Datasets:

Languages:
English
ArXiv:
License:
admin commited on
Commit
6156263
1 Parent(s): a224b79
Files changed (2) hide show
  1. HEp2.py +1 -1
  2. README.md +6 -6
HEp2.py CHANGED
@@ -5,7 +5,7 @@ from datasets.tasks import ImageClassification
5
 
6
 
7
  _HOMEPAGE = (
8
- f"https://www.modelscope.cn/datasets/MuGeminorum/{os.path.basename(__file__)[:-3]}"
9
  )
10
 
11
  _URL = f"{_HOMEPAGE}/resolve/master/images.zip"
 
5
 
6
 
7
  _HOMEPAGE = (
8
+ f"https://www.modelscope.cn/datasets/MuGemSt/{os.path.basename(__file__)[:-3]}"
9
  )
10
 
11
  _URL = f"{_HOMEPAGE}/resolve/master/images.zip"
README.md CHANGED
@@ -13,17 +13,17 @@ size_categories:
13
  viewer: false
14
  ---
15
 
16
- # Dataset card for "MuGeminorum/HEp2"
17
  The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.
18
 
19
  ## Viewer
20
- <https://www.modelscope.cn/datasets/MuGeminorum/HEp2/dataPeview>
21
 
22
  ## Usage
23
  ```python
24
  from datasets import load_dataset
25
 
26
- data = load_dataset("MuGeminorum/HEp2")
27
  trainset = data["train"]
28
  validset = data["validation"]
29
  testset = data["test"]
@@ -44,13 +44,13 @@ for item in testset:
44
 
45
  ## Maintenance
46
  ```bash
47
- git clone [email protected]:datasets/MuGeminorum/HEp2
48
  cd HEp2
49
  ```
50
 
51
  ## Mirror
52
- <https://www.modelscope.cn/datasets/MuGeminorum/HEp2>
53
 
54
  ## Reference
55
- [1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/MuGeminorum/Medical_Image_Computing/wiki/Chapter-III-%E2%80%90-Classifying-Cell-Images-Using-Deep-Learning-Models)<br>
56
  [2] <a href="https://arxiv.org/pdf/1504.02531v1.pdf">HEp-2 Cell Image Classification with Deep Convolutional Neural Networks</a>
 
13
  viewer: false
14
  ---
15
 
16
+ # Dataset card for "MuGemSt/HEp2"
17
  The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.
18
 
19
  ## Viewer
20
+ <https://www.modelscope.cn/datasets/MuGemSt/HEp2/dataPeview>
21
 
22
  ## Usage
23
  ```python
24
  from datasets import load_dataset
25
 
26
+ data = load_dataset("MuGemSt/HEp2")
27
  trainset = data["train"]
28
  validset = data["validation"]
29
  testset = data["test"]
 
44
 
45
  ## Maintenance
46
  ```bash
47
+ git clone [email protected]:datasets/MuGemSt/HEp2
48
  cd HEp2
49
  ```
50
 
51
  ## Mirror
52
+ <https://www.modelscope.cn/datasets/MuGemSt/HEp2>
53
 
54
  ## Reference
55
+ [1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/MuGemSt/Medical_Image_Computing/wiki/Chapter-III-%E2%80%90-Classifying-Cell-Images-Using-Deep-Learning-Models)<br>
56
  [2] <a href="https://arxiv.org/pdf/1504.02531v1.pdf">HEp-2 Cell Image Classification with Deep Convolutional Neural Networks</a>