|
--- |
|
license: cc-by-3.0 |
|
task_categories: |
|
- question-answering |
|
language: |
|
- en |
|
tags: |
|
- vector search |
|
- retrieval augmented generation |
|
size_categories: |
|
- <1K |
|
--- |
|
|
|
## Overview |
|
|
|
This dataset consists of ~600 articles from the MongoDB Developer Center. |
|
|
|
## Dataset Structure |
|
|
|
The dataset consists of the following fields: |
|
|
|
- sourceName: The source of the article. This value is `devcenter` for the entire dataset. |
|
- url: Link to the article |
|
- action: Action taken on the article. This value is `created` for the entire dataset. |
|
- body: Content of the article in Markdown format |
|
- format: Format of the content. This value is `md` for all articles. |
|
- metadata: Metadata such as tags, content type etc. associated with the articles |
|
- title: Title of the article |
|
- updated: The last updated date of the article |
|
|
|
## Usage |
|
|
|
This dataset can be useful for prototyping RAG applications. This is a real sample of data we have used to build the MongoDB Documentation Chatbot. |
|
|
|
## Ingest Data |
|
|
|
To experiment with this dataset using MongoDB Atlas, first [create a MongoDB Atlas account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=apoorva.joshi). |
|
|
|
You can then use the following script to load this dataset into your MongoDB Atlas cluster: |
|
|
|
``` |
|
import os |
|
from pymongo import MongoClient |
|
import datasets |
|
from datasets import load_dataset |
|
from bson import json_util |
|
|
|
|
|
uri = os.environ.get('MONGODB_ATLAS_URI') |
|
client = MongoClient(uri) |
|
db_name = 'your_database_name' # Change this to your actual database name |
|
collection_name = 'devcenter_articles' |
|
|
|
collection = client[db_name][collection_name] |
|
|
|
dataset = load_dataset("MongoDB/devcenter-articles") |
|
|
|
insert_data = [] |
|
|
|
for item in dataset['train']: |
|
doc = json_util.loads(json_util.dumps(item)) |
|
insert_data.append(doc) |
|
|
|
if len(insert_data) == 1000: |
|
collection.insert_many(insert_data) |
|
print("1000 records ingested") |
|
insert_data = [] |
|
|
|
if len(insert_data) > 0: |
|
collection.insert_many(insert_data) |
|
insert_data = [] |
|
|
|
print("Data ingested successfully!") |
|
``` |