Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K<n<100K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO""" | |
import csv | |
import os | |
import datasets | |
from PIL import Image | |
_CITATION = """\ | |
@dataset{kasra_hosseini_2022_7147906, | |
author = {Kasra Hosseini and | |
Daniel C.S. Wilson and | |
Kaspar Beelen and | |
Katherine McDonough}, | |
title = {MapReader_Data_SIGSPATIAL_2022}, | |
month = oct, | |
year = 2022, | |
publisher = {Zenodo}, | |
version = {v0.3.3}, | |
doi = {10.5281/zenodo.7147906}, | |
url = {https://doi.org/10.5281/zenodo.7147906} | |
} | |
""" | |
_DESCRIPTION = """\ | |
TODO""" | |
_HOMEPAGE = "https://doi.org/10.5281/zenodo.3366686" | |
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International" | |
_URL = "https://zenodo.org/record/7147906/files/MapReader_Data_SIGSPATIAL_2022.zip?download=1" | |
class RailspaceData(datasets.GeneratorBasedBuilder): | |
"""National Library of Scotland Railspace dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"label": datasets.ClassLabel( | |
names=[ | |
"no building or railspace", | |
"railspace", | |
"building", | |
"railspace and non railspace building", | |
] | |
), # Labels: 0: no [building or railspace]; 1: railspace; 2: building; and 3: railspace and [non railspace] building. | |
"map_sheet": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data": data, "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data": data, "split": "valid"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"data": data, "split": "test"}, | |
), | |
] | |
def _generate_examples(self, data, split): | |
with open( | |
os.path.join( | |
data, f"MapReader_Data_SIGSPATIAL_2022/annotations/{split}.csv" | |
), | |
"r", | |
) as f: | |
reader = csv.DictReader(f) | |
for id_, row in enumerate(reader): | |
label = row["label"] | |
map_sheet = row["image_id"].split("#")[1] | |
image_file = os.path.join( | |
data, | |
f"MapReader_Data_SIGSPATIAL_2022/annotations/{row['image_id']}", | |
) | |
image = Image.open(image_file) | |
yield id_, {"image": image, "label": label, "map_sheet": map_sheet} | |