File size: 2,416 Bytes
27102cb
 
fbab1c4
12ff40f
dea6f80
 
 
 
 
 
 
27102cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbab1c4
dea6f80
ab0f7f1
fbab1c4
ab0f7f1
 
 
dea6f80
 
 
 
12ff40f
 
27102cb
dea6f80
 
 
 
27102cb
dea6f80
 
27102cb
 
dea6f80
27102cb
dea6f80
12ff40f
dea6f80
 
 
27102cb
 
 
 
 
dea6f80
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import datasets
logger = datasets.logging.get_logger(__name__)
datasets.logging.set_verbosity(20)

_speaker_names = [
  'ariana_Male2', 
  'moujeze_Female1', 
  'ariana_Male1', 
  'ariana_Female1'
  ]
class ParsiGoo(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "text": datasets.Value("string"),
                "audio_file": datasets.Value("string"),
                "speaker_name": datasets.Value("string"),
                "root_path": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description="ParsiGoo dataset",
            features=features,
            homepage="https://example.com",
            citation="",
        )

    def _split_generators(self, dl_manager):
        logger.info("| >  ")
        print("4544444")
        print(dl_manager.manual_dir)
        # logger.info(os.path.join(os.path.dirname(os.path.abspath(__file__)), "datasets"))
        data_dir = dl_manager.download("datasets")
        # data_dir="datasets"
        print(data_dir)
        meta_files = []
        speaker_names = _speaker_names
        root_path = ""
        for speaker_name in speaker_names:
            # if not os.path.isdir(os.path.join(data_dir, speaker_name)):
                # continue
            root_path = os.path.join(data_dir, speaker_name)
            meta_files.append(os.path.join(root_path, "metadata.csv"))
 
        return [datasets.SplitGenerator(
                    name="train",
                    gen_kwargs={
                        "txt_files": meta_files,
                        "speaker_names": speaker_names,
                        "root_path": root_path
                    }
                )]

    def _generate_examples(self, txt_files, speaker_names, root_path):
        print(txt_files)
        id=-1
        for ind,txt_file in enumerate(txt_files):
          with open(txt_file, "r", encoding="utf-8") as ttf:
            for i, line in enumerate(ttf):
                cols = line.split("|")
                wav_file = cols[1].strip()
                text = cols[0].strip()
                wav_file = os.path.join(root_path, "wavs", wav_file)
                id+=1
                yield id, {"text": text, "audio_file": wav_file, "speaker_name": speaker_names[ind], "root_path": root_path}