File size: 5,770 Bytes
c8b5c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca116a
c8b5c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca116a
 
c8b5c28
 
 
 
 
6ca116a
c8b5c28
 
 
 
 
 
 
 
 
6ca116a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pandas as pd
import os
import gzip
import random
import re
from tqdm import tqdm
from collections import defaultdict


def get_all_files_in_directory(directory, ext=''):
    all_files = []
    for root, dirs, files in os.walk(directory):
        root = root[len(directory):]
        if root.startswith('\\') or root.startswith('/'):
            root = root[1:]
        for file in files:
            if file.endswith(ext):
                file_path = os.path.join(root, file)
                all_files.append(file_path)
    return all_files

reg_q = re.compile(r'''['"“”‘’「」『』]''')
reg_e = re.compile(r'''[?!。?!]''')
def readOne(filePath):
    with gzip.open(filePath, 'rt', encoding='utf-8') if filePath.endswith('.gz') else open(filePath,
                                                                                           encoding='utf-8') as f:
        retn = []
        cache = ''
        for line in f:
            line = reg_q.sub('', line)  # 删除引号
            if len(cache) + len(line) < 384:
                cache += line
                continue
            if not bool(reg_e.findall(line)):
                cache += line
                retn.append(cache.strip())
                cache = ''
                continue
            i = 1
            s = 0
            while i <= len(line):
                if len(cache) + (i - s) < 384:  # 每 384 切一行
                    i = (384 - len(cache)) + s
                    if i > len(line):
                        break
                    cache += line[s:i]
                    s = i
                if line[i-1] in ('?', '!', '。', '?', '!'):
                    cache += line[s:i]
                    s = i
                    retn.append(cache.strip())
                    cache = ''
                i += 1
            if len(line) > s:
                cache += line[s:]

    cache = cache.strip()
    if cache:
        retn.append(cache)
    return retn


def load_dataset(path):
    df = pd.read_parquet(path, engine="pyarrow")
    return df


def load_all_dataset(path, convert=False):
    qrels_pd = load_dataset(path + r'\qrels.parquet')
    corpus = load_dataset(path + r'\corpus.parquet')
    queries = load_dataset(path + r'\queries.parquet')
    if convert:
        qrels = defaultdict(dict)
        for i, e in tqdm(qrels_pd.iterrows(), desc="load_all_dataset: Converting"):
            qrels[e['qid']][e['cid']] = e['score']
    else:
        qrels = qrels_pd
    return corpus, queries, qrels


def save_dataset(path, df):
    return df.to_parquet(
        path,
        engine="pyarrow",
        compression="gzip",
        index=False
    )


def save_all_dataset(path, corpus, queries, qrels):
    save_dataset(path + r"\corpus.parquet", corpus)
    save_dataset(path + r"\queries.parquet", queries)
    save_dataset(path + r"\qrels.parquet", qrels)


def create_dataset(corpus, queries, qrels):
    corpus_pd = pd.DataFrame(corpus, columns=['cid', 'text'])
    queries_pd = pd.DataFrame(queries, columns=['qid', 'text'])
    qrels_pd = pd.DataFrame(qrels, columns=['qid', 'cid', 'score'])

    corpus_pd['cid'] = corpus_pd['cid'].astype(str)
    queries_pd['qid'] = queries_pd['qid'].astype(str)
    qrels_pd['qid'] = qrels_pd['qid'].astype(str)
    qrels_pd['cid'] = qrels_pd['cid'].astype(str)
    qrels_pd['score'] = qrels_pd['score'].astype(int)

    return corpus_pd, queries_pd, qrels_pd


def sample_from_dataset(corpus, queries, qrels, k=5000):
    sample_k = sorted(random.sample(queries['qid'].to_list(), k=k))
    queries_pd = queries[queries['qid'].isin(sample_k)]
    qrels_pd = qrels[qrels['qid'].isin(sample_k)]
    corpus_pd = corpus[corpus['cid'].isin(qrels_pd['cid'])]

    return corpus_pd, queries_pd, qrels_pd

path = r'D:\datasets\h-corpus\h-ss-corpus'
rawcorpus = get_all_files_in_directory(path, '.txt.gz')
corpus = []
queries = []
qrels = []

for sub_path in tqdm(rawcorpus, desc="Reading all data..."):
    tmp = readOne(os.path.join(path, sub_path))
    if len(tmp) < 5:
        continue
    阈值 = max(len(tmp) // 4, 4)  # 大约每个文件抽 4*5 = 20 条语料
    # print(阈值)
    old_rand = None
    for i in range(len(tmp)):
        rand = random.randint(0, 阈值)
        if rand == 0 and (old_rand is None or old_rand != 0):
            queries.append((sub_path, i/(len(tmp)-1), tmp[i]))
        elif rand <= 4 or old_rand == 0:
            corpus.append((sub_path, i/(len(tmp)-1), tmp[i]))
            rand = 1
        else:
            pass
        old_rand = rand

tmp = random.sample(range(len(queries)), k=5000)
tmp.sort()
queries = [queries[i] for i in tmp]

sidx = 0
for qid, q in tqdm(enumerate(queries), desc="计算 qrels 中..."):
    mt = False
    for cid in range(sidx, len(corpus)):
        c = corpus[cid]
        if q[0] == c[0]:
            mt = True
            ss = 1 - abs(q[1] - c[1])
            qrels.append((qid, cid, 100 * ss))
        else:
            if mt:
                if qid + 1 < len(queries) and q[0] != queries[qid+1][0]:
                    sidx = cid + 1
                break

corpus_ = [(cid, c[2]) for cid, c in enumerate(corpus)]
queries_ = [(qid, q[2]) for qid, q in enumerate(queries)]

path = r'D:\datasets\H2Retrieval\new_fix'
corpus_pd, queries_pd, qrels_pd = create_dataset(corpus_, queries_, qrels)
tmp = corpus_pd[corpus_pd['cid'].isin(qrels_pd['cid'])]
corpus_pd = tmp
save_all_dataset(path + r'\data', corpus_pd, queries_pd, qrels_pd)
save_all_dataset(path + r'\data_sample1k', *sample_from_dataset(corpus_pd, queries_pd, qrels_pd, k=1000))


# save_all_dataset(path + r'\data_sample1k', *sample_from_dataset(*load_all_dataset(r'D:\datasets\H2Retrieval\new\data_sample5k'), k=1000))

# tmp = load_all_dataset(r'D:\datasets\H2Retrieval\new\data')