File size: 6,806 Bytes
fd86475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gravdataset
import os
from gravdataset.features import Features, Sequence, Value
from pycocotools.coco import COCO

_DESCRIPTION = 'COCO dataset for detection and instance segmentation task.'

_URLS = {
    'COCO2014': {
        'train_prefix': 'train2014',
        'train_meta': 'annotations/instances_train2014.json',
        'val_prefix': 'val2014',
        'val_meta': 'annotations/instances_val2014.json'
    },
    'COCO2017': {
        'train_prefix': 'train2017',
        'train_meta': 'annotations/instances_train2017.json',
        'val_prefix': 'val2017',
        'val_meta': 'annotations/instances_val2017.json'
    },
}

_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
            'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
            'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
            'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
            'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
            'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
            'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
            'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
            'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
            'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
            'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
            'scissors', 'teddy bear', 'hair drier', 'toothbrush')


class Coco(gravdataset.GeneratorBasedBuilder):
    """COCO dataset for detection and instance segmentation task."""

    VERSION = gravdataset.Version('0.1.0')

    BUILDER_CONFIGS = [
        gravdataset.BuilderConfig(
            name='COCO2014',
            version=VERSION,
            description='COCO2014 dataset for det and segm'),
        gravdataset.BuilderConfig(
            name='COCO2017',
            version=VERSION,
            description='COCO2017 dataset for det and segm'),
    ]
    # It's not mandatory to have a default configuration.
    # Just use one if it make sense.
    DEFAULT_CONFIG_NAME = 'train'

    def _info(self):
        return gravdataset.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            meta_info=dict(classes=_CLASSES),
            features=Features({
                'img_info': {
                    'filename': Value('string'),
                    'height': Value('int32'),
                    'width': Value('int32'),
                },
                'ann_info': {
                    'bboxes': Sequence(Sequence(Value('float64'))),
                    'labels': Sequence(Value('int64')),
                    'masks': Sequence(Sequence(Sequence(Value('float64')))),
                    'bboxes_ignore': Sequence(Sequence(Value('float64'))),
                    'label_ignore': Sequence(Value('int64')),
                    'masks_ignore': Sequence(
                        {
                            'counts': Sequence(Value('int64')),
                            'size': Sequence(Value('int64'))
                        }
                    ),
                    'seg_map': Value('string')
                }
            }))

    def _split_generators(self, dl_manager):
        train_prefix = _URLS[self.config.name]['train_prefix']
        train_meta = _URLS[self.config.name]['train_meta']
        val_prefix = _URLS[self.config.name]['val_prefix']
        val_meta = _URLS[self.config.name]['val_meta']
        train_meta = dl_manager.download(train_meta)
        val_meta = dl_manager.download(val_meta)
        return [
            gravdataset.SplitGenerator(
                name='train',
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    'img_prefix': train_prefix,
                    'ann_file': train_meta
                }),
            gravdataset.SplitGenerator(
                name='val',
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    'img_prefix': val_prefix,
                    'ann_file': val_meta
                }),
        ]

    def _generate_examples(self, img_prefix, ann_file):
        """Parser coco format annotation file."""
        coco = COCO(ann_file)
        cat_ids = coco.getCatIds(_CLASSES)
        cat2label = {cat_id: i for i, cat_id in enumerate(cat_ids)}
        img_ids = coco.getImgIds()
        index = 0
        for i in img_ids:
            sample = dict(img_info=dict())
            info = coco.loadImgs([i])[0]
            sample['img_info']['filename'] = os.path.join(
                img_prefix, info['file_name'])
            sample['img_info']['height'] = info['height']
            sample['img_info']['width'] = info['width']
            ann_ids = coco.getAnnIds([i])
            ann_info = coco.loadAnns(ann_ids)
            gt_bboxes = []
            gt_labels = []
            gt_bboxes_ignore = []
            gt_label_ignore = []
            gt_masks_ann = []
            gt_masks_ignore = []
            for i, ann in enumerate(ann_info):
                if ann.get('ignore', False):
                    continue
                x1, y1, w, h = ann['bbox']
                inter_w = max(0, min(x1 + w, info['width']) - max(x1, 0))
                inter_h = max(0, min(y1 + h, info['height']) - max(y1, 0))
                if inter_w * inter_h == 0:
                    continue
                if ann['area'] <= 0 or w < 1 or h < 1:
                    continue
                if ann['category_id'] not in cat_ids:
                    continue
                bbox = [x1, y1, x1 + w, y1 + h]
                if ann.get('iscrowd', False):
                    gt_bboxes_ignore.append(bbox)
                    gt_label_ignore.append(cat2label[ann['category_id']])
                    gt_masks_ignore.append(ann.get('segmentation', None))
                else:
                    gt_bboxes.append(bbox)
                    gt_labels.append(cat2label[ann['category_id']])
                    gt_masks_ann.append(ann.get('segmentation', None))

            seg_map = sample['img_info']['filename'].rsplit('.', 1)[0] + '.png'

            sample['ann_info'] = dict(
                bboxes=gt_bboxes,
                labels=gt_labels,
                bboxes_ignore=gt_bboxes_ignore,
                label_ignore=gt_label_ignore,
                masks=gt_masks_ann,
                masks_ignore=gt_masks_ignore,
                seg_map=seg_map)
            yield index, sample
            index += 1