devcenter-articles / README.md
ajosh0504's picture
Update README.md
05c49c2 verified
---
license: cc-by-3.0
task_categories:
- question-answering
language:
- en
tags:
- vector search
- retrieval augmented generation
size_categories:
- <1K
---
## Overview
This dataset consists of ~600 articles from the MongoDB Developer Center.
## Dataset Structure
The dataset consists of the following fields:
- sourceName: The source of the article. This value is `devcenter` for the entire dataset.
- url: Link to the article
- action: Action taken on the article. This value is `created` for the entire dataset.
- body: Content of the article in Markdown format
- format: Format of the content. This value is `md` for all articles.
- metadata: Metadata such as tags, content type etc. associated with the articles
- title: Title of the article
- updated: The last updated date of the article
## Usage
This dataset can be useful for prototyping RAG applications. This is a real sample of data we have used to build the MongoDB Documentation Chatbot.
## Ingest Data
To experiment with this dataset using MongoDB Atlas, first [create a MongoDB Atlas account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=apoorva.joshi).
You can then use the following script to load this dataset into your MongoDB Atlas cluster:
```
import os
from pymongo import MongoClient
import datasets
from datasets import load_dataset
from bson import json_util
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'your_database_name' # Change this to your actual database name
collection_name = 'devcenter_articles'
collection = client[db_name][collection_name]
dataset = load_dataset("MongoDB/devcenter-articles")
insert_data = []
for item in dataset['train']:
doc = json_util.loads(json_util.dumps(item))
insert_data.append(doc)
if len(insert_data) == 1000:
collection.insert_many(insert_data)
print("1000 records ingested")
insert_data = []
if len(insert_data) > 0:
collection.insert_many(insert_data)
insert_data = []
print("Data ingested successfully!")
```