Datasets:
File size: 5,566 Bytes
b7644f2 e01aeec 23c8ef0 b7644f2 ae60ae3 b7644f2 e01aeec 23c8ef0 b7644f2 ae60ae3 0a3e4f5 b7644f2 0a3e4f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
dataset_info:
- config_name: papyrus-a
features:
- name: doc_id
dtype: int64
- name: title
dtype: string
- name: input_text
dtype: string
- name: keyphrases
sequence: string
- name: lang
dtype: string
splits:
- name: train
num_bytes: 48856197
num_examples: 11290
- name: test
num_bytes: 14237516
num_examples: 3261
- name: validation
num_bytes: 7101302
num_examples: 1638
download_size: 39852407
dataset_size: 70195015
- config_name: papyrus-e
features:
- name: doc_id
dtype: int64
- name: title
dtype: string
- name: input_text
dtype: string
- name: keyphrases
sequence: string
- name: lang
dtype: string
splits:
- name: train
num_bytes: 23220234
num_examples: 10508
- name: test
num_bytes: 6777041
num_examples: 3046
- name: validation
num_bytes: 3394239
num_examples: 1539
download_size: 19090105
dataset_size: 33391514
- config_name: papyrus-f
features:
- name: doc_id
dtype: int64
- name: title
dtype: string
- name: input_text
dtype: string
- name: keyphrases
sequence: string
- name: lang
dtype: string
splits:
- name: train
num_bytes: 26332755
num_examples: 10299
- name: test
num_bytes: 7691101
num_examples: 2981
- name: validation
num_bytes: 3820763
num_examples: 1488
download_size: 20986924
dataset_size: 37844619
- config_name: papyrus-m
features:
- name: doc_id
dtype: int64
- name: title
dtype: string
- name: input_text
dtype: string
- name: keyphrases
sequence: string
- name: lang
dtype: string
splits:
- name: train
num_bytes: 49906922
num_examples: 20963
- name: test
num_bytes: 14543415
num_examples: 6061
- name: validation
num_bytes: 7242231
num_examples: 3040
download_size: 40019743
dataset_size: 71692568
configs:
- config_name: papyrus-a
data_files:
- split: train
path: papyrus-a/train-*
- split: test
path: papyrus-a/test-*
- split: validation
path: papyrus-a/validation-*
- config_name: papyrus-e
data_files:
- split: train
path: papyrus-e/train-*
- split: test
path: papyrus-e/test-*
- split: validation
path: papyrus-e/validation-*
- config_name: papyrus-f
data_files:
- split: train
path: papyrus-f/train-*
- split: test
path: papyrus-f/test-*
- split: validation
path: papyrus-f/validation-*
- config_name: papyrus-m
data_files:
- split: train
path: papyrus-m/train-*
- split: test
path: papyrus-m/test-*
- split: validation
path: papyrus-m/validation-*
license: apache-2.0
language:
- en
- fr
tags:
- text-to-text
- keyphrase-generation
pretty_name: Papyrus
size_categories:
- 10K<n<100K
---
# Dataset Card for Papyrus
- **Paper:** [A new dataset for multilingual keyphrase generation](https://proceedings.neurips.cc/paper_files/paper/2022/hash/f88709551258331f9ab31b33c71021a4-Abstract-Datasets_and_Benchmarks.html)
- **Github:** <https://github.com/smolPixel/French-keyphrase-generation>
## Dataset Description
### Dataset Summary
The datasets are derived from Papyrus, a repository at Université de Montréal containing various types of documents, mainly theses with abstracts in multiple languages, primarily French and English. The entries are provided in four different configurations based on the languages of abstracts, allowing for generating keyphrases in French, English, or multiple languages.
- **Papyrus-f:** From the French abstracts, generate French keyphrases.
- **Papyrus-e:** From the English abstracts, generate English keyphrases.
- **Papyrus-m:** From one abstract in any language, generate keyphrases in that same
language (one language to one language).
- **Papyrus-a:** From the multiple abstracts of a document, generate keyphrases in the
same languages as the abstracts (many to many languages).
### Languages
- **Main languages:** English, French
- **Others:** Spanish, German, Italian, Portuguese, Arabic, Tagalog, Catalan, Greek, Turkish, Russian, Polish, Farsi, Indonesian, Lingala, Swedish, Finnish, Romanian, Korean
## Dataset Structure
### Dataset content
| Config | Train set size | Valid. set size | Test set size |
| --------- | -------------- | --------------- | ------------- |
| papyrus-m | 20963 | 3040 | 6061 |
| papyrus-e | 10508 | 1539 | 3046 |
| papyrus-f | 10299 | 1488 | 2981 |
| papyrus-a | 11290 | 1638 | 3261 |
### Data fields
- **doc_id:** a unique id for the original document.
- **title:** title of the thesis or article (the language of the title does not always match the language of the abstract/keyphrases).
- **input_text:** abstract of the document.
- **keyphrases:** associated keyphrases.
- **lang:** language of the abstract/keyphrases.
## Citation
@inproceedings{NEURIPS2022_f8870955,
author = {Piedboeuf, Fr\'{e}d\'{e}ric and Langlais, Philippe},
booktitle = {Advances in Neural Information Processing Systems},
editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh},
pages = {38046--38059},
publisher = {Curran Associates, Inc.},
title = {A new dataset for multilingual keyphrase generation},
url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/f88709551258331f9ab31b33c71021a4-Paper-Datasets_and_Benchmarks.pdf},
volume = {35},
year = {2022}
} |