Vaibhav Adlakha commited on
Commit
7fc1305
·
1 Parent(s): 43c785e

data loading script

Browse files
Files changed (1) hide show
  1. TopiOCQA.py +128 -0
TopiOCQA.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """TopiOCQA: Open-domain Conversational Question Answering with Topic Switching"""
18
+
19
+
20
+ import json
21
+
22
+ import datasets
23
+ # from datasets.tasks import QuestionAnsweringExtractive
24
+
25
+
26
+ logger = datasets.logging.get_logger(__name__)
27
+
28
+
29
+ # _CITATION = """\
30
+ # @article{2016arXiv160605250R,
31
+ # author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
32
+ # Konstantin and {Liang}, Percy},
33
+ # title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
34
+ # journal = {arXiv e-prints},
35
+ # year = 2016,
36
+ # eid = {arXiv:1606.05250},
37
+ # pages = {arXiv:1606.05250},
38
+ # archivePrefix = {arXiv},
39
+ # eprint = {1606.05250},
40
+ # }
41
+ # """
42
+
43
+ _DESCRIPTION = """\
44
+ TopiOCQA is an information-seeking conversational dataset with challenging topic switching phenomena.
45
+ """
46
+
47
+ # _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
48
+ _URLS = {
49
+ "train": "data/topiocqa_train.jsonl",
50
+ "valid": "data/topiocqa_valid.jsonl",
51
+ }
52
+
53
+
54
+ class TopiOCQAConfig(datasets.BuilderConfig):
55
+ """BuilderConfig for SQUAD."""
56
+
57
+ def __init__(self, **kwargs):
58
+ """BuilderConfig for TopiOCQA.
59
+
60
+ Args:
61
+ **kwargs: keyword arguments forwarded to super.
62
+ """
63
+ super(TopiOCQAConfig, self).__init__(**kwargs)
64
+
65
+
66
+ class Squad(datasets.GeneratorBasedBuilder):
67
+ """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
68
+
69
+ BUILDER_CONFIGS = [
70
+ TopiOCQAConfig(
71
+ name="plain_text",
72
+ version=datasets.Version("1.0.0", ""),
73
+ description="Plain text",
74
+ ),
75
+ ]
76
+
77
+ def _info(self):
78
+ return datasets.DatasetInfo(
79
+ description=_DESCRIPTION,
80
+ features=datasets.Features(
81
+ {
82
+ "Conversation_no": datasets.Value("int32"),
83
+ "Turn_no": datasets.Value("int32"),
84
+ "Question": datasets.Value("string"),
85
+ "Answer": datasets.Value("string"),
86
+ "Topic": datasets.Value("string"),
87
+ "Topic_section": datasets.Value("string"),
88
+ "Rationale": datasets.Value("string"),
89
+ "is_nq": datasets.Value("bool"),
90
+ "Context": datasets.features.Sequence(datasets.Value("string")),
91
+ "Additional_answers": datasets.features.Sequence(
92
+ {
93
+ "Answer": datasets.Value("string"),
94
+ "Topic": datasets.Value("string"),
95
+ "Topic_section": datasets.Value("string"),
96
+ "Rationale": datasets.Value("string"),
97
+ }
98
+ ),
99
+ }
100
+ ),
101
+ supervised_keys=None,
102
+ homepage="https://mcgill-nlp.github.io/topiocqa/",
103
+ # citation=_CITATION,
104
+ # task_templates=[
105
+ # QuestionAnsweringExtractive(
106
+ # question_column="Question", context_column="context", answers_column="answers"
107
+ # )
108
+ # ],
109
+ )
110
+
111
+ def _split_generators(self, dl_manager):
112
+ downloaded_files = dl_manager.download_and_extract(_URLS)
113
+
114
+ return [
115
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
116
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
117
+ ]
118
+
119
+ def _generate_examples(self, filepath):
120
+ """This function returns the examples in the raw (text) form."""
121
+ logger.info("generating examples from = %s", filepath)
122
+ key = 0
123
+ with open(filepath, encoding="utf-8") as f:
124
+ for line in f:
125
+ data = json.loads(line)
126
+ yield key, data
127
+ key += 1
128
+