|
import numpy as np |
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
|
|
def dcg(scores): |
|
log2_i = np.log2(np.arange(2, len(scores) + 2)) |
|
return np.sum(scores / log2_i) |
|
|
|
|
|
def idcg(rels, topk): |
|
return dcg(np.sort(rels)[::-1][:topk]) |
|
|
|
|
|
def odcg(rels, predictions): |
|
indices = np.argsort(predictions)[::-1] |
|
return dcg(rels[indices]) |
|
|
|
|
|
def _ndcg(drels, dpredictions): |
|
topk = len(dpredictions) |
|
_idcg = idcg(np.array(drels['score']), topk) |
|
tmp = drels[drels.index.isin(dpredictions.index)] |
|
rels = dpredictions['score'].copy() |
|
rels *= 0 |
|
rels.update(tmp['score']) |
|
_odcg = odcg(rels.values, dpredictions['score'].values) |
|
return float(_odcg / _idcg) |
|
|
|
|
|
def ndcg(qrels, results): |
|
drels = qrels.set_index('cid', inplace=False) |
|
dpredictions = results.set_index('cid', inplace=False) |
|
|
|
return _ndcg(drels, dpredictions) |
|
|
|
|
|
def ndcg_in_all(qrels, results): |
|
retn = {} |
|
_qrels = {qid: group for qid, group in qrels.groupby('qid')} |
|
_results = {qid: group for qid, group in results.groupby('qid')} |
|
for qid in tqdm(_results, desc="计算 ndcg 中..."): |
|
retn[qid] = ndcg(_qrels[qid], _results[qid]) |
|
return retn |
|
|
|
|
|
if __name__ == '__main__': |
|
qrels = pd.DataFrame( |
|
[ |
|
['q1', 'd1', 1], |
|
['q1', 'd2', 2], |
|
['q1', 'd3', 3], |
|
['q1', 'd4', 4], |
|
['q2', 'd1', 2], |
|
['q2', 'd2', 1] |
|
], |
|
columns=['qid', 'cid', 'score'] |
|
) |
|
|
|
results = pd.DataFrame( |
|
[ |
|
['q1', 'd2', 1], |
|
['q1', 'd3', 2], |
|
['q1', 'd4', 3], |
|
['q2', 'd2', 1], |
|
['q2', 'd3', 2], |
|
['q2', 'd5', 2] |
|
], |
|
columns=['qid', 'cid', 'score'] |
|
) |
|
print(ndcg_in_all(qrels, results)) |
|
|