Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
File size: 6,613 Bytes
667ee46
000a0f6
 
5adf9a3
b9c1ae9
5adf9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
35ac696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c1ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ccca41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78f3b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad4cf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c05ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f421486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5adf9a3
 
 
 
 
 
 
35ac696
 
 
 
 
 
b9c1ae9
 
 
 
 
 
1ccca41
 
 
 
 
 
78f3b9d
 
 
 
 
 
ad4cf8c
 
 
 
 
 
d8c05ae
 
 
 
 
 
f421486
 
 
 
 
 
667ee46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
language:
- en
dataset_info:
- config_name: continuation
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 246278017
    num_examples: 108647
  - name: test
    num_bytes: 17566431
    num_examples: 7983
  download_size: 32940424
  dataset_size: 263844448
- config_name: empirical_baselines
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 269308616
    num_examples: 108647
  - name: test
    num_bytes: 19261708
    num_examples: 7983
  download_size: 35998169
  dataset_size: 288570324
- config_name: ling_1s
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 370567628
    num_examples: 108647
  - name: test
    num_bytes: 26716156
    num_examples: 7983
  download_size: 45617587
  dataset_size: 397283784
- config_name: verb_1s_top1
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 358384680
    num_examples: 108647
  - name: test
    num_bytes: 25825045
    num_examples: 7983
  download_size: 43652362
  dataset_size: 384209725
- config_name: verb_1s_topk
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 421399946
    num_examples: 108647
  - name: test
    num_bytes: 30465904
    num_examples: 7983
  download_size: 49079023
  dataset_size: 451865850
- config_name: verb_2s_cot
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 344246082
    num_examples: 108647
  - name: test
    num_bytes: 24783094
    num_examples: 7983
  download_size: 42255130
  dataset_size: 369029176
- config_name: verb_2s_top1
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 269308616
    num_examples: 108647
  - name: test
    num_bytes: 19261708
    num_examples: 7983
  download_size: 35998169
  dataset_size: 288570324
- config_name: verb_2s_topk
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  splits:
  - name: train
    num_bytes: 298281152
    num_examples: 108647
  - name: test
    num_bytes: 21395272
    num_examples: 7983
  download_size: 38349162
  dataset_size: 319676424
configs:
- config_name: continuation
  data_files:
  - split: train
    path: continuation/train-*
  - split: test
    path: continuation/test-*
- config_name: empirical_baselines
  data_files:
  - split: train
    path: empirical_baselines/train-*
  - split: test
    path: empirical_baselines/test-*
- config_name: ling_1s
  data_files:
  - split: train
    path: ling_1s/train-*
  - split: test
    path: ling_1s/test-*
- config_name: verb_1s_top1
  data_files:
  - split: train
    path: verb_1s_top1/train-*
  - split: test
    path: verb_1s_top1/test-*
- config_name: verb_1s_topk
  data_files:
  - split: train
    path: verb_1s_topk/train-*
  - split: test
    path: verb_1s_topk/test-*
- config_name: verb_2s_cot
  data_files:
  - split: train
    path: verb_2s_cot/train-*
  - split: test
    path: verb_2s_cot/test-*
- config_name: verb_2s_top1
  data_files:
  - split: train
    path: verb_2s_top1/train-*
  - split: test
    path: verb_2s_top1/test-*
- config_name: verb_2s_topk
  data_files:
  - split: train
    path: verb_2s_topk/train-*
  - split: test
    path: verb_2s_topk/test-*
---

# Dataset Card for coqa

<!-- Provide a quick summary of the dataset. -->

This is a preprocessed version of coqa dataset for benchmarks in LM-Polygraph.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** https://huggingface.co/LM-Polygraph
- **License:** https://github.com/IINemo/lm-polygraph/blob/main/LICENSE.md

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/IINemo/lm-polygraph

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset should be used for performing benchmarks on LM-polygraph.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset should not be used for further dataset preprocessing.

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

This dataset contains the "continuation" subset, which corresponds to main dataset, used in LM-Polygraph. It may also contain other subsets, which correspond to instruct methods, used in LM-Polygraph.

Each subset contains two splits: train and test. Each split contains two string columns: "input", which corresponds to processed input for LM-Polygraph, and "output", which corresponds to processed output for LM-Polygraph.

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

This dataset is created in order to separate dataset creation code from benchmarking code.

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

Data is collected from https://huggingface.co/datasets/coqa and processed by using build_dataset.py script in repository.

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

People who created https://huggingface.co/datasets/coqa

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

This dataset contains the same biases, risks, and limitations as its source dataset https://huggingface.co/datasets/coqa

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset.