi] # integ = integrate.simps(y_1p*np.sin(x_1p),x_1p) # y_phase_func = y_1p/integ y_phase_func = y_1p * 4 * np.pi / scattering_cross_eff.sum() asymmetry_parameter_LS[i] = .5 * integrate.simps(np.cos(x_1p) * y_phase_func * np.sin(x_1p), x_1p) # return mie,phase_fct, laydata, scattering_cross_eff, phase_fct_effective[lc], y_phase_func, asymmetry_parameter_LS[i] angular_scatt_func_effective[ lc] = pfe * 1e-12 * 1e6 # equivalent to extCoeffPerLayer # similar to _get_coefficients (converts everthing to meter) # return mie.extinction_crossection, angular_scatt_func, laydata, layerThickness # correct integrales match # return extinction_coefficient, angular_scatt_func_effective # return AOD_layer, pfe, angular_scatt_func_effective[lc] # print(mie.extinction_crossection) if aod: out['AOD'] = AOD_layer[~ np.isnan(AOD_layer)].sum() out['AOD_layer'] = pd.DataFrame(AOD_layer, index=sdls.layercenters, columns=['AOD per Layer']) out['AOD_cum'] = out['AOD_layer'].iloc[::-1].cumsum().iloc[::-1] extCoeff_perrow_perbin = pd.DataFrame(extCoeffPerLayer, index=index, columns=sdls.data.columns) out['extCoeff_perrow_perbin'] = extCoeff_perrow_perbin extCoeff_perrow = pd.DataFrame(extCoeff_perrow_perbin.sum(axis=1), columns=['ext_coeff']) if index.dtype == '<M8[ns]': out['extCoeff_perrow'] = timeseries.TimeSeries(extCoeff_perrow) else: out['extCoeff_perrow'] = extCoeff_perrow out['asymmetry_param'] = pd.DataFrame(asymmetry_parameter_LS, index=index, columns=['asymmetry_param']) # out['asymmetry_param_alt'] = pd.DataFrame(asymmetry_parameter_LS_alt, index=sdls.layercenters, columns = ['asymmetry_param_alt']) # out['OptPropInstance']= OpticalProperties(out, self.bins) out['wavelength'] = wavelength out['index_of_refraction'] = n out['bin_centers'] = sdls.bincenters out['angular_scatt_func'] = angular_scatt_func_effective # opt_properties = OpticalProperties(out, self.bins) # opt_properties.wavelength = wavelength # opt_properties.index_of_refractio = n # opt_properties.angular_scatt_func = angular_scatt_func_effective # This is the formaer phase_fct, but since it is the angular scattering intensity, i changed the name # opt_properties.parent_dist_LS = self return out class SizeDist(object): """ Object defining a log normal aerosol size distribution Arguments ---------- bincenters: NumPy array, optional this is if you actually want to pass the bincenters, if False they will be calculated distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' data: pandas dataFrame, optional None, will generate an empty pandas data frame with columns defined by bins - pandas dataFrame with - column names (each name is something like this: '150-200') - index is time (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) Notes ------ * Diameters are specified in nanometers """ # todo: write setters and getters for bins and bincenter, so when one is changed the otherone is automatically # changed too def __init__(self, data, bins, distrType, # bincenters=False, fixGaps=True): if type(data).__name__ == 'NoneType': self.data = pd.DataFrame() else: self.data = data self.bins = bins self.__index_of_refraction = None self.__growth_factor = None # if type(bincenters) == np.ndarray: # self.bincenters = bincenters # else: # self.bincenters = (bins[1:] + bins[:-1]) / 2. # self.binwidth = (bins[1:] - bins[:-1]) self.distributionType = distrType if fixGaps: self.fillGaps() @property def bins(self): return self.__bins @bins.setter def bins(self,array): bins_st = array.astype(int).astype(str) col_names = [] for e,i in enumerate(bins_st): if e == len(bins_st) - 1: break col_names.append(bins_st[e] + '-' + bins_st[e+1]) self.data.columns = col_names self.__bins = array self.__bincenters = (array[1:] + array[:-1]) / 2. self.__binwidth = (array[1:] - array[:-1]) @property def bincenters(self): return self.__bincenters @property def binwidth(self): return self.__binwidth @property def index_of_refraction(self): return self.__index_of_refraction @index_of_refraction.setter def index_of_refraction(self,n): # if not self.__index_of_refraction: self.__index_of_refraction = n # elif self.__index_of_refraction: # txt = """Security stop. This is to prevent you from unintentionally changing this value. # The index of refraction is already set to %.2f, either by you or by another function, e.g. apply_hygro_growth. # If you really want to change the value do it by setting the __index_of_refraction attribute."""%self.index_of_refraction # raise ValueError(txt) @property def growth_factor(self): return self.__growth_factor def apply_hygro_growth(self, kappa, RH, how = 'shift_bins'): """ how: string ['shift_bins', 'shift_data'] If the shift_bins the growth factor has to be the same for all lines in data (important for timeseries and vertical profile. If gf changes (as probably the case in TS and LS) you want to use 'shift_data' """ if not self.index_of_refraction: txt = '''The index_of_refraction attribute of this sizedistribution has not been set yet, please do so first!''' raise ValueError(txt) # out_I = {} dist_g = self.copy() dist_g.convert2numberconcentration() gf,n_mix = hg.kappa_simple(kappa, RH, n = dist_g.index_of_refraction) # out_I['growth_factor'] = gf nat = ['int', 'float'] if type(kappa).__name__ in nat or type(RH).__name__ in nat: if how != 'shift_bins': txt = "When kappa or RH ar not arrays 'how' has to be equal to 'shift_bins'" raise ValueError(txt) if how == 'shift_bins': if not isinstance(gf, (float,int)): txt = '''If how is equal to 'shift_bins' RH has to be of type int or float. It is %s'''%(type(RH).__name__) raise TypeError(txt) dist_g.bins = dist_g.bins * gf dist_g.__index_of_refraction = n_mix elif how == 'shift_data': test = dist_g._hygro_growht_shift_data(dist_g.data.values[0],dist_g.bins,gf.max()) bin_num = test['data'].shape[0] data_new = np.zeros((dist_g.data.shape[0],bin_num)) for e,i in enumerate(dist_g.data.values): out = dist_g._hygro_growht_shift_data(i,dist_g.bins,gf[e]) dt = out['data'] diff = bin_num - dt.shape[0] dt = np.append(dt, np.zeros(diff)) data_new[e] = dt df = pd.DataFrame(data_new) df.index = dist_g.data.index # return df dist_g = SizeDist(df, test['bins'], dist_g.distributionType) df = pd.DataFrame(n_mix, columns = ['index_of_refraction']) df.index = dist_g.data.index dist_g.index_of_refraction = df else: txt = '''How has to be either 'shift_bins' or 'shift_data'.''' raise ValueError(txt) dist_g.__growth_factor = pd.DataFrame(gf, index = dist_g.data.index, columns = ['Growth_factor']) # out_I['size_distribution'] = dist_g return dist_g def _hygro_growht_shift_data(self, data, bins, gf): """data: 1D array bins: 1D array gf: float""" bins = bins.copy() if np.any(gf < 1): txt = 'Growth factor must be equal or larger than 1. No shrinking!!' raise ValueError(txt) shifted = bins*gf ml = array_tools.find_closest(bins, shifted, how='closest_low') mh = array_tools.find_closest(bins, shifted, how='closest_high') if np.any((mh - ml) > 1): raise ValueError('shifted bins spans over more than two of the original bins, programming required ;-)') no_extra_bins = bins[ml].shape[0] - np.unique(bins[ml]).shape[0] + 1 ######### Ad bins to shift data into last_two = np.log10(bins[- (no_extra_bins + 1):]) step_width = last_two[-1] - last_two[-2] new_bins = np.zeros(no_extra_bins) for i in range(no_extra_bins): new_bins[i] = np.log10(bins[-1]) + ((i + 1) * step_width) newbins = 10**new_bins bins = np.append(bins,newbins) shifted = (bins * gf)[:-no_extra_bins] ######## and again ######################## ml = array_tools.find_closest(bins, shifted, how='closest_low') mh = array_tools.find_closest(bins, shifted, how='closest_high') if np.any((mh - ml) > 1): raise ValueError('shifted bins spans over more than two of the original bins, programming required ;-)') ##### percentage of particles moved to next bin ...') shifted_w = shifted[1:] - shifted[:-1] fract_first = (bins[mh] - shifted)[:-1]/shifted_w fract_last = (shifted - bins[ml])[1:]/shifted_w data_new = np.zeros(data.shape[0]+ no_extra_bins) data_new[no_extra_bins - 1:-1] += fract_first * data data_new[no_extra_bins:] += fract_last * data # data = np.append(data, np.zeros(no_extra_bins)) out = {} out['bins'] = bins out['data'] = data_new out['num_extr_bins'] = no_extra_bins return out # def grow_particles(self, shift=1): # """This function shifts the data by "shift" columns to the right # Argurments # ---------- # shift: int. # number of columns to shift. # # Returns # ------- # New dist_LS instance # Growth ratio (mean,std) """ # # dist_grow = self.copy() # gf = dist_grow.bincenters[shift:] / dist_grow.bincenters[:-shift] # gf_mean = gf.mean() # gf_std = gf.std() # # shape = dist_grow.data.shape[1] # dist_grow.data[:] = 0 # dist_grow.data.iloc[:, shift:] = self.data.values[:, :shape - shift] # # return dist_grow, (gf_mean, gf_std) def calculate_optical_properties(self, wavelength, n): out = _calculate_optical_properties(self, wavelength, n) return out def fillGaps(self, scale=1.1): """ Finds gaps in dataset (e.g. when instrument was shut of) and fills them with zeros. It adds one line of zeros to the beginning and one to the end of the gap. Therefore the gap is visible as zeros instead of the interpolated values Parameters ---------- scale: float, optional This is a scale. """ diff = self.data.index[1:].values - self.data.index[0:-1].values threshold = np.median(diff) * scale where = np.where(diff > threshold)[0] if len(where) != 0: warnings.warn('The dataset provided had %s gaps' % len(where)) gap_start = self.data.index[where] gap_end = self.data.index[where + 1] for gap_s in gap_start: self.data.loc[gap_s + threshold] = np.zeros(self.bincenters.shape) for gap_e in gap_end: self.data.loc[gap_e - threshold] = np.zeros(self.bincenters.shape) self.data = self.data.sort_index() return def fit_normal(self, log=True, p0=[10, 180, 0.2]): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ sd = self.copy() if sd.distributionType != 'dNdlogDp': if sd.distributionType == 'calibration': pass else: warnings.warn( "Size distribution is not in 'dNdlogDp'. I temporarily converted the distribution to conduct the fitting. If that is not what you want, change the code!") sd = sd.convert2dNdlogDp() n_lines = sd.data.shape[0] amp = np.zeros(n_lines) pos = np.zeros(n_lines) sigma = np.zeros(n_lines) sigma_high = np.zeros(n_lines) sigma_low = np.zeros(n_lines) for e, lay in enumerate(sd.data.values): try: fit_res = fit_normal_dist(sd.bincenters, lay, log=log, p0=p0) except (ValueError, RuntimeError): fit_res = [np.nan, np.nan, np.nan, np.nan, np.nan] amp[e] = fit_res[0] pos[e] = fit_res[1] sigma[e] = fit_res[2] sigma_high[e] = fit_res[3] sigma_low[e] = fit_res[4] df = pd.DataFrame() df['Amp'] = pd.Series(amp) df['Pos'] = pd.Series(pos) df['Sigma'] = pd.Series(sigma) df['Sigma_high'] = pd.Series(sigma_high) df['Sigma_low'] = pd.Series(sigma_low) # df.index = self.layercenters self.data_fit_normal = df return self.data_fit_normal def get_particle_concentration(self): """ Returns the sum of particles per line in data Returns ------- int: if data has only one line pandas.DataFrame: else """ sd = self.convert2numberconcentration() particles = np.zeros(sd.data.shape[0]) for e, line in enumerate(sd.data.values): particles[e] = line.sum() if sd.data.shape[0] == 1: return particles[0] else: df = pd.DataFrame(particles, index=sd.data.index, columns=['Count_rate']) return df def plot(self, showMinorTickLabels=True, removeTickLabels=["700", "900"], fit_res=True, fit_res_scale = 'log', ax=None, ): """ Plots and returns f,a (figure, axis). Arguments --------- showMinorTickLabels: bool [True], optional if minor tick labels are labled removeTickLabels: list of string ["700", "900"], optional list of tick labels aught to be removed (in case there are overlapping) fit_res: bool [True], optional allows plotting of fitresults if fit_normal was previously executed fit_res: string If fit_normal was done using log = False, you want to set this to linear! ax: axis object [None], optional option to provide axis to plot on Returns ------- Handles to the figure and axes of the figure. """ if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() g, = a.plot(self.bincenters, self.data.loc[0], color=plt_tools.color_cycle[0], linewidth=2, label='exp.') g.set_drawstyle('steps-mid') a.set_xlabel('Particle diameter (nm)') label = get_label(self.distributionType) a.set_ylabel(label) a.set_xscale('log') if fit_res: if 'data_fit_normal' in dir(self): amp, pos, sigma = self.data_fit_normal.values[0, :3] if fit_res_scale == 'log': normal_dist = math_functions.gauss(np.log10(self.bincenters), amp, np.log10(pos), sigma) elif fit_res_scale =='linear': normal_dist = math_functions.gauss(self.bincenters, amp, pos, sigma) else: txt = '"fit_res_scale has to be either log or linear' raise ValueError(txt) a.plot(self.bincenters, normal_dist, color=plt_tools.color_cycle[1], linewidth=2, label='fit with norm. dist.') a.legend() return f, a def convert2dNdDp(self): return self._convert2otherDistribution('dNdDp') def convert2dNdlogDp(self): return self._convert2otherDistribution('dNdlogDp') def convert2dSdDp(self): return self._convert2otherDistribution('dSdDp') def convert2dSdlogDp(self): return self._convert2otherDistribution('dSdlogDp') def convert2dVdDp(self): return self._convert2otherDistribution('dVdDp') def convert2dVdlogDp(self): return self._convert2otherDistribution('dVdlogDp') def convert2numberconcentration(self): return self._convert2otherDistribution('numberConcentration') def copy(self): return deepcopy(self) def save_csv(self, fname, header=True): if header: raus = open(fname, 'w') raus.write('bins = %s\n' % self.bins.tolist()) raus.write('distributionType = %s\n' % self.distributionType) raus.write('objectType = %s\n' % (type(self).__name__)) raus.write('#\n') raus.close() self.data.to_csv(fname, mode='a') return def save_hdf(self, hdf, variable_name = None, info = '', force = False): if variable_name: table_name = '/atmPy/aerosols/sizedistribution/'+variable_name if table_name in hdf.keys(): if not force: txt = 'Table name (variable_name) exists. If you want to overwrite it set force to True.' raise KeyError(txt) else: e = 0 while 1: table_name = '/atmPy/aerosols/sizedistribution/'+ type(self).__name__ + '_%.3i'%e if table_name in hdf.keys(): e+=1 else: break hdf.put(table_name, self.data) storer = hdf.get_storer(table_name) attrs = {} attrs['variable_name'] = variable_name attrs['info'] = info attrs['type'] = type(self) attrs['bins'] = self.bins attrs['index_of_refraction'] = self.index_of_refraction attrs['distributionType'] = self.distributionType if 'layerbounderies' in dir(self): attrs['layerbounderies'] = self.layerbounderies storer.attrs.atmPy_attrs = attrs if 'data_fit_normal' in dir(self): table_name = table_name + '/data_fit_normal' hdf.put(table_name, self.data_fit_normal) storer = hdf.get_storer(table_name) storer.attrs.atmPy_attrs = None return hdf def zoom_diameter(self, start=None, end=None): sd = self.copy() if start: startIdx = array_tools.find_closest(sd.bins, start) else: startIdx = 0 if end: endIdx = array_tools.find_closest(sd.bins, end) else: endIdx = len(self.bincenters) # size_distr.binwidth = self.binwidth[startIdx:endIdx] sd.data = self.data.iloc[:, startIdx:endIdx] sd.bins = self.bins[startIdx:endIdx + 1] # size_distr.bincenters = self.bincenters[startIdx:endIdx] return sd def _normal2log(self): trans = (self.bincenters * np.log(10.)) return trans def _2Surface(self): trans = 4. * np.pi * (self.bincenters / 2.) ** 2 return trans def _2Volume(self): trans = 4. / 3. * np.pi * (self.bincenters / 2.) ** 3 return trans def _convert2otherDistribution(self, distType, verbose=False): dist = self.copy() if dist.distributionType == distType: if verbose: warnings.warn( 'Distribution type is already %s. Output is an unchanged copy of the distribution' % distType) return dist if dist.distributionType == 'numberConcentration': pass elif distType == 'numberConcentration': pass elif dist.distributionType in distTypes['log normal']: if distType in distTypes['log normal']: if verbose: print('both log normal') else: dist.data = dist.data / self._normal2log() elif dist.distributionType in distTypes['natural']: if distType in distTypes['natural']: if verbose: print('both natural') else: dist.data = dist.data * self._normal2log() else: raise ValueError('%s is not an option' % distType) if dist.distributionType == 'numberConcentration': pass elif distType == 'numberConcentration': pass elif dist.distributionType in distTypes['number']: if distType in distTypes['number']: if verbose: print('both number') else: if distType in distTypes['surface']: dist.data *= self._2Surface() elif distType in distTypes['volume']: dist.data *= self._2Volume() else: raise ValueError('%s is not an option' % distType) elif dist.distributionType in distTypes['surface']: if distType in distTypes['surface']: if verbose: print('both surface') else: if distType in distTypes['number']: dist.data /= self._2Surface() elif distType in distTypes['volume']: dist.data *= self._2Volume() / self._2Surface() else: raise ValueError('%s is not an option' % distType) elif dist.distributionType in distTypes['volume']: if distType in distTypes['volume']: if verbose: print('both volume') else: if distType in distTypes['number']: dist.data /= self._2Volume() elif distType in distTypes['surface']: dist.data *= self._2Surface() / self._2Volume() else: raise ValueError('%s is not an option' % distType) else: raise ValueError('%s is not an option' % distType) if distType == 'numberConcentration': dist = dist.convert2dNdDp() dist.data *= self.binwidth elif dist.distributionType == 'numberConcentration': dist.data = dist.data / self.binwidth dist.distributionType = 'dNdDp' dist = dist._convert2otherDistribution(distType) dist.distributionType = distType if verbose: print('converted from %s to %s' % (self.distributionType, dist.distributionType)) return dist class SizeDist_TS(SizeDist): """Returns a SizeDistribution_TS instance. Parameters: ----------- data: pandas dataFrame with - column names (each name is something like this: '150-200') - index is time (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' """ def fit_normal(self, log=True, p0=[10, 180, 0.2]): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ super(SizeDist_TS, self).fit_normal(log=log, p0=p0) self.data_fit_normal.index = self.data.index return self.data_fit_normal def _getXYZ(self): """ This will create three arrays, so when plotted with pcolor each pixel will represent the exact bin width """ binArray = np.repeat(np.array([self.bins]), self.data.index.shape[0], axis=0) timeArray = np.repeat(np.array([self.data.index.values]), self.bins.shape[0], axis=0).transpose() ext = np.array([np.zeros(self.data.index.values.shape)]).transpose() Z = np.append(self.data.values, ext, axis=1) return timeArray, binArray, Z def get_timespan(self): return self.data.index.min(), self.data.index.max() # TODO: Fix plot options such as showMinorTickLabels def plot(self, vmax=None, vmin=None, norm='linear', showMinorTickLabels=True, # removeTickLabels=["700", "900"], ax=None, fit_pos=True, cmap=plt_tools.get_colorMap_intensity(), colorbar=True): """ plots an intensity plot of all data Arguments --------- scale (optional): ('log',['linear']) - defines how the z-direction is scaled vmax vmin show_minor_tickLabels: cma: fit_pos: bool[True]. Optional plots the position of a fitted normal distribution onto the plot. in order for this to work execute fit_normal ax (optional): axes instance [None] - option to plot on existing axes Returns ------- f,a,pc,cb (figure, axis, pcolormeshInstance, colorbar) """ X, Y, Z = self._getXYZ() Z = np.ma.masked_invalid(Z) if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() f.autofmt_xdate() if norm == 'log': norm = LogNorm() elif norm == 'linear': norm = None pc = a.pcolormesh(X, Y, Z, vmin=vmin, vmax=vmax, norm=norm, cmap=cmap) a.set_yscale('log') a.set_ylim((self.bins[0], self.bins[-1])) a.set_xlabel('Time (UTC)') a.get_yaxis().set_tick_params(direction='out', which='both') a.get_xaxis().set_tick_params(direction='out', which='both') if self.distributionType == 'calibration': a.set_ylabel('Amplitude (digitizer bins)') else: a.set_ylabel('Diameter (nm)') if colorbar: cb = f.colorbar(pc) label = get_label(self.distributionType) cb.set_label(label) else: cb = get_label(self.distributionType) # if self.distributionType != 'calibration': # a.yaxis.set_major_formatter(plt.FormatStrFormatter("%i")) # f.canvas.draw() # this is important, otherwise the ticks (at least in case of minor ticks) are not created yet if showMinorTickLabels: minf = plt_tools.get_formatter_minor_log() a.yaxis.set_minor_formatter(minf) # a.yaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) # ticks = a.yaxis.get_minor_ticks() # for i in ticks: # if i.label.get_text() in removeTickLabels: # i.label.set_visible(False) if fit_pos: if 'data_fit_normal' in dir(self): a.plot(self.data.index, self.data_fit_normal.Pos, color='m', linewidth=2, label='normal dist. center') leg = a.legend(fancybox=True, framealpha=0.5) leg.draw_frame(True) return f, a, pc, cb def plot_fitres(self): """ Plots the results from fit_normal""" f, a = plt.subplots() data = self.data_fit_normal.dropna() a.fill_between(data.index, data.Sigma_high, data.Sigma_low, color=plt_tools.color_cycle[0], alpha=0.5, ) a.plot(data.index.values, data.Pos.values, color=plt_tools.color_cycle[0], linewidth=2, label='center') # data.Pos.plot(ax=a, color=plt_tools.color_cycle[0], linewidth=2, label='center') a.legend(loc=2) a.set_ylabel('Particle diameter (nm)') a.set_xlabel('Altitude (m)') a2 = a.twinx() # data.Amp.plot(ax=a2, color=plt_tools.color_cycle[1], linewidth=2, label='amplitude') a2.plot(data.index.values, data.Amp.values, color=plt_tools.color_cycle[1], linewidth=2, label='amplitude') a2.legend() a2.set_ylabel('Amplitude - %s' % (get_label(self.distributionType))) f.autofmt_xdate() return f, a, a2 def plot_particle_concentration(self, ax=None, label=None): """Plots the particle rate as a function of time. Parameters ---------- ax: matplotlib.axes instance, optional perform plot on these axes. Returns ------- matplotlib.axes instance """ if type(ax).__name__ in axes_types: color = plt_tools.color_cycle[len(ax.get_lines())] f = ax.get_figure() else: f, ax = plt.subplots() color = plt_tools.color_cycle[0] # layers = self.convert2numberconcentration() particles = self.get_particle_concentration().dropna() ax.plot(particles.index.values, particles.Count_rate.values, color=color, linewidth=2) if label: ax.get_lines()[-1].set_label(label) ax.legend() ax.set_xlabel('Time (UTC)') ax.set_ylabel('Particle number concentration (cm$^{-3})$') if particles.index.dtype.type.__name__ == 'datetime64': f.autofmt_xdate() return ax def zoom_time(self, start=None, end=None): """ 2014-11-24 16:02:30 """ dist = self.copy() dist.data = dist.data.truncate(before=start, after=end) return dist def average_overTime(self, window='1S'): """returns a copy of the sizedistribution_TS with reduced size by averaging over a given window Arguments --------- window: str ['1S']. Optional window over which to average. For aliases see http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases Returns ------- SizeDistribution_TS instance copy of current instance with resampled data frame """ dist = self.copy() window = window dist.data = dist.data.resample(window, closed='right', label='right') if dist.distributionType == 'calibration': dist.data.values[np.where(np.isnan(self.data.values))] = 0 return dist def average_overAllTime(self): """ averages over the entire dataFrame and returns a single sizedistribution (numpy.ndarray) """ singleHist = np.zeros(self.data.shape[1]) for i in range(self.data.shape[1]): line = self.data.values[:, i] singleHist[i] = np.average(line[~np.isnan(line)]) data = pd.DataFrame(np.array([singleHist]), columns=self.data.columns) avgDist = SizeDist(data, self.bins, self.distributionType) return avgDist def convert2layerseries(self, hk, layer_thickness=10, force=False): """convertes the time series to a layer series. Note ---- nan values are excluded when an average is taken over a the time that corresponds to the particular layer (altitude). If there are only nan values nan is returned and there is a gap in the Layerseries. The the housekeeping instance has to have a column called "Altitude" and which is monotonicly in- or decreasing Arguments --------- hk: housekeeping instance layer_thickness (optional): [10] thickness of each generated layer in meter""" if any(np.isnan(hk.data.Altitude)): txt = """The Altitude contains nan values. Either fix this first, eg. with pandas interpolate function""" raise ValueError(txt) if ((hk.data.Altitude.values[1:] - hk.data.Altitude.values[:-1]).min() < 0) and ( (hk.data.Altitude.values[1:] - hk.data.Altitude.values[:-1]).max() > 0): if force: hk.data = hk.data.sort(columns='Altitude') else: txt = '''Given altitude data is not monotonic. This is not possible (yet). Use force if you know what you are doing''' raise ValueError(txt) start_h = round(hk.data.Altitude.values.min() / layer_thickness) * layer_thickness end_h = round(hk.data.Altitude.values.max() / layer_thickness) * layer_thickness layer_edges = np.arange(start_h, end_h, layer_thickness) empty_frame = pd.DataFrame(columns=self.data.columns) lays = SizeDist_LS(empty_frame, self.bins, self.distributionType, None) for e, end_h_l in enumerate(layer_edges[1:]): start_h_l = layer_edges[e] layer = hk.data.Altitude.iloc[ np.where(np.logical_and(start_h_l < hk.data.Altitude.values, hk.data.Altitude.values < end_h_l))] start_t = layer.index.min() end_t = layer.index.max() dist_tmp = self.zoom_time(start=start_t, end=end_t) avrg = dist_tmp.average_overAllTime() # return avrg,lays lays.add_layer(avrg, (start_h_l, end_h_l)) lays.parent_dist_TS = self lays.parent_timeseries = hk data = hk.data.copy() data['Time_UTC'] = data.index data.index = data.Altitude data = data.sort_index() if not data.index.is_unique: #this is needed in case there are duplicate indeces grouped = data.groupby(level = 0) data = grouped.last() lays.housekeeping = data data = data.reindex(lays.layercenters,method = 'nearest') lays.housekeeping = vertical_profile.VerticalProfile(data) return lays class SizeDist_LS(SizeDist): """ Parameters ---------- data: pandas DataFrame ... bins: array distributionType: str layerbounderies: array shape(n_layers,2) OLD --- data: pandas dataFrame with - column names (each name is something like this: '150-200') - altitude (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' """ def __init__(self, data, bins, distributionType, layerbounderies, fixGaps=True): super(SizeDist_LS, self).__init__(data, bins, distributionType, fixGaps=True) if type(layerbounderies).__name__ == 'NoneType': self.layerbounderies = np.empty((0, 2)) # self.layercenters = np.array([]) else: self.layerbounderies = layerbounderies @property def layercenters(self): return self.__layercenters @property def layerbounderies(self): return self.__layerbouderies @layerbounderies.setter def layerbounderies(self,lb): self.__layerbouderies = lb # newlb = np.unique(self.layerbounderies.flatten()) # the unique is sorting the data, which is not reallyt what we want! # self.__layercenters = (newlb[1:] + newlb[:-1]) / 2. self.__layercenters = (self.layerbounderies[:,0] + self.layerbounderies[:,1]) / 2. self.data.index = self.layercenters def apply_hygro_growth(self, kappa, RH = None, how='shift_data'): """ see docstring of atmPy.sizedistribution.SizeDist for more information Parameters ---------- kappa: float RH: bool, float, or array. If None, RH from self.housekeeping will be taken""" if not np.any(RH): pandas_tools.ensure_column_exists(self.housekeeping.data, 'Relative_humidity') RH = self.housekeeping.data.Relative_humidity.values # return kappa,RH,how sd = super(SizeDist_LS,self).apply_hygro_growth(kappa,RH,how = how) # size_distr = out['size_distribution'] # gf = out['growth_factor'] sd_LS = SizeDist_LS(sd.data, sd.bins, sd.distributionType, self.layerbounderies, fixGaps=False) sd_LS.index_of_refraction = sd.index_of_refraction sd_LS._SizeDist__growth_factor = sd.growth_factor # out['size_distribution'] = sd_LS return sd_LS def calculate_angstromex(self, wavelengths=[460.3, 550.4, 671.2, 860.7], n=1.455): """Calculates the Anstrome coefficience (overall, layerdependent) Parameters ---------- wavelengths: array-like, optional. the angstrom coefficient will be calculated based on the AOD of these wavelength values (in nm) n: float, optional. index of refraction used in the underlying mie calculation. Returns ------- Angstrom exponent, float List containing the OpticalProperties instances for the different wavelengths New Attributes -------------- angstromexp: float the resulting angstrom exponent angstromexp_fit: pandas instance. AOD and fit result as a function of wavelength angstromexp_LS: pandas instance. angstrom exponent as a function of altitude """ AOD_list = [] AOD_dict = {} for w in wavelengths: AOD = self.calculate_optical_properties(w, n) # calculate_AOD(wavelength=w, n=n) # opt= sizedistribution.OpticalProperties(AOD, dist_LS.bins) AOD_list.append({'wavelength': w, 'opt_inst': AOD}) AOD_dict['%.1f' % w] = AOD eg = AOD_dict[list(AOD_dict.keys())[0]] wls = AOD_dict.keys() wls_a = np.array(list(AOD_dict.keys())).astype(float) ang_exp = [] ang_exp_std = [] ang_exp_r_value = [] for e, el in enumerate(eg.layercenters): AODs = np.array([AOD_dict[wl].data_orig['AOD_layer'].values[e][0] for wl in wls]) slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(wls_a), np.log10(AODs)) ang_exp.append(-slope) ang_exp_std.append(std_err) ang_exp_r_value.append(r_value) # break ang_exp = np.array(ang_exp) ang_exp_std = np.array(ang_exp_std) ang_exp_r_value = np.array(ang_exp_r_value) tmp = np.array([[float(i), AOD_dict[i].AOD] for i in AOD_dict.keys()]) wavelength, AOD = tmp[np.argsort(tmp[:, 0])].transpose() slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(wavelength), np.log10(AOD)) self.angstromexp = -slope aod_fit = np.log10(wavelengths) * slope + intercept self.angstromexp_fit = pd.DataFrame(np.array([AOD, 10 ** aod_fit]).transpose(), index=wavelength, columns=['data', 'fit']) self.angstromexp_LS = pd.DataFrame(np.array([ang_exp, ang_exp_std, ang_exp_r_value]).transpose(), index=self.layercenters, columns=['ang_exp', 'standard_dif', 'correlation_coef']) self.angstromexp_LS.index.name = 'layercenter' return -slope, AOD_dict def calculate_optical_properties(self, wavelength, n = None, noOfAngles=100): if not n: n = self.index_of_refraction if not n: txt = 'Refractive index is not specified. Either set self.index_of_refraction or set optional parameter n.' raise ValueError(txt) out = _calculate_optical_properties(self, wavelength, n, aod = True, noOfAngles=noOfAngles) opt_properties = OpticalProperties(out, self.bins) opt_properties.wavelength = wavelength opt_properties.index_of_refractio = n opt_properties.angular_scatt_func = out['angular_scatt_func'] # This is the formaer phase_fct, but since it is the angular scattering intensity, i changed the name opt_properties.parent_dist_LS = self return opt_properties def add_layer(self, sd, layerboundery): """ Adds a sizedistribution instance to the layerseries. layerboundery Parameters ---------- sd: layerboundary: """ if len(layerboundery) != 2: raise ValueError('layerboundery has to be of length 2') sd = sd._convert2otherDistribution(self.distributionType) layerbounderies = np.append(self.layerbounderies, np.array([layerboundery]), axis=0) layerbounderiesU = np.unique(layerbounderies) if (np.where(layerbounderiesU == layerboundery[1])[0] - np.where(layerbounderiesU == layerboundery[0])[0])[ 0] != 1: raise ValueError('The new layer is overlapping with an existing layer!') self.data = self.data.append(sd.data) self.layerbounderies = layerbounderies # self.layerbounderies.sort(axis=0) # # layercenter = np.array(layerboundery).sum() / 2. # self.layercenters = np.append(self.layercenters, layercenter) # self.layercenters.sort() # size_distr.data.index = np.array([layercenter]) # self.data = self.data.append(size_distr.data) return def _getXYZ(self): """ This will create three arrays, so when plotted with pcolor each pixel will represent the exact bin width """ binArray = np.repeat(np.array([self.bins]), self.data.index.shape[0], axis=0) layerArray = np.repeat(np.array([self.data.index.values]), self.bins.shape[0], axis=0).transpose() ext = np.array([np.zeros(self.data.index.values.shape)]).transpose() Z = np.append(self.data.values, ext, axis=1) return layerArray, binArray, Z def plot_eachLayer(self, a=None, normalize=False): """ Plots the distribution of each layer in one plot. Returns ------- Handles to the figure and axes of the plot """ if not a: f, a = plt.subplots() else: f = None pass for iv in self.data.index.values: if normalize: a.plot(self.bincenters, self.data.loc[iv, :] / self.data.loc[iv, :].max(), label='%i' % iv) else: a.plot(self.bincenters, self.data.loc[iv, :], label='%i' % iv) a.set_xlabel('Particle diameter (nm)') a.set_ylabel(get_label(self.distributionType)) a.legend() a.semilogx() return f, a def plot(self, vmax=None, vmin=None, scale='linear', show_minor_tickLabels=True, removeTickLabels=["500", "700", "800", "900"], plotOnTheseAxes=False, cmap=plt_tools.get_colorMap_intensity(), fit_pos=True, ax=None, colorbar = True): """ plots and returns f,a,pc,cb (figure, axis, pcolormeshInstance, colorbar) Arguments --------- scale (optional): ('log',['linear']) - defines how the z-direction is scaled vmax vmin show_minor_tickLabels: cma: fit_pos (optional): bool [True] - plots the position of a fitted normal distribution onto the plot. in order for this to work execute fit_normal ax (optional): axes instance [None] - option to plot on existing axes """ X, Y, Z = self._getXYZ() Z = np.ma.masked_invalid(Z) if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() # f.autofmt_xdate() if scale == 'log': scale = LogNorm() elif scale == 'linear': scale = None pc = a.pcolormesh(Y, X, Z, vmin=vmin, vmax=vmax, norm=scale, cmap=cmap) a.set_yscale('linear') a.set_xscale('log') a.set_xlim((self.bins[0], self.bins[-1])) a.set_ylabel('Altitude (m)') a.set_ylim((self.layercenters[0], self.layercenters[-1])) a.set_xlabel('Diameter (nm)') a.get_yaxis().set_tick_params(direction='out', which='both') a.get_xaxis().set_tick_params(direction='out', which='both') if colorbar: cb = f.colorbar(pc) label = get_label(self.distributionType) cb.set_label(label) else: cb = None if self.distributionType != 'calibration': a.xaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) a.xaxis.set_major_formatter(plt.FormatStrFormatter("%i")) f.canvas.draw() # this is important, otherwise the ticks (at least in case of minor ticks) are not created yet ticks = a.xaxis.get_minor_ticks() for i in ticks: if i.label.get_text() in removeTickLabels: i.label.set_visible(False) if fit_pos: if 'data_fit_normal' in dir(self): a.plot(self.data_fit_normal.Pos, self.layercenters, color='m', linewidth=2, label='normal dist. center') leg = a.legend(fancybox=True, framealpha=0.5) leg.draw_frame(True) return f, a, pc, cb #todo: when you want to plot one plot on existing one it will rotated it twice! def plot_particle_concentration(self, ax=None, label=None): """Plots the particle concentration as a function of altitude. Parameters ---------- ax: matplotlib.axes instance, optional perform plot on these axes. rotate: bool. When True the y-axes is the Altitude. Returns ------- matplotlib.axes instance """ # ax = SizeDist_TS.plot_particle_concetration(self, ax=ax, label=label) # ax.set_xlabel('Altitude (m)') # # if rotate: # g = ax.get_lines()[-1] # x, y = g.get_xydata().transpose() # xlim = ax.get_xlim() # ylim = ax.get_ylim() # ax.set_xlim(ylim) # ax.set_ylim(xlim) # g.set_xdata(y) # g.set_ydata(x) # xlabel = ax.get_xlabel() # ylabel = ax.get_ylabel() # ax.set_xlabel(ylabel) # ax.set_ylabel(xlabel) if type(ax).__name__ in axes_types: color = plt_tools.color_cycle[len(ax.get_lines())] f = ax.get_figure() else: f, ax = plt.subplots() color = plt_tools.color_cycle[0] # layers = self.convert2numberconcentration() particles = self.get_particle_concentration().dropna() ax.plot(particles.Count_rate.values, particles.index.values, color=color, linewidth=2) if label: ax.get_lines()[-1].set_label(label) ax.legend() ax.set_ylabel('Altitude (m)') ax.set_xlabel('Particle number concentration (cm$^{-3})$') return ax def plot_fitres(self, amp=True, rotate=True): """ Plots the results from fit_normal Arguments --------- amp: bool. if the amplitude is to be plotted """ f, a = plt.subplots() a.fill_between(self.layercenters, self.data_fit_normal.Sigma_high, self.data_fit_normal.Sigma_low, color=plt_tools.color_cycle[0], alpha=0.5, ) self.data_fit_normal.Pos.plot(ax=a, color=plt_tools.color_cycle[0], linewidth=2) g = a.get_lines()[-1] g.set_label('Center of norm. dist.') a.legend(loc=2) a.set_ylabel('Particle diameter (nm)') a.set_xlabel('Altitude (m)') if amp: a2 = a.twinx() self.data_fit_normal.Amp.plot(ax=a2, color=plt_tools.color_cycle[1], linewidth=2) g = a2.get_lines()[-1] g.set_label('Amplitude of norm. dist.') a2.legend() a2.set_ylabel('Amplitude - %s' % (get_label(self.distributionType))) else: a2 = False return f, a, a2 def plot_angstromex_fit(self): if 'angstromexp_fit' not in dir(self): raise ValueError('Execute function calculate_angstromex first!') f, a = plt.subplots() a.plot(self.angstromexp_fit.index, self.angstromexp_fit.data, 'o', color=plt_tools.color_cycle[0], label='exp. data') a.plot(self.angstromexp_fit.index, self.angstromexp_fit.fit, color=plt_tools.color_cycle[1], label='fit', linewidth=2) a.set_xlim((self.angstromexp_fit.index.min() * 0.95, self.angstromexp_fit.index.max() * 1.05)) a.set_ylim((self.angstromexp_fit.data.min() * 0.95, self.angstromexp_fit.data.max() * 1.05)) a.set_xlabel('Wavelength (nm)') a.set_ylabel('AOD') a.loglog() a.xaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) a.yaxis.set_minor_formatter(plt.FormatStrFormatter("%.2f")) return a def plot_angstromex_LS(self, corr_coeff=False, std=False): if 'angstromexp_fit' not in dir(self): raise ValueError('Execute function calculate_angstromex first!') f, a = plt.subplots() a.plot(self.angstromexp_LS.index, self.angstromexp_LS.ang_exp, color=plt_tools.color_cycle[0], linewidth=2, label='Angstrom exponent') a.set_xlabel('Altitude (m)') a.set_ylabel('Angstrom exponent') if corr_coeff: a.legend(loc=2) a2 = a.twinx() a2.plot(self.angstromexp_LS.index, self.angstromexp_LS.correlation_coef, color=plt_tools.color_cycle[1], linewidth=2, label='corr_coeff') a2.set_ylabel('Correlation coefficiant') a2.legend(loc=1) if std: a.legend(loc=2) a2 = a.twinx() a2.plot(self.angstromexp_LS.index, self.angstromexp_LS.standard_dif, color=plt_tools.color_cycle[1], linewidth=2, label='corr_coeff') a2.set_ylabel('Standard deviation') a2.legend(loc=1) tmp = (self.angstromexp_LS.index.max() - self.angstromexp_LS.index.min()) * 0.05 a.set_xlim((self.angstromexp_LS.index.min() - tmp, self.angstromexp_LS.index.max() + tmp)) return a def zoom_altitude(self, bottom, top): """'2014-11-24 16:02:30'""" dist = self.copy() dist.data = dist.data.truncate(before=bottom, after=top) where = np.where(np.logical_and(dist.layercenters < top, dist.layercenters > bottom)) # dist.layercenters = dist.layercenters[where] dist.layerbounderies = dist.layerbounderies[where] if 'data_fit_normal' in dir(dist): dist.data_fit_normal = dist.data_fit_normal.iloc[where] return dist # dist = self.copy() # dist.data = dist.data.truncate(before=start, after = end) # return dist # def average_overAltitude(self, window='1S'): print('need fixn') return False # window = window # self.data = self.data.resample(window, closed='right',label='right') # if self.distributionType == 'calibration': # self.data.values[np.where(np.isnan(self.data.values))] = 0 # return def average_overAllAltitudes(self): dataII = self.data.mean(axis=0) out = pd.DataFrame(dataII).T return SizeDist(out, self.bins, self.distributionType) def fit_normal(self): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ super(SizeDist_LS, self).fit_normal() self.data_fit_normal.index = self.layercenters return self.data_fit_normal # singleHist = np.zeros(self.data.shape[1]) # for i in xrange(self.data.shape[1]): # line = self.data.values[:,i] # singleHist[i] = np.average(line[~np.isnan(line)]) # return singleHist #Todo: bins are redundand # Todo: some functions should be switched of class OpticalProperties(object): def __init__(self, data, bins): # self.data = data['extCoeffPerLayer'] self.data = data['extCoeff_perrow_perbin'] self.data_orig = data self.AOD = data['AOD'] self.bins = bins self.layercenters = self.data.index.values self.asymmetry_parameter_LS = data['asymmetry_param'] # self.asymmetry_parameter_LS_alt = data['asymmetry_param_alt'] # ToDo: to define a distribution type does not really make sence ... just to make the stolen plot function happy self.distributionType = 'dNdlogDp' def get_extinction_coeff_verticle_profile(self): """ Creates a verticle profile of the extinction coefficient. """ ext = self.data.sum(axis=1) ext = pd.DataFrame(ext, columns=['ext. coeff.']) ext.index.name = 'Altitude' out = ExtinctionCoeffVerticlProfile(ext, self, self.wavelength, self.index_of_refractio) # out.wavelength = self.wavelength # out.n = self.index_of_refractio # out.parent = self return out def plot_AOD_cum(self, color=plt_tools.color_cycle[0], linewidth=2, ax=None, label='cumulative AOD', extra_info=True): if not ax: f,a = plt.subplots() else: a = ax # a = self.data_orig['AOD_cum'].plot(color=color, linewidth=linewidth, ax=ax, label=label) g, = a.plot(self.data_orig['AOD_cum']['AOD per Layer'], self.data_orig['AOD_cum'].index, color=color, linewidth=linewidth, label=label) # g = a.get_lines()[-1] g.set_label(label) a.legend() # a.set_xlim(0, 3000) a.set_ylabel('Altitude (m)') a.set_xlabel('AOD') txt = '''$\lambda = %s$ nm n = %s AOD = %.4f''' % (self.data_orig['wavelength'], self.data_orig['n'], self.data_orig['AOD']) if extra_info: a.text(0.7, 0.7, txt, transform=a.transAxes) return a def _getXYZ(self): out = SizeDist_LS._getXYZ(self) return out def plot_extCoeffPerLayer(self, vmax=None, vmin=None, scale='linear', show_minor_tickLabels=True, removeTickLabels=['500', '700', '800', '900'], plotOnTheseAxes=False, cmap=plt_tools.get_colorMap_intensity(), fit_pos=True, ax=None): f, a, pc, cb = SizeDist_LS.plot(self, vmax=vmax, vmin=vmin, scale=scale, show_minor_tickLabels=show_minor_tickLabels, removeTickLabels=removeTickLabels, plotOnTheseAxes=plotOnTheseAxes, cmap=cmap, fit_pos=fit_pos, ax=ax) cb.set_label('Extinction coefficient ($m^{-1}$)') return f, a, pc, cb class ExtinctionCoeffVerticlProfile(vertical_profile.VerticalProfile): def __init__(self, ext, parent, wavelength, index_of_refraction): super(ExtinctionCoeffVerticlProfile, self).__init__(ext) self.parent = parent self.wavelength = wavelength self.index_of_refraction = index_of_refraction def plot(self, *args, **kwargs): a = super(ExtinctionCoeffVerticlProfile, self).plot(*args, **kwargs) a.set_xlabel('Extinction coefficient (m$^{-1}$)') return a def simulate_sizedistribution(diameter=[10, 2500], numberOfDiameters=100, centerOfAerosolMode=200, widthOfAerosolMode=0.2, numberOfParticsInMode=1000): """generates a numberconcentration of an aerosol layer which has a gaussian shape when plottet in dN/log(Dp). However, returned is a numberconcentrations (simply the number of particles in each bin, no normalization) Returns Number concentration (#) bin edges (nm)""" start = diameter[0] end = diameter[1] noOfD = numberOfDiameters centerDiameter = centerOfAerosolMode width = widthOfAerosolMode bins = np.linspace(np.log10(start), np.log10(end), noOfD) binwidth = bins[1:] - bins[:-1] bincenters = (bins[1:] + bins[:-1]) / 2. dNDlogDp = plt.mlab.normpdf(bincenters, np.log10(centerDiameter), width) extraScale = 1 scale = 1 while 1: NumberConcent = dNDlogDp * binwidth * scale * extraScale if scale != 1: break else: scale = float(numberOfParticsInMode) / NumberConcent.sum() binEdges = 10 ** bins diameterBinwidth = binEdges[1:] - binEdges[:-1] cols = [] for e, i in enumerate(binEdges[:-1]): cols.append(str(i) + '-' + str(binEdges[e + 1])) data = pd.DataFrame(np.array([NumberConcent / diameterBinwidth]), columns=cols) return SizeDist(data, binEdges, 'dNdDp') def simulate_sizedistribution_timeseries(diameter=[10, 2500], numberOfDiameters=100, centerOfAerosolMode=200, widthOfAerosolMode=0.2, numberOfParticsInMode=1000, startDate='2014-11-24 17:00:00', endDate='2014-11-24 18:00:00', frequency=10): delta = datetime.datetime.strptime(endDate, '%Y-%m-%d %H:%M:%S') - datetime.datetime.strptime(startDate, '%Y-%m-%d %H:%M:%S') periods = delta.total_seconds() / float(frequency) rng = pd.date_range(startDate, periods=periods, freq='%ss' % frequency) noOfOsz = 5 ampOfOsz = 100 oszi = np.linspace(0, noOfOsz * 2 * np.pi, periods) sdArray = np.zeros((periods, numberOfDiameters - 1)) for e, i in enumerate(rng): sdtmp = simulate_sizedistribution(diameter=diameter, numberOfDiameters=numberOfDiameters, centerOfAerosolMode=centerOfAerosolMode + (ampOfOsz * np.sin(oszi[e]))) sdArray[e] = sdtmp.data sdts = pd.DataFrame(sdArray, index=rng, columns=sdtmp.data.columns) return SizeDist_TS(sdts, sdtmp.bins, sdtmp.distributionType) def simulate_sizedistribution_layerseries(diameter=[10, 2500], numberOfDiameters=100, heightlimits=[0, 6000], noOflayers=100, layerHeight=[500., 4000.], layerThickness=[100., 300.], layerDensity=[1000., 5000.], layerModecenter=[200., 800.], widthOfAerosolMode = 0.2 ): gaussian = lambda x, mu, sig: np.exp(-(x - mu) ** 2 / (2 * sig ** 2)) lbt = np.linspace(heightlimits[0], heightlimits[1], noOflayers + 1) layerbounderies = np.array([lbt[:-1], lbt[1:]]).transpose() layercenter = (lbt[1:] + lbt[:-1]) / 2. # strata = np.linspace(heightlimits[0],heightlimits[1],noOflayers+1) layerArray = np.zeros((noOflayers, numberOfDiameters - 1)) for e, stra in enumerate(layercenter): for i, lay in enumerate(layerHeight): sdtmp = simulate_sizedistribution(diameter=diameter, numberOfDiameters=numberOfDiameters, widthOfAerosolMode=widthOfAerosolMode, centerOfAerosolMode=layerModecenter[i], numberOfParticsInMode=layerDensity[i]) layerArray[e] += sdtmp.data.values[0] * gaussian(stra, layerHeight[i], layerThickness[i]) sdls = pd.DataFrame(layerArray, index=layercenter, columns=sdtmp.data.columns) return SizeDist_LS(sdls, sdtmp.bins, sdtmp.distributionType, layerbounderies) def generate_aerosolLayer(diameter=[.01, 2.5], numberOfDiameters=30, centerOfAerosolMode=0.6, widthOfAerosolMode=0.2, numberOfParticsInMode=10000, layerBoundery=[0., 10000], ): """Probably deprecated!?! generates a numberconcentration of an aerosol layer which has a gaussian shape when plottet in dN/log(Dp). However, returned is a numberconcentrations (simply the number of particles in each bin, no normalization) Returns Number concentration (#) bin edges (nm)""" layerBoundery = np.array(layerBoundery) start = diameter[0] end = diameter[1] noOfD = numberOfDiameters centerDiameter = centerOfAerosolMode width = widthOfAerosolMode bins = np.linspace(np.log10(start), np.log10(end), noOfD) binwidth = bins[1:] - bins[:-1] bincenters = (bins[1:] + bins[:-1]) / 2. dNDlogDp = plt.mlab.normpdf(bincenters, np.log10(centerDiameter), width) extraScale = 1 scale = 1 while 1: NumberConcent = dNDlogDp * binwidth * scale * extraScale if scale != 1: break else: scale = float(numberOfParticsInMode) / NumberConcent.sum() binEdges = 10 ** bins # diameterBinCenters = (binEdges[1:] + binEdges[:-1])/2. diameterBinwidth = binEdges[1:] - binEdges[:-1] cols = [] for e, i in enumerate(binEdges[:-1]): cols.append(str(i) + '-' + str(binEdges[e + 1])) layerBoundery = np.array([0., 10000.]) # layerThickness = layerBoundery[1:] - layerBoundery[:-1] layerCenter = [5000.] data = pd.DataFrame(np.array([NumberConcent / diameterBinwidth]), index=layerCenter, columns=cols) # return data # atmosAerosolNumberConcentration = pd.DataFrame() # atmosAerosolNumberConcentration['bin_center'] = pd.Series(diameterBinCenters) # atmosAerosolNumberConcentration['bin_start'] = pd.Series(binEdges[:-1]) # atmosAerosolNumberConcentration['bin_end'] = pd.Series(binEdges[1:]) # atmosAerosolNumberConcentration['numberConcentration'] = pd.Series(NumberConcent) # return atmosAerosolNumberConcentration return SizeDist_LS(data, binEdges, 'dNdDp', layerBoundery) def test_generate_numberConcentration(): """result should look identical to Atmospheric Chemistry and Physis page 422""" nc = generate_aerosolLayer(diameter=[0.01, 10], centerOfAerosolMode=0.8, widthOfAerosolMode=0.3, numberOfDiameters=100, numberOfParticsInMode=1000, layerBoundery=[0.0, 10000]) plt.plot(nc.bincenters, nc.data.values[0].transpose() * nc.binwidth, label='numberConc') plt.plot(nc.bincenters, nc.data.values[0].transpose(), label='numberDist') ncLN = nc.convert2dNdlogDp() plt.plot(ncLN.bincenters, ncLN.data.values[0].transpose(), label='LogNormal') plt.legend() plt.semilogx() def _perform_Miecalculations(diam, wavelength, n, noOfAngles=100.): """ Performs Mie calculations Parameters ---------- diam: NumPy array of floats Array of diameters over which to perform Mie calculations; units are um wavelength: float Wavelength of light in um for which to perform calculations n: complex Ensemble complex index of refraction Returns panda DataTable with the diameters as the index and the mie results in the different collumns total_extinction_coefficient: this takes the sum of all particles crossections of the particular diameter in a qubic meter. This is in principle the AOD of an L """ diam = np.asarray(diam) extinction_efficiency = np.zeros(diam.shape) scattering_efficiency = np.zeros(diam.shape) absorption_efficiency = np.zeros(diam.shape) extinction_crossection = np.zeros(diam.shape) scattering_crossection = np.zeros(diam.shape) absorption_crossection = np.zeros(diam.shape) # phase_function_natural = pd.DataFrame() angular_scattering_natural = pd.DataFrame() # extinction_coefficient = np.zeros(diam.shape) # scattering_coefficient = np.zeros(diam.shape) # absorption_coefficient = np.zeros(diam.shape) # Function for calculating the size parameter for wavelength l and radius r sp = lambda r, l: 2. * np.pi * r / l for e, d in enumerate(diam): radius = d / 2. # print('sp(radius, wavelength)', sp(radius, wavelength)) # print('n', n) # print('d', d) mie = bhmie.bhmie_hagen(sp(radius, wavelength), n, noOfAngles, diameter=d) values = mie.return_Values_as_dict() extinction_efficiency[e] = values['extinction_efficiency'] # print("values['extinction_crosssection']",values['extinction_crosssection']) scattering_efficiency[e] = values['scattering_efficiency'] absorption_efficiency[e] = values['extinction_efficiency'] - values['scattering_efficiency'] extinction_crossection[e] = values['extinction_crosssection'] scattering_crossection[e] = values['scattering_crosssection'] absorption_crossection[e] = values['extinction_crosssection'] - values['scattering_crosssection'] # phase_function_natural[d] = values['phaseFct_natural']['Phase_function_natural'].values angular_scattering_natural[d] = mie.get_angular_scatt_func().natural.values # print('\n') # phase_function_natural.index = values['phaseFct_natural'].index angular_scattering_natural.index = mie.get_angular_scatt_func().index out = pd.DataFrame(index=diam) out['extinction_efficiency'] = pd.Series(extinction_efficiency, index=diam) out['scattering_efficiency'] = pd.Series(scattering_efficiency, index=diam) out['absorption_efficiency'] = pd.Series(absorption_efficiency, index=diam) out['extinction_crossection'] = pd.Series(extinction_crossection, index=diam) out['scattering_crossection'] = pd.Series(scattering_crossection, index=diam) out['absorption_crossection'] = pd.Series(absorption_crossection, index=diam) return out, angular_scattering_natural def _get_coefficients(crossection, cn): """ Calculates the extinction, scattering or absorbtion coefficient Parameters ---------- crosssection: float Units are um^2 cn: float Particle concentration in cc^-1 Returns -------- coefficient in m^-1. This is the differential AOD. """ crossection = crossection.copy() cn = cn.copy() crossection *= 1e-12 # conversion from um^2 to m^2 cn *= 1e6 # conversion from cm^-3 to m^-3 coefficient = cn * crossection # print('cn',cn) # print('crossection', crossection) # print('coeff',coefficient) # print('\n') return coefficient def test_ext_coeff_vertical_profile(): #todo: make this a real test dist = simulate_sizedistribution_layerseries(layerHeight=[3000.0, 3000.0], layerDensity=[1000.0, 100.0], layerModecenter=[100.0, 100.0], layerThickness=[6000, 6000], widthOfAerosolMode = 0.01, noOflayers=3, numberOfDiameters=1000) dist.plot() dist = dist.zoom_diameter(99,101) avg = dist.average_overAllAltitudes() f,a = avg.plot() a.set_xscale('linear') opt = dist.calculate_optical_properties(550, n = 1.455) opt_II = dist.calculate_optical_properties(550, n = 1.1) opt_III = dist.calculate_optical_properties(550, n = 4.) ext = opt.get_extinction_coeff_verticle_profile() ext_II = opt_II.get_extinction_coeff_verticle_profile() ext_III = opt_III.get_extinction_coeff_verticle_profile() tvI_is = (ext_III.data/ext.data).values[0][0] tvI_want = 14.3980239083 tvII_is = (ext_II.data/ext.data).values[0][0] tvII_want = 0.05272993413 print('small deviations could come from averaging over multiple bins with slightly different diameter') print('test values 1 is/should_be: %s/%s'%(tvI_is,tvI_want)) print('test values 2 is/should_be: %s/%s'%(tvII_is,tvII_want)) return False
mit
EntilZha/PyFunctional
setup.py
1
1887
import sys from setuptools import setup, find_packages try: import pypandoc long_description = pypandoc.convert( "README.md", "rst", extra_args=["--columns=300"] ) except (IOError, ImportError): long_description = open("README.md").read() common_install_requires = ["dill>=0.2.5", "tabulate<=1.0.0"] if "__pypy__" in sys.builtin_module_names: compression_requires = ["bz2file==0.98", "backports.lzma==0.0.6"] install_requires = common_install_requires else: compression_requires = [] install_requires = common_install_requires setup( name="PyFunctional", description="Package for creating data pipelines with chain functional programming", long_description=long_description, url="https://github.com/EntilZha/PyFunctional", author="Pedro Rodriguez", author_email="[email protected]", maintainer="Pedro Rodriguez", maintainer_email="[email protected]", license="MIT", keywords="functional pipeline data collection chain rdd linq parallel", packages=find_packages(exclude=["contrib", "docs", "tests*", "test"]), version="1.4.3", install_requires=install_requires, extras_requires={ "all": ["pandas"] + compression_requires, "compression": compression_requires, }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Natural Language :: English", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries :: Python Modules", ], )
mit
jch1/models
cognitive_mapping_and_planning/tfcode/cmp_utils.py
14
6936
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for setting up the CMP graph. """ import os, numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import slim from tensorflow.contrib.slim import arg_scope import logging from src import utils import src.file_utils as fu from tfcode import tf_utils resnet_v2 = tf_utils.resnet_v2 custom_residual_block = tf_utils.custom_residual_block def value_iteration_network( fr, num_iters, val_neurons, action_neurons, kernel_size, share_wts=False, name='vin', wt_decay=0.0001, activation_fn=None, shape_aware=False): """ Constructs a Value Iteration Network, convolutions and max pooling across channels. Input: fr: NxWxHxC val_neurons: Number of channels for maintaining the value. action_neurons: Computes action_neurons * val_neurons at each iteration to max pool over. Output: value image: NxHxWx(val_neurons) """ init_var = np.sqrt(2.0/(kernel_size**2)/(val_neurons*action_neurons)) vals = [] with tf.variable_scope(name) as varscope: if shape_aware == False: fr_shape = tf.unstack(tf.shape(fr)) val_shape = tf.stack(fr_shape[:-1] + [val_neurons]) val = tf.zeros(val_shape, name='val_init') else: val = tf.expand_dims(tf.zeros_like(fr[:,:,:,0]), dim=-1) * \ tf.constant(0., dtype=tf.float32, shape=[1,1,1,val_neurons]) val_shape = tf.shape(val) vals.append(val) for i in range(num_iters): if share_wts: # The first Value Iteration maybe special, so it can have its own # paramterss. scope = 'conv' if i == 0: scope = 'conv_0' if i > 1: varscope.reuse_variables() else: scope = 'conv_{:d}'.format(i) val = slim.conv2d(tf.concat([val, fr], 3, name='concat_{:d}'.format(i)), num_outputs=action_neurons*val_neurons, kernel_size=kernel_size, stride=1, activation_fn=activation_fn, scope=scope, normalizer_fn=None, weights_regularizer=slim.l2_regularizer(wt_decay), weights_initializer=tf.random_normal_initializer(stddev=init_var), biases_initializer=tf.zeros_initializer()) val = tf.reshape(val, [-1, action_neurons*val_neurons, 1, 1], name='re_{:d}'.format(i)) val = slim.max_pool2d(val, kernel_size=[action_neurons,1], stride=[action_neurons,1], padding='VALID', scope='val_{:d}'.format(i)) val = tf.reshape(val, val_shape, name='unre_{:d}'.format(i)) vals.append(val) return val, vals def rotate_preds(loc_on_map, relative_theta, map_size, preds, output_valid_mask): with tf.name_scope('rotate'): flow_op = tf_utils.get_flow(loc_on_map, relative_theta, map_size=map_size) if type(preds) != list: rotated_preds, valid_mask_warps = tf_utils.dense_resample(preds, flow_op, output_valid_mask) else: rotated_preds = [] ;valid_mask_warps = [] for pred in preds: rotated_pred, valid_mask_warp = tf_utils.dense_resample(pred, flow_op, output_valid_mask) rotated_preds.append(rotated_pred) valid_mask_warps.append(valid_mask_warp) return rotated_preds, valid_mask_warps def get_visual_frustum(map_size, shape_like, expand_dims=[0,0]): with tf.name_scope('visual_frustum'): l = np.tril(np.ones(map_size)) ;l = l + l[:,::-1] l = (l == 2).astype(np.float32) for e in expand_dims: l = np.expand_dims(l, axis=e) confs_probs = tf.constant(l, dtype=tf.float32) confs_probs = tf.ones_like(shape_like, dtype=tf.float32) * confs_probs return confs_probs def deconv(x, is_training, wt_decay, neurons, strides, layers_per_block, kernel_size, conv_fn, name, offset=0): """Generates a up sampling network with residual connections. """ batch_norm_param = {'center': True, 'scale': True, 'activation_fn': tf.nn.relu, 'is_training': is_training} outs = [] for i, (neuron, stride) in enumerate(zip(neurons, strides)): for s in range(layers_per_block): scope = '{:s}_{:d}_{:d}'.format(name, i+1+offset,s+1) x = custom_residual_block(x, neuron, kernel_size, stride, scope, is_training, wt_decay, use_residual=True, residual_stride_conv=True, conv_fn=conv_fn, batch_norm_param=batch_norm_param) stride = 1 outs.append((x,True)) return x, outs def fr_v2(x, output_neurons, inside_neurons, is_training, name='fr', wt_decay=0.0001, stride=1, updates_collections=tf.GraphKeys.UPDATE_OPS): """Performs fusion of information between the map and the reward map. Inputs x: NxHxWxC1 Outputs fr map: NxHxWx(output_neurons) """ if type(stride) != list: stride = [stride] with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope( is_training=is_training, weight_decay=wt_decay)): with slim.arg_scope([slim.batch_norm], updates_collections=updates_collections) as arg_sc: # Change the updates_collections for the conv normalizer_params to None for i in range(len(arg_sc.keys())): if 'convolution' in arg_sc.keys()[i]: arg_sc.values()[i]['normalizer_params']['updates_collections'] = updates_collections with slim.arg_scope(arg_sc): bottleneck = resnet_v2.bottleneck blocks = [] for i, s in enumerate(stride): b = resnet_v2.resnet_utils.Block( 'block{:d}'.format(i + 1), bottleneck, [{ 'depth': output_neurons, 'depth_bottleneck': inside_neurons, 'stride': stride[i] }]) blocks.append(b) x, outs = resnet_v2.resnet_v2(x, blocks, num_classes=None, global_pool=False, output_stride=None, include_root_block=False, reuse=False, scope=name) return x, outs
apache-2.0
OpenNetworkingFoundation/Snowmass-ONFOpenTransport
RI/python_client/tapi_app.py
4
2803
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import json import requests from requests.auth import HTTPBasicAuth import matplotlib.pyplot as plt import networkx as nx NODE_COLOR='#ff9966' NEP_COLOR='#cc00ff' SIP_COLOR='#00ffff' def main (): sips = [] topologies = [] for port in sys.argv: if not port.isnumeric(): continue retrieve_context(sips, topologies, port) draw_network_topology(sips, topologies) def retrieve_context(sips, topologies, port, user='', password=''): url = 'http://0.0.0.0' + ':' + port + '/data/context/' print ("Retrieving TAPI Context from " + url) response = requests.get(url, auth=HTTPBasicAuth(user, password)) context = response.json() print ("Retrieved TAPI Context: " + context['uuid']) for sip in context['service-interface-point']: sips.append(sip) for topo in context['topology-context']['topology']: topologies.append(topo) def draw_network_topology (sips, topologies) : plt.axis('off') nwk_graph = nx.Graph() for sip in sips: uuid = sip['uuid'] nwk_graph.add_node(uuid, col=SIP_COLOR, size=300) for topo in topologies: for node in topo['node']: uuid = node['uuid'] nwk_graph.add_node(uuid, col=NODE_COLOR, size=1500) for nep in node['owned-node-edge-point']: nep_uuid = nep['uuid'] sip = nep['mapped-service-interface-point'] nwk_graph.add_node(nep_uuid, col=NEP_COLOR, size=300) nwk_graph.add_edge(uuid, nep_uuid, col=NODE_COLOR) if sip: nwk_graph.add_edge(sip[0]['service-interface-point-uuid'], nep_uuid, col=SIP_COLOR) for link in topo['link']: nep1_uuid = link['node-edge-point'][0]['node-edge-point-uuid'] nep2_uuid = link['node-edge-point'][1]['node-edge-point-uuid'] nwk_graph.add_edge(nep1_uuid, nep2_uuid, col=NEP_COLOR) node_list = list(nx.get_node_attributes(nwk_graph, 'col').keys()) node_col = list(nx.get_node_attributes(nwk_graph, 'col').values()) node_size = list(nx.get_node_attributes(nwk_graph, 'size').values()) edge_list = list(nx.get_edge_attributes(nwk_graph, 'col').keys()) edge_col = list(nx.get_edge_attributes(nwk_graph, 'col').values()) nx.draw_networkx(nwk_graph, pos=nx.kamada_kawai_layout(nwk_graph), nodelist=node_list, edgelist=edge_list, node_size=node_size, node_color=node_col, edge_color=edge_col, font_size='6', width=2.0) plt.show() if __name__ == "__main__": main()
apache-2.0
alexeyum/scikit-learn
sklearn/metrics/base.py
46
4627
""" Common code for all metrics """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils import check_array, check_consistent_length from ..utils.multiclass import type_of_target from ..exceptions import UndefinedMetricWarning as _UndefinedMetricWarning from ..utils import deprecated @deprecated("UndefinedMetricWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class UndefinedMetricWarning(_UndefinedMetricWarning): pass def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None): """Average a binary metric for multilabel classification Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. binary_metric : callable, returns shape [n_classes] The binary metric function to use. Returns ------- score : float or array of shape [n_classes] If not ``None``, average the score, else return the score for each classes. """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options: raise ValueError('average has to be one of {0}' ''.format(average_options)) y_type = type_of_target(y_true) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if y_type == "binary": return binary_metric(y_true, y_score, sample_weight=sample_weight) check_consistent_length(y_true, y_score, sample_weight) y_true = check_array(y_true) y_score = check_array(y_score) not_average_axis = 1 score_weight = sample_weight average_weight = None if average == "micro": if score_weight is not None: score_weight = np.repeat(score_weight, y_true.shape[1]) y_true = y_true.ravel() y_score = y_score.ravel() elif average == 'weighted': if score_weight is not None: average_weight = np.sum(np.multiply( y_true, np.reshape(score_weight, (-1, 1))), axis=0) else: average_weight = np.sum(y_true, axis=0) if average_weight.sum() == 0: return 0 elif average == 'samples': # swap average_weight <-> score_weight average_weight = score_weight score_weight = None not_average_axis = 0 if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_score.ndim == 1: y_score = y_score.reshape((-1, 1)) n_classes = y_score.shape[not_average_axis] score = np.zeros((n_classes,)) for c in range(n_classes): y_true_c = y_true.take([c], axis=not_average_axis).ravel() y_score_c = y_score.take([c], axis=not_average_axis).ravel() score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight) # Average the results if average is not None: return np.average(score, weights=average_weight) else: return score
bsd-3-clause
pompiduskus/scikit-learn
sklearn/metrics/ranking.py
75
25426
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from .base import _average_binary_score from .base import UndefinedMetricWarning def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds := len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.all(classes == [0, 1]) or np.all(classes == [-1, 1]) or np.all(classes == [0]) or np.all(classes == [-1]) or np.all(classes == [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds := len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
rbalda/neural_ocr
env/lib/python2.7/site-packages/matplotlib/path.py
4
37214
""" A module for dealing with the polylines used throughout matplotlib. The primary class for polyline handling in matplotlib is :class:`Path`. Almost all vector drawing makes use of Paths somewhere in the drawing pipeline. Whilst a :class:`Path` instance itself cannot be drawn, there exists :class:`~matplotlib.artist.Artist` subclasses which can be used for convenient Path visualisation - the two most frequently used of these are :class:`~matplotlib.patches.PathPatch` and :class:`~matplotlib.collections.PathCollection`. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import math from weakref import WeakValueDictionary import numpy as np from numpy import ma from matplotlib import _path from matplotlib.cbook import simple_linear_interpolation, maxdict from matplotlib import rcParams class Path(object): """ :class:`Path` represents a series of possibly disconnected, possibly closed, line and curve segments. The underlying storage is made up of two parallel numpy arrays: - *vertices*: an Nx2 float array of vertices - *codes*: an N-length uint8 array of vertex types These two arrays always have the same length in the first dimension. For example, to represent a cubic curve, you must provide three vertices as well as three codes ``CURVE3``. The code types are: - ``STOP`` : 1 vertex (ignored) A marker for the end of the entire path (currently not required and ignored) - ``MOVETO`` : 1 vertex Pick up the pen and move to the given vertex. - ``LINETO`` : 1 vertex Draw a line from the current position to the given vertex. - ``CURVE3`` : 1 control point, 1 endpoint Draw a quadratic Bezier curve from the current position, with the given control point, to the given end point. - ``CURVE4`` : 2 control points, 1 endpoint Draw a cubic Bezier curve from the current position, with the given control points, to the given end point. - ``CLOSEPOLY`` : 1 vertex (ignored) Draw a line segment to the start point of the current polyline. Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use :meth:`iter_segments` or :meth:`cleaned` to get the vertex/code pairs. This is important, since many :class:`Path` objects, as an optimization, do not store a *codes* at all, but have a default one provided for them by :meth:`iter_segments`. .. note:: The vertices and codes arrays should be treated as immutable -- there are a number of optimizations and assumptions made up front in the constructor that will not change when the data changes. """ # Path codes STOP = 0 # 1 vertex MOVETO = 1 # 1 vertex LINETO = 2 # 1 vertex CURVE3 = 3 # 2 vertices CURVE4 = 4 # 3 vertices CLOSEPOLY = 79 # 1 vertex #: A dictionary mapping Path codes to the number of vertices that the #: code expects. NUM_VERTICES_FOR_CODE = {STOP: 1, MOVETO: 1, LINETO: 1, CURVE3: 2, CURVE4: 3, CLOSEPOLY: 1} code_type = np.uint8 def __init__(self, vertices, codes=None, _interpolation_steps=1, closed=False, readonly=False): """ Create a new path with the given vertices and codes. Parameters ---------- vertices : array_like The ``(n, 2)`` float array, masked array or sequence of pairs representing the vertices of the path. If *vertices* contains masked values, they will be converted to NaNs which are then handled correctly by the Agg PathIterator and other consumers of path data, such as :meth:`iter_segments`. codes : {None, array_like}, optional n-length array integers representing the codes of the path. If not None, codes must be the same length as vertices. If None, *vertices* will be treated as a series of line segments. _interpolation_steps : int, optional Used as a hint to certain projections, such as Polar, that this path should be linearly interpolated immediately before drawing. This attribute is primarily an implementation detail and is not intended for public use. closed : bool, optional If *codes* is None and closed is True, vertices will be treated as line segments of a closed polygon. readonly : bool, optional Makes the path behave in an immutable way and sets the vertices and codes as read-only arrays. """ if ma.isMaskedArray(vertices): vertices = vertices.astype(np.float_).filled(np.nan) else: vertices = np.asarray(vertices, np.float_) if (vertices.ndim != 2) or (vertices.shape[1] != 2): msg = "'vertices' must be a 2D list or array with shape Nx2" raise ValueError(msg) if codes is not None: codes = np.asarray(codes, self.code_type) if (codes.ndim != 1) or len(codes) != len(vertices): msg = ("'codes' must be a 1D list or array with the same" " length of 'vertices'") raise ValueError(msg) if len(codes) and codes[0] != self.MOVETO: msg = ("The first element of 'code' must be equal to 'MOVETO':" " {0}") raise ValueError(msg.format(self.MOVETO)) elif closed: codes = np.empty(len(vertices), dtype=self.code_type) codes[0] = self.MOVETO codes[1:-1] = self.LINETO codes[-1] = self.CLOSEPOLY self._vertices = vertices self._codes = codes self._interpolation_steps = _interpolation_steps self._update_values() if readonly: self._vertices.flags.writeable = False if self._codes is not None: self._codes.flags.writeable = False self._readonly = True else: self._readonly = False @classmethod def _fast_from_codes_and_verts(cls, verts, codes, internals=None): """ Creates a Path instance without the expense of calling the constructor Parameters ---------- verts : numpy array codes : numpy array internals : dict or None The attributes that the resulting path should have. Allowed keys are ``readonly``, ``should_simplify``, ``simplify_threshold``, ``has_nonfinite`` and ``interpolation_steps``. """ internals = internals or {} pth = cls.__new__(cls) if ma.isMaskedArray(verts): verts = verts.astype(np.float_).filled(np.nan) else: verts = np.asarray(verts, np.float_) pth._vertices = verts pth._codes = codes pth._readonly = internals.pop('readonly', False) pth.should_simplify = internals.pop('should_simplify', True) pth.simplify_threshold = ( internals.pop('simplify_threshold', rcParams['path.simplify_threshold']) ) pth._has_nonfinite = internals.pop('has_nonfinite', False) pth._interpolation_steps = internals.pop('interpolation_steps', 1) if internals: raise ValueError('Unexpected internals provided to ' '_fast_from_codes_and_verts: ' '{0}'.format('\n *'.join(six.iterkeys( internals )))) return pth def _update_values(self): self._should_simplify = ( rcParams['path.simplify'] and (len(self._vertices) >= 128 and (self._codes is None or np.all(self._codes <= Path.LINETO))) ) self._simplify_threshold = rcParams['path.simplify_threshold'] self._has_nonfinite = not np.isfinite(self._vertices).all() @property def vertices(self): """ The list of vertices in the `Path` as an Nx2 numpy array. """ return self._vertices @vertices.setter def vertices(self, vertices): if self._readonly: raise AttributeError("Can't set vertices on a readonly Path") self._vertices = vertices self._update_values() @property def codes(self): """ The list of codes in the `Path` as a 1-D numpy array. Each code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4` or `CLOSEPOLY`. For codes that correspond to more than one vertex (`CURVE3` and `CURVE4`), that code will be repeated so that the length of `self.vertices` and `self.codes` is always the same. """ return self._codes @codes.setter def codes(self, codes): if self._readonly: raise AttributeError("Can't set codes on a readonly Path") self._codes = codes self._update_values() @property def simplify_threshold(self): """ The fraction of a pixel difference below which vertices will be simplified out. """ return self._simplify_threshold @simplify_threshold.setter def simplify_threshold(self, threshold): self._simplify_threshold = threshold @property def has_nonfinite(self): """ `True` if the vertices array has nonfinite values. """ return self._has_nonfinite @property def should_simplify(self): """ `True` if the vertices array should be simplified. """ return self._should_simplify @should_simplify.setter def should_simplify(self, should_simplify): self._should_simplify = should_simplify @property def readonly(self): """ `True` if the `Path` is read-only. """ return self._readonly def __copy__(self): """ Returns a shallow copy of the `Path`, which will share the vertices and codes with the source `Path`. """ import copy return copy.copy(self) copy = __copy__ def __deepcopy__(self): """ Returns a deepcopy of the `Path`. The `Path` will not be readonly, even if the source `Path` is. """ return self.__class__( self.vertices.copy(), self.codes.copy(), _interpolation_steps=self._interpolation_steps) deepcopy = __deepcopy__ @classmethod def make_compound_path_from_polys(cls, XY): """ Make a compound path object to draw a number of polygons with equal numbers of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a :class:`Path` .. plot:: mpl_examples/api/histogram_path_demo.py """ # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for # the CLOSEPOLY; the vert for the closepoly is ignored but we still # need it to keep the codes aligned with the vertices numpolys, numsides, two = XY.shape if two != 2: raise ValueError("The third dimension of 'XY' must be 2") stride = numsides + 1 nverts = numpolys * stride verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * cls.LINETO codes[0::stride] = cls.MOVETO codes[numsides::stride] = cls.CLOSEPOLY for i in range(numsides): verts[i::stride] = XY[:, i] return cls(verts, codes) @classmethod def make_compound_path(cls, *args): """Make a compound path from a list of Path objects.""" # Handle an empty list in args (i.e. no args). if not args: return Path(np.empty([0, 2], dtype=np.float32)) lengths = [len(x) for x in args] total_length = sum(lengths) vertices = np.vstack([x.vertices for x in args]) vertices.reshape((total_length, 2)) codes = np.empty(total_length, dtype=cls.code_type) i = 0 for path in args: if path.codes is None: codes[i] = cls.MOVETO codes[i + 1:i + len(path.vertices)] = cls.LINETO else: codes[i:i + len(path.codes)] = path.codes i += len(path.vertices) return cls(vertices, codes) def __repr__(self): return "Path(%r, %r)" % (self.vertices, self.codes) def __len__(self): return len(self.vertices) def iter_segments(self, transform=None, remove_nans=True, clip=None, snap=False, stroke_width=1.0, simplify=None, curves=True, sketch=None): """ Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (*vertices*, *code*), where *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is one of the :class:`Path` codes. Additionally, this method can provide a number of standard cleanups and conversions to the path. Parameters ---------- transform : None or :class:`~matplotlib.transforms.Transform` instance If not None, the given affine transformation will be applied to the path. remove_nans : {False, True}, optional If True, will remove all NaNs from the path and insert MOVETO commands to skip over them. clip : None or sequence, optional If not None, must be a four-tuple (x1, y1, x2, y2) defining a rectangle in which to clip the path. snap : None or bool, optional If None, auto-snap to pixels, to reduce fuzziness of rectilinear lines. If True, force snapping, and if False, don't snap. stroke_width : float, optional The width of the stroke being drawn. Needed as a hint for the snapping algorithm. simplify : None or bool, optional If True, perform simplification, to remove vertices that do not affect the appearance of the path. If False, perform no simplification. If None, use the should_simplify member variable. curves : {True, False}, optional If True, curve segments will be returned as curve segments. If False, all curves will be converted to line segments. sketch : None or sequence, optional If not None, must be a 3-tuple of the form (scale, length, randomness), representing the sketch parameters. """ if not len(self): return cleaned = self.cleaned(transform=transform, remove_nans=remove_nans, clip=clip, snap=snap, stroke_width=stroke_width, simplify=simplify, curves=curves, sketch=sketch) vertices = cleaned.vertices codes = cleaned.codes len_vertices = vertices.shape[0] # Cache these object lookups for performance in the loop. NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE STOP = self.STOP i = 0 while i < len_vertices: code = codes[i] if code == STOP: return else: num_vertices = NUM_VERTICES_FOR_CODE[code] curr_vertices = vertices[i:i+num_vertices].flatten() yield curr_vertices, code i += num_vertices def cleaned(self, transform=None, remove_nans=False, clip=None, quantize=False, simplify=False, curves=False, stroke_width=1.0, snap=False, sketch=None): """ Cleans up the path according to the parameters returning a new Path instance. .. seealso:: See :meth:`iter_segments` for details of the keyword arguments. Returns ------- Path instance with cleaned up vertices and codes. """ vertices, codes = _path.cleanup_path(self, transform, remove_nans, clip, snap, stroke_width, simplify, curves, sketch) internals = {'should_simplify': self.should_simplify and not simplify, 'has_nonfinite': self.has_nonfinite and not remove_nans, 'simplify_threshold': self.simplify_threshold, 'interpolation_steps': self._interpolation_steps} return Path._fast_from_codes_and_verts(vertices, codes, internals) def transformed(self, transform): """ Return a transformed copy of the path. .. seealso:: :class:`matplotlib.transforms.TransformedPath` A specialized path class that will cache the transformed result and automatically update when the transform changes. """ return Path(transform.transform(self.vertices), self.codes, self._interpolation_steps) def contains_point(self, point, transform=None, radius=0.0): """ Returns *True* if the path contains the given point. If *transform* is not *None*, the path will be transformed before performing the test. *radius* allows the path to be made slightly larger or smaller. """ if transform is not None: transform = transform.frozen() result = _path.point_in_path(point[0], point[1], radius, self, transform) return result def contains_points(self, points, transform=None, radius=0.0): """ Returns a bool array which is *True* if the path contains the corresponding point. If *transform* is not *None*, the path will be transformed before performing the test. *radius* allows the path to be made slightly larger or smaller. """ if transform is not None: transform = transform.frozen() result = _path.points_in_path(points, radius, self, transform) return result def contains_path(self, path, transform=None): """ Returns *True* if this path completely contains the given path. If *transform* is not *None*, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return _path.path_in_path(self, None, path, transform) def get_extents(self, transform=None): """ Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the path. Unlike computing the extents on the *vertices* alone, this algorithm will take into account the curves and deal with control points appropriately. """ from .transforms import Bbox path = self if transform is not None: transform = transform.frozen() if not transform.is_affine: path = self.transformed(transform) transform = None return Bbox(_path.get_path_extents(path, transform)) def intersects_path(self, other, filled=True): """ Returns *True* if this path intersects another given path. *filled*, when True, treats the paths as if they were filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ return _path.path_intersects_path(self, other, filled) def intersects_bbox(self, bbox, filled=True): """ Returns *True* if this path intersects a given :class:`~matplotlib.transforms.Bbox`. *filled*, when True, treats the path as if it was filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ from .transforms import BboxTransformTo rectangle = self.unit_rectangle().transformed( BboxTransformTo(bbox)) result = self.intersects_path(rectangle, filled) return result def interpolated(self, steps): """ Returns a new path resampled to length N x steps. Does not currently handle interpolating curves. """ if steps == 1: return self vertices = simple_linear_interpolation(self.vertices, steps) codes = self.codes if codes is not None: new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, )) new_codes[0::steps] = codes else: new_codes = None return Path(vertices, new_codes) def to_polygons(self, transform=None, width=0, height=0): """ Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words, each polygon has no ``MOVETO`` instructions or curves. This is useful for displaying in backends that do not support compound paths or Bezier curves, such as GDK. If *width* and *height* are both non-zero then the lines will be simplified so that vertices outside of (0, 0), (width, height) will be clipped. """ if len(self.vertices) == 0: return [] if transform is not None: transform = transform.frozen() if self.codes is None and (width == 0 or height == 0): if transform is None: return [self.vertices] else: return [transform.transform(self.vertices)] # Deal with the case where there are curves and/or multiple # subpaths (using extension code) return _path.convert_path_to_polygons(self, transform, width, height) _unit_rectangle = None @classmethod def unit_rectangle(cls): """ Return a :class:`Path` instance of the unit rectangle from (0, 0) to (1, 1). """ if cls._unit_rectangle is None: cls._unit_rectangle = \ cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]], [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY], readonly=True) return cls._unit_rectangle _unit_regular_polygons = WeakValueDictionary() @classmethod def unit_regular_polygon(cls, numVertices): """ Return a :class:`Path` instance for a unit regular polygon with the given *numVertices* and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_polygons.get(numVertices) else: path = None if path is None: theta = (2*np.pi/numVertices * np.arange(numVertices + 1).reshape((numVertices + 1, 1))) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 verts = np.concatenate((np.cos(theta), np.sin(theta)), 1) codes = np.empty((numVertices + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_polygons[numVertices] = path return path _unit_regular_stars = WeakValueDictionary() @classmethod def unit_regular_star(cls, numVertices, innerCircle=0.5): """ Return a :class:`Path` for a unit regular star with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_stars.get((numVertices, innerCircle)) else: path = None if path is None: ns2 = numVertices * 2 theta = (2*np.pi/ns2 * np.arange(ns2 + 1)) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 r = np.ones(ns2 + 1) r[1::2] = innerCircle verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose() codes = np.empty((ns2 + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_polygons[(numVertices, innerCircle)] = path return path @classmethod def unit_regular_asterisk(cls, numVertices): """ Return a :class:`Path` for a unit regular asterisk with the given numVertices and radius of 1.0, centered at (0, 0). """ return cls.unit_regular_star(numVertices, 0.0) _unit_circle = None @classmethod def unit_circle(cls): """ Return the readonly :class:`Path` of the unit circle. For most cases, :func:`Path.circle` will be what you want. """ if cls._unit_circle is None: cls._unit_circle = cls.circle(center=(0, 0), radius=1, readonly=True) return cls._unit_circle @classmethod def circle(cls, center=(0., 0.), radius=1., readonly=False): """ Return a Path representing a circle of a given radius and center. Parameters ---------- center : pair of floats The center of the circle. Default ``(0, 0)``. radius : float The radius of the circle. Default is 1. readonly : bool Whether the created path should have the "readonly" argument set when creating the Path instance. Notes ----- The circle is approximated using cubic Bezier curves. This uses 8 splines around the circle using the approach presented here: Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0) vertices = np.array([[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [-MAGIC, 1.0], [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45], [-SQRTHALF, SQRTHALF], [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45], [-1.0, MAGIC], [-1.0, 0.0], [-1.0, -MAGIC], [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45], [-SQRTHALF, -SQRTHALF], [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45], [-MAGIC, -1.0], [0.0, -1.0], [0.0, -1.0]], dtype=np.float_) codes = [cls.CURVE4] * 26 codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY return Path(vertices * radius + center, codes, readonly=readonly) _unit_circle_righthalf = None @classmethod def unit_circle_righthalf(cls): """ Return a :class:`Path` of the right half of a unit circle. The circle is approximated using cubic Bezier curves. This uses 4 splines around the circle using the approach presented here: Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ if cls._unit_circle_righthalf is None: MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0) vertices = np.array( [[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [0.0, -1.0]], np.float_) codes = cls.CURVE4 * np.ones(14) codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY cls._unit_circle_righthalf = cls(vertices, codes, readonly=True) return cls._unit_circle_righthalf @classmethod def arc(cls, theta1, theta2, n=None, is_wedge=False): """ Return an arc on the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. Masionobe, L. 2003. `Drawing an elliptical arc using polylines, quadratic or cubic Bezier curves <http://www.spaceroots.org/documents/ellipse/index.html>`_. """ # degrees to radians theta1 *= np.pi / 180.0 theta2 *= np.pi / 180.0 twopi = np.pi * 2.0 halfpi = np.pi * 0.5 eta1 = np.arctan2(np.sin(theta1), np.cos(theta1)) eta2 = np.arctan2(np.sin(theta2), np.cos(theta2)) eta2 -= twopi * np.floor((eta2 - eta1) / twopi) # number of curve segments to make if n is None: n = int(2 ** np.ceil((eta2 - eta1) / halfpi)) if n < 1: raise ValueError("n must be >= 1 or None") deta = (eta2 - eta1) / n t = np.tan(0.5 * deta) alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0 steps = np.linspace(eta1, eta2, n + 1, True) cos_eta = np.cos(steps) sin_eta = np.sin(steps) xA = cos_eta[:-1] yA = sin_eta[:-1] xA_dot = -yA yA_dot = xA xB = cos_eta[1:] yB = sin_eta[1:] xB_dot = -yB yB_dot = xB if is_wedge: length = n * 3 + 4 vertices = np.zeros((length, 2), np.float_) codes = cls.CURVE4 * np.ones((length, ), cls.code_type) vertices[1] = [xA[0], yA[0]] codes[0:2] = [cls.MOVETO, cls.LINETO] codes[-2:] = [cls.LINETO, cls.CLOSEPOLY] vertex_offset = 2 end = length - 2 else: length = n * 3 + 1 vertices = np.empty((length, 2), np.float_) codes = cls.CURVE4 * np.ones((length, ), cls.code_type) vertices[0] = [xA[0], yA[0]] codes[0] = cls.MOVETO vertex_offset = 1 end = length vertices[vertex_offset:end:3, 0] = xA + alpha * xA_dot vertices[vertex_offset:end:3, 1] = yA + alpha * yA_dot vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot vertices[vertex_offset+2:end:3, 0] = xB vertices[vertex_offset+2:end:3, 1] = yB return cls(vertices, codes, readonly=True) @classmethod def wedge(cls, theta1, theta2, n=None): """ Return a wedge of the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. """ return cls.arc(theta1, theta2, n, True) _hatch_dict = maxdict(8) @classmethod def hatch(cls, hatchpattern, density=6): """ Given a hatch specifier, *hatchpattern*, generates a Path that can be used in a repeated hatching pattern. *density* is the number of lines per unit square. """ from matplotlib.hatch import get_path if hatchpattern is None: return None hatch_path = cls._hatch_dict.get((hatchpattern, density)) if hatch_path is not None: return hatch_path hatch_path = get_path(hatchpattern, density) cls._hatch_dict[(hatchpattern, density)] = hatch_path return hatch_path def clip_to_bbox(self, bbox, inside=True): """ Clip the path to the given bounding box. The path must be made up of one or more closed polygons. This algorithm will not behave correctly for unclosed paths. If *inside* is `True`, clip to the inside of the box, otherwise to the outside of the box. """ # Use make_compound_path_from_polys verts = _path.clip_path_to_rect(self, bbox, inside) paths = [Path(poly) for poly in verts] return self.make_compound_path(*paths) def get_path_collection_extents( master_transform, paths, transforms, offsets, offset_transform): """ Given a sequence of :class:`Path` objects, :class:`~matplotlib.transforms.Transform` objects and offsets, as found in a :class:`~matplotlib.collections.PathCollection`, returns the bounding box that encapsulates all of them. *master_transform* is a global transformation to apply to all paths *paths* is a sequence of :class:`Path` instances. *transforms* is a sequence of :class:`~matplotlib.transforms.Affine2D` instances. *offsets* is a sequence of (x, y) offsets (or an Nx2 array) *offset_transform* is a :class:`~matplotlib.transforms.Affine2D` to apply to the offsets before applying the offset to the path. The way that *paths*, *transforms* and *offsets* are combined follows the same method as for collections. Each is iterated over independently, so if you have 3 paths, 2 transforms and 1 offset, their combinations are as follows: (A, A, A), (B, B, A), (C, A, A) """ from .transforms import Bbox if len(paths) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_path.get_path_collection_extents( master_transform, paths, np.atleast_3d(transforms), offsets, offset_transform)) def get_paths_extents(paths, transforms=[]): """ Given a sequence of :class:`Path` objects and optional :class:`~matplotlib.transforms.Transform` objects, returns the bounding box that encapsulates all of them. *paths* is a sequence of :class:`Path` instances. *transforms* is an optional sequence of :class:`~matplotlib.transforms.Affine2D` instances to apply to each path. """ from .transforms import Bbox, Affine2D if len(paths) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_path.get_path_collection_extents( Affine2D(), paths, transforms, [], Affine2D())) def _define_deprecated_functions(ns): from .cbook import deprecated # The C++ functions are not meant to be used directly. # Users should use the more pythonic wrappers in the Path # class instead. for func, alternative in [ ('point_in_path', 'path.Path.contains_point'), ('get_path_extents', 'path.Path.get_extents'), ('point_in_path_collection', 'collection.Collection.contains'), ('path_in_path', 'path.Path.contains_path'), ('path_intersects_path', 'path.Path.intersects_path'), ('convert_path_to_polygons', 'path.Path.to_polygons'), ('cleanup_path', 'path.Path.cleaned'), ('points_in_path', 'path.Path.contains_points'), ('clip_path_to_rect', 'path.Path.clip_to_bbox')]: ns[func] = deprecated( since='1.3', alternative=alternative)(getattr(_path, func)) _define_deprecated_functions(locals())
mit
mblue9/tools-iuc
tools/vsnp/vsnp_build_tables.py
2
17888
#!/usr/bin/env python import argparse import multiprocessing import os import queue import re import pandas import pandas.io.formats.excel from Bio import SeqIO INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir' INPUT_JSON_DIR = 'input_json_dir' INPUT_NEWICK_DIR = 'input_newick_dir' # Maximum columns allowed in a LibreOffice # spreadsheet is 1024. Excel allows for # 16,384 columns, but we'll set the lower # number as the maximum. Some browsers # (e.g., Firefox on Linux) are configured # to use LibreOffice for Excel spreadsheets. MAXCOLS = 1024 OUTPUT_EXCEL_DIR = 'output_excel_dir' def annotate_table(table_df, group, annotation_dict): for gbk_chrome, pro in list(annotation_dict.items()): ref_pos = list(table_df) ref_series = pandas.Series(ref_pos) ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position']) all_ref = ref_df[ref_df['reference'] == gbk_chrome] positions = all_ref.position.to_frame() # Create an annotation file. annotation_file = "%s_annotations.csv" % group with open(annotation_file, "a") as fh: for _, row in positions.iterrows(): pos = row.position try: aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] try: chrom, name, locus, tag = aaa.values[0] print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except ValueError: # If only one annotation for the entire # chromosome (e.g., flu) then having [0] fails chrom, name, locus, tag = aaa.values print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except KeyError: print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh) # Read the annotation file into a data frame. annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index') # Remove the annotation_file from disk since both # cascade and sort tables are built using the file, # and it is opened for writing in append mode. os.remove(annotation_file) # Process the data. table_df_transposed = table_df.T table_df_transposed.index = table_df_transposed.index.rename('index') table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True) table_df = table_df_transposed.T return table_df def excel_formatter(json_file_name, excel_file_name, group, annotation_dict): pandas.io.formats.excel.header_style = None table_df = pandas.read_json(json_file_name, orient='split') if annotation_dict is not None: table_df = annotate_table(table_df, group, annotation_dict) else: table_df = table_df.append(pandas.Series(name='no annotations')) writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter') table_df.to_excel(writer, sheet_name='Sheet1') writer_book = writer.book ws = writer.sheets['Sheet1'] format_a = writer_book.add_format({'bg_color': '#58FA82'}) format_g = writer_book.add_format({'bg_color': '#F7FE2E'}) format_c = writer_book.add_format({'bg_color': '#0000FF'}) format_t = writer_book.add_format({'bg_color': '#FF0000'}) format_normal = writer_book.add_format({'bg_color': '#FDFEFE'}) formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_n = writer_book.add_format({'bg_color': '#E2CFDD'}) rows, cols = table_df.shape ws.set_column(0, 0, 30) ws.set_column(1, cols, 2.1) ws.freeze_panes(2, 1) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows + 1, cols + 1, format_annotation) # Make sure that row/column locations don't overlap. ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n}) format_rotation = writer_book.add_format({}) format_rotation.set_rotation(90) for column_num, column_name in enumerate(list(table_df.columns)): ws.write(0, column_num + 1, column_name, format_rotation) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows, 400, format_annotation) writer.save() def get_annotation_dict(gbk_file): gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank")) annotation_dict = {} tmp_file = "features.csv" # Create a file of chromosomes and features. for chromosome in list(gbk_dict.keys()): with open(tmp_file, 'w+') as fh: for feature in gbk_dict[chromosome].features: if "CDS" in feature.type or "rRNA" in feature.type: try: product = feature.qualifiers['product'][0] except KeyError: product = None try: locus = feature.qualifiers['locus_tag'][0] except KeyError: locus = None try: gene = feature.qualifiers['gene'][0] except KeyError: gene = None fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene)) # Read the chromosomes and features file into a data frame. df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"]) # Process the data. df = df.sort_values(['start', 'gene'], ascending=[True, False]) df = df.drop_duplicates('start') pro = df.reset_index(drop=True) pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') annotation_dict[chromosome] = pro return annotation_dict def get_base_file_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] elif base_file_name.find("_") > 0: # The dot extension was likely changed to # the " character. items = base_file_name.split("_") return "_".join(items[0:-1]) else: return base_file_name def output_cascade_table(cascade_order, mqdf, group, annotation_dict): cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') output_table(cascade_order_mq, "cascade", group, annotation_dict) def output_excel(df, type_str, group, annotation_dict, count=None): # Output the temporary json file that # is used by the excel_formatter. if count is None: if group is None: json_file_name = "%s_order_mq.json" % type_str excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) else: json_file_name = "%s_%s_order_mq.json" % (group, type_str) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) else: if group is None: json_file_name = "%s_order_mq_%d.json" % (type_str, count) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) else: json_file_name = "%s_%s_order_mq_%d.json" % (group, type_str, count) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) df.to_json(json_file_name, orient='split') # Output the Excel file. excel_formatter(json_file_name, excel_file_name, group, annotation_dict) def output_sort_table(cascade_order, mqdf, group, annotation_dict): sort_df = cascade_order.T sort_df['abs_value'] = sort_df.index sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True) sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1) sort_df.pos = sort_df.pos.astype(int) sort_df = sort_df.sort_values(by=['pos']) sort_df = sort_df.drop(['pos'], axis=1) sort_df = sort_df.T sort_order_mq = pandas.concat([sort_df, mqdf], join='inner') output_table(sort_order_mq, "sort", group, annotation_dict) def output_table(df, type_str, group, annotation_dict): if isinstance(group, str) and group.startswith("dataset"): # Inputs are single files, not collections, # so input file names are not useful for naming # output files. group_str = None else: group_str = group count = 0 chunk_start = 0 chunk_end = 0 column_count = df.shape[1] if column_count >= MAXCOLS: # Here the number of columns is greater than # the maximum allowed by Excel, so multiple # outputs will be produced. while column_count >= MAXCOLS: count += 1 chunk_end += MAXCOLS df_of_type = df.iloc[:, chunk_start:chunk_end] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) chunk_start += MAXCOLS column_count -= MAXCOLS count += 1 df_of_type = df.iloc[:, chunk_start:] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) else: output_excel(df, type_str, group_str, annotation_dict) def preprocess_tables(task_queue, annotation_dict, timeout): while True: try: tup = task_queue.get(block=True, timeout=timeout) except queue.Empty: break newick_file, json_file, json_avg_mq_file = tup avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') # Map quality to dataframe. mqdf = avg_mq_series.to_frame(name='MQ') mqdf = mqdf.T # Get the group. group = get_base_file_name(newick_file) snps_df = pandas.read_json(json_file, orient='split') with open(newick_file, 'r') as fh: for line in fh: line = re.sub('[:,]', '\n', line) line = re.sub('[)(]', '', line) line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) line = re.sub('root\n', '', line) sample_order = line.split('\n') sample_order = list([_f for _f in sample_order if _f]) sample_order.insert(0, 'root') tree_order = snps_df.loc[sample_order] # Count number of SNPs in each column. snp_per_column = [] for column_header in tree_order: count = 0 column = tree_order[column_header] for element in column: if element != column[0]: count = count + 1 snp_per_column.append(count) row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") # Count number of SNPS from the # top of each column in the table. snp_from_top = [] for column_header in tree_order: count = 0 column = tree_order[column_header] # for each element in the column # skip the first element for element in column[1:]: if element == column[0]: count = count + 1 else: break snp_from_top.append(count) row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") tree_order = tree_order.append([row1]) tree_order = tree_order.append([row2]) # In pandas=0.18.1 even this does not work: # abc = row1.to_frame() # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) # tree_order.append(abc) # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" tree_order = tree_order.T tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) tree_order = tree_order.T # Remove snp_per_column and snp_from_top rows. cascade_order = tree_order[:-2] # Output the cascade table. output_cascade_table(cascade_order, mqdf, group, annotation_dict) # Output the sorted table. output_sort_table(cascade_order, mqdf, group, annotation_dict) task_queue.task_done() def set_num_cpus(num_files, processes): num_cpus = int(multiprocessing.cpu_count()) if num_files < num_cpus and num_files < processes: return num_files if num_cpus < processes: half_cpus = int(num_cpus / 2) if num_files < half_cpus: return num_files return half_cpus return processes if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file') parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file') parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file') parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') args = parser.parse_args() if args.gbk_file is not None: # Create the annotation_dict for annotating # the Excel tables. annotation_dict = get_annotation_dict(args.gbk_file) else: annotation_dict = None # The assumption here is that the list of files # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are # named such that they are properly matched if # the directories contain more than 1 file (i.e., # hopefully the newick file names and json file names # will be something like Mbovis-01D6_* so they can be # sorted and properly associated with each other). if args.input_newick is not None: newick_files = [args.input_newick] else: newick_files = [] for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)): file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name)) newick_files.append(file_path) if args.input_snps_json is not None: json_files = [args.input_snps_json] else: json_files = [] for file_name in sorted(os.listdir(INPUT_JSON_DIR)): file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name)) json_files.append(file_path) if args.input_avg_mq_json is not None: json_avg_mq_files = [args.input_avg_mq_json] else: json_avg_mq_files = [] for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)): file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name)) json_avg_mq_files.append(file_path) multiprocessing.set_start_method('spawn') queue1 = multiprocessing.JoinableQueue() queue2 = multiprocessing.JoinableQueue() num_files = len(newick_files) cpus = set_num_cpus(num_files, args.processes) # Set a timeout for get()s in the queue. timeout = 0.05 for i, newick_file in enumerate(newick_files): json_file = json_files[i] json_avg_mq_file = json_avg_mq_files[i] queue1.put((newick_file, json_file, json_avg_mq_file)) # Complete the preprocess_tables task. processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)] for p in processes: p.start() for p in processes: p.join() queue1.join() if queue1.empty(): queue1.close() queue1.join_thread()
mit
abhishekgahlot/scikit-learn
examples/applications/plot_species_distribution_modeling.py
28
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=["bradypus_variegatus_0", "microryzomys_minutus_0"]): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
pratapvardhan/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
tzechiop/PANYNJ-Regression-Analysis-for-Toll-Traffic-Elasticity
createRegressInputs.py
1
4738
# -*- coding: utf-8 -*- """ Created on Thu Oct 6 09:29:50 2016 This script is used to create the x and y data files to be used for regression. The script compiles columns from spreadsheets specified in 'colfile'. The column 'groupcol' (default = 'Year-Month') is used to combine the columns from every spreadsheet, and thus should be included in every spreadsheet. The file colfile should have have the following fields: 'infile', 'column', 'xy' The file also converts variables to log if specified in 'colfile'. The line below provides an example of a command used to run this script. python createRegressInputs.py data\\regress_para\\regresscols_pathtotal_1.xlsx -o data\\regress_data @author: thasegawa """ import argparse import os import pandas as pd import numpy as np # Function to create output filename def createOutfilename(infile, add): outfile, ext = os.path.splitext(infile) outfile += add + ext return outfile # Function to combine new x or y data def addNew(data, newdata, groupcol, columns): if data is None: data = pd.DataFrame(newdata[[groupcol] + columns]) else: data = pd.merge(data, newdata[[groupcol] + columns], how = 'left', on = groupcol) return data # Convert speficied columns to log form def convertToLog(data, column_list): for column in column_list: data[column] = data[column].apply(np.log10) return data # ============================================================================ print('Running createRegressInputs.py...') # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('colfile') parser.add_argument('-o', '--outpath', help="specify the output folder") parser.add_argument('-oy', '--outfiley', help="specify the output file. default is colfile + '_x' and colfile + '_y'") parser.add_argument('-ox', '--outfilex', help="specify the output file. default is colfile + '_x' and colfile + '_y'") parser.add_argument('-c', '--groupcol', default='Year-Month', help="specifies the column that specifies the time scale") parser.add_argument('-y', '--sumY', default=True, help="specifies if the Y data should be summed or not") args = vars(parser.parse_args()) colfile, outpath, outfiley, outfilex, groupcol, sumY = args['colfile'], args['outpath'], args['outfiley'], args['outfilex'], args['groupcol'], args['sumY'] #============================================================================== # os.chdir(r'C:\Users\thasegawa\Documents\53 Port Authority Toll\06 Python Projects\Regression Analysis') # colfile = 'data\\regress_para\\regresscols_pathtotal_all_nonlog.xlsx' # outpath = 'data\\regress_data' # outfiley = None # outfilex = None # groupcol = 'Year-Month' # sumY = False #============================================================================== # If the outfile names were not specified, create defualt outfile names if outfiley is None: outfiley = createOutfilename(colfile, '_y') if outfilex is None: outfilex = createOutfilename(colfile, '_x') if outpath is not None: outfiley = os.path.join(outpath, os.path.basename(outfiley)) outfilex = os.path.join(outpath, os.path.basename(outfilex)) print('Column file: %s' % colfile) print('Outfile for y: %s' % outfiley) print('Outfile for x: %s' % outfilex) # Read column file coldata = pd.read_excel(colfile) infile_list = coldata['infile'].unique() # Compile Y data ydata = None xdata = None for infile in infile_list: rdata = pd.read_excel(infile) # Iterate through x and y data of each input spreadsheet subdata = coldata[coldata['infile'] == infile] xy_list = subdata['xy'].unique() for xy in xy_list: print('Compiling {0} data from {1}'.format(xy, infile)) idx = subdata['xy'] == xy columns = list(subdata['column'][idx]) if xy == 'y': ydata = addNew(ydata, rdata, groupcol, columns) else: xdata = addNew(xdata, rdata, groupcol, columns) # Sum the Y columns if specified if sumY: cols = [column for column in ydata.columns.values if column != groupcol] ydata = pd.concat([ydata[groupcol], ydata[cols].sum(axis=1)], axis = 1) ydata.columns = [groupcol, 'y'] # Convert columns to log print('Converting columns to log') logcolumn_list = coldata['column'][(coldata['xy'] == 'x') & (coldata['log'] == True)] xdata = convertToLog(xdata, logcolumn_list) logcolumn_list = coldata['column'][(coldata['xy'] == 'y') & (coldata['log'] == True)] if sumY: if len(logcolumn_list) > 0: ydata = convertToLog(ydata, ['y']) else: ydata = convertToLog(ydata, logcolumn_list) # Output files ydata.to_excel(outfiley, index = False) xdata.to_excel(outfilex, index = False) print('Success!')
mit
ritviksahajpal/EPIC
read_EPIC_output/read_EPIC_output.py
1
13383
import constants, pandas, os, fnmatch, logging, pdb, numpy, datetime, re from sqlalchemy import create_engine class EPIC_Output_File(): """ Class to read EPIC Output files """ def __init__(self, ftype='', tag=''): """ Constructor """ # Get name of latest output directory (based on what time it was modified) os.chdir(constants.epic_dir+os.sep+'output') # Get list of all directories in output folder, select the ones which have the current TAG dirs = [d for d in os.listdir(constants.epic_dir+os.sep+'output') if os.path.isdir(constants.epic_dir+os.sep+'output')] cur_dirs = [d for d in dirs if constants.OUT_TAG in d] # Select the TAGged directory which is the latest self.ldir = sorted(cur_dirs, key=lambda x: os.path.getmtime(x), reverse=True)[:1][0] if constants.DO_FOLDER: self.epic_out_dir = constants.FOLDER_PATH else: self.epic_out_dir = constants.epic_dir + os.sep + 'output' + os.sep + self.ldir # Latest output directory # Create a sqlite database in the analysis directory self.db_path = constants.db_dir + os.sep + ftype + '_' + tag + '_' + self.ldir + '.db' self.db_name = 'sqlite:///' + self.db_path self.csv_path = constants.csv_dir + os.sep + ftype + '_' + tag + '_' + self.ldir + '.csv' self.engine = create_engine(self.db_name) self.ftype = ftype self.tag = tag self.ifexist = 'replace' def get_col_widths(self, fl): df = pandas.read_table(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, header=None, nrows=1) wt = df.iloc[0][0] # Assume the columns (right-aligned) are one or more spaces followed by one or more non-space cols = re.findall('\s+\S+', wt) return [len(col) for col in cols] def read_repeat_blocks(self, inp_file, start_sep='', end_sep=''): """ Read repeated blocks of data with data lying between start_sep and end_sep Assumes atleast 2 spaces between columns Currently tested on ACN files :param inp_file: :param start_sep: :param end_sep: :return: """ tmp_csv = constants.csv_dir + os.sep + 'tmp.csv' odf = pandas.DataFrame() cur_yr = constants.START_YR with open(inp_file) as fp: for idx, result in enumerate(re.findall(start_sep + '(.*?)' + end_sep, fp.read(), re.S)): if idx == 0: continue last_line_idx = len(result.split('\n')) df = pandas.DataFrame(result.split('\n')[2:last_line_idx-1]) df.to_csv(tmp_csv) df = pandas.read_csv(tmp_csv, skiprows=1, engine='python', sep='[\s,]{2,20}', index_col=0) df.set_index(df.columns[0], inplace=True) odf = odf.append({'site': os.path.basename(inp_file)[:-4], 'year': cur_yr, 'WOC': df.loc['WOC(kg/ha)']['TOT']}, ignore_index=True) cur_yr += 1 return odf ############################### # ACN ############################### def parse_ACN(self, fls): list_df = [] for idx, fl in enumerate(fls): try: df = self.read_repeat_blocks(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, start_sep='CO2', end_sep='CFEM') except: logging.info('Error reading ' + fl) list_df.append(df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # ACM ############################### def parse_ACM(self, fls): list_df = [] for idx, fl in enumerate(fls): try: df = pandas.read_csv(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, skipinitialspace=True, usecols=constants.ACM_PARAMS, sep=' ') except: logging.info('Error reading ' + fl) df['site'] = fl[:-4] list_df.append(df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # ACY ############################### def parse_ACY(self, fls): list_df = [] for idx, fl in enumerate(fls): try: df = pandas.read_csv(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, skipinitialspace=True, usecols=constants.ACY_PARAMS, sep=' ') except: logging.info('Error reading ' + fl) df['site'] = fl[:-4] list_df.append(df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # ANN ############################### def parse_ANN(self, fls): list_df = [] # Get column widths cols_df = pandas.read_table(self.epic_out_dir + os.sep + self.ftype + os.sep + fls[0], skiprows=constants.SKIP, sep=' ', skipinitialspace=True) widths = [5,4] for i in range(len(cols_df.columns.values)-2): widths.append(8) for idx, fl in enumerate(fls): try: df = pandas.read_fwf(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, sep=' ', usecols=constants.ANN_PARAMS, skipinitialspace=True, widths=widths) except: logging.info('Error reading ' + fl) df['site'] = fl[:-4] list_df.append(df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # ATG ############################### def parse_ATG(self, fls): list_df = [] for fl in fls: try: df = pandas.read_csv(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, skipinitialspace=True, usecols=constants.ATG_PARAMS, sep=' ') except: logging.info('Error reading ' + fl) #time_df = df[(df.Y >= int(constants.START_YR)) & (df.Y <= int(constants.END_YR))] df['site'] = fl[:-4] df.rename(columns={'Y': 'YR'}, inplace=True) list_df.append(df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # DGN ############################### def parse_DGN(self, fls): list_df = [] for fl in fls: try: df = pandas.read_csv(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP, delim_whitespace=True, usecols=constants.DGN_PARAMS, parse_dates={"datetime": [0,1,2]}, index_col="datetime", date_parser=lambda x: pandas.datetime.strptime(x, '%Y %m %d')) except: logging.info('Error reading ' + fl) start = df.index.searchsorted(datetime.datetime(constants.START_YR, 1, 1)) end = df.index.searchsorted(datetime.datetime(constants.END_YR, 12, 31)) time_df = df.ix[start:end] time_df = time_df.groupby(time_df.index.map(lambda x: x.year)).max() time_df['site'] = fl[:-4] list_df.append(time_df) frame_df = pandas.concat(list_df) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) ############################### # SCN ############################### def parse_SCN(self, fls): list_df = [] for idx, fl in enumerate(fls): temp_df = pandas.DataFrame(index=[constants.END_YR], columns=constants.SCN_PARAMS) try: df = pandas.read_csv(self.epic_out_dir + os.sep + self.ftype + os.sep + fl, skiprows=constants.SKIP_SCN, skipinitialspace=True, sep=' ') except: logging.info('Error reading ' + fl) for var in constants.SCN_PARAMS: temp_df[var] = df.TOT.ix[var] temp_df['site'] = fl[:-4] temp_df['YR'] = temp_df.index list_df.append(temp_df) frame_df = pandas.concat(list_df) frame_df.index = range(len(frame_df)) frame_df.to_csv(self.csv_path) frame_df.to_sql(self.db_name, self.engine, if_exists=self.ifexist) def collect_epic_output(self, fls): if(self.ftype == 'DGN'): self.parse_DGN(fls) elif(self.ftype == 'ACY'): self.parse_ACY(fls) elif(self.ftype == 'ANN'): self.parse_ANN(fls) elif(self.ftype == 'ATG'): self.parse_ATG(fls) elif(self.ftype == 'SCN'): self.parse_SCN(fls) elif(self.ftype == 'ACM'): self.parse_ACM(fls) elif(self.ftype == 'ACN'): self.parse_ACN(fls) else: logging.info('Wrong file type') def sql_to_csv(): """ SQL stores information from all years. We then extract information for the latest year from this file :return: """ # @TODO: Exclude columns which have already been read from other files epic_fl_types = constants.GET_PARAMS dfs = pandas.DataFrame() for idx, fl_name in enumerate(epic_fl_types): obj = EPIC_Output_File(ftype=fl_name, tag=constants.TAG) try: df = pandas.read_sql_table(obj.db_name, obj.engine) # Rename year df.rename(columns={'year': 'YR'}, inplace=True) except: logging.info(obj.db_name + ' not found') if fl_name <> 'SCN': # Get df for all sites and in tears in constants.EXTR_YRS slice = df[df['YR'].isin(constants.EXTR_YRS)] slice['isite'] = slice['site'] slice = slice.set_index(['site', 'YR']).unstack('YR') if idx == 0: dfs = slice else: dfs = pandas.merge(dfs, slice, how='outer') else: # SCN # SCN should not be parsed since we are reading the annual ACN now continue if idx == 0: dfs = df else: dfs = pandas.merge(dfs, df, how='outer') dfs.columns = ['{}_{}'.format(col[0], col[1]) for col in dfs.columns.values] # Merge with EPICRUN.DAT epic_df = pandas.read_csv(constants.sims_dir + os.sep + obj.ldir + os.sep + 'EPICRUN.DAT', sep='\s+', header=None) epic_df.columns = ['ASTN', 'ISIT', 'IWP1','IWP5', 'IWND', 'INPS', 'IOPS', 'IWTH'] # 1. Read ieSllist.dat and get mukey and corresponding index # 2. Convert to dataframe # 3. Merge with SSURGO properties csv file # 4. Merge EPIC outputs with EPICRUN.DAT # 5. Merge EPIC and SSURGO and output to csv soil_dict = {} with open(constants.sims_dir + os.sep + obj.ldir + os.sep + constants.SLLIST) as f: for line in f: #Sample line from soil file: 1 "Soils//1003958.sol" (key, val) = int(line.split()[0]), int(line.split('//')[1].split('.')[0]) soil_dict[key] = val soil_df = pandas.DataFrame.from_dict(soil_dict, orient='index').reset_index() soil_df.columns = ['INPS', 'mukey'] sgo_file = pandas.read_csv(constants.sgo_dir + os.sep + constants.dominant) grp_sgo = sgo_file.groupby('mukey').mean().reset_index() grp_sgo = pandas.merge(grp_sgo, soil_df, on='mukey') # Merge with EPICRUN site_col = 'isite_' + str(constants.EXTR_YRS[0]) dfs[[site_col]] = dfs[[site_col]].astype(int) epic_df[['ASTN']] = epic_df[['ASTN']].astype(int) # ASTN is site number dfs = pandas.merge(dfs, epic_df, left_on=site_col, right_on='ASTN') # Merge with SSURGO file dfs = pandas.merge(dfs, grp_sgo, on='INPS') # INPS is identifier of soil files dfs.to_csv(constants.csv_dir + os.sep + 'EPIC_' + obj.ldir + '.csv') if __name__ == '__main__': for idx, fl_name in enumerate(constants.GET_PARAMS): print idx, fl_name obj = EPIC_Output_File(ftype=fl_name, tag=constants.TAG) # Get list of all output files for each EPIC output category try: list_fls = fnmatch.filter(os.listdir(obj.epic_out_dir + os.sep + constants.GET_PARAMS[idx] + os.sep), '*.' + fl_name) # Collect EPIC output to database and csv if len(list_fls) > 0: obj.collect_epic_output(list_fls) except: logging.info('Error in reading ' + fl_name) # Extract results sql_to_csv()
mit
legacysurvey/legacypipe
py/legacyanalysis/sersic-agn.py
2
10776
from tractor.galaxy import * from tractor import * from legacypipe.survey import * from legacypipe.coadds import quick_coadds from tractor.devagn import * from tractor.sersic import SersicGalaxy, SersicIndex from tractor.seragn import SersicAgnGalaxy from astrometry.util.file import pickle_to_file, unpickle_from_file import pylab as plt import numpy as np import matplotlib.gridspec as gridspec import os ima = dict(interpolation='nearest', origin='lower') class Duck(object): pass def flux_string(br): s = [] for band in 'grz': flux = br.getFlux(band) if flux <= 0: s.append('%s=(%.2f nmy)' % (band, flux)) else: s.append('%s=%.2f' % (band, NanoMaggies.nanomaggiesToMag(flux))) s = ', '.join(s) return s def showmods(tims,mods): #plt.figure(figsize=(10,6)) cols = len(tims) // 3 panels = [((tim.getImage()-mod)*tim.getInvError()) for tim,mod in list(zip(tims, mods))] h = min([p.shape[0] for p in panels]) w = min([p.shape[1] for p in panels]) panels = [p[:h,:w] for p in panels] stack = [] while len(panels): stack.append(np.hstack(panels[:cols])) panels = panels[cols:] stack = np.vstack((stack)) plt.imshow(stack, vmin=-2, vmax=2, **ima) plt.xticks(w * (0.5 + np.arange(cols)), np.arange(cols)) plt.yticks(h * (0.5 + np.arange(3)), ['g','r','z']) def showresid(tims,mods,wcs,bands='grz'): co,_ = quick_coadds(tims, bands, wcs) comod,_ = quick_coadds(tims, bands, wcs, images=mods) plt.imshow(np.flipud(get_rgb([i-m for i,m in zip(co,comod)], bands))) plt.xticks([]); plt.yticks([]) return co,comod def showboth(tims,mods,wcs,bands): fig = plt.figure(num=1, figsize=(14,6), constrained_layout=True) fig.clf() gs = fig.add_gridspec(3, 4) ax = fig.add_subplot(gs[:, :3]) cols = len(tims) // 3 rows = 3 panels = [((tim.getImage()-mod)*tim.getInvError()) for tim,mod in list(zip(tims, mods))] h = min([p.shape[0] for p in panels]) w = min([p.shape[1] for p in panels]) panels = [p[:h,:w] for p in panels] stack = [] #hzero = np.zeros((h,1)) while len(panels): # hs = [hzero] # for p in panels[:cols]: # hs.extend([p, hzero]) # hs = np.hstack(hs) # hh,hw = hs.shape # if len(stack) == 0: # wzero = np.zeros((1,hw)) # stack.append(wzero) # stack.append(hs) # stack.append(wzero) stack.append(np.hstack(panels[:cols])) panels = panels[cols:] stack = np.vstack((stack)) ax.imshow(stack, vmin=-2, vmax=2, **ima) xl,yl = ax.get_xlim(), ax.get_ylim() #a = ax.get_axis() for c in range(cols+1): plt.axvline(c * w, color='k') for r in range(rows+1): plt.axhline(r * h, color='k') #ax.set_axis(a) ax.set_xlim(xl) ax.set_ylim(yl) #xl,yl = ax.get_xlim(), ax.get_ylim() ax.set_xticks(w * (0.5 + np.arange(cols))) ax.set_xticklabels(np.arange(cols)) ax.set_yticks(h * (0.5 + np.arange(3))) ax.set_yticklabels(['g','r','z']) ax = fig.add_subplot(gs[2, 3]) co,comod = showresid(tims, mods, wcs) ax = fig.add_subplot(gs[0, 3]) plt.imshow(np.flipud(get_rgb(co, bands))) plt.xticks([]); plt.yticks([]) ax = fig.add_subplot(gs[1, 3]) plt.imshow(np.flipud(get_rgb(comod, bands))) plt.xticks([]); plt.yticks([]) def main(): if os.path.exists('results.pickle'): results = unpickle_from_file('results.pickle') else: results = [] for isrc,(ra,dec,brickname) in enumerate([ (0.2266, 3.9822, '0001p040'), (7.8324, 1.2544, '0078p012'), (1.1020, 3.9040, '0011p040'), (7.3252, 4.6847, '0073p047'), (3.1874, 3.9724, '0031p040'), (9.5112, 4.6934, '0094p047'), (4.4941, 1.1058, '0043p010'), (3.8900, 0.6041, '0038p005'), (8.1934, 4.0124, '0081p040'), (6.8125, 0.5463, '0068p005'), ]): #if isrc < 7: # continue if isrc not in [4,6,7,8,9]: continue outdir = 'out_%.4f_%.4f' % (ra,dec) datadir = outdir.replace('out_', 'data_') #cmd = 'ssh cori "cd legacypipe2/py && python legacypipe/runbrick.py --radec %.4f %.4f --width 100 --height 100 --survey-dir fakedr9 --outdir %s --stage image_coadds --skip-calibs && python legacyanalysis/create_testcase.py --survey-dir fakedr9 %s/coadd/*/*/*-ccds.fits %s %s"' % (ra, dec, outdir, outdir, datadir, brickname) #cmd = 'ssh cori "cd legacypipe2/py && python legacypipe/runbrick.py --radec %.4f %.4f --width 100 --height 100 --survey-dir fakedr9 --outdir %s --stage image_coadds --skip-calibs && python legacyanalysis/create_testcase.py --survey-dir fakedr9 --outlier-dir %s %s/coadd/*/*/*-ccds.fits %s %s"' % (ra, dec, outdir, outdir, outdir, datadir, brickname) outbrick = ('custom-%06i%s%05i' % (int(1000*ra), 'm' if dec < 0 else 'p', int(1000*np.abs(dec)))) cmd = 'ssh cori "cd legacypipe2/py && python legacyanalysis/create_testcase.py --survey-dir fakedr9 --outlier-dir %s --outlier-brick %s %s/coadd/*/*/*-ccds.fits %s %s"' % (outdir, outbrick, outdir, datadir, brickname) #os.system(cmd) cmd = 'rsync -arv cori:legacypipe2/py/%s .' % datadir #os.system(cmd) #continue survey = LegacySurveyData(datadir) b = Duck() b.ra = ra b.dec = dec W,H = 80,80 wcs = wcs_for_brick(b, W=W, H=H) targetrd = np.array([wcs.pixelxy2radec(x,y) for x,y in [(1,1),(W,1),(W,H),(1,H),(1,1)]]) ccds = survey.ccds_touching_wcs(wcs) print(len(ccds), 'CCDs') ims = [survey.get_image_object(ccd) for ccd in ccds] keepims = [] for im in ims: h,w = im.shape if h >= H and w >= W: keepims.append(im) ims = keepims gims = [im for im in ims if im.band == 'g'] rims = [im for im in ims if im.band == 'r'] zims = [im for im in ims if im.band == 'z'] nk = min([len(gims), len(rims), len(zims), 5]) ims = gims[:nk] + rims[:nk] + zims[:nk] print('Keeping', len(ims), 'images') tims = [im.get_tractor_image(pixPsf=True, hybridPsf=True, normalizePsf=True, splinesky=True, radecpoly=targetrd) for im in ims] bands = 'grz' devsrc = DevGalaxy(RaDecPos(ra,dec), NanoMaggies(**dict([(b,10.) for b in bands])), EllipseESoft(0., 0., 0.)) tr = Tractor(tims, [devsrc]) tr.freezeParam('images') tr.optimize_loop() print('Fit DeV source:', devsrc) devmods = list(tr.getModelImages()) showboth(tims, devmods, wcs, bands); s = flux_string(devsrc.brightness) plt.suptitle('DeV model: ' + s + '\ndchisq 0.') plt.savefig('src%02i-dev.png' % isrc) devchi = 2. * tr.getLogLikelihood() dasrc = DevAgnGalaxy(devsrc.pos.copy(), devsrc.brightness.copy(), devsrc.shape.copy(), NanoMaggies(**dict([(b,1.) for b in bands]))) #dasrc = DevAgnGalaxy(RaDecPos(ra,dec), NanoMaggies(**dict([(b,10.) for b in bands])), EllipseESoft(0., 0., 0.), NanoMaggies(**dict([(b,1.) for b in bands]))) tr = Tractor(tims, [dasrc]) tr.freezeParam('images') tr.optimize_loop() print('Fit Dev+PSF source:', dasrc) damods = list(tr.getModelImages()) showboth(tims, damods, wcs, bands) s1 = flux_string(dasrc.brightnessDev) s2 = flux_string(dasrc.brightnessPsf) pcts = [100. * dasrc.brightnessPsf.getFlux(b) / dasrc.brightnessDev.getFlux(b) for b in bands] s3 = ', '.join(['%.2f' % p for p in pcts]) dachi = 2. * tr.getLogLikelihood() plt.suptitle('DeV + Point Source model: DeV %s, PSF %s' % (s1, s2) + ' (%s %%)' % s3 + '\ndchisq %.1f' % (dachi - devchi)) plt.savefig('src%02i-devcore.png' % isrc) #sersrc = SersicGalaxy(RaDecPos(ra, dec), NanoMaggies(**dict([(b,10.) for b in bands])), EllipseESoft(0.5, 0., 0.), SersicIndex(4.0)) sersrc = SersicGalaxy(devsrc.pos.copy(), devsrc.brightness.copy(), devsrc.shape.copy(), SersicIndex(4.0)) tr = Tractor(tims, [sersrc]) tr.freezeParam('images') r = tr.optimize_loop() print('Opt:', r) print('Fit Ser source:', sersrc) if sersrc.sersicindex.getValue() >= 6.0: sersrc.freezeParam('sersicindex') r = tr.optimize_loop() print('Re-fit Ser source:', sersrc) sermods = list(tr.getModelImages()) showboth(tims, sermods, wcs, bands) s = flux_string(sersrc.brightness) serchi = 2. * tr.getLogLikelihood() plt.suptitle('Sersic model: %s, index %.2f' % (s, sersrc.sersicindex.getValue()) + '\ndchisq %.1f' % (serchi - devchi)) plt.savefig('src%02i-ser.png' % isrc) #sasrc = SersicAgnGalaxy(RaDecPos(ra, dec), NanoMaggies(**dict([(b,10.) for b in bands])), EllipseESoft(0.5, 0., 0.), SersicIndex(4.0), NanoMaggies(**dict([(b,1.) for b in bands]))) si = sersrc.sersicindex.getValue() if si > 6.0: si = 4.0 si = SersicIndex(si) sasrc = SersicAgnGalaxy(sersrc.pos.copy(), sersrc.brightness.copy(), sersrc.shape.copy(), si, NanoMaggies(**dict([(b,1.) for b in bands]))) tr = Tractor(tims, [sasrc]) tr.freezeParam('images') r = tr.optimize_loop() print('Fit Ser+PSF source:', sasrc) if sasrc.sersicindex.getValue() >= 6.0: sasrc.freezeParam('sersicindex') r = tr.optimize_loop() print('Re-fit Ser+PSF source:', sasrc) samods = list(tr.getModelImages()) showboth(tims, samods, wcs, bands) s1 = flux_string(sasrc.brightness) s2 = flux_string(sasrc.brightnessPsf) pcts = [100. * sasrc.brightnessPsf.getFlux(b) / sasrc.brightness.getFlux(b) for b in bands] s3 = ', '.join(['%.2f' % p for p in pcts]) sachi = 2. * tr.getLogLikelihood() plt.suptitle('Sersic + Point Source model: Ser %s, index %.2f, PSF %s' % (s1, sasrc.sersicindex.getValue(), s2) + ' (%s %%)' % s3 + '\ndchisq %.1f' % (sachi - devchi)) plt.savefig('src%02i-sercore.png' % isrc) ri = (ra, dec, brickname, devsrc, devchi, dasrc, dachi, sersrc, serchi, sasrc, sachi) if len(results) > isrc: results[isrc] = ri else: results.append(ri) pickle_to_file(results, 'results.pickle') if __name__ == '__main__': main()
bsd-3-clause
henrykironde/scikit-learn
examples/svm/plot_svm_scale_c.py
223
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <[email protected]> # Jaques Grobler <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
fabianvf/osf.io
scripts/annotate_rsvps.py
60
2256
"""Utilities for annotating workshop RSVP data. Example :: import pandas as pd from scripts import annotate_rsvps frame = pd.read_csv('workshop.csv') annotated = annotate_rsvps.process(frame) annotated.to_csv('workshop-annotated.csv') """ import re import logging from dateutil.parser import parse as parse_date from modularodm import Q from modularodm.exceptions import ModularOdmException from website.models import User, Node, NodeLog logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def find_by_email(email): try: return User.find_one(Q('username', 'iexact', email)) except ModularOdmException: return None def find_by_name(name): try: parts = re.split(r'\s+', name.strip()) except: return None if len(parts) < 2: return None users = User.find( reduce( lambda acc, value: acc & value, [ Q('fullname', 'icontains', part.decode('utf-8', 'ignore')) for part in parts ] ) ).sort('-date_created') if not users: return None if len(users) > 1: logger.warn('Multiple users found for name {}'.format(name)) return users[0] def logs_since(user, date): return NodeLog.find( Q('user', 'eq', user._id) & Q('date', 'gt', date) ) def nodes_since(user, date): return Node.find( Q('creator', 'eq', user._id) & Q('date_created', 'gt', date) ) def process(frame): frame = frame.copy() frame['user_id'] = '' frame['user_logs'] = '' frame['user_nodes'] = '' frame['last_log'] = '' for idx, row in frame.iterrows(): user = ( find_by_email(row['Email address'].strip()) or find_by_name(row['Name']) ) if user: date = parse_date(row['Workshop_date']) frame.loc[idx, 'user_id'] = user._id logs = logs_since(user, date) frame.loc[idx, 'user_logs'] = logs.count() frame.loc[idx, 'user_nodes'] = nodes_since(user, date).count() if logs: frame.loc[idx, 'last_log'] = logs.sort('-date')[0].date.strftime('%c') return frame
apache-2.0
hypergravity/bopy
bopy/imagetools/image.py
1
5749
# -*- coding: utf-8 -*- """ @author: cham Created on Fri Aug 14 15:24:20 2015 """ # import aplpy # from astropy.table import Table # from astropy.coordinates import Galactic, SkyCoord from astropy.wcs import WCS from astropy.io import fits from reproject import reproject_from_healpix, reproject_interp, reproject_to_healpix import matplotlib.pyplot as plt from healpy import write_map def image_reproject_from_healpix_to_file(source_image_hdu, target_image_hdu_header, filepath=None): """ reproject from healpix image to normal wcs image :param source_image_hdu: the HDU object of source image (healpix) :param target_image_hdu_header: the HDU object of target image (wcs) :param filepath: the output file path :return: array, footprint """ array, footprint = reproject_from_healpix(source_image_hdu, target_image_hdu_header) if filepath is not None: # write file fits.writeto(filepath, array, target_image_hdu_header, clobber=True) # clobber=OVERWRITE else: # return array & footprint return array, footprint def image_reproject_to_healpix_to_file(array, target_image_hdu_header, coordsys='galactic', filepath=None): """reproject image array to healpix image and write file :param array: image data :param target_image_hdu_header: the HDU object of :param coordsys: target coordinate system --> {'galactic', 'equatorial'} :param filepath: the output file path :return: array, footprint (only if filepath=None) """ array, footprint = reproject_to_healpix((array, target_image_hdu_header), coordsys) if filepath is not None: # write file write_map(filepath, array) else: # return array & footprint return array, footprint def image_reproject_wcs_to_file(source_image_hdu, target_image_hdu_header, filepath=None): """reproject one wcs image to the wcs of another image :param source_image_hdu: the HDU object of source image :param target_image_hdu_header: the header object of target image :param filepath: the output file path :return: """ array, footprint = reproject_interp(source_image_hdu, target_image_hdu_header) if filepath is not None: # write file fits.writeto(filepath, array, target_image_hdu_header, clobber=True) # clobber=OVERWRITE else: # return array & footprint return array, footprint def image_query(data_type, target_image_hdu_header, filepath=None): """query image from stored data :param data_type: data type of the queried source image :param target_image_hdu_header: target header :param filepath: output file path :return: array, footprint """ data_type_coll = { 'haslam_408': ('healpix', 1, '/pool/maps/LAMBDA/haslam408/haslam408_dsds_Remazeilles2014_ns2048.fits'), 'planck_30': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/LFI_SkyMap_030_1024_R2.01_full.fits'), 'planck_44': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/LFI_SkyMap_044_1024_R2.01_full.fits'), 'planck_70': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/LFI_SkyMap_070_2048_R2.01_full.fits'), 'planck_100': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_100_2048_R2.00_full.fits'), 'planck_143': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_143_2048_R2.00_full.fits'), 'planck_217': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_217_2048_R2.00_full.fits'), 'planck_353': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_353_2048_R2.00_full.fits'), 'planck_545': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_545_2048_R2.00_full.fits'), 'planck_857': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/HFI_SkyMap_857_2048_R2.00_full.fits'), 'planck_dust': ('healpix', 1, '/pool/skysurvey/PLANCK/PR2/com/COM_CompMap_ThermalDust-commander_2048_R2.00.fits')} assert data_type in data_type_coll.keys() data_type = 'planck_dust' map_type, map_hdu, map_path = data_type_coll[data_type] if map_type == 'healpix': if filepath is not None: image_reproject_from_healpix_to_file(fits.open(map_path)[map_hdu], target_image_hdu_header, filepath=filepath) else: array, footprint = image_reproject_from_healpix_to_file(fits.open(map_path)[map_hdu], target_image_hdu_header, filepath=None) return array, footprint else: return None, None # ------------------------------------------------------------------------- if __name__ == '__main__': target_header = fits.open('/pool/mmt/2015b/wise/ngc_663/w1/mosaic_bm/mosaic.fits')[0].header target_wcs = WCS(target_header) # haslam408 = fits.open('/pool/maps/LAMBDA/haslam408/haslam408_dsds_Remazeilles2014_ns2048.fits')[1] # haslam408 = fits.open('/pool/maps/LAMBDA/IRIS/IRIS_nohole_1_2048.fits')[1] # hdu_in = fits.open('/pool/MMT/2015b/iras/b1/mosaic16/mosaic.fits')[0] # array, footprint = image_reproject_wcs_to_file(hdu_in, target_header) array_, footprint_ = image_query('planck_857', target_header) fig = plt.figure() ax1 = plt.subplot(1, 1, 1, projection=target_wcs) ax1.imshow(array_, origin='lower', vmin=1, vmax=5000) ax1.coords.grid(color='white') ax1.coords['ra'].set_axislabel('Right Ascension') ax1.coords['dec'].set_axislabel('Declination') fig.canvas.draw()
bsd-3-clause
sharadmv/trees
trees/tssb/util.py
1
1943
import cPickle as pickle import matplotlib.pyplot as plt import numpy as np import networkx as nx def plot_tssb(tssb, ax=None): g = nx.DiGraph() if ax: ax.set_axis_off() assert tssb.root is not None add_nodes(g, tssb.root) pos = nx.graphviz_layout(g, prog='dot', args='-Granksep=100.0') labels = {n: n.point_count for n in g.nodes()} nodes = nx.draw_networkx_nodes(g, pos, node_color='b', node_size=300, alpha=0.8, ax=ax) nx.draw_networkx_edges(g, pos, alpha=0.8, arrows=False, ax=ax) labels = nx.draw_networkx_labels(g, pos, labels, font_size=12, font_color='w', ax=ax) return g, nodes, labels def add_nodes(g, node): for c, child_node in node.children.items(): g.add_edge(node, child_node) add_nodes(g, child_node) def generate_data(N, tssb, collect=True): data = [] y = [] for i in xrange(N): node, index = tssb.sample_one() data.append(node.sample_one()) y.append(index) if collect: tssb.garbage_collect() return np.array(data), y def plot_data(X, z, tssb=None): nodes = set(z) color_map = sns.color_palette("coolwarm", len(set(map(len, nodes)))) colors = {} for c, n in zip(color_map, set(map(len, nodes))): colors[n] = c for i, (x, y) in enumerate(X): plt.scatter(x, y, color=colors[len(z[i])]) def save_tssb(tssb, location): with open(location, 'wb') as fp: pickle.dump(tssb.get_state(), fp) def load_tssb(location): with open(location, 'rb') as fp: tssb = pickle.load(fp) return tssb def print_tssb(t, y, N): points = xrange(N) nodes = set([t.point_index(point)[1] for point in points]) assignments = {} for node in nodes: assignments[node] = [y[p] for p in t.get_node(node).points] return assignments
mit
jenshnielsen/basemap
examples/plotsst.py
8
1770
from mpl_toolkits.basemap import Basemap from netCDF4 import Dataset, date2index import numpy as np import matplotlib.pyplot as plt from datetime import datetime date = datetime(2007,12,15,0) # date to plot. # open dataset. dataset = \ Dataset('http://www.ncdc.noaa.gov/thredds/dodsC/OISST-V2-AVHRR_agg') timevar = dataset.variables['time'] timeindex = date2index(date,timevar) # find time index for desired date. # read sst. Will automatically create a masked array using # missing_value variable attribute. 'squeeze out' singleton dimensions. sst = dataset.variables['sst'][timeindex,:].squeeze() # read ice. ice = dataset.variables['ice'][timeindex,:].squeeze() # read lats and lons (representing centers of grid boxes). lats = dataset.variables['lat'][:] lons = dataset.variables['lon'][:] lons, lats = np.meshgrid(lons,lats) # create figure, axes instances. fig = plt.figure() ax = fig.add_axes([0.05,0.05,0.9,0.9]) # create Basemap instance. # coastlines not used, so resolution set to None to skip # continent processing (this speeds things up a bit) m = Basemap(projection='kav7',lon_0=0,resolution=None) # draw line around map projection limb. # color background of map projection region. # missing values over land will show up this color. m.drawmapboundary(fill_color='0.3') # plot sst, then ice with pcolor im1 = m.pcolormesh(lons,lats,sst,shading='flat',cmap=plt.cm.jet,latlon=True) im2 = m.pcolormesh(lons,lats,ice,shading='flat',cmap=plt.cm.gist_gray,latlon=True) # draw parallels and meridians, but don't bother labelling them. m.drawparallels(np.arange(-90.,99.,30.)) m.drawmeridians(np.arange(-180.,180.,60.)) # add colorbar cb = m.colorbar(im1,"bottom", size="5%", pad="2%") # add a title. ax.set_title('SST and ICE analysis for %s'%date) plt.show()
gpl-2.0
erjerison/adaptability
github_submission/mutual_information_analysis_1_8_2017.py
1
21819
import numpy import sys import matplotlib.pylab as pt import matplotlib.cm import numpy.random import matplotlib.ticker as ticker from matplotlib.lines import Line2D import scipy.stats from matplotlib.transforms import Affine2D import mpl_toolkits.axisartist.floating_axes as floating_axes import matplotlib matplotlib.rcParams['font.sans-serif'] = 'Arial' matplotlib.rcParams['font.size'] = 10.0 matplotlib.rcParams['lines.markeredgewidth'] = 0 matplotlib.rcParams['lines.markersize'] = 3.5 matplotlib.rcParams['lines.linewidth'] = .5 matplotlib.rcParams['legend.fontsize'] = 8.0 matplotlib.rcParams['axes.linewidth']=.5 matplotlib.rcParams['patch.linewidth']=.5 def permute_within_categories(categories, cat_inds): #categories: 1d array where each item has an index indicating which category it belongs to. The category indices need not be consecutive. #cat_inds: list of category indices. n = len(categories) inds = numpy.arange(n) #Original order permuted_order = numpy.zeros((n,),dtype='int') for i in range(len(cat_inds)): items_in_cat_unpermuted = inds[categories == cat_inds[i]] permuted_order[items_in_cat_unpermuted] = numpy.random.permutation(items_in_cat_unpermuted) return permuted_order def permute_within_categories_preserve_num_muts(mutation_table, categories, cat_inds): #categories: 1d array where each item has an index indicating which category it belongs to. The category indices need not be consecutive. #cat_inds: list of category indices. n = len(categories) inds = numpy.arange(n) #Original order n_muts = mutation_table.shape[1] mut_inds = numpy.arange(n_muts) permuted_mutation_table = numpy.zeros_like(mutation_table) for i in range(len(cat_inds)): category_indices = inds[categories == cat_inds[i]] #Construct ordered pair list of which mutations occurred in which clones in this category pop_mut_list = [] for index in category_indices: muts = mut_inds[mutation_table[index,:] > .5] for mut in muts: pop_mut_list.append([index, mut]) #Permute mutations n_muts_category = len(pop_mut_list) perm = numpy.random.permutation(numpy.arange(n_muts_category)) pop_mut_list = numpy.array(pop_mut_list) pop_mut_list_permuted = pop_mut_list pop_mut_list_permuted[:,1] = pop_mut_list[perm,1] #Construct the section of the permuted mutation table for this category for j in range(len(pop_mut_list_permuted[:,0])): mut_loc = pop_mut_list_permuted[j,:] permuted_mutation_table[mut_loc[0],mut_loc[1]] = 1 return permuted_mutation_table def calculate_cat_inds(categories): categories = numpy.array(categories) return numpy.unique(categories) def calculate_helper_matrix(categories, cat_inds): #The helper matrix is a utility for quickly summing over specified rows in a table. It is intended to be matrix multiplied by the original mutation table; hence it is n_cats x n_pops num_cats = len(cat_inds) num_pops = len(categories) helper_matrix = numpy.zeros((num_cats,num_pops)) for i in range(num_cats): specific_cat_inds = numpy.where(categories == cat_inds[i]) helper_matrix[i, specific_cat_inds] = 1 return helper_matrix def calculate_entropy_statistic(mutation_table, helper_matrix): muts_per_gene = numpy.sum(mutation_table, axis = 0) collapsed_table = numpy.dot(helper_matrix,mutation_table) pops_per_category = numpy.dot(helper_matrix,helper_matrix.T) #print pops_per_category probs = numpy.dot(numpy.linalg.inv(pops_per_category),collapsed_table) num_genes = mutation_table.shape[1] entropies = numpy.zeros((num_genes,)) total_pops = numpy.float(numpy.sum(pops_per_category)) for i in range(num_genes): nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) return numpy.sum(entropies) def calculate_entropy_statistic2(mutation_table, helper_matrix): #This function can be used to weight double-hit mutations less than other mutations, since they carry less information. #However, for this dataset including the 2-hit mutations with equal weight was equivalently sensitive. muts_per_gene = numpy.sum(mutation_table, axis = 0) collapsed_table = numpy.dot(helper_matrix,mutation_table) pops_per_category = numpy.dot(helper_matrix,helper_matrix.T) probs = numpy.dot(numpy.linalg.inv(pops_per_category),collapsed_table) #probability that a population in this category got a mutation #print probs num_genes = mutation_table.shape[1] entropies = numpy.zeros((num_genes,)) weight = 1. total_pops = numpy.float(numpy.sum(pops_per_category)) for i in range(num_genes): if muts_per_gene[i] > 2.1: nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) else: nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = weight*numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) return numpy.sum(entropies) def calculate_presence_absence_statistic(mutation_table, helper_matrix): #This is a simple test statistic based on whether or not a particular mutation was or wasn't hit in some category. collapsed_table = numpy.dot(helper_matrix,mutation_table) num_zeros = numpy.sum(collapsed_table < .5) return num_zeros #Read in the list of mutations that fixed in each population. Filter out snps that occur in multiple descendants of the same founder--these were SGV from the passaging of this segregant well. input_file = 'data/mutation_lists_with_aa_positions_reannotated.txt' #First loop to find any mutations that are shared among descendants of the same segregant file = open(input_file,'r') file_lines = file.readlines() file.close() segregant_mut_dict = {} common_mut_dict = {} for line in file_lines: linelist = line.strip().split('\t') if len(linelist) < 1.5: #Go to the next clone clone_name = linelist[0] segregant = clone_name.split('_')[0] if segregant not in segregant_mut_dict: segregant_mut_dict[segregant] = [] else: mutation = ('_').join(str(i) for i in linelist) if len(linelist) > 5.5: if linelist[6] == 'Non': if mutation in segregant_mut_dict[segregant]: print segregant, mutation if segregant in common_mut_dict: common_mut_dict[segregant].append(mutation) else: common_mut_dict[segregant] = [mutation] if mutation not in segregant_mut_dict[segregant]: segregant_mut_dict[segregant].append(mutation) ##Second loop to identify all de novo nonsynonymous mutations (and indels) gene_dict_by_sample = {} mutation_dict_by_sample = {} for line in file_lines: linelist = line.strip().split('\t') if len(linelist) < 1.5: #Go to the next clone clone_name = linelist[0] gene_dict_by_sample[clone_name] = [] mutation_dict_by_sample[clone_name] = [] local_gene_names = [] segregant = clone_name.split('_')[0] else: gene_name = linelist[4] mutation = ('_').join(str(i) for i in linelist) if len(linelist) > 5.5: if linelist[6] == 'Non': if segregant in common_mut_dict: #There might be shared ancestral snps if ((gene_name not in local_gene_names) and (len(gene_name) < 6.5) and (mutation not in common_mut_dict[segregant])): #We have not already counted this mutation, it is not an ancestral mutation, and it is not in a dubious ORF local_gene_names.append(gene_name) gene_dict_by_sample[clone_name].append(gene_name) mutation_dict_by_sample[clone_name].append(mutation) elif ((gene_name not in local_gene_names) and (len(gene_name) < 6.5)): #We have not already counted this mutation, it is not an ancestral mutation, and it is not in a dubious ORF local_gene_names.append(gene_name) gene_dict_by_sample[clone_name].append(gene_name) mutation_dict_by_sample[clone_name].append(mutation) #Determine how many independent times each gene was mutated, and make list of genes for each segregant. gene_name_counts = [] gene_names = [] samples = sorted(gene_dict_by_sample.keys()) for sample in samples: for gene in gene_dict_by_sample[sample]: if gene in gene_names: index = numpy.where(numpy.array(gene_names) == gene)[0] gene_name_counts[index] += 1 else: gene_names.append(gene) gene_name_counts.append(1) gene_name_counts_sc = numpy.zeros_like( numpy.array(gene_name_counts) ) gene_name_counts_ypd = numpy.zeros_like( numpy.array(gene_name_counts) ) for sample in samples: env = sample.split('_')[2] if env == 'sc': for gene in gene_dict_by_sample[sample]: index = numpy.where(numpy.array(gene_names) == gene)[0] gene_name_counts_sc[index] += 1 elif env == 'ypd': for gene in gene_dict_by_sample[sample]: index = numpy.where(numpy.array(gene_names) == gene)[0] gene_name_counts_ypd[index] += 1 #print gene_name_counts_sc #print gene_name_counts_ypd ##Import fitness and founder genotype data #Import fitness and genotype data filename1 = 'data/fitness_measurements_with_population_names_12_29_2016.csv' filename2 = 'data/control_replicate_measurements.csv' filename3 = 'data/segregant_genotypes_deduplicated_with_header.csv' segregant_vector = [] init_fits_ypd = [] init_std_errs_ypd = [] init_fits_sc = [] init_std_errs_sc = [] final_fits_ypd_pops_in_ypd = [] segregant_vector_ypd_pops = [] final_fits_sc_pops_in_sc = [] segregant_vector_sc_pops = [] final_fits_sc_pops_in_ypd = [] final_fits_ypd_pops_in_sc = [] file1 = open(filename1,'r') firstline = 0 for line in file1: if firstline < .5: firstline += 1 continue linestrs = line.strip().split(';') segregant_vector.append(linestrs[0]) init_fits_ypd.append(float(linestrs[1])) init_std_errs_ypd.append(float(linestrs[2])) init_fits_sc.append(float(linestrs[3])) init_std_errs_sc.append(float(linestrs[4])) ypd_evolved_pops = linestrs[5].split(',') for entry in ypd_evolved_pops: segregant_vector_ypd_pops.append(linestrs[0]) final_fits_ypd_pops_in_ypd.append(float(entry.split()[1])) final_fits_ypd_pops_in_sc.append(float(entry.split()[2])) sc_evolved_pops = linestrs[6].split(',') for entry in sc_evolved_pops: segregant_vector_sc_pops.append(linestrs[0]) final_fits_sc_pops_in_ypd.append(float(entry.split()[1])) final_fits_sc_pops_in_sc.append(float(entry.split()[2])) file1.close() init_fits_ypd = numpy.array(init_fits_ypd) init_std_errs_ypd = numpy.array(init_std_errs_ypd) init_fits_sc = numpy.array(init_fits_sc) init_std_errs_sc = numpy.array(init_std_errs_sc) final_fits_ypd_pops_in_ypd = numpy.array(final_fits_ypd_pops_in_ypd) final_fits_ypd_pops_in_sc = numpy.array(final_fits_ypd_pops_in_sc) segregant_vector_ypd_pops = numpy.array(segregant_vector_ypd_pops) segregant_vector_sc_pops = numpy.array(segregant_vector_sc_pops) final_fits_sc_pops_in_ypd = numpy.array(final_fits_sc_pops_in_ypd) final_fits_ypd_pops_in_sc = numpy.array(final_fits_ypd_pops_in_sc) ypd_controls = {} sc_controls = {} file2 = open(filename2,'r') firstline = 0 for line in file2: if firstline < .5: firstline += 1 continue linestrs = line.strip().split(';') ypd_controls[linestrs[0]] = [float(i) for i in linestrs[1].split(',')] sc_controls[linestrs[0]] = [float(i) for i in linestrs[2].split(',')] file2.close() genotype_mat = [] file3 = open(filename3,'r') firstline = 0 for line in file3: if firstline < .5: firstline += 1 continue linelist = line.strip().split(';') genotype = [int(i) for i in linelist[1].split(',')] genotype_mat.append(genotype) genotype_mat = numpy.array(genotype_mat) rm_allele = numpy.array(genotype_mat[:,3777],dtype='Bool') by_allele = numpy.array(1 - genotype_mat[:,3777],dtype='Bool') ####Set up mutation table gene_names = numpy.array(gene_names) double_hit_genes = gene_names[numpy.array(gene_name_counts) > 1.5] #print seg_samples #print samples num_double_hit_genes = len(double_hit_genes) #print double_hit_genes gene_names_reordered = ['KRE33', 'ENP2', 'BFR2', 'BMS1', 'UTP20', 'RPS8A', 'RPS6A','CRM1', 'ECM16', 'BUD23', 'IRA1', 'IRA2', 'GPB1', 'GPB2', 'PDE2','SIR2', 'SIR3', 'SIR4', 'RXT3', 'NNK1', 'YPK9', 'LTE1', 'SRS2','PAR32','STE11','RRP3','RQC2'] #print set(double_hit_genes) == set(gene_names_reordered) new_gene_order = [] for i in range(len(gene_names_reordered)): index = numpy.where(numpy.array(double_hit_genes) == gene_names_reordered[i])[0][0] new_gene_order.append(index) mutation_table = numpy.zeros((254,num_double_hit_genes)) indel_table = numpy.zeros((254,num_double_hit_genes)) for i in range(len(samples)): for j in range(num_double_hit_genes): if double_hit_genes[new_gene_order[j]] in gene_dict_by_sample[samples[i]]: mutation_table[i,j] = 1 gene_ind = gene_dict_by_sample[samples[i]].index(double_hit_genes[new_gene_order[j]]) mutation = mutation_dict_by_sample[samples[i]][gene_ind] mutation_list = mutation.split('_') #print mutation_list if (len(mutation_list[3].split(':')) > 1.5 or 'Stop' in mutation_list[-1]): #indels and premature stops indel_table[i,j] = 1 mutation_table[i,j] -= 1 ###Determine genotype of sequenced populations genotype_mat_sequenced_populations = numpy.zeros((len(samples),len(genotype_mat[0,:]))) i = 0 seg_samples = [] for clone in samples: name_strs = clone.split('_') seg = name_strs[0] seg_samples.append(seg) genotype_index = segregant_vector.index(seg) genotype_mat_sequenced_populations[i,:] = genotype_mat[genotype_index,:] i += 1 ###Set up an indicator variable for the environment env_list = [] for sample in samples: env = sample.split('_')[2] if env=='sc': env_list.append(1) elif env=='ypd': env_list.append(0) env_list = numpy.array(env_list, dtype='Bool') ##Set up an indicator variable for the Kre33 allele kre33_allele = genotype_mat_sequenced_populations[:, 9596] kre33_allele = numpy.array(kre33_allele, dtype='Bool') ##Set up a variable for the segregant seg_counter = 0 prev_seg = seg_samples[0] founder_num_key = [] for i in range(len(samples)): seg = seg_samples[i] if seg == prev_seg: founder_num_key.append(seg_counter) else: seg_counter += 1 prev_seg = seg founder_num_key.append(seg_counter) founder_num_key = numpy.array(founder_num_key) ###Determine mutations per gene for 4 categories: Kre33-RM/30C; Kre33-BY/30C; Kre33-RM/37C; Kre33-BY/37C group4 = numpy.array(env_list*kre33_allele, dtype='Bool') group3 = numpy.array(env_list*(1 - kre33_allele), dtype='Bool') group2 = numpy.array((1 - env_list)*kre33_allele, dtype='Bool') group1 = numpy.array((1 - env_list)*(1 - kre33_allele), dtype='Bool') counts_grp1_mutations = numpy.sum(mutation_table[group1, :], axis=0) counts_grp1_indels = numpy.sum(indel_table[group1,:], axis=0) counts_grp2_mutations = numpy.sum(mutation_table[group2, :], axis=0) counts_grp2_indels = numpy.sum(indel_table[group2,:], axis=0) counts_grp3_mutations = numpy.sum(mutation_table[group3, :], axis=0) counts_grp3_indels = numpy.sum(indel_table[group3,:], axis=0) counts_grp4_mutations = numpy.sum(mutation_table[group4, :], axis=0) counts_grp4_indels = numpy.sum(indel_table[group4,:], axis=0) ###Basic counting num_nonsyn_muts_sc = numpy.sum(gene_name_counts_sc) num_nonsyn_muts_ypd = numpy.sum(gene_name_counts_ypd) #print 'num_nonsyn_muts_sc', num_nonsyn_muts_sc, 'num_nonsyn_muts_ypd', num_nonsyn_muts_ypd num_kre33_ass_muts_sc = numpy.sum( counts_grp1_mutations[0:10] ) + numpy.sum( counts_grp2_mutations[0:10] ) num_kre33_ass_muts_ypd = numpy.sum( counts_grp3_mutations[0:10] ) + numpy.sum( counts_grp4_mutations[0:10] ) frac_kre33_ass_muts_sc = num_kre33_ass_muts_sc/float(num_nonsyn_muts_sc) frac_kre33_ass_muts_ypd = num_kre33_ass_muts_ypd/float(num_nonsyn_muts_ypd) #print 'kre33_muts_sc', num_kre33_ass_muts_sc #print 'kre33_muts_ypd', num_kre33_ass_muts_ypd #print 'kre33 frac muts sc', frac_kre33_ass_muts_sc #print 'kre33 frac muts ypd', frac_kre33_ass_muts_ypd ###Basic counting per population num_pops_kre33_mut = numpy.sum( mutation_table[:, 0] > .5 ) frac_pops_kre33_mut = num_pops_kre33_mut/float(mutation_table.shape[0]) #print num_pops_kre33_mut, frac_pops_kre33_mut #### iter = 10000 mut_table = mutation_table + indel_table categories_kre33 = numpy.array(kre33_allele) categories_null1 = numpy.zeros((len(categories_kre33),)) cat_inds_kre33 = calculate_cat_inds(categories_kre33) cat_inds_null1 = calculate_cat_inds(categories_null1) helper_mat_kre33 = calculate_helper_matrix(categories_kre33, cat_inds_kre33) helper_mat_null1 = calculate_helper_matrix(categories_null1, cat_inds_null1) mi_stat_kre33 = calculate_entropy_statistic(mut_table, helper_mat_null1) - calculate_entropy_statistic(mut_table, helper_mat_kre33) mi_stat_permutations = [] for i in range(iter): permuted_mut_table = permute_within_categories_preserve_num_muts(mut_table, categories_null1, cat_inds_null1) mi_stat_permutations.append(calculate_entropy_statistic(permuted_mut_table, helper_mat_null1) - calculate_entropy_statistic(permuted_mut_table, helper_mat_kre33)) print 'Kre33 allele effect' print 'p =', numpy.sum(mi_stat_permutations > mi_stat_kre33)/float(iter), '(10,000 permutations)' print 'mi, treatment', mi_stat_kre33 print 'mi, mean of null', numpy.mean(mi_stat_permutations) print 'difference', mi_stat_kre33 - numpy.mean(mi_stat_permutations), mi_stat_kre33 - numpy.percentile(mi_stat_permutations, 2.5), mi_stat_kre33 - numpy.percentile(mi_stat_permutations, 97.5) #Control for the kre33 allele and look for additional effects of the environment categories_env = env_list*10 + categories_kre33 cat_inds_env = calculate_cat_inds(categories_env) helper_mat_env = calculate_helper_matrix(categories_env, cat_inds_env) mi_stat_env = calculate_entropy_statistic(mut_table, helper_mat_kre33) - calculate_entropy_statistic(mut_table, helper_mat_env) mi_stat_permutations_null2 = [] for i in range(iter): permuted_mut_table = permute_within_categories_preserve_num_muts(mut_table, categories_kre33, cat_inds_kre33) mi_stat_permutations_null2.append(calculate_entropy_statistic(permuted_mut_table, helper_mat_kre33) - calculate_entropy_statistic(permuted_mut_table, helper_mat_env)) #print permuted_order print 'Environment effect' print 'p =', numpy.sum(mi_stat_permutations_null2 > mi_stat_env)/float(iter) print 'mi, treatment', mi_stat_env print 'mi, mean of null', numpy.mean(mi_stat_permutations_null2) print 'difference', mi_stat_env - numpy.mean(mi_stat_permutations_null2), mi_stat_env - numpy.percentile(mi_stat_permutations_null2, 2.5), mi_stat_env - numpy.percentile(mi_stat_permutations_null2, 97.5) #Control for kre33 and environment and look for additional effects of genotype categories_genotype = founder_num_key*100 + categories_env #This will sum over the environment groups within a founder class cat_inds_genotype = calculate_cat_inds(categories_genotype) helper_mat_genotype = calculate_helper_matrix(categories_genotype, cat_inds_genotype) mi_stat_genotype = calculate_entropy_statistic(mut_table, helper_mat_env) - calculate_entropy_statistic(mut_table, helper_mat_genotype) mi_stat_permutations_null4 = [] for i in range(iter): permuted_mut_table = permute_within_categories_preserve_num_muts(mut_table, categories_env, cat_inds_env) mi_stat_permutations_null4.append(calculate_entropy_statistic(permuted_mut_table, helper_mat_env) - calculate_entropy_statistic(permuted_mut_table, helper_mat_genotype)) print 'Genotype effect' print 'p =', numpy.sum(mi_stat_permutations_null4 > mi_stat_genotype)/float(iter) print 'mi, treatment', mi_stat_genotype print 'mi, mean of null', numpy.mean(mi_stat_permutations_null4) print 'difference', mi_stat_genotype - numpy.mean(mi_stat_permutations_null4), mi_stat_genotype - numpy.percentile(mi_stat_permutations_null4, 2.5), mi_stat_genotype - numpy.percentile(mi_stat_permutations_null4, 97.5) #For reference, calculate the overall entropy hits_per_gene = numpy.sum(mut_table, axis=0) pi = hits_per_gene/254. print 'Total entropy' print numpy.sum(-1*(pi*numpy.log2(pi) + (1.- pi)*numpy.log2(1.-pi))) f, (ax1, ax2, ax3) = pt.subplots(1, 3, figsize = (16,6)) ax1.set_title('Kre33 allele effect') ax1.set_ylabel('Probability') ax1.set_xlabel('Mutual information') ax1.hist(mi_stat_permutations, color='grey',normed=True,bins=20,edgecolor="none") ax1.axvline(mi_stat_kre33,0,.2,color='blue') ymax = ax1.get_ylim()[1] ax1.plot(mi_stat_kre33,.2*ymax,marker='o',color='b',markersize=5,markeredgewidth=0) ax2.set_title('Environment effect') ax2.set_ylabel('Probability') ax2.set_xlabel('Mutual information') ax2.hist(mi_stat_permutations_null2, color='grey',normed=True,bins=20,edgecolor="none") ymax = ax2.get_ylim()[1] ax2.axvline(mi_stat_env,0,.2,color='blue') ax2.plot(mi_stat_env,.2*ymax,marker='o',color='b',markersize=5,markeredgewidth=0) ax3.set_title('Genotype effect') ax3.set_ylabel('Probability') ax3.set_xlabel('Mutual information') ax3.hist(mi_stat_permutations_null4, color='grey',normed=True,bins=20,edgecolor="none") ax3.axvline(mi_stat_genotype,0,.2,color='blue') ymax = ax3.get_ylim()[1] ax3.plot(mi_stat_genotype,.2*ymax,marker='o',color='b',markersize=5,markeredgewidth=0) pt.savefig('Mutual_information_detection.pdf',bbox_inches='tight')
mit
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/nltk/parse/dependencygraph.py
5
31002
# Natural Language Toolkit: Dependency Grammars # # Copyright (C) 2001-2017 NLTK Project # Author: Jason Narad <[email protected]> # Steven Bird <[email protected]> (modifications) # # URL: <http://nltk.org/> # For license information, see LICENSE.TXT # """ Tools for reading and writing dependency trees. The input is assumed to be in Malt-TAB format (http://stp.lingfil.uu.se/~nivre/research/MaltXML.html). """ from __future__ import print_function, unicode_literals from collections import defaultdict from itertools import chain from pprint import pformat import subprocess import warnings from nltk.tree import Tree from nltk.compat import python_2_unicode_compatible, string_types ################################################################# # DependencyGraph Class ################################################################# @python_2_unicode_compatible class DependencyGraph(object): """ A container for the nodes and labelled edges of a dependency structure. """ def __init__(self, tree_str=None, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """Dependency graph. We place a dummy `TOP` node with the index 0, since the root node is often assigned 0 as its head. This also means that the indexing of the nodes corresponds directly to the Malt-TAB format, which starts at 1. If zero-based is True, then Malt-TAB-like input with node numbers starting at 0 and the root node assigned -1 (as produced by, e.g., zpar). :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ self.nodes = defaultdict(lambda: {'address': None, 'word': None, 'lemma': None, 'ctag': None, 'tag': None, 'feats': None, 'head': None, 'deps': defaultdict(list), 'rel': None, }) self.nodes[0].update( { 'ctag': 'TOP', 'tag': 'TOP', 'address': 0, } ) self.root = None if tree_str: self._parse( tree_str, cell_extractor=cell_extractor, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) def remove_by_address(self, address): """ Removes the node with the given address. References to this node in others will still exist. """ del self.nodes[address] def redirect_arcs(self, originals, redirect): """ Redirects arcs to any of the nodes in the originals list to the redirect node address. """ for node in self.nodes.values(): new_deps = [] for dep in node['deps']: if dep in originals: new_deps.append(redirect) else: new_deps.append(dep) node['deps'] = new_deps def add_arc(self, head_address, mod_address): """ Adds an arc from the node specified by head_address to the node specified by the mod address. """ relation = self.nodes[mod_address]['rel'] self.nodes[head_address]['deps'].setdefault(relation, []) self.nodes[head_address]['deps'][relation].append(mod_address) #self.nodes[head_address]['deps'].append(mod_address) def connect_graph(self): """ Fully connects all non-root nodes. All nodes are set to be dependents of the root node. """ for node1 in self.nodes.values(): for node2 in self.nodes.values(): if node1['address'] != node2['address'] and node2['rel'] != 'TOP': relation = node2['rel'] node1['deps'].setdefault(relation, []) node1['deps'][relation].append(node2['address']) #node1['deps'].append(node2['address']) def get_by_address(self, node_address): """Return the node with the given address.""" return self.nodes[node_address] def contains_address(self, node_address): """ Returns true if the graph contains a node with the given node address, false otherwise. """ return node_address in self.nodes def to_dot(self): """Return a dot representation suitable for using with Graphviz. >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> print(dg.to_dot()) digraph G{ edge [dir=forward] node [shape=plaintext] <BLANKLINE> 0 [label="0 (None)"] 0 -> 2 [label="ROOT"] 1 [label="1 (John)"] 2 [label="2 (loves)"] 2 -> 1 [label=""] 2 -> 3 [label=""] 3 [label="3 (Mary)"] } """ # Start the digraph specification s = 'digraph G{\n' s += 'edge [dir=forward]\n' s += 'node [shape=plaintext]\n' # Draw the remaining nodes for node in sorted(self.nodes.values(), key=lambda v: v['address']): s += '\n%s [label="%s (%s)"]' % (node['address'], node['address'], node['word']) for rel, deps in node['deps'].items(): for dep in deps: if rel is not None: s += '\n%s -> %s [label="%s"]' % (node['address'], dep, rel) else: s += '\n%s -> %s ' % (node['address'], dep) s += "\n}" return s def _repr_svg_(self): """Show SVG representation of the transducer (IPython magic). >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> dg._repr_svg_().split('\\n')[0] '<?xml version="1.0" encoding="UTF-8" standalone="no"?>' """ dot_string = self.to_dot() try: process = subprocess.Popen( ['dot', '-Tsvg'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) except OSError: raise Exception('Cannot find the dot binary from Graphviz package') out, err = process.communicate(dot_string) if err: raise Exception( 'Cannot create svg representation by running dot from string: {}' ''.format(dot_string)) return out def __str__(self): return pformat(self.nodes) def __repr__(self): return "<DependencyGraph with {0} nodes>".format(len(self.nodes)) @staticmethod def load(filename, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """ :param filename: a name of a file in Malt-TAB format :param zero_based: nodes in the input file are numbered starting from 0 rather than 1 (as produced by, e.g., zpar) :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. :return: a list of DependencyGraphs """ with open(filename) as infile: return [ DependencyGraph( tree_str, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) for tree_str in infile.read().split('\n\n') ] def left_children(self, node_index): """ Returns the number of left children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]['deps'].values()) index = self.nodes[node_index]['address'] return sum(1 for c in children if c < index) def right_children(self, node_index): """ Returns the number of right children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]['deps'].values()) index = self.nodes[node_index]['address'] return sum(1 for c in children if c > index) def add_node(self, node): if not self.contains_address(node['address']): self.nodes[node['address']].update(node) def _parse(self, input_, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """Parse a sentence. :param extractor: a function that given a tuple of cells returns a 7-tuple, where the values are ``word, lemma, ctag, tag, feats, head, rel``. :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ def extract_3_cells(cells, index): word, tag, head = cells return index, word, word, tag, tag, '', head, '' def extract_4_cells(cells, index): word, tag, head, rel = cells return index, word, word, tag, tag, '', head, rel def extract_7_cells(cells, index): line_index, word, lemma, tag, _, head, rel = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, tag, tag, '', head, rel def extract_10_cells(cells, index): line_index, word, lemma, ctag, tag, feats, head, rel, _, _ = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, ctag, tag, feats, head, rel extractors = { 3: extract_3_cells, 4: extract_4_cells, 7: extract_7_cells, 10: extract_10_cells, } if isinstance(input_, string_types): input_ = (line for line in input_.split('\n')) lines = (l.rstrip() for l in input_) lines = (l for l in lines if l) cell_number = None for index, line in enumerate(lines, start=1): cells = line.split(cell_separator) if cell_number is None: cell_number = len(cells) else: assert cell_number == len(cells) if cell_extractor is None: try: cell_extractor = extractors[cell_number] except KeyError: raise ValueError( 'Number of tab-delimited fields ({0}) not supported by ' 'CoNLL(10) or Malt-Tab(4) format'.format(cell_number) ) try: index, word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells, index) except (TypeError, ValueError): # cell_extractor doesn't take 2 arguments or doesn't return 8 # values; assume the cell_extractor is an older external # extractor and doesn't accept or return an index. word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells) if head == '_': continue head = int(head) if zero_based: head += 1 self.nodes[index].update( { 'address': index, 'word': word, 'lemma': lemma, 'ctag': ctag, 'tag': tag, 'feats': feats, 'head': head, 'rel': rel, } ) # Make sure that the fake root node has labeled dependencies. if (cell_number == 3) and (head == 0): rel = top_relation_label self.nodes[head]['deps'][rel].append(index) if self.nodes[0]['deps'][top_relation_label]: root_address = self.nodes[0]['deps'][top_relation_label][0] self.root = self.nodes[root_address] self.top_relation_label = top_relation_label else: warnings.warn( "The graph doesn't contain a node " "that depends on the root element." ) def _word(self, node, filter=True): w = node['word'] if filter: if w != ',': return w return w def _tree(self, i): """ Turn dependency graphs into NLTK trees. :param int i: index of a node :return: either a word (if the indexed node is a leaf) or a ``Tree``. """ node = self.get_by_address(i) word = node['word'] deps = sorted(chain.from_iterable(node['deps'].values())) if deps: return Tree(word, [self._tree(dep) for dep in deps]) else: return word def tree(self): """ Starting with the ``root`` node, build a dependency tree using the NLTK ``Tree`` constructor. Dependency labels are omitted. """ node = self.root word = node['word'] deps = sorted(chain.from_iterable(node['deps'].values())) return Tree(word, [self._tree(dep) for dep in deps]) def triples(self, node=None): """ Extract dependency triples of the form: ((head word, head tag), rel, (dep word, dep tag)) """ if not node: node = self.root head = (node['word'], node['ctag']) for i in sorted(chain.from_iterable(node['deps'].values())): dep = self.get_by_address(i) yield (head, dep['rel'], (dep['word'], dep['ctag'])) for triple in self.triples(node=dep): yield triple def _hd(self, i): try: return self.nodes[i]['head'] except IndexError: return None def _rel(self, i): try: return self.nodes[i]['rel'] except IndexError: return None # what's the return type? Boolean or list? def contains_cycle(self): """Check whether there are cycles. >>> dg = DependencyGraph(treebank_data) >>> dg.contains_cycle() False >>> cyclic_dg = DependencyGraph() >>> top = {'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0} >>> child1 = {'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1} >>> child2 = {'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2} >>> child3 = {'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3} >>> child4 = {'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4} >>> cyclic_dg.nodes = { ... 0: top, ... 1: child1, ... 2: child2, ... 3: child3, ... 4: child4, ... } >>> cyclic_dg.root = top >>> cyclic_dg.contains_cycle() [3, 1, 2, 4] """ distances = {} for node in self.nodes.values(): for dep in node['deps']: key = tuple([node['address'], dep]) distances[key] = 1 for _ in self.nodes: new_entries = {} for pair1 in distances: for pair2 in distances: if pair1[1] == pair2[0]: key = tuple([pair1[0], pair2[1]]) new_entries[key] = distances[pair1] + distances[pair2] for pair in new_entries: distances[pair] = new_entries[pair] if pair[0] == pair[1]: path = self.get_cycle_path(self.get_by_address(pair[0]), pair[0]) return path return False # return []? def get_cycle_path(self, curr_node, goal_node_index): for dep in curr_node['deps']: if dep == goal_node_index: return [curr_node['address']] for dep in curr_node['deps']: path = self.get_cycle_path(self.get_by_address(dep), goal_node_index) if len(path) > 0: path.insert(0, curr_node['address']) return path return [] def to_conll(self, style): """ The dependency graph in CoNLL format. :param style: the style to use for the format (3, 4, 10 columns) :type style: int :rtype: str """ if style == 3: template = '{word}\t{tag}\t{head}\n' elif style == 4: template = '{word}\t{tag}\t{head}\t{rel}\n' elif style == 10: template = '{i}\t{word}\t{lemma}\t{ctag}\t{tag}\t{feats}\t{head}\t{rel}\t_\t_\n' else: raise ValueError( 'Number of tab-delimited fields ({0}) not supported by ' 'CoNLL(10) or Malt-Tab(4) format'.format(style) ) return ''.join(template.format(i=i, **node) for i, node in sorted(self.nodes.items()) if node['tag'] != 'TOP') def nx_graph(self): """Convert the data in a ``nodelist`` into a networkx labeled directed graph.""" import networkx nx_nodelist = list(range(1, len(self.nodes))) nx_edgelist = [ (n, self._hd(n), self._rel(n)) for n in nx_nodelist if self._hd(n) ] self.nx_labels = {} for n in nx_nodelist: self.nx_labels[n] = self.nodes[n]['word'] g = networkx.MultiDiGraph() g.add_nodes_from(nx_nodelist) g.add_edges_from(nx_edgelist) return g class DependencyGraphError(Exception): """Dependency graph exception.""" def demo(): malt_demo() conll_demo() conll_file_demo() cycle_finding_demo() def malt_demo(nx=False): """ A demonstration of the result of reading a dependency version of the first sentence of the Penn Treebank. """ dg = DependencyGraph("""Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """) tree = dg.tree() tree.pprint() if nx: # currently doesn't work import networkx from matplotlib import pylab g = dg.nx_graph() g.info() pos = networkx.spring_layout(g, dim=1) networkx.draw_networkx_nodes(g, pos, node_size=50) # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) networkx.draw_networkx_labels(g, pos, dg.nx_labels) pylab.xticks([]) pylab.yticks([]) pylab.savefig('tree.png') pylab.show() def conll_demo(): """ A demonstration of how to read a string representation of a CoNLL format dependency tree. """ dg = DependencyGraph(conll_data1) tree = dg.tree() tree.pprint() print(dg) print(dg.to_conll(4)) def conll_file_demo(): print('Mass conll_read demo...') graphs = [DependencyGraph(entry) for entry in conll_data2.split('\n\n') if entry] for graph in graphs: tree = graph.tree() print('\n') tree.pprint() def cycle_finding_demo(): dg = DependencyGraph(treebank_data) print(dg.contains_cycle()) cyclic_dg = DependencyGraph() cyclic_dg.add_node({'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0}) cyclic_dg.add_node({'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1}) cyclic_dg.add_node({'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2}) cyclic_dg.add_node({'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3}) cyclic_dg.add_node({'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4}) print(cyclic_dg.contains_cycle()) treebank_data = """Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """ conll_data1 = """ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ """ conll_data2 = """1 Cathy Cathy N N eigen|ev|neut 2 su _ _ 2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 hen hen Pron Pron per|3|mv|datofacc 2 obj1 _ _ 4 wild wild Adj Adj attr|stell|onverv 5 mod _ _ 5 zwaaien zwaai N N soort|mv|neut 2 vc _ _ 6 . . Punc Punc punt 5 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Dat dat Pron Pron aanw|neut|attr 2 det _ _ 2 werkwoord werkwoord N N soort|ev|neut 6 obj1 _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 ze ze Pron Pron per|3|evofmv|nom 6 su _ _ 5 zelf zelf Pron Pron aanw|neut|attr|wzelf 3 predm _ _ 6 uitgevonden vind V V trans|verldw|onverv 3 vc _ _ 7 . . Punc Punc punt 6 punct _ _ 1 Het het Pron Pron onbep|neut|zelfst 2 su _ _ 2 hoorde hoor V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 bij bij Prep Prep voor 2 ld _ _ 4 de de Art Art bep|zijdofmv|neut 6 det _ _ 5 warme warm Adj Adj attr|stell|vervneut 6 mod _ _ 6 zomerdag zomerdag N N soort|ev|neut 3 obj1 _ _ 7 die die Pron Pron betr|neut|zelfst 6 mod _ _ 8 ze ze Pron Pron per|3|evofmv|nom 12 su _ _ 9 ginds ginds Adv Adv gew|aanw 12 mod _ _ 10 achter achter Adv Adv gew|geenfunc|stell|onverv 12 svp _ _ 11 had heb V V hulp|ovt|1of2of3|ev 7 body _ _ 12 gelaten laat V V trans|verldw|onverv 11 vc _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 hadden heb V V trans|ovt|1of2of3|mv 0 ROOT _ _ 3 languit languit Adv Adv gew|geenfunc|stell|onverv 11 mod _ _ 4 naast naast Prep Prep voor 11 mod _ _ 5 elkaar elkaar Pron Pron rec|neut 4 obj1 _ _ 6 op op Prep Prep voor 11 ld _ _ 7 de de Art Art bep|zijdofmv|neut 8 det _ _ 8 strandstoelen strandstoel N N soort|mv|neut 6 obj1 _ _ 9 kunnen kan V V hulp|inf 2 vc _ _ 10 gaan ga V V hulp|inf 9 vc _ _ 11 liggen lig V V intrans|inf 10 vc _ _ 12 . . Punc Punc punt 11 punct _ _ 1 Zij zij Pron Pron per|3|evofmv|nom 2 su _ _ 2 zou zal V V hulp|ovt|1of2of3|ev 7 cnj _ _ 3 mams mams N N soort|ev|neut 4 det _ _ 4 rug rug N N soort|ev|neut 5 obj1 _ _ 5 ingewreven wrijf V V trans|verldw|onverv 6 vc _ _ 6 hebben heb V V hulp|inf 2 vc _ _ 7 en en Conj Conj neven 0 ROOT _ _ 8 mam mam V V trans|ovt|1of2of3|ev 7 cnj _ _ 9 de de Art Art bep|zijdofmv|neut 10 det _ _ 10 hare hare Pron Pron bez|3|ev|neut|attr 8 obj1 _ _ 11 . . Punc Punc punt 10 punct _ _ 1 Of of Conj Conj onder|metfin 0 ROOT _ _ 2 ze ze Pron Pron per|3|evofmv|nom 3 su _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 gewoon gewoon Adj Adj adv|stell|onverv 10 mod _ _ 5 met met Prep Prep voor 10 mod _ _ 6 haar haar Pron Pron bez|3|ev|neut|attr 7 det _ _ 7 vriendinnen vriendin N N soort|mv|neut 5 obj1 _ _ 8 rond rond Adv Adv deelv 10 svp _ _ 9 kunnen kan V V hulp|inf 3 vc _ _ 10 slenteren slenter V V intrans|inf 9 vc _ _ 11 in in Prep Prep voor 10 mod _ _ 12 de de Art Art bep|zijdofmv|neut 13 det _ _ 13 buurt buurt N N soort|ev|neut 11 obj1 _ _ 14 van van Prep Prep voor 13 mod _ _ 15 Trafalgar_Square Trafalgar_Square MWU N_N eigen|ev|neut_eigen|ev|neut 14 obj1 _ _ 16 . . Punc Punc punt 15 punct _ _ """ if __name__ == '__main__': demo()
apache-2.0
bnaul/scikit-learn
sklearn/cluster/_dbscan.py
3
16156
# -*- coding: utf-8 -*- """ DBSCAN: Density-Based Spatial Clustering of Applications with Noise """ # Author: Robert Layton <[email protected]> # Joel Nothman <[email protected]> # Lars Buitinck # # License: BSD 3 clause import numpy as np import warnings from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..utils.validation import _check_sample_weight, _deprecate_positional_args from ..neighbors import NearestNeighbors from ._dbscan_inner import dbscan_inner @_deprecate_positional_args def dbscan(X, eps=0.5, *, min_samples=5, metric='minkowski', metric_params=None, algorithm='auto', leaf_size=30, p=2, sample_weight=None, n_jobs=None): """Perform DBSCAN clustering from vector array or distance matrix. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- X : {array-like, sparse (CSR) matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. eps : float, default=0.5 The maximum distance between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function. min_samples : int, default=5 The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : str or callable, default='minkowski' The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by :func:`sklearn.metrics.pairwise_distances` for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square during fit. X may be a :term:`sparse graph <sparse graph>`, in which case only "nonzero" elements may be considered neighbors. metric_params : dict, default=None Additional keyword arguments for the metric function. .. versionadded:: 0.19 algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, default=30 Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, default=2 The power of the Minkowski metric to be used to calculate distance between points. sample_weight : array-like of shape (n_samples,), default=None Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. If precomputed distance are used, parallel execution is not available and thus n_jobs will have no effect. Returns ------- core_samples : ndarray of shape (n_core_samples,) Indices of core samples. labels : ndarray of shape (n_samples,) Cluster labels for each point. Noisy samples are given the label -1. See also -------- DBSCAN An estimator interface for this clustering algorithm. OPTICS A similar estimator interface clustering at multiple values of eps. Our implementation is optimized for memory usage. Notes ----- For an example, see :ref:`examples/cluster/plot_dbscan.py <sphx_glr_auto_examples_cluster_plot_dbscan.py>`. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). It may attract a higher memory complexity when querying these nearest neighborhoods, depending on the ``algorithm``. One way to avoid the query complexity is to pre-compute sparse neighborhoods in chunks using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``, then using ``metric='precomputed'`` here. Another way to reduce memory and computation time is to remove (near-)duplicate points and use ``sample_weight`` instead. :func:`cluster.optics <sklearn.cluster.optics>` provides a similar clustering with lower memory usage. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19. """ est = DBSCAN(eps=eps, min_samples=min_samples, metric=metric, metric_params=metric_params, algorithm=algorithm, leaf_size=leaf_size, p=p, n_jobs=n_jobs) est.fit(X, sample_weight=sample_weight) return est.core_sample_indices_, est.labels_ class DBSCAN(ClusterMixin, BaseEstimator): """Perform DBSCAN clustering from vector array or distance matrix. DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- eps : float, default=0.5 The maximum distance between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function. min_samples : int, default=5 The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by :func:`sklearn.metrics.pairwise_distances` for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a :term:`Glossary <sparse graph>`, in which case only "nonzero" elements may be considered neighbors for DBSCAN. .. versionadded:: 0.17 metric *precomputed* to accept precomputed sparse matrix. metric_params : dict, default=None Additional keyword arguments for the metric function. .. versionadded:: 0.19 algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, default=30 Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, default=None The power of the Minkowski metric to be used to calculate distance between points. If None, then ``p=2`` (equivalent to the Euclidean distance). n_jobs : int, default=None The number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Attributes ---------- core_sample_indices_ : ndarray of shape (n_core_samples,) Indices of core samples. components_ : ndarray of shape (n_core_samples, n_features) Copy of each core sample found by training. labels_ : ndarray of shape (n_samples) Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1. Examples -------- >>> from sklearn.cluster import DBSCAN >>> import numpy as np >>> X = np.array([[1, 2], [2, 2], [2, 3], ... [8, 7], [8, 8], [25, 80]]) >>> clustering = DBSCAN(eps=3, min_samples=2).fit(X) >>> clustering.labels_ array([ 0, 0, 0, 1, 1, -1]) >>> clustering DBSCAN(eps=3, min_samples=2) See also -------- OPTICS A similar clustering at multiple values of eps. Our implementation is optimized for memory usage. Notes ----- For an example, see :ref:`examples/cluster/plot_dbscan.py <sphx_glr_auto_examples_cluster_plot_dbscan.py>`. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). It may attract a higher memory complexity when querying these nearest neighborhoods, depending on the ``algorithm``. One way to avoid the query complexity is to pre-compute sparse neighborhoods in chunks using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``, then using ``metric='precomputed'`` here. Another way to reduce memory and computation time is to remove (near-)duplicate points and use ``sample_weight`` instead. :class:`cluster.OPTICS` provides a similar clustering with lower memory usage. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19. """ @_deprecate_positional_args def __init__(self, eps=0.5, *, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None): self.eps = eps self.min_samples = min_samples self.metric = metric self.metric_params = metric_params self.algorithm = algorithm self.leaf_size = leaf_size self.p = p self.n_jobs = n_jobs def fit(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features, or distance matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features), or \ (n_samples, n_samples) Training instances to cluster, or distances between instances if ``metric='precomputed'``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. sample_weight : array-like of shape (n_samples,), default=None Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with a negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. y : Ignored Not used, present here for API consistency by convention. Returns ------- self """ X = self._validate_data(X, accept_sparse='csr') if not self.eps > 0.0: raise ValueError("eps must be positive.") if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) # Calculate neighborhood for all samples. This leaves the original # point in, which needs to be considered later (i.e. point i is in the # neighborhood of point i. While True, its useless information) if self.metric == 'precomputed' and sparse.issparse(X): # set the diagonal to explicit values, as a point is its own # neighbor with warnings.catch_warnings(): warnings.simplefilter('ignore', sparse.SparseEfficiencyWarning) X.setdiag(X.diagonal()) # XXX: modifies X's internals in-place neighbors_model = NearestNeighbors( radius=self.eps, algorithm=self.algorithm, leaf_size=self.leaf_size, metric=self.metric, metric_params=self.metric_params, p=self.p, n_jobs=self.n_jobs) neighbors_model.fit(X) # This has worst case O(n^2) memory complexity neighborhoods = neighbors_model.radius_neighbors(X, return_distance=False) if sample_weight is None: n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods]) else: n_neighbors = np.array([np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]) # Initially, all samples are noise. labels = np.full(X.shape[0], -1, dtype=np.intp) # A list of all core samples found. core_samples = np.asarray(n_neighbors >= self.min_samples, dtype=np.uint8) dbscan_inner(core_samples, neighborhoods, labels) self.core_sample_indices_ = np.where(core_samples)[0] self.labels_ = labels if len(self.core_sample_indices_): # fix for scipy sparse indexing issue self.components_ = X[self.core_sample_indices_].copy() else: # no core samples self.components_ = np.empty((0, X.shape[1])) return self def fit_predict(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features or distance matrix, and return cluster labels. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features), or \ (n_samples, n_samples) Training instances to cluster, or distances between instances if ``metric='precomputed'``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. sample_weight : array-like of shape (n_samples,), default=None Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with a negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. y : Ignored Not used, present here for API consistency by convention. Returns ------- labels : ndarray of shape (n_samples,) Cluster labels. Noisy samples are given the label -1. """ self.fit(X, sample_weight=sample_weight) return self.labels_
bsd-3-clause
ycaihua/scikit-learn
examples/svm/plot_custom_kernel.py
115
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(x, y): """ We create a custom kernel: (2 0) k(x, y) = x ( ) y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(x, M), y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
hdmetor/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
ngoix/OCRF
examples/model_selection/plot_underfitting_overfitting.py
53
2668
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
belltailjp/scikit-learn
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
FernanOrtega/DAT210x
Module6/assignment2.py
1
6469
import math import pandas as pd # The Dataset comes from: # https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits # At face value, this looks like an easy lab; # But it has many parts to it, so prepare yourself before starting... def load(path_test, path_train): # Load up the data. # You probably could have written this.. with open(path_test, 'r') as f: testing = pd.read_csv(f) with open(path_train, 'r') as f: training = pd.read_csv(f) # The number of samples between training and testing can vary # But the number of features better remain the same! n_features = testing.shape[1] X_test = testing.ix[:,:n_features-1] X_train = training.ix[:,:n_features-1] y_test = testing.ix[:,n_features-1:].values.ravel() y_train = training.ix[:,n_features-1:].values.ravel() # # Special: perc2keep = 1 index = X_train.shape[0] X_train_sliced = X_train[:int(math.ceil(index * perc2keep))] y_train_sliced = y_train[:int(math.ceil(index * perc2keep))] print X_train_sliced.shape print y_train_sliced.shape return X_train_sliced, X_test, y_train_sliced, y_test def peekData(X_train): # The 'targets' or labels are stored in y. The 'samples' or data is stored in X print "Peeking your data..." fig = plt.figure() cnt = 0 for col in range(5): for row in range(10): plt.subplot(5, 10, cnt + 1) plt.imshow(X_train.ix[cnt,:].reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') plt.axis('off') cnt += 1 fig.set_tight_layout(True) #plt.show() def drawPredictions(X_train, X_test, y_train, y_test): fig = plt.figure() # Make some guesses y_guess = model.predict(X_test) # # INFO: This is the second lab we're demonstrating how to # do multi-plots using matplot lab. In the next assignment(s), # it'll be your responsibility to use this and assignment #1 # as tutorials to add in the plotting code yourself! num_rows = 10 num_cols = 5 index = 0 for col in range(num_cols): for row in range(num_rows): plt.subplot(num_cols, num_rows, index + 1) # 8x8 is the size of the image, 64 pixels plt.imshow(X_test.ix[index,:].reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') # Green = Guessed right # Red = Fail! fontcolor = 'g' if y_test[index] == y_guess[index] else 'r' plt.title('Label: %i' % y_guess[index], fontsize=6, color=fontcolor) plt.axis('off') index += 1 fig.set_tight_layout(True) #plt.show() # # TODO: Pass in the file paths to the .tes and the .tra files X_train, X_test, y_train, y_test = load('Datasets/optdigits.tes', 'Datasets/optdigits.tra') import matplotlib.pyplot as plt from sklearn import svm # # Get to know your data. It seems its already well organized in # [n_samples, n_features] form. Our dataset looks like (4389, 784). # Also your labels are already shaped as [n_samples]. #peekData(X_train) # # TODO: Create an SVC classifier. Leave C=1, but set gamma to 0.001 # and set the kernel to linear. Then train the model on the training # data / labels: print "Training SVC Classifier..." # model = svm.SVC(kernel='rbf', C=1, gamma=0.001) model.fit(X_train, y_train) # TODO: Calculate the score of your SVC against the testing data print "Scoring SVC Classifier..." # score = model.score(X_test, y_test) print "Score:\n", score # Visual Confirmation of accuracy drawPredictions(X_train, X_test, y_train, y_test) # # TODO: Print out the TRUE value of the 1000th digit in the test set # By TRUE value, we mean, the actual provided label for that sample # true_1000th_test_value = y_test[999] print "1000th test label: ", true_1000th_test_value # # TODO: Predict the value of the 1000th digit in the test set. # Was your model's prediction correct? # INFO: If you get a warning on your predict line, look at the # notes from the previous module's labs. # guess_1000th_test_value = model.predict(X_test.ix[999,:]) print "1000th test prediction: ", guess_1000th_test_value # # TODO: Use IMSHOW to display the 1000th test image, so you can # visually check if it was a hard image, or an easy image # #fig = plt.figure() #plt.imshow(X_test.ix[999,:].reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') # # TODO: Were you able to beat the USPS advertised accuracy score # of 98%? If so, STOP and answer the lab questions. But if you # weren't able to get that high of an accuracy score, go back # and change your SVC's kernel to 'poly' and re-run your lab # again. # # TODO: Were you able to beat the USPS advertised accuracy score # of 98%? If so, STOP and answer the lab questions. But if you # weren't able to get that high of an accuracy score, go back # and change your SVC's kernel to 'rbf' and re-run your lab # again. # # TODO: Were you able to beat the USPS advertised accuracy score # of 98%? If so, STOP and answer the lab questions. But if you # weren't able to get that high of an accuracy score, go back # and tinker with your gamma value and C value until you're able # to beat the USPS. Don't stop tinkering until you do. =). ################################################# # # TODO: Once you're able to beat the +98% accuracy score of the # USPS, go back into the load() method. Look for the line that # reads "# Special:" # # Immediately under that line, alter X_train and y_train ONLY. # Keep just the ___FIRST___ 4% of the samples. In other words, # for every 100 samples found, throw away 96 of them. Make sure # all the samples (and labels) you keep come from the start of # X_train and y_train. # If the first 4% is a decimal number, then use int + ceil to # round up to the nearest whole integer. # That operation might require some Pandas indexing skills, or # perhaps some numpy indexing skills if you'd like to go that # route. Feel free to ask on the class forum if you want; but # try to exercise your own muscles first, for at least 30 # minutes, by reviewing the Pandas documentation and stack # overflow. Through that, in the process, you'll pick up a lot. # Part of being a machine learning practitioner is know what # questions to ask and where to ask them, so this is a great # time to start! # Re-Run your application after throwing away 96% your training # data. What accuracy score do you get now? # # TODO: Lastly, change your kernel back to linear and run your # assignment one last time. What's the accuracy score this time? # Surprised? plt.show()
mit
kernc/scikit-learn
sklearn/gaussian_process/kernels.py
24
66334
"""Kernels for Gaussian process regression and classification. The kernels in this module allow kernel-engineering, i.e., they can be combined via the "+" and "*" operators or be exponentiated with a scalar via "**". These sum and product expressions can also contain scalar values, which are automatically converted to a constant kernel. All kernels allow (analytic) gradient-based hyperparameter optimization. The space of hyperparameters can be specified by giving lower und upper boundaries for the value of each hyperparameter (the search space is thus rectangular). Instead of specifying bounds, hyperparameters can also be declared to be "fixed", which causes these hyperparameters to be excluded from optimization. """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause # Note: this module is strongly inspired by the kernel module of the george # package. from abc import ABCMeta, abstractmethod from collections import namedtuple import math import numpy as np from scipy.special import kv, gamma from scipy.spatial.distance import pdist, cdist, squareform from ..metrics.pairwise import pairwise_kernels from ..externals import six from ..base import clone from sklearn.externals.funcsigs import signature class Hyperparameter(namedtuple('Hyperparameter', ('name', 'value_type', 'bounds', 'n_elements', 'fixed'))): """A kernel hyperparameter's specification in form of a namedtuple. Attributes ---------- name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name "x" must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only "numeric" hyperparameters are supported. bounds : pair of floats >= 0 or "fixed" The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string "fixed" is passed as bounds, the hyperparameter's value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the "fixed" is derived based on the given bounds. """ # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __init__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None): if not isinstance(bounds, six.string_types) or bounds != "fixed": bounds = np.atleast_2d(bounds) if n_elements > 1: # vector-valued parameter if bounds.shape[0] == 1: bounds = np.repeat(bounds, n_elements, 0) elif bounds.shape[0] != n_elements: raise ValueError("Bounds on %s should have either 1 or " "%d dimensions. Given are %d" % (name, n_elements, bounds.shape[0])) if fixed is None: fixed = isinstance(bounds, six.string_types) and bounds == "fixed" return super(Hyperparameter, cls).__new__( cls, name, value_type, bounds, n_elements, fixed) class Kernel(six.with_metaclass(ABCMeta)): """Base class for all kernels.""" def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() # introspect the constructor arguments to find the model parameters # to represent cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) init_sign = signature(init) args, varargs = [], [] for parameter in init_sign.parameters.values(): if (parameter.kind != parameter.VAR_KEYWORD and parameter.name != 'self'): args.append(parameter.name) if parameter.kind == parameter.VAR_POSITIONAL: varargs.append(parameter.name) if len(varargs) != 0: raise RuntimeError("scikit-learn kernels should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s doesn't follow this convention." % (cls, )) for arg in args: params[arg] = getattr(self, arg, None) return params def set_params(self, **params): """Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def clone_with_theta(self, theta): """Returns a clone of self with given hyperparameters theta. """ cloned = clone(self) cloned.theta = theta return cloned @property def n_dims(self): """Returns the number of non-fixed hyperparameters of the kernel.""" return self.theta.shape[0] @property def hyperparameters(self): """Returns a list of all hyperparameter specifications.""" r = [] for attr, value in sorted(self.__dict__.items()): if attr.startswith("hyperparameter_"): r.append(value) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ theta = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: theta.append(getattr(self, hyperparameter.name)) if len(theta) > 0: return np.log(np.hstack(theta)) else: return np.array([]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ i = 0 for hyperparameter in self.hyperparameters: if hyperparameter.fixed: continue if hyperparameter.n_elements > 1: # vector-valued parameter setattr(self, hyperparameter.name, np.exp(theta[i:i + hyperparameter.n_elements])) i += hyperparameter.n_elements else: setattr(self, hyperparameter.name, np.exp(theta[i])) i += 1 if i != len(theta): raise ValueError("theta has not the correct number of entries." " Should be %d; given are %d" % (i, len(theta))) @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ bounds = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: bounds.append(hyperparameter.bounds) if len(bounds) > 0: return np.log(np.vstack(bounds)) else: return np.array([]) def __add__(self, b): if not isinstance(b, Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b): if not isinstance(b, Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b): if not isinstance(b, Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b): if not isinstance(b, Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def __pow__(self, b): return Exponentiation(self, b) def __eq__(self, b): if type(self) != type(b): return False params_a = self.get_params() params_b = b.get_params() for key in set(list(params_a.keys()) + list(params_b.keys())): if np.any(params_a.get(key, None) != params_b.get(key, None)): return False return True def __repr__(self): return "{0}({1})".format(self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))) @abstractmethod def __call__(self, X, Y=None, eval_gradient=False): """Evaluate the kernel.""" @abstractmethod def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ @abstractmethod def is_stationary(self): """Returns whether the kernel is stationary. """ class NormalizedKernelMixin(object): """Mixin for kernels which are normalized: k(X, X)=1.""" def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.ones(X.shape[0]) class StationaryKernelMixin(object): """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).""" def is_stationary(self): """Returns whether the kernel is stationary. """ return True class CompoundKernel(Kernel): """Kernel which is composed of a set of other kernels.""" def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i * k_dims:(i + 1) * k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all([self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]) def is_stationary(self): """Returns whether the kernel is stationary. """ return np.all([kernel.is_stationary() for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T class KernelOperator(Kernel): """Base class for all kernel operators. """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(k1=self.k1, k2=self.k2) if deep: deep_items = self.k1.get_params().items() params.update(('k1__' + k, val) for k, val in deep_items) deep_items = self.k2.get_params().items() params.update(('k2__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.k1.hyperparameters: r.append(Hyperparameter("k1__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) for hyperparameter in self.k2.hyperparameters: r.append(Hyperparameter("k2__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.append(self.k1.theta, self.k2.theta) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k1_dims = self.k1.n_dims self.k1.theta = theta[:k1_dims] self.k2.theta = theta[k1_dims:] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ if self.k1.bounds.size == 0: return self.k2.bounds if self.k2.bounds.size == 0: return self.k1.bounds return np.vstack((self.k1.bounds, self.k2.bounds)) def __eq__(self, b): if type(self) != type(b): return False return (self.k1 == b.k1 and self.k2 == b.k2) \ or (self.k1 == b.k2 and self.k2 == b.k1) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.k1.is_stationary() and self.k2.is_stationary() class Sum(KernelOperator): """Sum-kernel k1 + k2 of two kernels k1 and k2. The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the sum-kernel k2 : Kernel object The second base-kernel of the sum-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y) + self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) + self.k2.diag(X) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Product(KernelOperator): """Product-kernel k1 * k2 of two kernels k1 and k2. The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the product-kernel k2 : Kernel object The second base-kernel of the product-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y) * self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) * self.k2.diag(X) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) class Exponentiation(Kernel): """Exponentiate kernel by given exponent. The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent Parameters ---------- kernel : Kernel object The base kernel exponent : float The exponent for the base kernel """ def __init__(self, kernel, exponent): self.kernel = kernel self.exponent = exponent def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(kernel=self.kernel, exponent=self.exponent) if deep: deep_items = self.kernel.get_params().items() params.update(('kernel__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.kernel.hyperparameters: r.append(Hyperparameter("kernel__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return self.kernel.theta @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ self.kernel.theta = theta @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return self.kernel.bounds def __eq__(self, b): if type(self) != type(b): return False return (self.kernel == b.kernel and self.exponent == b.exponent) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K, K_gradient = self.kernel(X, Y, eval_gradient=True) K_gradient *= \ self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1) return K ** self.exponent, K_gradient else: K = self.kernel(X, Y, eval_gradient=False) return K ** self.exponent def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.kernel.diag(X) ** self.exponent def __repr__(self): return "{0} ** {1}".format(self.kernel, self.exponent) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.kernel.is_stationary() class ConstantKernel(StationaryKernelMixin, Kernel): """Constant kernel. Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process. k(x_1, x_2) = constant_value for all x_1, x_2 Parameters ---------- constant_value : float, default: 1.0 The constant value which defines the covariance: k(x_1, x_2) = constant_value constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on constant_value """ def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)): self.constant_value = constant_value self.constant_value_bounds = constant_value_bounds self.hyperparameter_constant_value = \ Hyperparameter("constant_value", "numeric", constant_value_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = self.constant_value * np.ones((X.shape[0], Y.shape[0])) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, self.constant_value * np.ones((X.shape[0], X.shape[0], 1))) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.constant_value * np.ones(X.shape[0]) def __repr__(self): return "{0:.3g}**2".format(np.sqrt(self.constant_value)) class WhiteKernel(StationaryKernelMixin, Kernel): """White kernel. The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level. k(x_1, x_2) = noise_level if x_1 == x_2 else 0 Parameters ---------- noise_level : float, default: 1.0 Parameter controlling the noise level noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on noise_level """ def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)): self.noise_level = noise_level self.noise_level_bounds = noise_level_bounds self.hyperparameter_noise_level = \ Hyperparameter("noise_level", "numeric", noise_level_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.noise_level * np.ones(X.shape[0]) def __repr__(self): return "{0}(noise_level={1:.3g})".format(self.__class__.__name__, self.noise_level) class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Radial-basis function kernel (aka squared-exponential kernel). The RBF kernel is a stationary kernel. It is also known as the "squared exponential" kernel. It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by: k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2) This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): if np.iterable(length_scale): if len(length_scale) > 1: self.anisotropic = True self.length_scale = np.asarray(length_scale, dtype=np.float) else: self.anisotropic = False self.length_scale = float(length_scale[0]) else: self.anisotropic = False self.length_scale = float(length_scale) self.length_scale_bounds = length_scale_bounds if self.anisotropic: # anisotropic length_scale self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds, len(length_scale)) else: self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or self.length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (self.length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: raise Exception("Anisotropic kernels require that the number " "of length scales and features match.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, self.length_scale) class Matern(RBF): """ Matern kernel. The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale nu: float, default: 1.5 The parameter nu controlling the smoothness of the learned function. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost (appr. 10 times higher) since they require to evaluate the modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not optimized. """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): super(Matern, self).__init__(length_scale, length_scale_bounds) self.nu = nu def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :])**2 \ / (self.length_scale ** 2) else: D = squareform(dists**2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D \ / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = \ 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}], nu={2:.3g})".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale)), self.nu) else: # isotropic return "{0}(length_scale={1:.3g}, nu={2:.3g})".format( self.__class__.__name__, self.length_scale, self.nu) class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Rational Quadratic kernel. The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. alpha : float > 0, default: 1.0 Scale mixture parameter length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on alpha """ def __init__(self, length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-5, 1e5), alpha_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.alpha = alpha self.length_scale_bounds = length_scale_bounds self.alpha_bounds = alpha_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_alpha = \ Hyperparameter("alpha", "numeric", alpha_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='sqeuclidean')) tmp = dists / (2 * self.alpha * self.length_scale ** 2) base = (1 + tmp) K = base ** -self.alpha np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='sqeuclidean') K = (1 + dists / (2 * self.alpha * self.length_scale ** 2)) \ ** -self.alpha if eval_gradient: # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ dists * K / (self.length_scale ** 2 * base) length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # l is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to alpha if not self.hyperparameter_alpha.fixed: alpha_gradient = \ K * (-self.alpha * np.log(base) + dists / (2 * self.length_scale ** 2 * base)) alpha_gradient = alpha_gradient[:, :, np.newaxis] else: # alpha is kept fixed alpha_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((alpha_gradient, length_scale_gradient)) else: return K def __repr__(self): return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format( self.__class__.__name__, self.alpha, self.length_scale) class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Exp-Sine-Squared kernel. The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2 Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity """ def __init__(self, length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-5, 1e5), periodicity_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.periodicity = periodicity self.length_scale_bounds = length_scale_bounds self.periodicity_bounds = periodicity_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_periodicity = \ Hyperparameter("periodicity", "numeric", periodicity_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='euclidean')) arg = np.pi * dists / self.periodicity sin_of_arg = np.sin(arg) K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2) if eval_gradient: cos_of_arg = np.cos(arg) # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ 4 / self.length_scale**2 * sin_of_arg**2 * K length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # length_scale is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to p if not self.hyperparameter_periodicity.fixed: periodicity_gradient = \ 4 * arg / self.length_scale**2 * cos_of_arg \ * sin_of_arg * K periodicity_gradient = periodicity_gradient[:, :, np.newaxis] else: # p is kept fixed periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((length_scale_gradient, periodicity_gradient)) else: return K def __repr__(self): return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format( self.__class__.__name__, self.length_scale, self.periodicity) class DotProduct(Kernel): """Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, \sigma_0^2) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by k(x_i, x_j) = sigma_0 ^ 2 + x_i \cdot x_j The DotProduct kernel is commonly combined with exponentiation. Parameters ---------- sigma_0 : float >= 0, default: 1.0 Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on l """ def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)): self.sigma_0 = sigma_0 self.sigma_0_bounds = sigma_0_bounds self.hyperparameter_sigma_0 = \ Hyperparameter("sigma_0", "numeric", sigma_0_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: K = np.inner(X, X) + self.sigma_0 ** 2 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") K = np.inner(X, Y) + self.sigma_0 ** 2 if eval_gradient: if not self.hyperparameter_sigma_0.fixed: K_gradient = np.empty((K.shape[0], K.shape[1], 1)) K_gradient[..., 0] = 2 * self.sigma_0 ** 2 return K, K_gradient else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.einsum('ij,ij->i', X, X) + self.sigma_0 ** 2 def is_stationary(self): """Returns whether the kernel is stationary. """ return False def __repr__(self): return "{0}(sigma_0={1:.3g})".format( self.__class__.__name__, self.sigma_0) # adapted from scipy/optimize/optimize.py for functions with 2d output def _approx_fprime(xk, f, epsilon, args=()): f0 = f(*((xk,) + args)) grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float) ei = np.zeros((len(xk), ), float) for k in range(len(xk)): ei[k] = 1.0 d = epsilon * ei grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k] ei[k] = 0.0 return grad class PairwiseKernel(Kernel): """Wrapper for kernels in sklearn.metrics.pairwise. A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise. Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed. Parameters ---------- gamma: float >= 0, default: 1.0 Parameter gamma of the pairwise kernel specified by metric gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on gamma metric : string, or callable, default: "linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. pairwise_kernels_kwargs : dict, default: None All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function. """ def __init__(self, gamma=1.0, gamma_bounds=(1e-5, 1e5), metric="linear", pairwise_kernels_kwargs=None): self.gamma = gamma self.gamma_bounds = gamma_bounds self.hyperparameter_gamma = \ Hyperparameter("gamma", "numeric", gamma_bounds) self.metric = metric if pairwise_kernels_kwargs is not None: self.pairwise_kernels_kwargs = pairwise_kernels_kwargs else: self.pairwise_kernels_kwargs = {} def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) K = pairwise_kernels(X, Y, metric=self.metric, gamma=self.gamma, filter_params=True, **self.pairwise_kernels_kwargs) if eval_gradient: if self.hyperparameter_gamma.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # approximate gradient numerically def f(gamma): # helper function return pairwise_kernels( X, Y, metric=self.metric, gamma=np.exp(gamma), filter_params=True, **self.pairwise_kernels_kwargs) return K, _approx_fprime(self.theta, f, 1e-10) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ # We have to fall back to slow way of computing diagonal return np.apply_along_axis(self, 1, X)[:, 0] def is_stationary(self): """Returns whether the kernel is stationary. """ return self.metric in ["rbf"] def __repr__(self): return "{0}(gamma={1}, metric={2})".format( self.__class__.__name__, self.gamma, self.metric)
bsd-3-clause
acompa/leptoid
leptoid/forecasting.py
1
4776
""" Leptoid interface to R for forecasting. Notes on rpy2: (1) rpy2 maintains a namespace of vars--look for notes on its current state (2) R's forecast library lets one specify error, seasonality, and trend type from {none, additive, multiplicative} (3) for starters, specify additive trend, multiplicative seasonality Uses R's forecast package to generate forecasts. See the paper for more details: http://www.jstatsoft.org/v27/i03/paper """ import datetime import numpy as np import logging LOG = logging.getLogger('forecasting') # Importing rpy2 and working with Numpy objects. import rpy2.robjects as robjects import rpy2.robjects.numpy2ri rpy2.robjects.numpy2ri.activate() # Importing plotting functions from R. RBMP = robjects.r['bitmap'] RPLOT = robjects.r['plot'] RDEVOFF = robjects.r['dev.off'] # Importing packages from R. from rpy2.robjects.packages import importr forecast = importr('forecast') graphics = importr('graphics') from leptoid.utils import get_forecast_attribute RECENT_DATA_WINDOW = 120 PLOT_DIRECTORY = '/var/leptoid/img/' PLOT_SIGNIFICANCE_THRESHOLD = 1E-5 def add_new_series(nseries, seriesname='nseries'): """Adds time series to R's global environment as ts object. """ freq = len(nseries) robjects.globalenv['raw_vector'] = nseries robjects.r('%s <- ts(raw_vector, frequency=%i)' % (seriesname, freq)) def _forecast_utilization(series, model_config=None): """ Generate a forecast using R functions. Parameters ---------- series np.array containing sample data model_config dict with values for 'model_type' and 'horizon' Returns an R object with these attributes: model: a list with model information, mean: forecasted values for nseries, level: confidence values for prediction, x: the original values in nseries, upper: upper limit for confidence interval lower: lower limit " " " " " fitted: fitted values (aka one-step ahead forecasts) method: forecasting method used (as str) residuals: errors from fitted models (ie. x - fitted) Returns None if no sample data is available for the last ${recent_data_window} observations in the sample. """ # Defining default settings. if model_config is None: model_type = "ZZZ" horizon = int(0.1 * len(series)) else: model_type = model_config['model_type'] horizon = model_config['horizon'] # Handling case where recent samples are missing or not available. if (series[-1 * RECENT_DATA_WINDOW:] == 0).all(): forecast_output = None else: etsout = forecast.ets(series, model=model_type) forecast_output = forecast.forecast(etsout, h=horizon) return forecast_output def forecast(queue): """ Forecasting values using R's forecast package. Series reporting empty data over the last ${recent_data_window} minutes will return None. Parameters ---------- queue pandas.TimeSeries with utilization data. Data is extracted from the underlying buffer using np.frombuffer. service, instance_id information for instance, used when plotting TODO: Currently Leptoid uses R via rpy2. This will change since rpy2 is poorly maintained. """ LOG.info("Generating forecast for %s:%s" % (queue.service, queue.instance_id)) # Retrieving forecast from rpy2, then extracting the attributes # (forecasted utilization, one-step ahead forecast) we want. model_output = _forecast_utilization(np.frombuffer(queue.utilization.data)) # Handling case where output == None, indicating a dormant instance. if model_output == None: in_sample_forecast = None util_estimate = None else: in_sample_forecast = get_forecast_attribute(model_output, "fitted") util_estimate = get_forecast_attribute(model_output, "mean") # Let's avoid empty plots if np.max(util_estimate) > PLOT_SIGNIFICANCE_THRESHOLD: plot_forecast(model_output, queue) return (in_sample_forecast, util_estimate) def plot_forecast(model_output, queue): """ Plots output from R forecast. Uses R functions extracted via rpy2 (see global vars above). Parameters ---------- model_output R object returned by leptoid.forecasting._forecast_utilization(). Contains forecast information (confidence intervals, etc.). queue leptoid.ServiceQueue with information about the service Returns nothing, but saves a plot to disk with a timestamp. """ forecast_method = get_forecast_attribute(model_output, attr='method') n = datetime.datetime.now() RBMP('%s%s-%s-%i-%i-%i-%i:%i.jpg' % (PLOT_DIRECTORY, queue.service, queue.instance_id, n.year, n.month, n.day, n.hour, n.minute), width=1400, height=800, units='px', type='jpeg') RPLOT(model_output, main="Util forecast for %s:%s (using %s)" % (queue.service, queue.instance_id, forecast_method), xlab="Minutes elapsed since %s" % queue.get_first_timestamp()) RDEVOFF()
apache-2.0
danielelinaro/dynclamp
python/lcg/process_ecode.py
1
13300
import lcg from glob import glob import numpy as np import os import sys import matplotlib.pylab as plt import aec #from scipy.interpolate import interp1d plt.rc('font',**{'family':'sans-serif','sans-serif':['Arial'], 'size': 8}) plt.rc('axes', linewidth = 1) plt.rc("xtick", direction="out") plt.rc("ytick", direction="out") plt.rc("ytick", direction="out") def gatherH5files(folder): files = glob('{0}/*.h5'.format(folder)) kfiles = glob('{0}/*_kernel*.dat'.format(folder)) return files, kfiles def argfindspks(data, threshold=-20,deadwindow=30): ''' Extracts the indexes of the peaks in the data with threshold crossing. Uses a dead window/minimum peak distance. ''' N = len(data) ii = np.arange(0,N) # threshold crossing dx = data > threshold idx=ii[dx][np.diff(ii[dx])>1] idx = np.append(idx,[ii[dx][-1]]) # find peaks using the dead window index = [] for ii in idx: lower = ii - deadwindow upper = ii + deadwindow if lower < 0: lower = 0 if upper > N: upper = N index.append(lower + np.argmax(data[lower:upper])) return np.array(index) def compensateVoltage(ent, Ke, entNames = ['AnalogInput', 'Waveform']): for e in ent: if e['name'] in [entNames[0]]: V = e['data'] if e['name'] in [entNames[1]]: I = e['data'] metadata = e['metadata'] V = aec.compensate(V, I, Ke) return V, I, metadata def analyseAPprotocol(folder, tpre = 5, tpost = 20, ax = None): files, kfiles = gatherH5files(folder) # Uses the first kernel Ke = np.loadtxt(kfiles[0]) / 1e9 V = [] I = [] idx = [] ktrials = [ os.path.basename(k).split('_')[0] for k in kfiles] print('Analysing spike shapes...') for f in files: ent, info = lcg.loadH5Trace(f) if not os.path.basename(f).split('.')[0] in ktrials: try: inset_samples except NameError: inset_samples = np.arange(np.floor(-(tpre*1e-3)/info['dt']), np.floor(+(tpost*1e-3) / info['dt']), dtype = int) # time_actual = np.linspace( - tpre, tpost, len(inset_samples)) time = np.linspace( - tpre, tpost, len(inset_samples)) tmpV, tmpI, meta = compensateVoltage(ent, Ke, ['AnalogInput','Waveform']) spks = argfindspks(tmpV,-20) if len(spks) == 1: # f = interp1d(time_actual, tmpV[spks + inset_samples], 'cubic') # V.append(f(time)) V.append(tmpV[spks + inset_samples]) I.append(tmpI[spks + inset_samples]) V = np.vstack(V).T I = np.vstack(I).T dt = info['dt'] * 1e3 dV3 = np.diff(V, 3, 0)/(dt ** 3) dV1 = np.diff(V, 1, 0)/dt dV3Thresh = 10000 # Not counting for the extra points resulting from the diff idx = np.array([np.where(dV3[::,ii]>dV3Thresh)[0][0] for ii in range(dV3.shape[1])]) + 3 idxmean = np.where(np.mean(dV3, 1)>dV3Thresh)[0][0] + 3 mV = np.mean(V, 1) # mdV1 = np.mean(dV1[1:,], 1) # ax.plot(mV[1:],mdV1, color = 'r', lw = 1) # ax.plot(mV[idxmean + 1] + [ - 5,+ 5], mdV1[idxmean] + [0, 0], 'k--') ax.plot(time, V, color = 'gray', lw = 0.8) [ax.plot(time[ii], V[ii, jj], 'ro', markerfacecolor = 'gray', markersize = 2) for jj, ii in enumerate(idx)] ax.plot(time,mV, 'r', lw = 1) ax.axis('tight') ax.set_xticks(np.unique(np.linspace(-tpre, tpost, 10).astype(int))) ax.set_yticks(np.unique(np.linspace(np.min(mV), max(mV), 5).astype(int))) ax.plot(time[np.mean(idx)] + [0, 0],ax.get_ylim(),'k--') tmp = mV[np.mean(idx)] + [0, 0] ax.plot([ - tpre, tpost],tmp, 'k--') # Scale in right corner ax.set_xticks(np.linspace(-tpre, tpost, 12).astype(int)) ax.set_yticks(np.linspace(min(mV), max(mV), 5).astype(int)) tmpx = ax.get_xticks() tmpy = ax.get_yticks() ax.plot(tmpx[ -4:-2], tmpy[ - 2] + [0, 0], 'k') ax.plot(tmpx[ - 4] + [0, 0], tmpy[ - 2::], 'k') ax.text(tmpx[ - 4], tmpy[-2] - 2, '{0}ms'.format(np.diff(tmpx[0: 2])[0]), va = 'top', ha = 'left', fontsize = 7) ax.text(tmpx[ - 4], tmpy[-1], '{0}mV'.format(np.diff(tmpy[-2::])[0]), va = 'top', ha = 'right', fontsize = 7, rotation =90) return mV[np.mean(idx)] def analyseVIprotocol(folder, ax = None): files, kfiles = gatherH5files(folder) Ke = np.loadtxt(kfiles[0]) / 1e9 V = [] I = [] idx = [] ktrials = [ os.path.basename(k).split('_')[0] for k in kfiles] print('Analysing hyperpolarizing current steps...') for f in files: ent, info = lcg.loadH5Trace(f) if not os.path.basename(f).split('.')[0] in ktrials: tmpV, tmpI, meta = compensateVoltage(ent, Ke, ['AnalogInput', 'Waveform']) V.append(tmpV) I.append(tmpI) time = np.linspace( 0, info['tend'], len(tmpV)) prot_time = np.cumsum(meta[::, 0]) idx = np.where(time > prot_time[-3] - .2)[0] V = np.vstack(V).T I = np.vstack(I).T ax[1].plot(time[idx], V[idx,::], 'k', clip_on = False) ax[0].plot(time[idx], I[idx,::], 'k', clip_on = False) # Scale in left corner for a in ax: a.axis('tight') a.clipbox = False a.set_xlim([time[idx[0]], time[idx[-1]]]) tmpx = a.get_xlim() tmpy = a.get_ylim() a.set_yticks(np.linspace(tmpy[0],tmpy[-1], 4).astype(int)) a.set_xticks(np.round(np.linspace(tmpx[0],tmpx[ -1], 4), 3) ) # print time[idx[0]] tmpx = ax[1].get_xticks() tmpy = ax[1].get_yticks() ax[1].plot(tmpx[ -1] + [0, 0], tmpy[:2] + 2, 'k', clip_on=False) ax[1].text(tmpx[ -1] + 0.05, tmpy[ 1], '{0}mV'.format(np.diff(tmpy[-2::])[0]), va = 'top', ha = 'left', fontsize = 7, rotation =90) ax[1].plot(tmpx[-2:], tmpy[0] + [2, 2], 'k', clip_on=False) ax[1].text(tmpx[ -2] , tmpy[0] + 3, '{0}s'.format(np.diff(tmpx[0: 2])[0]), va = 'bottom', ha = 'left', fontsize = 7) tmpx = ax[0].get_xticks() tmpy = ax[0].get_yticks() ax[0].plot(tmpx[ -1] + [0, 0], tmpy[:2], 'k', clip_on=False) ax[0].text(tmpx[ -1] + 0.05, tmpy[ 1], '{0}pA'.format(np.diff(tmpy[-2::])[0]), va = 'top', ha = 'left', fontsize = 7, rotation =90) return None # def analyseTAUprotocol(folder, ax = None): files, kfiles = gatherH5files(folder) Ke = np.loadtxt(kfiles[0]) / 1e9 V = [] I = [] spks = [] ktrials = [ os.path.basename(k).split('_')[0] for k in kfiles] print('Analysing tau protocol...') for f in files: ent, info = lcg.loadH5Trace(f) if not os.path.basename(f).split('.')[0] in ktrials: tmpV, tmpI, meta = compensateVoltage(ent, Ke, ['AnalogInput', 'Waveform']) V.append(tmpV) I.append(tmpI) time = np.linspace( 0, info['tend'], len(tmpV)) prot_time = np.cumsum(meta[::, 0]) idx = np.where((time > prot_time[0] - 0.0055) & (time < prot_time[1] + 0.1))[0] fitidx = np.where((time > prot_time[1] + 0.0007) & (time < prot_time[1] + 0.08))[0] V = np.vstack(V).T I = np.vstack(I).T ax.plot(time[idx], V[idx,], color = 'gray', lw = 0.6) ax.plot(time[idx], np.mean(V[idx,], 1), color = 'k', lw =.7) func = lambda x, a, b, c, d, e: a * (1-np.exp( -x / b )) + c * (1-np.exp( -x / d )) + e from scipy.optimize import curve_fit popt, pcov = curve_fit(func, np.reshape(np.repeat(time - time[fitidx[0]],V.shape[1]),V.shape)[fitidx,: ].flatten(), V[fitidx,:].flatten()) ax.plot(time[fitidx[0]:idx[-1] ], func(time[fitidx[0]:idx[-1]] - time[fitidx[0]],*popt), 'r') # import ipdb; ipdb.set_trace() ax.axis('tight') remove_spines(ax) ax.set_ylabel('Voltage (mV)') ax.set_xlabel('Time (s)') return popt def analyseSTEPprotocol(folder, ax = None): files, kfiles = gatherH5files(folder) Ke = np.loadtxt(kfiles[0]) / 1e9 V = [] I = [] spks = [] ktrials = [ os.path.basename(k).split('_')[0] for k in kfiles] print('Analysing step protocol...') spks = [] for f in files: ent, info = lcg.loadH5Trace(f) if not os.path.basename(f).split('.')[0] in ktrials: tmpV, tmpI, meta = compensateVoltage(ent, Ke, ['AnalogInput', 'Waveform']) V.append(tmpV) I.append(tmpI) spks.append(argfindspks(tmpV,-20)) time = np.linspace( 0, info['tend'], len(tmpV)) prot_time = np.cumsum(meta[::, 0]) idx = np.where((time > prot_time[0] - 0.1) & (time < prot_time[1] + .1))[0] V = np.vstack(V).T I = np.vstack(I).T ax.plot(time[idx], V[idx,], color = 'gray', lw = 0.6) ax.plot(time[idx], V[idx,0], color = 'k', lw = 1) spks = [time[sp] for sp in spks] isi = [np.diff(sp) for sp in spks] adapt_coeff = [(i[-1] - i[0]) / i[0] for i in isi] # print adapt_coeff ax.axis('tight') remove_spines(ax) ax.set_ylabel('Voltage (mV)') ax.set_xlabel('Time (s)') return np.mean(adapt_coeff) def analyseRAMPprotocol(folder, ax = None): files, kfiles = gatherH5files(folder) Ke = np.loadtxt(kfiles[0]) / 1e9 V = [] I = [] spks = [] ktrials = [ os.path.basename(k).split('_')[0] for k in kfiles] print('Analysing ramp protocol...') for f in files: ent, info = lcg.loadH5Trace(f) if not os.path.basename(f).split('.')[0] in ktrials: tmpV, tmpI, meta = compensateVoltage(ent, Ke, ['AnalogInput', 'Waveform']) V.append(tmpV) I.append(tmpI) spks.append(argfindspks(tmpV,-20)) time = np.linspace( 0, info['tend'], len(tmpV)) prot_time = np.cumsum(meta[::, 0]) idx = np.where(time > prot_time[-3])[0] V = np.vstack(V).T I = np.vstack(I).T ax[0].plot(time[idx], V[idx, 0], 'k') IFR_time = [] IFR = [] threshold_current = [I[ii[0], jj] for jj, ii in enumerate(spks)] for sp in spks: sp = time[sp] IFR_time.append(sp[1:] - np.diff(sp) / 2) IFR.append(1./ np.diff(sp)) ax[1].plot(np.hstack(IFR_time), np.hstack(IFR), 'r-o', markerfacecolor = 'gray', markeredgecolor = 'k', markersize = 2) for a in ax: a.axis('tight') tmp = ax[0].get_ylim() ax[1].set_xlim(ax[0].get_xlim()) ax[1].set_ylim([0, max(ax[1].get_ylim()) * 1.2]) ax[0].set_ylim(tmp) remove_spines(ax[0]) ax[0].set_ylabel('Voltage (mV)') ax[0].set_xlabel('Time (s)') remove_spines(ax[1], v = 'right') ax[1].spines['top'].set_visible(False) ax[1].xaxis.set_visible(False) ax[1].spines['right'].set_color('red') ax[1].tick_params(axis='y', colors='red') ax[1].set_ylabel('Firing Freq (Hz)', color = 'red') return np.mean(threshold_current) def remove_spines(ax, h = 'bottom', v = 'left'): nv = 'right' nh = 'top' if h in ['top']: nh = 'bottom' ax.get_xaxis().tick_top() else: ax.get_xaxis().tick_bottom() if v in ['right']: nh = 'left' ax.get_yaxis().tick_right() else: ax.get_yaxis().tick_left() ax.spines[nv].set_visible(False) ax.spines[nh].set_visible(False) ax.spines[v].set_visible(True) ax.spines[h].set_visible(True) ax.yaxis.set_label_position(v) ax.xaxis.set_label_position(h) ax.xaxis.set_ticks_position(h) ax.yaxis.set_ticks_position(v) def create_figure(): fig = plt.figure(figsize = (7, 7), facecolor = 'w', edgecolor = None) ax = [] ax.append(fig.add_axes([.05, .6, .45, .3])) ax.append(fig.add_axes([.5, .6, .45, .1])) ax.append(fig.add_axes([.5, .72, .45, .2])) ax.append(fig.add_axes([.1, .37, .8, .2])) newax = plt.axes([.1, .37, .8, .2], axisbg='none') ax.append(fig.add_axes(newax)) ax.append(fig.add_axes([.1, .1, .3, .2])) ax.append(fig.add_axes([.5, .1, .4, .2])) fig.text(0.05,0.92,'A',fontsize=10,verticalalignment='bottom', horizontalalignment='right') fig.text(0.45,0.92,'B',fontsize=10,verticalalignment='bottom', horizontalalignment='right') fig.text(0.05,0.58,'C',fontsize=10,verticalalignment='bottom', horizontalalignment='right') fig.text(0.05,0.3,'D',fontsize=10,verticalalignment='bottom', horizontalalignment='right') fig.text(0.45,0.3,'E',fontsize=10,verticalalignment='bottom', horizontalalignment='right') return (fig, ax) def analyze(directory='.'): (fig, ax) = create_figure() threshold = analyseAPprotocol('ap/01', ax = ax[0]) analyseVIprotocol('vi/01', ax[1:3]) analyseRAMPprotocol('ramp/01', ax[3: 5]) analyseTAUprotocol('tau/01', ax[5]) analyseSTEPprotocol('steps/01', ax[6]) for a in ax[:3]: a.axis('off') args = {} args['format'] = 'pdf' print('Saving figure...') figname = 'ecode{0}.'.format('01') fig.savefig('{0}{1}'.format(figname, args['format']),**args) args['format'] = 'png' fig.savefig('{0}{1}'.format(figname, args['format']),**args) plt.show()
gpl-3.0
UNR-AERIAL/scikit-learn
sklearn/svm/tests/test_sparse.py
32
12988
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
bilderbuchi/OF_repo_utilities
plot_issue_stats.py
1
11205
#!/usr/bin/env python3 """Main script for openFrameworks Github issues visualization.""" import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates import datetime import dateutil import pickle import github_tools import os import sys from subprocess import check_output from operator import itemgetter # TODO: # possibly use a database instead of pickling: https://github.com/pudo/dataset # link plots # Calculate average, stddev, max of time-to-fix, open time. # other plots: # % issues without label # issue longest silent # longest open issue # most issues closed/opened per week/7day window # % without any comment # most bugs squashed def naive_dt(aware_datetime): """ Return a naive datetime.datetime object converted from a passed aware one. Enables comparison of aware datetimes from the local repo and the naive ones coming from PyGithub. """ return aware_datetime.astimezone(dateutil.tz.tzutc()).replace(tzinfo=None) def annot_tags_events(axis, tag_list, events, event_titles): """Add tag and event annotations to a given axis""" for _t in tag_list: axis.axvline(_t['date'], color='y', alpha=0.5) # coordinates need to be converted to mpl internal format, see # http://stackoverflow.com/a/11068038/599884 axis.annotate(_t['name'], xy=(mdates.date2num(_t['date']), 0.90), xycoords=("data", "axes fraction"), ha='right', va='top') for e in range(len(event_titles)): axis.axvspan(events[e][0], events[e][1], color='y', alpha=0.5) axis.annotate(event_titles[e], xy=(mdates.date2num(events[e][0]), 0.97), xycoords=("data", "axes fraction"), ha='right', va='top') def main(): """Main function for plot_issue_stats""" ########################################################################### # CONFIGURATION target_branch = 'master' mpl.rc('axes', grid=True, axisbelow=True) mpl.rc('grid', linestyle='-', color='lightgray') mpl.rc('figure', dpi=90) # ------------------------------------------------------------------------- event_datefmt = "%Y-%m-%d" tmp = [['2008-09-04', '2008-09-09'], ['2011-01-10', '2011-01-14'], ['2012-02-20', '2012-02-27'], ['2013-08-08', '2013-08-14']] OFEventTitles = ['OFLab Linz', 'DevCon Pittsburgh', 'DevCon Detroit', 'DevCon Yamaguchi'] OFEvents = [[datetime.datetime.strptime(x, event_datefmt) for x in y] for y in tmp] pickle_dir = os.path.abspath('issue_stats_pickles') autosave_dir = os.path.abspath('issue_stats_autosave') ########################################################################### # Fetch needed data print('Fetching fresh data from Github') Repo = github_tools.get_repo() ########################################################################### print('\nGetting issues') print('Github shows ' + str(Repo.open_issues) + ' open issues and PRs.') github_tools.log_traffic() # initial call to establish baseline issues_path = os.path.join(pickle_dir, 'Issues.pickle') if os.path.isfile(issues_path): print('Loading issues from disk. Updating...') with open(issues_path, 'rb') as fp: Issues = pickle.load(fp) last_update = max({v.updated_at for v in Issues.values()}) print('Last updated at ' + str(last_update) + ' UTC') _issue_updates = Repo.get_issues(state='all', since=last_update) _counter = 0 for i in _issue_updates: _counter += 1 Issues[i.number] = i # replace updated issues in local structure print(str(_counter) + ' issue(s) updated') else: print('\nFetching issues from Github') Issues = dict() # holds the PyGithub issues, indexed by number for i in Repo.get_issues(state='all'): # i.update() # to fetch whole contents # This takes one request per update(), and is very slow! # (15+ min and 10-20kB/s) # skipping this step takes 100 requests for 3000 issues and ca 2min Issues[i.number] = i print('Issues received') print('Creating processed issue list') issue_list = [] for i in Issues.values(): if i.closed_at: _closed = i.closed_at else: _closed = None _duration = (i.closed_at or datetime.datetime.now()) - i.created_at issue_list.append({'number': i.number, 'state': i.state, 'created_at': i.created_at, 'closed_at': _closed, 'duration_open': _duration}) issue_list.sort(key=itemgetter('number')) print('%s issues on record' % len(issue_list)) github_tools.log_traffic() ########################################################################### print('\nGetting tags') Tags = Repo.get_tags() print('Creating tags list') tags_list = [] for t in Tags: tags_list.append({'date': t.commit.commit.committer.date, 'name': t.name}) github_tools.log_traffic() ########################################################################### print('\nGetting commits') commits_list = [] repopath = github_tools.local_repo_location() if repopath: print('Getting commit data from local repository...') # check for correct branch if check_output(['git', 'symbolic-ref', '--short', 'HEAD'], cwd=repopath, universal_newlines=True).rstrip() != target_branch: print('ERROR: Please check out the branch ' + target_branch + ' first.') sys.exit(1) # check if up-to-date commit is checked out current_sha = Repo.get_branch(target_branch).commit.sha if check_output(['git', 'rev-parse', '--verify', 'HEAD'], cwd=repopath, universal_newlines=True).rstrip() != current_sha: print('ERROR: Please sync with the remote repository. ' + 'The current online commit is ' + current_sha) sys.exit(1) # get commit list _out = check_output(['git', '--no-pager', 'log', target_branch, '--pretty=format:"%h %ci %ai %p"'], cwd=repopath, universal_newlines=True) _outlist = [o.strip('"') for o in _out.split(sep='\n')] for l in _outlist: # split into sha, committer date, author date, parents _temp = l.split(sep=' ') _parse = dateutil.parser.parse # TODO: add parents to data structure commits_list.append({'sha': _temp[0], 'committer_date': naive_dt(_parse(_temp[1])), 'author_date': naive_dt(_parse(_temp[2]))}) print('%s commits on record' % len(commits_list)) print('Done') else: print('No local repository specified. Getting commits from Github') Commits = Repo.get_commits() for c in Commits: commits_list.append({'sha': c.sha, 'committer_date': c.commit.committer.date, 'author_date': c.commit.author.date}) print('%s commits received' % len(commits_list)) github_tools.log_traffic() ########################################################################### print('\nProcessing objects') # one row of dates, one row of indices, +1 for opening, -1 for closing open_issue_count = [] for i in issue_list: open_issue_count.append({'date': i['created_at'], 'status_change': 1}) if i['closed_at']: open_issue_count.append({'date': i['closed_at'], 'status_change': -1}) open_issue_count.sort(key=itemgetter('date')) _sum = 0 for i in open_issue_count: _sum += i['status_change'] i['open_issues'] = _sum xbegin = min([min([x['author_date'] for x in commits_list]), min([x['date'] for x in open_issue_count])]) xend = datetime.datetime.utcnow() print("Data range: %s days" % str((xend-xbegin).days)) bin_rrule = dateutil.rrule.rrule(dateutil.rrule.WEEKLY, dtstart=xbegin, byweekday=dateutil.rrule.MO) bin_edges = mpl.dates.date2num([xbegin] + bin_rrule.between(xbegin, xend, inc=False) + [xend]) ########################################################################### # Pickling of data structures with open(issues_path, 'wb') as fp: pickle.dump(Issues, fp) ########################################################################### print('Plotting figure') fig = plt.figure(figsize=(380/25.4, 200/25.4)) ax = fig.add_subplot(211) plt.title('OF issue tracker statistics - created ' + str(xend.date())) annot_tags_events(ax, tags_list, OFEvents, OFEventTitles) ax.plot([x['date'] for x in open_issue_count], [x['open_issues'] for x in open_issue_count], label='open issues', color='k', alpha=0.8) _closed_issue_dates = [x['closed_at'] for x in issue_list if x['state'] == 'closed'] ax.hist([mpl.dates.date2num([x['created_at'] for x in issue_list]), mpl.dates.date2num(_closed_issue_dates)], histtype='barstacked', bins=bin_edges, label=['created issues', 'closed issues'], color=['red', 'green'], alpha=0.8) ax.legend(loc='center left') locator = mpl.dates.AutoDateLocator(maxticks=15) ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(mpl.dates.AutoDateFormatter(locator)) ax.xaxis.grid(False) ax.set_xlim(left=xbegin) ax.tick_params(axis='x', direction='out') # ------------------------------------------------------------------------- ax2 = fig.add_subplot(212, sharex=ax) plt.title('OF commit statistics') annot_tags_events(ax2, tags_list, OFEvents, OFEventTitles) ax2.hist(mpl.dates.date2num([x['author_date'] for x in commits_list]), bins=bin_edges, label=(target_branch + ' commits authored'), color='blue', alpha=0.5) ax2.legend(loc='center left') ax2.xaxis.set_major_locator(locator) ax2.xaxis.set_major_formatter(mpl.dates.AutoDateFormatter(locator)) ax2.xaxis.grid(False) ax2.set_xlim(left=xbegin) ax2.tick_params(axis='x', direction='out') fig.autofmt_xdate() plt.tight_layout() plt.show() fig.savefig(os.path.join(autosave_dir, 'OF_repo_viz_' + str(xend.date()) + '.png')) print('\nFinished!') ########################################################################### if __name__ == '__main__': main()
mit
suku248/nest-simulator
pynest/examples/aeif_cond_beta_multisynapse.py
8
1852
# -*- coding: utf-8 -*- # # aeif_cond_beta_multisynapse.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ aeif_cond_beta_multisynapse --------------------------- """ import nest import numpy as np import matplotlib.pyplot as plt neuron = nest.Create('aeif_cond_beta_multisynapse') nest.SetStatus(neuron, {"V_peak": 0.0, "a": 4.0, "b": 80.5}) nest.SetStatus(neuron, {'E_rev': [0.0, 0.0, 0.0, -85.0], 'tau_decay': [50.0, 20.0, 20.0, 20.0], 'tau_rise': [10.0, 10.0, 1.0, 1.0]}) spike = nest.Create('spike_generator', params={'spike_times': np.array([10.0])}) voltmeter = nest.Create('voltmeter') delays = [1.0, 300.0, 500.0, 700.0] w = [1.0, 1.0, 1.0, 1.0] for syn in range(4): nest.Connect(spike, neuron, syn_spec={'synapse_model': 'static_synapse', 'receptor_type': 1 + syn, 'weight': w[syn], 'delay': delays[syn]}) nest.Connect(voltmeter, neuron) nest.Simulate(1000.0) Vms = voltmeter.get("events", "V_m") ts = voltmeter.get("events", "times") plt.plot(ts, Vms) plt.show()
gpl-2.0
jungla/ICOM-fluidity-toolbox
Detectors/offline_advection/advect_particles_convection.py
1
4065
import os, sys import myfun import numpy as np import lagrangian_stats import scipy.interpolate as interpolate import csv import matplotlib.pyplot as plt import advect_functions import fio from intergrid import Intergrid ## READ archive (too many points... somehow) # args: name, dayi, dayf, days #label = 'm_25_2_512' label = 'm_25_1_particles' dayi = 481 #10*24*1 dayf = 3400 #10*24*4 days = 1 #label = sys.argv[1] #basename = sys.argv[2] #dayi = int(sys.argv[3]) #dayf = int(sys.argv[4]) #days = int(sys.argv[5]) path = '../../2D/U/Velocity_CG/' time = range(dayi,dayf,days) # dimensions archives # ML exp #Xlist = np.linspace(0,10000,801) #Ylist = np.linspace(0,4000,321) Xlist = np.linspace(0,2000,161) Ylist = np.linspace(0,2000,161) dl = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1] Zlist = 1.*np.cumsum(dl) maps = [Xlist,Ylist,Zlist] lo = np.array([ 0, 0, 0]) hi = np.array([ 2000, 2000, 50]) # highest lat, highest lon #lo = np.array([ 0, 0, 0]) #hi = np.array([ 10000, 4000, 50]) # highest lat, highest lon [X,Y,Z] = myfun.meshgrid2(Xlist,Ylist,Zlist) Y = np.reshape(Y,(np.size(Y),)) X = np.reshape(X,(np.size(X),)) Z = np.reshape(Z,(np.size(Z),)) xn = len(Xlist) yn = len(Ylist) zn = len(Zlist) dx = np.gradient(Xlist) dy = np.gradient(Ylist) dz = np.gradient(Zlist) dt = 360 #dt = 1200 time = np.asarray(range(dayi,dayf,days)) print time[0] # initial particles position x0 = range(500,1510,10) y0 = range(500,1510,10) z0 = [5,10,15] #x0 = range(3000,4010,10) #y0 = range(2000,3010,10) #z0 = range(1,20,4) xp = len(x0) yp = len(y0) zp = len(z0) pt = xp*yp*zp [z0,y0,x0] = myfun.meshgrid2(z0,y0,x0) x0 = np.reshape(x0, (np.size(x0))) y0 = np.reshape(y0, (np.size(y0))) z0 = np.reshape(z0, (np.size(z0))) #levels = np.zeros(x0.shape) + 1. #levels[np.where(z0 != 2)] = np.nan #x0 = lo[0] + np.random.uniform( size=(pt) ) * (hi[0] - lo[0]) #y0 = lo[1] + np.random.uniform( size=(pt) ) * (hi[1] - lo[1]) #z0 = lo[2] + np.random.uniform( size=(pt) ) * (hi[2] - lo[2]) #z0 = z0*0-1. x = np.zeros((pt)) y = np.zeros((pt)) z = np.zeros((pt)) ## ADVECT PARTICLES kick = 5. filename = './traj_'+label+'_'+str(dayi)+'_'+str(dayf)+'_3D.csv' #filename = './traj_'+label+'_'+str(dayi)+'_'+str(dayf)+'_2D.csv' print filename fd = open(filename,'wb') for p in range(pt): fd.write(str(x0[p])+', '+str(y0[p])+', '+str(-1.*z0[p])+', '+str(time[0])+'\n') import random for t in range(len(time)-1): print 'time:', time[t] file0 = path+'Velocity_CG_0_'+label+'_'+str(time[t])+'.csv' file1 = path+'Velocity_CG_1_'+label+'_'+str(time[t])+'.csv' file2 = path+'Velocity_CG_2_'+label+'_'+str(time[t])+'.csv' Ut0 = fio.read_Scalar(file0,xn,yn,zn) Vt0 = fio.read_Scalar(file1,xn,yn,zn) Wt0 = -1.*fio.read_Scalar(file2,xn,yn,zn) #0*Ut0 file0 = path+'Velocity_CG_0_'+label+'_'+str(time[t+1])+'.csv' file1 = path+'Velocity_CG_1_'+label+'_'+str(time[t+1])+'.csv' file2 = path+'Velocity_CG_2_'+label+'_'+str(time[t+1])+'.csv' Ut1 = fio.read_Scalar(file0,xn,yn,zn) Vt1 = fio.read_Scalar(file1,xn,yn,zn) Wt1 = -1.*fio.read_Scalar(file2,xn,yn,zn) #0*Ut0 # subcycling nt = 20 ds = 1.*dt / nt # for st in range(nt+1): # print st # Us0 = (Ut1*st + Ut0*(nt-st))/(nt) # Us1 = (Ut1*(st+1) + Ut0*(nt-st-1))/(nt) # Vs0 = (Vt1*st + Vt0*(nt-st))/(nt) # Vs1 = (Vt1*(st+1) + Vt0*(nt-st-1))/(nt) # Ws0 = (Wt1*st + Wt0*(nt-st))/(nt) # Ws1 = (Wt1*(st+1) + Wt0*(nt-st-1))/(nt) # x0,y0,z0 = advect_functions.RK4(x0,y0,z0,Us0,Vs0,Ws0,Us1,Vs1,Ws1,lo,hi,maps,ds) x0,y0,z0 = advect_functions.RK4(x0,y0,z0,Ut0,Vt0,Wt0,Ut1,Vt1,Wt1,lo,hi,maps,dt) #x0,y0,z0 = advect_functions.EULER(x0,y0,z0,Ut0,Vt0,Wt0,lo,hi,maps,dt) # random.seed() # random kick # for i in range(len(x0)): # x0[i] = x0[i] + random.uniform(-kick,kick) # y0[i] = y0[i] + random.uniform(-kick,kick) x0,y0,z0 = advect_functions.pBC(x0,y0,z0,lo,hi) # x1,y1,z1 = x0,y0,z0 # write for p in range(pt): fd.write(str(x0[p])+', '+str(y0[p])+', '+str(-1.*z0[p])+', '+str(time[t+1])+'\n') fd.close()
gpl-2.0
fzalkow/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/axes_grid/demo_parasite_axes2.py
16
1208
from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt if 1: host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() offset = 60 new_fixed_axis = par2.get_grid_helper().new_fixed_axis par2.axis["right"] = new_fixed_axis(loc="right", axes=par2, offset=(offset, 0)) par2.axis["right"].toggle(all=True) host.set_xlim(0, 2) host.set_ylim(0, 2) host.set_xlabel("Distance") host.set_ylabel("Density") par1.set_ylabel("Temperature") par2.set_ylabel("Velocity") p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density") p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature") p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity") par1.set_ylim(0, 4) par2.set_ylim(1, 65) host.legend() host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) par2.axis["right"].label.set_color(p3.get_color()) plt.draw() plt.show() #plt.savefig("Test")
mit
developEdwin/Proyecto-Browniano
rayleigh.py
1
1026
# -*- coding: utf-8 -*- """ Created on Wed May 11 17:48:38 2016 @author: Edwin """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def rayleigh(x0, n, dt, delta): x0 = np.asfarray(x0) shp = (n+1,) + x0.shape r = np.random.normal(size=shp, scale=delta*np.sqrt(dt)) r[0] = 0.0 x = r.cumsum(axis=0) x += x0 return x xinicial = np.zeros(2) # número de partículas n = 1000 dt = 10.0 delta = 0.25 xini = np.array(rayleigh(xinicial, n, dt, delta)) yini = np.array(rayleigh(xinicial, n, dt, 0.25)) zini = np.array(rayleigh(xinicial, n, dt, 0.2)) # *--- Plot en 3D ---* # Crear mapa de colores number = 2 # número de color por partícula cmap = plt.get_cmap('gnuplot') colors = [cmap(i) for i in np.linspace(0, 1, number)] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i, color in enumerate(colors, start=1): xini = np.array(rayleigh(xinicial, n, dt, i)) ax.scatter(xini, yini, zini, color=color) plt.show()
gpl-3.0
rjferrier/fluidity
tests/wetting_and_drying_balzano2_cg/plotfs_detec.py
5
5473
#!/usr/bin/env python import vtktools import sys import math import re import commands import matplotlib.pyplot as plt import getopt from scipy.special import erf from numpy import poly1d from matplotlib.pyplot import figure, show from numpy import pi, sin, linspace from matplotlib.mlab import stineman_interp from numpy import exp, cos from fluidity_tools import stat_parser def mirror(x): return 13800-x def usage(): print 'Usage:' print 'plotfs_detec.py [-w] --file=detector_filename --save=filename' print '--save=... saves the plots as images instead of plotting them on the screen.' print '-w plots the wetting procedure (drying is default).' # should be copied from the diamond extrude function. X is 2 dimensional def bathymetry_function(X): if X<=3600 or X>6000: return -X/2760 elif X>3600 and X<=4800: return -30.0/23 elif X>4800 and X<=6000: return -X/1380+50.0/23 ################# Main ########################### def main(argv=None): filename='' timestep_ana=0.0 dzero=0.01 save='' # If nonempty, we save the plots as images instead if showing them wetting=False try: opts, args = getopt.getopt(sys.argv[1:], ":w", ['file=','save=']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt == '--file': filename=arg elif opt == '--save': save=arg elif opt == '-w': wetting=True if filename=='': print 'No filename specified. You have to give the detectors filename.' usage() sys.exit(2) ####################### Print time plot ########################### print 'Generating time plot' s = stat_parser(filename) timesteps=s["ElapsedTime"]["value"] timestep=timesteps[1]-timesteps[0] print "Found ", len(timesteps), " timesteps with dt=", timestep if timestep_ana==0.0: timestep_ana=timestep fs=s["water"]["FreeSurface"] print "Found ", len(fs), " detectors. We assume they are equidistant distributed over the domain (", 0, "-", 13800, ")." # Get and plot results plt.ion() # swith on interactive mode fig2 = figure() ax2 = fig2.add_subplot(111) if wetting: ##plot_start=90 # in timesteps plot_start=22 # in timesteps, after 18 timesteps the waterlevel reaches its lowest point ##plot_end=114 # in timesteps plot_end=54 # in timesteps plot_name='Wetting' else: plot_start=54 # in timesteps plot_end=90 # in timesteps plot_name='Drying' for t in range(0,len(timesteps)): # ignore the first waveperiod if t<plot_start: continue if t>plot_end: continue fsvalues=[] xcoords=[] for name, item in fs.iteritems(): #print name xcoords.append(mirror(s[name]['position'][0][0])) #print xcoord fsvalues.append(fs[name][t]) # Plot result of one timestep ax2.plot(xcoords,fsvalues,'r,', label='Numerical solution') # Plot Analytical solution fsvalues_ana=[] offset=-bathymetry_function(0.0)+dzero xcoords.sort() for x in xcoords: fsvalues_ana.append(bathymetry_function(mirror(x))-offset) # Plot vertical line in bathmetry on right boundary xcoords.append(xcoords[len(xcoords)-1]+0.000000001) fsvalues_ana.append(2.1) ax2.plot(xcoords, fsvalues_ana, 'k', label='Bathymetry') #plt.legend() if t==plot_end: plt.ylim(-2.2,1.4) # change from meters in kilometers in the x-axis # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = plt.xticks() for i in range(0,len(locs)): labels[i]=str(locs[i]/1000) plt.xticks(locs, labels) #plt.title(plot_name) plt.xlabel('Position [km]') plt.ylabel('Free surface [m]') if save=='': plt.draw() raw_input("Please press Enter") else: plt.savefig(save+'_'+plot_name+'.pdf', facecolor='white', edgecolor='black', dpi=100) plt.cla() t=t+1 # Make video from the images: # mencoder "mf://*.png" -mf type=png:fps=30 -ovc lavc -o output.avi if __name__ == "__main__": main()
lgpl-2.1
exe0cdc/PyscesToolbox
psctb/analyse/_ratechar.py
1
41049
from os import path from colorsys import hsv_to_rgb, rgb_to_hsv from collections import OrderedDict from random import shuffle import numpy from pysces.PyscesModelMap import ModelMap from pysces import Scanner import pysces from matplotlib.pyplot import get_cmap from .. import modeltools from ..latextools import LatexExpr from ..utils.plotting import ScanFig, LineData, Data2D from ..utils.misc import silence_print from ..utils.misc import DotDict from ..utils.misc import formatter_factory exportLAWH = silence_print(pysces.write.exportLabelledArrayWithHeader) __all__ = ['RateChar'] def strip_nan_from_scan(array_like): # this function assumes that column # zero contains valid data (the scan input) t_f = list(numpy.isnan(array_like[:, 1])) start = t_f.index(False) end = len(t_f) - t_f[::-1].index(False) return array_like[start:end, :] class RateChar(object): def __init__(self, mod, min_concrange_factor=100, max_concrange_factor=100, scan_points=256, auto_load=False): super(RateChar, self).__init__() self.mod = mod self.mod.SetQuiet() self._model_map = ModelMap(mod) self.mod.doState() self._analysis_method = 'ratechar' self._working_dir = modeltools.make_path(self.mod, self._analysis_method) self._min_concrange_factor = min_concrange_factor self._max_concrange_factor = max_concrange_factor self._scan_points = scan_points self._ltxe = LatexExpr(self.mod) for species in self.mod.species: setattr(self, species, None) if auto_load: self.load_session() def do_ratechar(self, fixed='all', scan_min=None, scan_max=None, min_concrange_factor=None, max_concrange_factor=None, scan_points=None, solver=0, auto_save=False): # this function wraps _do_scan functionality in a user friendly bubble if fixed == 'all': to_scan = self.mod.species elif type(fixed) is list or type(fixed) is tuple: for each in fixed: assert each in self.mod.species, 'Invalid species' to_scan = fixed else: assert fixed in self.mod.species, 'Invalid species' to_scan = [fixed] for each in to_scan: fixed_mod, fixed_ss = self._fix_at_ss(each) scan_start = self._min_max_chooser(fixed_ss, scan_min, min_concrange_factor, 'min') scan_end = self._min_max_chooser(fixed_ss, scan_max, max_concrange_factor, 'max') # here there could be a situation where a scan_min > scan_max # I wonder what will happen.... if not scan_points: scan_points = self._scan_points column_names, results = self._do_scan(fixed_mod, each, scan_start, scan_end, scan_points) cleaned_results = strip_nan_from_scan(results) rcd = RateCharData(fixed_ss, fixed_mod, self.mod, column_names, cleaned_results, self._model_map, self._ltxe) setattr(self, each, rcd) if auto_save: self.save_session() def _min_max_chooser(self, ss, point, concrange, min_max): # chooses a minimum or maximum point based # on the information given by a user # ie if a specific min/max point is given - use that # if only concentration range is given -use that # if nothing is given - use the defualt conc_range_factor # pretty simple stuff if point: the_point = point if not point and concrange: if min_max == 'min': the_point = ss / concrange elif min_max == 'max': the_point = ss * concrange if not point and not concrange: if min_max == 'min': the_point = ss / self._min_concrange_factor elif min_max == 'max': the_point = ss * self._max_concrange_factor return the_point @silence_print def _do_scan(self, fixed_mod, fixed, scan_min, scan_max, scan_points, solver=0): # do scan is a simplified interface to pysces.Scanner # more intuitive than Scan1 (functional vs OO??) # returns the names of the scanned blocks together with # the results of the scan assert solver in (0, 1, 2), 'Solver mode can only be one of 0, 1 or 2' fixed_mod.mode_solver = solver demand_blocks = [ 'J_' + r for r in getattr(self._model_map, fixed).isSubstrateOf()] supply_blocks = [ 'J_' + r for r in getattr(self._model_map, fixed).isProductOf()] user_output = [fixed] + demand_blocks + supply_blocks scanner = Scanner(fixed_mod) scanner.quietRun = True scanner.addScanParameter( fixed, scan_min, scan_max, scan_points, log=True) scanner.addUserOutput(*user_output) scanner.Run() return user_output, scanner.UserOutputResults @silence_print def _fix_at_ss(self, fixed): # fixes the metabolite at the steady_state # (calls psctb.modeltools.fix_metabolite) # and returns both the ss value and the fixed model self.mod.doState() fixed_ss = getattr(self.mod, fixed + '_ss') fixed_mod = modeltools.fix_metabolite(self.mod, fixed) fixed_mod.SetQuiet() # i don't like this approach at all, too many possible unintended side # effects # setattr(fixed_mod, fixed, fixed_ss) # setattr(fixed_mod, 'fixed', fixed) # setattr(fixed_mod, 'fixed_ss', fixed_ss) fixed_mod.doState() return fixed_mod, fixed_ss def save_session(self, file_name=None): file_name = modeltools.get_file_path(working_dir=self._working_dir, internal_filename='save_data', fmt='npz', file_name=file_name, write_suffix=False) to_save = {} for species in self.mod.species: species_object = getattr(self, species) try: column_array = numpy.array(species_object._column_names) scan_results = species_object._scan_results to_save['col_{0}'.format(species)] = column_array to_save['res_{0}'.format(species)] = scan_results except: pass numpy.savez(file_name, **to_save) def save_results(self, folder=None, separator=',',format='%f'): base_folder = folder for species in self.mod.species: if folder: folder = path.join(base_folder, species) getattr(self, species).save_all_results(folder=folder, separator=separator) def load_session(self, file_name=None): file_name = modeltools.get_file_path(working_dir=self._working_dir, internal_filename='save_data', fmt='npz', file_name=file_name, write_suffix=False) loaded_data = {} try: with numpy.load(file_name) as data_file: for k, v in data_file.iteritems(): loaded_data[k] = v except IOError as e: raise e for species in self.mod.species: try: column_names = [str(each) for each in list(loaded_data['col_{0}'.format(species)])] scan_results = loaded_data['res_{0}'.format(species)] fixed_species = species fixed_mod, fixed_ss = self._fix_at_ss(fixed_species) rcd = RateCharData(fixed_ss=fixed_ss, fixed_mod=fixed_mod, basemod=self.mod, column_names=column_names, scan_results=scan_results, model_map=self._model_map, ltxe=self._ltxe) setattr(self, fixed_species, rcd) except: pass class RateCharData(object): def __init__(self, fixed_ss, fixed_mod, basemod, column_names, scan_results, model_map, ltxe): super(RateCharData, self).__init__() self.mod = fixed_mod self.scan_results = DotDict() self.mca_results = DotDict() self._slope_range_factor = 3.0 self.scan_results['fixed'] = column_names[0] self.scan_results['fixed_ss'] = fixed_ss self.scan_results['scan_range'] = scan_results[:, 0] self.scan_results['flux_names'] = column_names[1:] self.scan_results['flux_data'] = scan_results[:, 1:] self.scan_results['scan_points'] = len(self.scan_results.scan_range) self.scan_results['flux_max'] = None self.scan_results['flux_min'] = None self.scan_results['scan_max'] = None self.scan_results['scan_min'] = None self.scan_results['ec_names'] = None self.scan_results['ec_data'] = None self.scan_results['rc_names'] = None self.scan_results['rc_data'] = None self.scan_results['prc_names'] = None self.scan_results['prc_data'] = None self._column_names = column_names self._scan_results = scan_results self._model_map = model_map self._analysis_method = 'ratechar' self._basemod = basemod self._working_dir = modeltools.make_path(self._basemod, self._analysis_method, [self.scan_results.fixed]) self._ltxe = ltxe self._color_dict_ = None self._data_setup() self.mca_results._ltxe = ltxe self.mca_results._make_repr( '"$" + self._ltxe.expression_to_latex(k) + "$"', 'v', formatter_factory()) # del self.scan_results # del self.mca_results def _data_setup(self): # reset value to do mcarc setattr(self.mod, self.scan_results.fixed, self.scan_results.fixed_ss) self.mod.doMcaRC() self._make_attach_total_fluxes() self._min_max_setup() self._attach_fluxes_to_self() self._make_all_coefficient_lines() self._attach_all_coefficients_to_self() self._make_all_summary() self._make_all_line_data() def _change_colour_order(self, order=None): if not order: order = self._color_dict_.keys() shuffle(order) self._color_dict_ = dict(zip(order, self._color_dict_.values())) self._make_all_line_data() def _make_all_line_data(self): self._make_flux_ld() self._make_ec_ld() self._make_rc_ld() self._make_prc_ld() self._make_total_flux_ld() self._line_data_dict = OrderedDict() self._line_data_dict.update(self._prc_ld_dict) self._line_data_dict.update(self._flux_ld_dict) self._line_data_dict.update(self._total_flux_ld_dict) self._line_data_dict.update(self._ec_ld_dict) self._line_data_dict.update(self._rc_ld_dict) del self._flux_ld_dict del self._ec_ld_dict del self._rc_ld_dict del self._prc_ld_dict del self._total_flux_ld_dict def _make_all_summary(self): self._make_ec_summary() self._make_cc_summary() self._make_rc_summary() self._make_prc_summary() self.mca_results.update(self._ec_summary) self.mca_results.update(self._cc_summary) self.mca_results.update(self._rc_summary) self.mca_results.update(self._prc_summary) del self._ec_summary del self._cc_summary del self._rc_summary del self._prc_summary def _make_ec_summary(self): ecs = {} reagent_of = [each[2:] for each in self.scan_results.flux_names] modifier_of = getattr( self._model_map, self.scan_results.fixed).isModifierOf() all_reactions = reagent_of + modifier_of for reaction in all_reactions: name = 'ec%s_%s' % (reaction, self.scan_results.fixed) val = getattr(self.mod, name) ecs[name] = val self._ec_summary = ecs def _make_rc_summary(self): rcs = {} for flux in self.scan_results.flux_names: reaction = flux[2:] name = '%s_%s' % (reaction, self.scan_results.fixed) val = getattr(self.mod.rc, name) name = 'rcJ' + name rcs[name] = val self._rc_summary = rcs def _make_cc_summary(self): ccs = {} reagent_of = [each[2:] for each in self.scan_results.flux_names] modifier_of = getattr( self._model_map, self.scan_results.fixed).isModifierOf() all_reactions = reagent_of + modifier_of for flux_reaction in reagent_of: for reaction in all_reactions: name = 'ccJ%s_%s' % (flux_reaction, reaction) val = getattr(self.mod, name) ccs[name] = val self._cc_summary = ccs def _make_prc_summary(self): prcs = {} reagent_of = [each[2:] for each in self.scan_results.flux_names] modifier_of = getattr( self._model_map, self.scan_results.fixed).isModifierOf() all_reactions = reagent_of + modifier_of for flux_reaction in reagent_of: for route_reaction in all_reactions: ec = getattr(self.mod, 'ec%s_%s' % ( route_reaction, self.scan_results.fixed)) cc = getattr(self.mod, 'ccJ%s_%s' % (flux_reaction, route_reaction)) val = ec * cc name = 'prcJ%s_%s_%s' % (flux_reaction, self.scan_results.fixed, route_reaction) prcs[name] = val self._prc_summary = prcs def save_summary(self, file_name=None, separator=',',fmt='%f'): file_name = modeltools.get_file_path(working_dir=self._working_dir, internal_filename='mca_summary', fmt='csv', file_name=file_name, ) keys = self.mca_results.keys() keys.sort() values = numpy.array([self.mca_results[k] for k in keys]).reshape(len(keys), 1) try: exportLAWH(values, names=keys, header=['Value'], fname=file_name, sep=separator, format=fmt) except IOError as e: print e.strerror def save_flux_results(self, file_name=None, separator=',',fmt='%f'): file_name = modeltools.get_file_path(working_dir=self._working_dir, internal_filename='flux_results', fmt='csv', file_name=file_name, ) scan_points = self.scan_results.scan_points all_cols = numpy.hstack([ self._scan_results, self.scan_results.total_supply.reshape(scan_points, 1), self.scan_results.total_demand.reshape(scan_points, 1)]) column_names = self._column_names + ['Total Supply', 'Total Demand'] try: exportLAWH(all_cols, names=None, header=column_names, fname=file_name, sep=separator, format=fmt) except IOError as e: print e.strerror def save_coefficient_results(self, coefficient, file_name=None, separator=',', folder=None, fmt='%f'): assert_message = 'coefficient must be one of "ec", "rc" or "prc"' assert coefficient in ['rc', 'ec', 'prc'], assert_message base_name = coefficient + '_results' file_name = modeltools.get_file_path(working_dir=self._working_dir, internal_filename=base_name, fmt='csv', file_name=file_name, ) results = getattr(self.scan_results, coefficient + '_data') names = getattr(self.scan_results, coefficient + '_names') new_names = [] for each in names: new_names.append('x_vals') new_names.append(each) try: exportLAWH(results, names=None, header=new_names, fname=file_name, sep=separator, format=fmt) except IOError as e: print e.strerror # TODO fix this method so that folder is a parameter only her def save_all_results(self, folder=None, separator=',',fmt='%f'): if not folder: folder = self._working_dir file_name = modeltools.get_file_path(working_dir=folder, internal_filename='flux_results', fmt='csv') self.save_flux_results(separator=separator, file_name=file_name,fmt=fmt) file_name = modeltools.get_file_path(working_dir=folder, internal_filename='mca_summary', fmt='csv') self.save_summary(separator=separator, file_name=file_name, fmt=fmt) for each in ['ec', 'rc', 'prc']: base_name = each + '_results' file_name = modeltools.get_file_path(working_dir=folder, internal_filename=base_name, fmt='csv') self.save_coefficient_results(coefficient=each, separator=separator, file_name=file_name, fmt=fmt) def _min_max_setup(self): # Negative minimum linear values mean nothing # because they don't translate to a log space # therefore we want the minimum non-negative/non-zero values. # lets make sure there are no zeros n_z_f = self.scan_results.flux_data[ numpy.nonzero(self.scan_results.flux_data)] n_z_s = self.scan_results.scan_range[ numpy.nonzero(self.scan_results.scan_range)] totals = numpy.vstack([self.scan_results.total_demand, self.scan_results.total_supply]) n_z_t = totals[numpy.nonzero(totals)] # and that the array is not now somehow empty # although if this happens-you have bigger problems if len(n_z_f) == 0: n_z_f = numpy.array([0.01, 1]) if len(n_z_s) == 0: n_z_s = numpy.array([0.01, 1]) # lets also (clumsily) find the non-negative mins and maxes # by converting to logspace (to get NaNs) and back # and then getting the min/max non-NaN # PS flux max is the max of the totals with numpy.errstate(all='ignore'): self.scan_results.flux_max = numpy.nanmax(10 ** numpy.log10(n_z_t)) self.scan_results.flux_min = numpy.nanmin(10 ** numpy.log10(n_z_f)) self.scan_results.scan_max = numpy.nanmax(10 ** numpy.log10(n_z_s)) self.scan_results.scan_min = numpy.nanmin(10 ** numpy.log10(n_z_s)) def _attach_fluxes_to_self(self): for i, each in enumerate(self.scan_results.flux_names): # setattr(self, each, self.scan_results.flux_data[:, i]) self.scan_results[each] = self.scan_results.flux_data[:, i] def _attach_all_coefficients_to_self(self): setup_for = ['ec', 'rc', 'prc'] for each in setup_for: eval('self._attach_coefficients_to_self(self.scan_results.' + each + '_names,\ self.scan_results.' + each + '_data)') def _make_all_coefficient_lines(self): setup_for = ['ec', 'rc', 'prc'] for each in setup_for: eval('self._make_' + each + '_lines()') def _make_attach_total_fluxes(self): demand_blocks = getattr( self._model_map, self.scan_results.fixed).isSubstrateOf() supply_blocks = getattr( self._model_map, self.scan_results.fixed).isProductOf() dem_pos = [self.scan_results.flux_names.index('J_' + flux) for flux in demand_blocks] sup_pos = [self.scan_results.flux_names.index('J_' + flux) for flux in supply_blocks] self.scan_results['total_demand'] = numpy.sum( [self.scan_results.flux_data[:, i] for i in dem_pos], axis=0) self.scan_results['total_supply'] = numpy.sum( [self.scan_results.flux_data[:, i] for i in sup_pos], axis=0) def _make_rc_lines(self): names = [] resps = [] for each in self.scan_results.flux_names: reaction = each[2:] name = reaction + '_' + self.scan_results.fixed J_ss = getattr(self.mod, each) slope = getattr(self.mod.rc, name) resp = self._tangent_line(J_ss, slope) name = 'rcJ' + name names.append(name) resps.append(resp) resps = numpy.hstack(resps) self.scan_results.rc_names = names self.scan_results.rc_data = resps def _make_prc_lines(self): names = [] prcs = [] reagent_of = [each[2:] for each in self.scan_results.flux_names] all_reactions = reagent_of + \ getattr(self._model_map, self.scan_results.fixed).isModifierOf() for flux_reaction in self.scan_results.flux_names: J_ss = getattr(self.mod, flux_reaction) reaction = flux_reaction[2:] for route_reaction in all_reactions: ec = getattr( self.mod, 'ec' + route_reaction + '_' + self.scan_results.fixed) cc = getattr(self.mod, 'ccJ' + reaction + '_' + route_reaction) slope = ec * cc prc = self._tangent_line(J_ss, slope) name = 'prcJ%s_%s_%s' % (reaction, self.scan_results.fixed, route_reaction) names.append(name) prcs.append(prc) prcs = numpy.hstack(prcs) self.scan_results.prc_names = names self.scan_results.prc_data = prcs def _make_ec_lines(self): names = [] elasts = [] for each in self.scan_results.flux_names: reaction = each[2:] name = 'ec' + reaction + '_' + self.scan_results.fixed J_ss = getattr(self.mod, each) slope = getattr(self.mod, name) elast = self._tangent_line(J_ss, slope) names.append(name) elasts.append(elast) elasts = numpy.hstack(elasts) self.scan_results.ec_names = names self.scan_results.ec_data = elasts def _attach_coefficients_to_self(self, names, tangent_lines): sp = 0 ep = 2 for name in names: # setattr(self, name, tangent_lines[:, sp:ep]) self.scan_results[name] = tangent_lines[:, sp:ep] sp = ep ep += 2 def _tangent_line(self, J_ss, slope): fix_ss = self.scan_results.fixed_ss constant = J_ss / (fix_ss ** slope) ydist = numpy.log10(self.scan_results.flux_max / self.scan_results.flux_min) xdist = numpy.log10(self.scan_results.scan_max / self.scan_results.scan_min) golden_ratio = (1 + numpy.sqrt(5)) / 2 xyscale = xdist / (ydist * golden_ratio * 1.5) scale_factor = numpy.cos(numpy.arctan(slope * xyscale)) distance = numpy.log10(self._slope_range_factor) * scale_factor range_min = fix_ss / (10 ** distance) range_max = fix_ss * (10 ** distance) scan_range = numpy.linspace(range_min, range_max, num=2) rate = constant * scan_range ** (slope) return numpy.vstack((scan_range, rate)).transpose() @property def _color_dict(self): if not self._color_dict_: fix_map = getattr(self._model_map, self.scan_results.fixed) relavent_reactions = fix_map.isProductOf() + \ fix_map.isSubstrateOf() + \ fix_map.isModifierOf() num_of_cols = len(relavent_reactions) + 3 cmap = get_cmap('Set2')( numpy.linspace(0, 1.0, num_of_cols))[:, :3] color_list = [rgb_to_hsv(*cmap[i, :]) for i in range(num_of_cols)] relavent_reactions.sort() color_dict = dict( zip(['Total Supply'] + ['J_' + reaction for reaction in relavent_reactions] + ['Total Demand'], color_list)) # just to darken the colors a bit for k, v in color_dict.iteritems(): color_dict[k] = [v[0], 1, v[2]] self._color_dict_ = color_dict return self._color_dict_ def _make_flux_ld(self): color_dict = self._color_dict flux_ld_dict = {} demand_blocks = ['J_' + dem_reac for dem_reac in getattr( self._model_map, self.scan_results.fixed).isSubstrateOf()] supply_blocks = ['J_' + sup_reac for sup_reac in getattr( self._model_map, self.scan_results.fixed).isProductOf()] for flux in self.scan_results.flux_names: flux_col = self.scan_results.flux_names.index(flux) x_data = self.scan_results.scan_range y_data = self.scan_results.flux_data[:, flux_col] latex_expr = self._ltxe.expression_to_latex(flux) flux_color = self._color_dict[flux] color = hsv_to_rgb(flux_color[0], flux_color[1], flux_color[2] * 0.9) for dem in demand_blocks: if dem == flux: flux_ld_dict[flux] = \ LineData(name=flux, x_data=x_data, y_data=y_data, categories=['Fluxes', 'Demand', flux], properties={'label': '$%s$' % latex_expr, 'color': color}) break for sup in supply_blocks: if sup == flux: flux_ld_dict[flux] = \ LineData(name=flux, x_data=x_data, y_data=y_data, categories=['Fluxes', 'Supply', flux], properties={'label': '$%s$' % latex_expr, 'color': color}) break self._flux_ld_dict = flux_ld_dict def _make_ec_ld(self): ec_ld_dict = {} for ec_name in self.scan_results.ec_names: for flux, flux_ld in self._flux_ld_dict.iteritems(): ec_reaction = flux[2:] if 'ec' + ec_reaction + '_' + self.scan_results.fixed in ec_name: flux_color = self._color_dict[flux] color = hsv_to_rgb(flux_color[0], flux_color[1] * 0.5, flux_color[2]) ec_data = self.scan_results[ec_name] categories = ['Elasticity Coefficients'] + \ flux_ld.categories[1:] latex_expr = self._ltxe.expression_to_latex(ec_name) ec_ld_dict[ec_name] = \ LineData(name=ec_name, x_data=ec_data[:, 0], y_data=ec_data[:, 1], categories=categories, properties={'label': '$%s$' % latex_expr, 'color': color}) self._ec_ld_dict = ec_ld_dict def _make_rc_ld(self): rc_ld_dict = {} for rc_name in self.scan_results.rc_names: for flux, flux_ld in self._flux_ld_dict.iteritems(): rc_flux = 'J' + flux[2:] if 'rc' + rc_flux + '_' in rc_name: flux_color = self._color_dict[flux] color = hsv_to_rgb(flux_color[0], flux_color[1], flux_color[2] * 0.7) rc_data = self.scan_results[rc_name] categories = ['Response Coefficients'] + \ flux_ld.categories[1:] latex_expr = self._ltxe.expression_to_latex(rc_name) rc_ld_dict[rc_name] = \ LineData(name=rc_name, x_data=rc_data[:, 0], y_data=rc_data[:, 1], categories=categories, properties={'label': '$%s$' % latex_expr, 'color': color, 'ls': '--'}) self._rc_ld_dict = rc_ld_dict def _make_prc_ld(self): def get_prc_route(prc, flux, fixed): without_prefix = prc.split('prc')[1] without_flux = without_prefix.split(flux)[1][1:] route = without_flux.split(fixed)[1][1:] return route prc_ld_dict = {} for prc_name in self.scan_results.prc_names: for flux, flux_ld in self._flux_ld_dict.iteritems(): prc_flux = 'J' + flux[2:] if 'prc' + prc_flux + '_' + self.scan_results.fixed in prc_name: route_reaction = get_prc_route(prc_name, prc_flux, self.scan_results.fixed) flux_color = self._color_dict['J_' + route_reaction] color = hsv_to_rgb(flux_color[0], flux_color[1] * 0.5, flux_color[2]) prc_data = self.scan_results[prc_name] categories = ['Partial Response Coefficients'] + \ flux_ld.categories[1:] latex_expr = self._ltxe.expression_to_latex(prc_name) prc_ld_dict[prc_name] = \ LineData(name=prc_name, x_data=prc_data[:, 0], y_data=prc_data[:, 1], categories=categories, properties={'label': '$%s$' % latex_expr, 'color': color}) self._prc_ld_dict = prc_ld_dict def _make_total_flux_ld(self): total_flux_ld_dict = {} col = self._color_dict['Total Supply'] total_flux_ld_dict['Total Supply'] = \ LineData(name='Total Supply', x_data=self.scan_results.scan_range, y_data=self.scan_results.total_supply, categories=['Fluxes', 'Supply', 'Total Supply'], properties={'label': '$%s$' % 'Total\,Supply', 'color': hsv_to_rgb(col[0], col[1], col[2] * 0.9), 'ls': '--'}) col = self._color_dict['Total Demand'] total_flux_ld_dict['Total Demand'] = \ LineData(name='Total Demand', x_data=self.scan_results.scan_range, y_data=self.scan_results.total_demand, categories=['Fluxes', 'Demand', 'Total Demand'], properties={'label': '$%s$' % 'Total\,Demand', 'color': hsv_to_rgb(col[0], col[1], col[2] * 0.9), 'ls': '--'}) self._total_flux_ld_dict = total_flux_ld_dict def plot(self): category_classes = OrderedDict([ ('Supply/Demand', [ 'Supply', 'Demand']), ('Reaction Blocks', self.scan_results.flux_names + ['Total Supply', 'Total Demand']), ('Lines', [ 'Fluxes', 'Elasticity Coefficients', 'Response Coefficients', 'Partial Response Coefficients'])]) line_data_list = [v for v in self._line_data_dict.itervalues()] scan_fig = ScanFig(line_data_list, ax_properties={'xlabel': '[%s]' % self.scan_results.fixed.replace( '_', ' '), 'ylabel': 'Rate', 'xscale': 'log', 'yscale': 'log', 'xlim': [self.scan_results.scan_min, self.scan_results.scan_max], 'ylim': [self.scan_results.flux_min, self.scan_results.flux_max * 2 ]}, category_classes=category_classes, base_name=self._analysis_method, working_dir=self._working_dir) scan_fig.toggle_category('Supply', True) scan_fig.toggle_category('Demand', True) scan_fig.toggle_category('Fluxes', True) scan_fig.ax.axvline(self.scan_results.fixed_ss, ls=':', color='gray') return scan_fig def plot_decompose(self): from warnings import warn, simplefilter simplefilter('always', DeprecationWarning) warn('plot_decompose has been renamed to `do_mca_scan, use that ' 'method in the future`', DeprecationWarning, stacklevel=1) simplefilter('default', DeprecationWarning) return self.do_mca_scan() @silence_print def do_mca_scan(self): ecs = [] ccs = [] prc_names = [] rc_names = [] rc_pos = [] reagent_of = [each[2:] for each in self.scan_results.flux_names] all_reactions = reagent_of + \ getattr(self._model_map, self.scan_results.fixed).isModifierOf() arl = len(all_reactions) strt = 0 stp = arl for flux_reaction in self.scan_results.flux_names: reaction = flux_reaction[2:] rc_names.append('rcJ%s_%s' % (reaction, self.scan_results.fixed)) rc_pos.append(range(strt, stp)) strt += arl stp += arl for route_reaction in all_reactions: ec = 'ec' + route_reaction + '_' + self.scan_results.fixed cc = 'ccJ' + reaction + '_' + route_reaction name = 'prcJ%s_%s_%s' % (reaction, self.scan_results.fixed, route_reaction) # ecs.append(ec) if ec not in ecs: ecs.append(ec) ccs.append(cc) prc_names.append(name) ec_len = len(ecs) user_output = [self.scan_results.fixed] + ecs + ccs scanner = pysces.Scanner(self.mod) scanner.quietRun = True scanner.addScanParameter(self.scan_results.fixed, self.scan_results.scan_min, self.scan_results.scan_max, self.scan_results.scan_points, log=True) scanner.addUserOutput(*user_output) scanner.Run() ax_properties = {'ylabel': 'Coefficient Value', 'xlabel': '[%s]' % self.scan_results.fixed.replace('_', ' '), 'xscale': 'log', 'yscale': 'linear', 'xlim': [self.scan_results.scan_min, self.scan_results.scan_max]} cc_ec_data_obj = Data2D(mod=self.mod, column_names=user_output, data_array=scanner.UserOutputResults, ltxe=self._ltxe, analysis_method=self._analysis_method, ax_properties=ax_properties, file_name='cc_ec_scan', num_of_groups=ec_len, working_dir=path.split(self._working_dir)[0]) rc_data = [] all_outs = scanner.UserOutputResults[:, 1:] ec_outs = all_outs[:, :ec_len] cc_outs = all_outs[:, ec_len:] ec_positions = range(ec_len) * (len(prc_names)/ec_len) for i, prc_name in enumerate(prc_names): ec_col_data = ec_outs[:, ec_positions[i]] cc_col_data = cc_outs[:, i] # ec_col_data = outs[:, i] # cc_col_data = outs[:, i + cc_s_pos] col = ec_col_data * cc_col_data rc_data.append(col) temp = numpy.vstack(rc_data).transpose() rc_data += [numpy.sum(temp[:, rc_pos[i]], axis=1) for i in range(len(rc_names))] rc_out_arr = [scanner.UserOutputResults[:, 0]] + rc_data rc_out_arr = numpy.vstack(rc_out_arr).transpose() rc_data_obj = Data2D(mod=self.mod, column_names=[self.scan_results.fixed] + prc_names + rc_names, data_array=rc_out_arr, ltxe=self._ltxe, analysis_method=self._analysis_method, ax_properties=ax_properties, file_name='prc_scan', num_of_groups=ec_len, working_dir=path.split(self._working_dir)[0]) #rc_data_obj._working_dir = path.split(self._working_dir)[0] #cc_ec_data_obj._working_dir = path.split(self._working_dir)[0] return rc_data_obj, cc_ec_data_obj
bsd-3-clause
mgotz/EBT_evaluation
ebttools/core.py
1
21457
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2016 Malte Gotz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. While I believe due to the GPL exception provided by PyQt the enitre package may be licensed under the MIT license, I want to make sure this module is explicitly licensed as such, because it does not import and is therefore independent of PyQt and the GPL core functions to load calibration data and calculate dose from scanned films When used outside the EBT gui, import calibrations using the load_calibrations function. Afterwards, construct a DoseArray using one of the imported calibrations, the scanned image, DPI and phi0 info. The calculate_dose function, performs the dose calculation and it is called by DoseArray during construction. """ #get ready for python 3 from __future__ import (print_function, division, absolute_import, unicode_literals) import codecs from collections import OrderedDict import logging import numpy as np import os import scipy.ndimage from math import floor, ceil try: from configparser import ConfigParser, MissingSectionHeaderError except ImportError as e: #a compatibility hack for python2 if it does not have conifgparser import sys if sys.version_info[0] == 2: from ConfigParser import ConfigParser, MissingSectionHeaderError else: raise e #define which array index corresponds to which color rgbMap = {"red":0,"green":1,"blue":2} def load_calibrations(path = None): """loads ini style calibration files from path Parameters --------- path : file path either a single calibration file or a folder containing only calibration files Returns ------- calibrations : dictionary of dictionaries contains a named entry for each calibration with the respective values as a dictionary """ #default calibrations location if path is None: path = os.path.join(os.path.dirname(__file__),"calibrations") #make a new ordered dictionary, that way keys remain in some sensible order #when iterating over the dict calibrations = OrderedDict() if os.path.isfile(path): head, tail = os.path.split(path) path = head fileList = [tail] elif os.path.isdir(path): fileList = os.listdir(path) else: raise IOError(255, "path is neither directory nor file",path) if len(fileList) == 0: raise IOError(255,"no files found",path) for fileName in fileList: with codecs.open(os.path.join(path,fileName),"r","utf-8-sig") as configFile: try: config = ConfigParser(dict_type=OrderedDict) config.readfp(configFile) for key in config.sections(): calibrations[key] = dict(config.items(key)) except MissingSectionHeaderError: logging.warning("{!s} not a readable calibration".format(fileName)) except UnicodeDecodeError: logging.warning("{!s} not a readable utf-8 file".format(fileName)) except Exception as e: logging.error("Exception occured trying to read {!s}: ".format(fileName)+str(e)) if len(calibrations) == 0: raise IOError(255,"files contain no readable calibration",path) return calibrations def calculate_dose(calibration, scan, phi0): """ calculates the dose from a scanned image and a given calibration Parameters ---------- calibration : dictionary describes the calibration with the keys: argument, p1, p2, p3, function and channel, optional keys are black and background scan : numpy array the scanned image or part thereof phi0 : scalar or lenght 3 iterable I0 to calculate the net optical density Returns ------- dose : numpy array array containing the dose """ try: black = float(calibration["black"]) except KeyError: black = 10 logging.warning("no definition of lowest pixel value found in calibration" " falling back to default 10") try: background = float(calibration["background"]) except KeyError: background = 0.0 logging.warning("no definition of background value found in calibration" " falling back to default 0") #check proper format of phi0 and allow treatement as a list in any case try: if len(phi0) != 3: raise ValueError("phi0 should have length 3"+ " (one value for each channel) or be a scalar") except TypeError: #raised if length is not applicable phi0 = [phi0] #get the channels in list channels = calibration["channel"].replace(" ","").split(",") #flags set by the different argument options, if a min and/or max is needed #to ensure against matherrors. Used later to issue warning about min and max needsMin = False usesMax = False #define number of channels used by the argument (also used in input checking) numberOfChannels = 0 #define the argument as a function if calibration["argument"] == "netOD": arg = lambda x, x0: np.log10((x0-background)/ (np.clip(x,int(ceil(black)),int(floor(x0)))-background)) numberOfChannels = 1 needsMin = True #will result in log(-) otherwise usesMax = True #not really needed, but gives negative dose values if any(black > x0 for x0 in phi0): phiStr = ["{:.2f}".format(x0) for x0 in phi0] raise ValueError("phi0 ("+", ".join(phiStr) +") is smaller"+ " than the black value ({:.2f}). ".format(black) + "Cannot procede.") elif calibration["argument"] == "direct": arg = lambda x, x0: (np.clip(x,black,None)-background) numberOfChannels = 1 needsMin = False usesMax = False elif calibration["argument"] == "normalized": arg = lambda x, x0: np.divide(np.clip(x,int(ceil(black)),None)-background, x0-background) numberOfChannels = 1 needsMin = False usesMax = False elif calibration["argument"] == "relativeNetOD": arg = lambda x1, x2, x01, x02: ( np.log10((x01-background)/(np.clip(x1,int(ceil(black)),int(floor(x01)))-background))/ np.log10((x02-background)/(np.clip(x2,int(ceil(black)),int(floor(x02)))-background))) numberOfChannels = 2 needsMin = False usesMax = False else: raise ValueError("unknown specification for argument in calibration: " +calibration["argument"]) #check for proper number of channels if len(channels) != numberOfChannels: raise ValueError(calibration["argument"] + " requires exactly {:d} channels, ".format(numberOfChannels) + "{:d} given".format(len(channels))) #check for properly established lower limit if needsMin: if (background >= black) and np.any((scan-background) < 0): raise ValueError("scan contains values below the background level, "+ "cannot compute "+calibration["argument"]) if needsMin and usesMax: if any(black > x0 for x0 in phi0): phiStr = ["{:.2f}".format(x0) for x0 in phi0] raise ValueError("phi0 ("+", ".join(phiStr) +") is smaller"+ " than the black value ({:.2f}). ".format(black) + "Cannot procede.") p1 = float(calibration["p1"]) p2 = float(calibration["p2"]) p3 = float(calibration["p3"]) #define the actual function for dose calculation if calibration["function"] == "exp_poly": function = lambda x: p1*x+p2*np.power(x,p3) elif calibration["function"] == "linear": function = lambda x: p1+p2*x elif calibration["function"] == "rational": function = lambda x: np.divide(p1+x,p2+p3*x) else: raise ValueError("unknown specification for function in calibration: " +calibration["function"]) #get the proper channels from the scan and select the corresponding phi0s if all(color in rgbMap for color in channels): chIndices = [rgbMap[color] for color in channels] relevantScanData = [scan[:,:,index] for index in chIndices] if len(chIndices) == 1 and len(phi0) == 1: relevantPhi0 = phi0 elif len(phi0) != 3: raise ValueError("phi0 must contain 3 values or be a scalar for "+ "single channel evaluation") else: relevantPhi0 = [phi0[index] for index in chIndices] elif calibration["channel"] in ["grey","gray"]: if len(scan.shape) > 2: raise ValueError("calibration is for grey scale, but scan in multicolor") relevantScanData = [scan] if len(phi0) != 1: raise ValueError("more than 1 phi0 provided for a grey-scale evaluation") else: relevantPhi0 = phi0 else: raise ValueError("unknown specification for color channel in calibration: " +calibration["channel"]) #use the function and the argument to calculate dose from the relevant data return function(arg(*(relevantScanData+relevantPhi0))) class DoseArray(np.ndarray): """ class to contain a dose distribution this is basically a ndarray with some additional methods and properties the dose can be used and accessed just like it were in a standard ndarray """ def __new__(cls,DPI,calib,img,phi0): """ creates a dose_array from scan, calibration and phi0 Parameters ---------- DPI : scalar dots per inch of the scan calib : dictionary describes the calibration with the keys: argument, p1, p2, p3, function and channel img : numpy array the scanned image or part thereof phi0 : scalar I0 to calculate the net optical density """ #calculate dose and cast returned array to new class dist = calculate_dose(calib,img,phi0) obj = np.asarray(dist).view(cls) if DPI > 0: #set dot per centimeter obj.DPC = DPI/2.54 else: raise ValueError("DPI must be greater than 0") try: obj.unit = calib["unit"] except KeyError: obj.unit = "Gy" return obj def __array_finalize__(self,obj): #gets called in various construction scenarios, obj is none if it is called from #__new__, DPC will then be properly set, othwerwise set a default for DPC and unit if obj is None: return self.DPC = getattr(obj,'DPC',300./2.54) self.unit = "Gy" def rectangle_mask(self,x0, y0, width, height, angle=0.0): """get a mask for a rectangular area Parameters ---------- x0 : scalar x-value of rectangle center (in cm) y0 : scalar y-value of rectangle center (in cm) width : scalar half-width (x-dimension) of the rectangle height : scalar half-height (y-dimension) of the rectangle angle : scalar, optional counter clockwise rotation angle of the rectangle test : bool, optional if true the area is set to 0 (used for testing) Returns ------- mask : ndarray a mask to index the array and return a rectangular area """ angle_rad = angle*np.pi/180. #create a boolean mask for a rectangle #the mgrid creates two arrays with x and y positions of the pixels, respectively #(y is the first index) #if the lower edge of the pixels is at 0, the position of their center #must be shifted by 0.5 pixels width. y, x = np.mgrid[-y0+0.5/self.DPC:(self.shape[0]+.5)/self.DPC-y0:1.0/self.DPC, -x0+0.5/self.DPC:(self.shape[1]+.5)/self.DPC-x0:1.0/self.DPC] #condition for a rectangle mask = np.logical_and(np.abs(x*np.cos(angle_rad)-y*np.sin(angle_rad)) <= width, np.abs(x*np.sin(angle_rad)+y*np.cos(angle_rad)) <= height) #ensure proper format: mask = mask[0:self.shape[0],0:self.shape[1]] return mask def rectangle_stats(self,x0, y0, width, height, angle=0.0, test=False): """ get statistics from a rectangular area Parameters ---------- x0 : scalar x-value of rectangle center (in cm) y0 : scalar y-value of rectangle center (in cm) width : scalar half-width (x-dimension) of the rectangle height : scalar half-height (y-dimension) of the rectangle angle : scalar, optional counter clockwise rotation angle of the rectangle test : bool, optional if true the area is set to 0 (used for testing) Returns ------- sum : scalar sum of all the pixels in the area mean : scalar average pixel value std : scalar standard devition of the pixel values min : scalar minimal pixel value in the area max : scalar maximum pixel value in the area """ mask = self.rectangle_mask(x0, y0, width, height, angle) if test: self[mask] = 0 return(float(self[mask].sum()), float(self[mask].mean()), float(self[mask].std()), float(self[mask].min()), float(self[mask].max())) def ellipse_stats(self,x0, y0, a, b, angle=0.0, test=False): """ get statistics from an ellipse area Parameters ---------- x0 : scalar x-value of ellipse center (in cm) y0 : scalar y-value of ellipse center (in cm) a : scalar half-axis in x-direction b : scalar half-axis in y-direction angle : scalar, optional counter clockwise rotation angle of the ellipse test : bool, optional if true the area is set to 0 (used for testing) Returns ------- sum : scalar sum of all the pixels in the area mean : scalar average pixel value std : scalar standard devition of the pixel values min : scalar minimal pixel value in the area max : scalar maximum pixel value in the area """ angle_rad = angle*np.pi/180 #create a boolean mask for a circle #the mgrid creates two arrays with x and y positions the pixels, respectively #(y is the first index) #if the lower edge of the pixels is at 0, the position of their center #must be shifted by 0.5 pixels width. y, x = np.mgrid[-y0+0.5/self.DPC:(self.shape[0]+.5)/self.DPC-y0:1.0/self.DPC, -x0+0.5/self.DPC:(self.shape[1]+.5)/self.DPC-x0:1.0/self.DPC] #condition for an ellipse mask = ((x*np.cos(angle_rad)-y*np.sin(angle_rad))**2/(a*a) + (-x*np.sin(angle_rad)-y*np.cos(angle_rad))**2/(b*b)) <= 1.0 #ensure proper format: mask = mask[0:self.shape[0],0:self.shape[1]] if test: self[mask] = 0 return(float(self[mask].sum()), float(self[mask].mean()), float(self[mask].std()), float(self[mask].min()), float(self[mask].max())) def profile(self, x0, y0, x1, y1, interpolation="nearest",test=False): """ returns a profile along a line Parameters ---------- x0 : scalar x start of line (in cm) y0 : scalar y start of line (in cm) x1 : scalar x end of line (in cm) y1 : scalar y end of line (in cm) interpolation : string, optional interpolation method used, nearest, linear or spline test : bool, optional if true the profile is set to 0 (used for testing) Returns ------- profile : ndarray the dose values along the specified line """ #transform to image indexes coords = (np.array([y0,x0,y1,x1])*self.DPC).astype(np.int) #force coordinates to match array, i.e. avoid exceeding index range for idx, coord in enumerate(coords): if coord > self.shape[idx%2]: coord = self.shape[idx%2]-1 while coord < 0: coord += self.shape[idx%2] coords[idx] = coord #make two arrays with indexes from start to end coordinates length = int(np.hypot(coords[3]-coords[1], coords[2]-coords[0])) x, y = np.linspace(coords[1], coords[3], length), np.linspace(coords[0], coords[2], length) if test: self[y.astype(np.int),x.astype(np.int)]=0.0 if interpolation == "nearest": return self[y.astype(np.int),x.astype(np.int)] elif interpolation == "linear": return scipy.ndimage.map_coordinates(self, np.vstack((x,y)),order=1) elif interpolation == "spline": return scipy.ndimage.map_coordinates(self, np.vstack((x,y))) else: logging.warning("unkown interpolation: {!s} using nearest".format(interpolation)) return self[y.astype(np.int),x.astype(np.int)] # for testing if __name__ == '__main__': #load some calibrations calibs = load_calibrations(os.path.join(os.path.abspath(os.path.curdir),"calibrations")) #create a simple scan (~4x4 cm) scan = np.zeros((470,470,3),dtype="uint8") #create a coordinate grid and a 2D gaussian with noise x,y = np.meshgrid(np.linspace(0,470,470),np.linspace(0,470,470)) scan[:,:,0] = (-120.0*np.exp(-np.divide(np.square(x-235)+np.square(y-235), 2*50**2)) +200+np.random.rand(470,470)*5.0) doseDistribution = DoseArray(300.,calibs["example"],scan,255) doseDistribution.rectangle_stats(1.0,1.0,0.5,0.5,0.,True) mask = doseDistribution.rectangle_mask(0.4,0.5,0.2,0.1,0.0) print (doseDistribution[mask].shape) summed, avg, std, minimum, maximum = doseDistribution.rectangle_stats(0.4,0.5,0.2,0.1,45.0,False) print (summed, avg, std, minimum, maximum) doseDistribution.ellipse_stats(2.0,1.0,0.5,0.2,0.0,False) x0 = 0.5 x1 = 3.5 y0 = 0.5 y1 = 3.5 profile1 = doseDistribution.profile(x0,y0,x1,y1,) profile2 = doseDistribution.profile(x0,y0,x1,y1,interpolation="spline") profile3 = doseDistribution.profile(x0,y0,x1,y1,interpolation="linear") import matplotlib.pyplot as plt fig1, ax = plt.subplots(nrows = 2) ax[0].imshow(doseDistribution,extent=[0,470.*2.54/300.,470.*2.54/300.,0], interpolation="nearest",cmap="inferno") x = np.linspace(0,np.hypot(x1-x0,y1-y0),len(profile1)) ax[1].plot(x,profile1,label="nearest") ax[1].plot(x,profile2,label="spline") ax[1].plot(x,profile3,label="linear") ax[1].legend() plt.show()
mit