Limour commited on
Commit
4ec31b1
·
verified ·
1 Parent(s): bd14f10

Upload H2Retrieval_gte.py

Browse files
Files changed (1) hide show
  1. H2Retrieval_gte.py +60 -0
H2Retrieval_gte.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install pytrec-eval-terrier
2
+ import pytrec_eval
3
+ # conda install sentence-transformers -c conda-forge
4
+ from sentence_transformers import SentenceTransformer
5
+ import pandas as pd
6
+ from collections import defaultdict
7
+ import torch
8
+ from tqdm import tqdm
9
+
10
+
11
+ if torch.cuda.is_available():
12
+ device = torch.device('cuda')
13
+ else:
14
+ device = torch.device('cpu')
15
+
16
+ def load_dataset(path):
17
+ df = pd.read_parquet(path, engine="pyarrow")
18
+ return df
19
+
20
+ path = r'D:\datasets\H2Retrieval\data_sample5k'
21
+ qrels_pd = load_dataset(path + r'\qrels.parquet.gz')
22
+ corpus = load_dataset(path + r'\corpus.parquet.gz')
23
+ queries = load_dataset(path + r'\queries.parquet.gz')
24
+
25
+ qrels = defaultdict(dict)
26
+ for i, e in qrels_pd.iterrows():
27
+ qrels[e['qid']][e['cid']] = e['score']
28
+
29
+ model = SentenceTransformer(r'D:\models\gte', device='cuda:0')
30
+
31
+ corpusEmbeds = model.encode(corpus['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=64)
32
+ queriesEmbeds = model.encode(queries['text'].values, normalize_embeddings=True, show_progress_bar=True, batch_size=64)
33
+
34
+ queriesEmbeds = torch.tensor(queriesEmbeds, device=device)
35
+ corpusEmbeds = corpusEmbeds.T
36
+ corpusEmbeds = torch.tensor(corpusEmbeds, device=device)
37
+
38
+ def getTopK(corpusEmbeds, qEmbeds, k=10):
39
+ scores = qEmbeds @ corpusEmbeds
40
+ top_k_indices = torch.argsort(scores, descending=True)[:k]
41
+ scores = scores.cpu()
42
+ top_k_indices = top_k_indices.cpu()
43
+ retn = {}
44
+ for x in top_k_indices:
45
+ x = int(x)
46
+ retn[corpus['cid'][x]] = float(scores[x])
47
+ return retn
48
+
49
+ results = {}
50
+ for i in tqdm(range(len(queries)), desc="Converting"):
51
+ results[queries['qid'][i]] = getTopK(corpusEmbeds, queriesEmbeds[i])
52
+
53
+ evaluator = pytrec_eval.RelevanceEvaluator(qrels, {'ndcg'})
54
+ tmp = evaluator.evaluate(results)
55
+ ndcg = 0
56
+ for x in tmp.values():
57
+ ndcg += x['ndcg']
58
+ ndcg /= len(queries)
59
+
60
+ print(f'ndcg_10: {ndcg*100:.2f}%')