Datasets:

Modalities:
Text
Video
Formats:
text
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 6,557 Bytes
5490151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
https://github.com/xingyizhou/CenterTrack
Modified by Xiaoyu Zhao

https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/convert_mot_to_coco.py

There are extra many convert_X_to_coco.py

https://cocodataset.org/#format-data
"""
import os
import numpy as np
import json
import cv2
from tqdm import tqdm

DATA_PATH = "PATH/TO/sportsmot"
OUT_PATH = os.path.join(DATA_PATH, "annotations")
os.makedirs(OUT_PATH)
SPLITS = ["train", "val", "test"]
HALF_VIDEO = False
CREATE_SPLITTED_ANN = True
USE_DET = False
CREATE_SPLITTED_DET = False

for split in SPLITS:
    data_path = os.path.join(DATA_PATH, split)
    out_path = os.path.join(OUT_PATH, "{}.json".format(split))
    out = {
        "images": [],
        "annotations": [],
        "videos": [],
        "categories": [{
            "id": 1,
            "name": "pedestrian"
        }]
    }
    video_list = os.listdir(data_path)
    image_cnt = 0
    ann_cnt = 0
    video_cnt = 0
    for seq in tqdm(sorted(video_list)):
        if ".DS_Store" in seq:
            continue
        video_cnt += 1  # video sequence number.
        out["videos"].append({"id": video_cnt, "file_name": seq})
        seq_path = os.path.join(data_path, seq)
        img_path = os.path.join(seq_path, "img1")
        ann_path = os.path.join(seq_path, "gt/gt.txt")
        images = os.listdir(img_path)
        num_images = len([image for image in images
                          if "jpg" in image])  # half and half

        if HALF_VIDEO and ("half" in split):
            image_range = [0, num_images // 2] if "train" in split else \
                            [num_images // 2 + 1, num_images - 1]
        else:
            image_range = [0, num_images - 1]

        for i in range(num_images):
            if i < image_range[0] or i > image_range[1]:
                continue
            img = cv2.imread(
                os.path.join(data_path,
                             "{}/img1/{:06d}.jpg".format(seq, i + 1)))
            height, width = img.shape[:2]
            image_info = {
                "file_name": "{}/img1/{:06d}.jpg".format(seq,
                                                         i + 1),  # image name.
                "id":
                image_cnt + i + 1,  # image number in the entire training set.
                "frame_id": i + 1 - image_range[
                    0],  # image number in the video sequence, starting from 1.
                "prev_image_id": image_cnt +
                i if i > 0 else -1,  # image number in the entire training set.
                "next_image_id":
                image_cnt + i + 2 if i < num_images - 1 else -1,
                "video_id": video_cnt,
                "height": height,
                "width": width
            }
            out["images"].append(image_info)
        print("{}: {} images".format(seq, num_images))
        if split != "test":
            det_path = os.path.join(seq_path, "det/det.txt")
            anns = np.loadtxt(ann_path, dtype=np.float32, delimiter=",")
            if USE_DET:
                dets = np.loadtxt(det_path, dtype=np.float32, delimiter=",")
            if CREATE_SPLITTED_ANN and ("half" in split):
                anns_out = np.array([
                    anns[i] for i in range(anns.shape[0])
                    if int(anns[i][0]) - 1 >= image_range[0]
                    and int(anns[i][0]) - 1 <= image_range[1]
                ], np.float32)
                anns_out[:, 0] -= image_range[0]
                gt_out = os.path.join(seq_path, "gt/gt_{}.txt".format(split))
                fout = open(gt_out, "w")
                for o in anns_out:
                    fout.write(
                        "{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:.6f}\n".
                        format(int(o[0]), int(o[1]), int(o[2]), int(o[3]),
                               int(o[4]), int(o[5]), int(o[6]), int(o[7]),
                               o[8]))
                fout.close()
            if CREATE_SPLITTED_DET and ("half" in split) and USE_DET:
                dets_out = np.array([
                    dets[i] for i in range(dets.shape[0])
                    if int(dets[i][0]) - 1 >= image_range[0]
                    and int(dets[i][0]) - 1 <= image_range[1]
                ], np.float32)
                dets_out[:, 0] -= image_range[0]
                det_out = os.path.join(seq_path,
                                       "det/det_{}.txt".format(split))
                dout = open(det_out, "w")
                for o in dets_out:
                    dout.write(
                        "{:d},{:d},{:.1f},{:.1f},{:.1f},{:.1f},{:.6f}\n".
                        format(int(o[0]), int(o[1]), float(o[2]), float(o[3]),
                               float(o[4]), float(o[5]), float(o[6])))
                dout.close()

            print("{} ann images".format(int(anns[:, 0].max())))
            for i in range(anns.shape[0]):
                frame_id = int(anns[i][0])
                if frame_id - 1 < image_range[0] or frame_id - 1 > image_range[
                        1]:
                    continue
                track_id = int(anns[i][1])
                cat_id = int(anns[i][7])
                ann_cnt += 1
                if not ("15" in DATA_PATH):
                    if not (float(anns[i][8]) >= 0.25):  # visibility.
                        continue
                    if not (int(anns[i][6]) == 1):  # whether ignore.
                        continue
                    if int(anns[i][7]) in [3, 4, 5, 6, 9, 10,
                                           11]:  # Non-person
                        continue
                    if int(anns[i][7]) in [2, 7, 8, 12]:  # Ignored person
                        category_id = -1
                    else:
                        category_id = 1  # pedestrian(non-static)
                else:
                    category_id = 1
                ann = {
                    "id": ann_cnt,
                    "category_id": category_id,
                    "image_id": image_cnt + frame_id,
                    "track_id": track_id,
                    "bbox": anns[i][2:6].tolist(),
                    "conf": float(anns[i][6]),
                    "iscrowd": 0,
                    "area": float(anns[i][4] * anns[i][5])
                }
                out["annotations"].append(ann)
        image_cnt += num_images
    print("loaded {} for {} images and {} samples".format(
        split, len(out["images"]), len(out["annotations"])))
    with open(out_path, "w") as f:
        json.dump(out, f, indent=2)