Meehai commited on
Commit
9dd6738
·
1 Parent(s): d7d5d67

latest changes

Browse files
Files changed (3) hide show
  1. README.md +8 -12
  2. collage.png +2 -2
  3. scripts/dronescapes_viewer.ipynb +0 -0
README.md CHANGED
@@ -9,8 +9,6 @@ modalities as inputs: [dronescapes-2024](https://huggingface.co/datasets/Meehai/
9
 
10
  # 1. Downloading the data
11
 
12
- ## Option 1. Download the pre-processed dataset from HuggingFace repository
13
-
14
  ```
15
  git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
16
  git clone https://huggingface.co/datasets/Meehai/dronescapes
@@ -22,20 +20,16 @@ Note: the dataset has about 200GB, so it may take a while to clone it.
22
 
23
  As per the split from the paper:
24
 
25
- <details>
26
  <summary> Split </summary>
27
- <img src="split.png">
28
- </details>
29
 
30
- The data is in `data/*` (see the `ls` call above, it should match even if you download from huggingface).
31
 
32
- ## 2.1 Using the provided viewer
 
33
 
34
  ![Collage](collage.png)
35
 
36
- The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running
37
- it, you should get a collage with all the default tasks, like the picture at the top.
38
-
39
  For a CLI-only method, you can use the provided reader as well:
40
 
41
  ```
@@ -118,7 +112,9 @@ python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --c
118
  <summary> Script explanation </summary>
119
  The script is a bit convoluted, so let's break it into parts:
120
 
121
- - `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset (y_dir/1.npz, gt_dir/55.npz etc.)
 
 
122
  - `classes` A list of classes in the order that they appear in the predictions and gt files
123
  - `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
124
  the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
@@ -134,7 +130,7 @@ outputs one csv file with predictions for each npz file, the scenes are used for
134
 
135
  ```
136
  python scripts/evaluate_semantic_segmentation.py \
137
- data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \
138
  data/test_set_annotated_only/semantic_segprop8/ \
139
  -o results.csv \
140
  --classes land forest residential road little-objects water sky hill \
 
9
 
10
  # 1. Downloading the data
11
 
 
 
12
  ```
13
  git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
14
  git clone https://huggingface.co/datasets/Meehai/dronescapes
 
20
 
21
  As per the split from the paper:
22
 
 
23
  <summary> Split </summary>
24
+ <img src="split.png" width="500px">
 
25
 
26
+ The data is in the `data*` directory with 1 sub-directory for each split above (and a few more variants).
27
 
28
+ The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running
29
+ it, you should get a collage with all the default tasks, like this:
30
 
31
  ![Collage](collage.png)
32
 
 
 
 
33
  For a CLI-only method, you can use the provided reader as well:
34
 
35
  ```
 
112
  <summary> Script explanation </summary>
113
  The script is a bit convoluted, so let's break it into parts:
114
 
115
+ - `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset
116
+ - y_dir/1.npz, ..., y_dir/N.npz
117
+ - gt_dir/1.npz, ..., gt_dir.npz
118
  - `classes` A list of classes in the order that they appear in the predictions and gt files
119
  - `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
120
  the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
 
130
 
131
  ```
132
  python scripts/evaluate_semantic_segmentation.py \
133
+ data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \ # Mask2Former example, use yours here!
134
  data/test_set_annotated_only/semantic_segprop8/ \
135
  -o results.csv \
136
  --classes land forest residential road little-objects water sky hill \
collage.png CHANGED

Git LFS Details

  • SHA256: 842395b7e91d7a34dbb1d5c18e261ec97ae19f67700a5a716fb042d347a3fd42
  • Pointer size: 132 Bytes
  • Size of remote file: 5.27 MB

Git LFS Details

  • SHA256: 5db9b6bdae025c95b3464fec742315d98c490100e76eb658550763f4ca2178c5
  • Pointer size: 132 Bytes
  • Size of remote file: 3.6 MB
scripts/dronescapes_viewer.ipynb CHANGED
The diff for this file is too large to render. See raw diff