Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 5,566 Bytes
b7644f2
 
e01aeec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c8ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7644f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae60ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7644f2
e01aeec
 
 
 
 
 
 
 
23c8ef0
 
 
 
 
 
 
 
b7644f2
 
 
 
 
 
 
 
ae60ae3
 
 
 
 
 
 
 
0a3e4f5
 
 
 
 
 
 
 
 
 
b7644f2
0a3e4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
dataset_info:
- config_name: papyrus-a
  features:
  - name: doc_id
    dtype: int64
  - name: title
    dtype: string
  - name: input_text
    dtype: string
  - name: keyphrases
    sequence: string
  - name: lang
    dtype: string
  splits:
  - name: train
    num_bytes: 48856197
    num_examples: 11290
  - name: test
    num_bytes: 14237516
    num_examples: 3261
  - name: validation
    num_bytes: 7101302
    num_examples: 1638
  download_size: 39852407
  dataset_size: 70195015
- config_name: papyrus-e
  features:
  - name: doc_id
    dtype: int64
  - name: title
    dtype: string
  - name: input_text
    dtype: string
  - name: keyphrases
    sequence: string
  - name: lang
    dtype: string
  splits:
  - name: train
    num_bytes: 23220234
    num_examples: 10508
  - name: test
    num_bytes: 6777041
    num_examples: 3046
  - name: validation
    num_bytes: 3394239
    num_examples: 1539
  download_size: 19090105
  dataset_size: 33391514
- config_name: papyrus-f
  features:
  - name: doc_id
    dtype: int64
  - name: title
    dtype: string
  - name: input_text
    dtype: string
  - name: keyphrases
    sequence: string
  - name: lang
    dtype: string
  splits:
  - name: train
    num_bytes: 26332755
    num_examples: 10299
  - name: test
    num_bytes: 7691101
    num_examples: 2981
  - name: validation
    num_bytes: 3820763
    num_examples: 1488
  download_size: 20986924
  dataset_size: 37844619
- config_name: papyrus-m
  features:
  - name: doc_id
    dtype: int64
  - name: title
    dtype: string
  - name: input_text
    dtype: string
  - name: keyphrases
    sequence: string
  - name: lang
    dtype: string
  splits:
  - name: train
    num_bytes: 49906922
    num_examples: 20963
  - name: test
    num_bytes: 14543415
    num_examples: 6061
  - name: validation
    num_bytes: 7242231
    num_examples: 3040
  download_size: 40019743
  dataset_size: 71692568
configs:
- config_name: papyrus-a
  data_files:
  - split: train
    path: papyrus-a/train-*
  - split: test
    path: papyrus-a/test-*
  - split: validation
    path: papyrus-a/validation-*
- config_name: papyrus-e
  data_files:
  - split: train
    path: papyrus-e/train-*
  - split: test
    path: papyrus-e/test-*
  - split: validation
    path: papyrus-e/validation-*
- config_name: papyrus-f
  data_files:
  - split: train
    path: papyrus-f/train-*
  - split: test
    path: papyrus-f/test-*
  - split: validation
    path: papyrus-f/validation-*
- config_name: papyrus-m
  data_files:
  - split: train
    path: papyrus-m/train-*
  - split: test
    path: papyrus-m/test-*
  - split: validation
    path: papyrus-m/validation-*
license: apache-2.0
language:
- en
- fr
tags:
- text-to-text
- keyphrase-generation
pretty_name: Papyrus
size_categories:
- 10K<n<100K
---


# Dataset Card for Papyrus

- **Paper:** [A new dataset for multilingual keyphrase generation](https://proceedings.neurips.cc/paper_files/paper/2022/hash/f88709551258331f9ab31b33c71021a4-Abstract-Datasets_and_Benchmarks.html)
- **Github:** <https://github.com/smolPixel/French-keyphrase-generation>


## Dataset Description

### Dataset Summary

The datasets are derived from Papyrus, a repository at Université de Montréal containing various types of documents, mainly theses with abstracts in multiple languages, primarily French and English. The entries are provided in four different configurations based on the languages of abstracts, allowing for generating keyphrases in French, English, or multiple languages.
- **Papyrus-f:** From the French abstracts, generate French keyphrases.
- **Papyrus-e:** From the English abstracts, generate English keyphrases.
- **Papyrus-m:** From one abstract in any language, generate keyphrases in that same
language (one language to one language).
- **Papyrus-a:** From the multiple abstracts of a document, generate keyphrases in the
same languages as the abstracts (many to many languages).

### Languages

- **Main languages:** English, French
- **Others:** Spanish, German, Italian, Portuguese, Arabic, Tagalog, Catalan, Greek, Turkish, Russian, Polish, Farsi, Indonesian, Lingala, Swedish, Finnish, Romanian, Korean


## Dataset Structure

### Dataset content

| Config    | Train set size | Valid. set size | Test set size |
| --------- | -------------- | --------------- | ------------- |
| papyrus-m | 20963          | 3040            | 6061          |
| papyrus-e | 10508          | 1539            | 3046          |
| papyrus-f | 10299          | 1488            | 2981          |
| papyrus-a | 11290          | 1638            | 3261          |

### Data fields

- **doc_id:** a unique id for the original document.
- **title:** title of the thesis or article (the language of the title does not always match the language of the abstract/keyphrases).
- **input_text:** abstract of the document.
- **keyphrases:** associated keyphrases.
- **lang:** language of the abstract/keyphrases.


## Citation

    @inproceedings{NEURIPS2022_f8870955,
        author = {Piedboeuf, Fr\'{e}d\'{e}ric and Langlais, Philippe},
        booktitle = {Advances in Neural Information Processing Systems},
        editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh},
        pages = {38046--38059},
        publisher = {Curran Associates, Inc.},
        title = {A new dataset for multilingual keyphrase generation},
        url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/f88709551258331f9ab31b33c71021a4-Paper-Datasets_and_Benchmarks.pdf},
        volume = {35},
        year = {2022}
    }