File size: 6,613 Bytes
667ee46 000a0f6 5adf9a3 b9c1ae9 5adf9a3 35ac696 b9c1ae9 1ccca41 78f3b9d ad4cf8c d8c05ae f421486 5adf9a3 35ac696 b9c1ae9 1ccca41 78f3b9d ad4cf8c d8c05ae f421486 667ee46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
language:
- en
dataset_info:
- config_name: continuation
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 246278017
num_examples: 108647
- name: test
num_bytes: 17566431
num_examples: 7983
download_size: 32940424
dataset_size: 263844448
- config_name: empirical_baselines
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 269308616
num_examples: 108647
- name: test
num_bytes: 19261708
num_examples: 7983
download_size: 35998169
dataset_size: 288570324
- config_name: ling_1s
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 370567628
num_examples: 108647
- name: test
num_bytes: 26716156
num_examples: 7983
download_size: 45617587
dataset_size: 397283784
- config_name: verb_1s_top1
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 358384680
num_examples: 108647
- name: test
num_bytes: 25825045
num_examples: 7983
download_size: 43652362
dataset_size: 384209725
- config_name: verb_1s_topk
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 421399946
num_examples: 108647
- name: test
num_bytes: 30465904
num_examples: 7983
download_size: 49079023
dataset_size: 451865850
- config_name: verb_2s_cot
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 344246082
num_examples: 108647
- name: test
num_bytes: 24783094
num_examples: 7983
download_size: 42255130
dataset_size: 369029176
- config_name: verb_2s_top1
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 269308616
num_examples: 108647
- name: test
num_bytes: 19261708
num_examples: 7983
download_size: 35998169
dataset_size: 288570324
- config_name: verb_2s_topk
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 298281152
num_examples: 108647
- name: test
num_bytes: 21395272
num_examples: 7983
download_size: 38349162
dataset_size: 319676424
configs:
- config_name: continuation
data_files:
- split: train
path: continuation/train-*
- split: test
path: continuation/test-*
- config_name: empirical_baselines
data_files:
- split: train
path: empirical_baselines/train-*
- split: test
path: empirical_baselines/test-*
- config_name: ling_1s
data_files:
- split: train
path: ling_1s/train-*
- split: test
path: ling_1s/test-*
- config_name: verb_1s_top1
data_files:
- split: train
path: verb_1s_top1/train-*
- split: test
path: verb_1s_top1/test-*
- config_name: verb_1s_topk
data_files:
- split: train
path: verb_1s_topk/train-*
- split: test
path: verb_1s_topk/test-*
- config_name: verb_2s_cot
data_files:
- split: train
path: verb_2s_cot/train-*
- split: test
path: verb_2s_cot/test-*
- config_name: verb_2s_top1
data_files:
- split: train
path: verb_2s_top1/train-*
- split: test
path: verb_2s_top1/test-*
- config_name: verb_2s_topk
data_files:
- split: train
path: verb_2s_topk/train-*
- split: test
path: verb_2s_topk/test-*
---
# Dataset Card for coqa
<!-- Provide a quick summary of the dataset. -->
This is a preprocessed version of coqa dataset for benchmarks in LM-Polygraph.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** https://huggingface.co/LM-Polygraph
- **License:** https://github.com/IINemo/lm-polygraph/blob/main/LICENSE.md
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/IINemo/lm-polygraph
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
This dataset should be used for performing benchmarks on LM-polygraph.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
This dataset should not be used for further dataset preprocessing.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
This dataset contains the "continuation" subset, which corresponds to main dataset, used in LM-Polygraph. It may also contain other subsets, which correspond to instruct methods, used in LM-Polygraph.
Each subset contains two splits: train and test. Each split contains two string columns: "input", which corresponds to processed input for LM-Polygraph, and "output", which corresponds to processed output for LM-Polygraph.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
This dataset is created in order to separate dataset creation code from benchmarking code.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
Data is collected from https://huggingface.co/datasets/coqa and processed by using build_dataset.py script in repository.
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
People who created https://huggingface.co/datasets/coqa
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
This dataset contains the same biases, risks, and limitations as its source dataset https://huggingface.co/datasets/coqa
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset.
|