text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
// File only needed for VSCode users to have proper Docker based interpreters { "name": "accelerate_dev_environment", "build": { // ACTION NEEDED: comment/uncomment the relevant line depending on whether you are in a CPU/GPU environment "dockerfile": "../docker/accelerate-cpu/Dockerfile" // "dockerfile": "../docker/accelerate-gpu/Dockerfile" }, "runArgs": [ // ACTION NEEDED: uncomment the next line if your local machine has GPUs available // "--gpus", "all", // Enable the docker container to access system resources "--ipc", "host" ], "remoteEnv": { "PYTHONPATH": "${containerEnv:PATH}:${containerWorkspaceFolder}" }, "customizations": { "vscode": { "extensions": [ // Ensure we have IntelliSense in VSCode when running inside container "ms-python.python" ] } }, "workspaceFolder": "/workspaces/accelerate", // Need git for VSCode to color code modifications. Only runs when building environment. "onCreateCommand": "apt-get update && apt-get install -y git && pip install -e '.[dev]'" }
accelerate/.devcontainer/devcontainer.json/0
{ "file_path": "accelerate/.devcontainer/devcontainer.json", "repo_id": "accelerate", "token_count": 459 }
0
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <br> <img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/accelerate_logo.png" width="400"/> <br> <p> <p align="center"> <!-- Uncomment when CircleCI is set up <a href="https://circleci.com/gh/huggingface/accelerate"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> </a> --> <a href="https://github.com/huggingface/accelerate/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue"> </a> <a href="https://huggingface.co/docs/accelerate/index.html"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/accelerate/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg"> </a> <a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> </p> <h3 align="center"> <p>Run your *raw* PyTorch training script on any kind of device </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/course_banner.png"></a> </h3> ## Easy to integrate 🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16. 🤗 Accelerate abstracts exactly and only the boilerplate code related to multi-GPUs/TPU/fp16 and leaves the rest of your code unchanged. Here is an example: ```diff import torch import torch.nn.functional as F from datasets import load_dataset + from accelerate import Accelerator + accelerator = Accelerator() - device = 'cpu' + device = accelerator.device model = torch.nn.Transformer().to(device) optimizer = torch.optim.Adam(model.parameters()) dataset = load_dataset('my_dataset') data = torch.utils.data.DataLoader(dataset, shuffle=True) + model, optimizer, data = accelerator.prepare(model, optimizer, data) model.train() for epoch in range(10): for source, targets in data: source = source.to(device) targets = targets.to(device) optimizer.zero_grad() output = model(source) loss = F.cross_entropy(output, targets) - loss.backward() + accelerator.backward(loss) optimizer.step() ``` As you can see in this example, by adding 5-lines to any standard PyTorch training script you can now run on any kind of single or distributed node setting (single CPU, single GPU, multi-GPUs and TPUs) as well as with or without mixed precision (fp8, fp16, bf16). In particular, the same code can then be run without modification on your local machine for debugging or your training environment. 🤗 Accelerate even handles the device placement for you (which requires a few more changes to your code, but is safer in general), so you can even simplify your training loop further: ```diff import torch import torch.nn.functional as F from datasets import load_dataset + from accelerate import Accelerator - device = 'cpu' + accelerator = Accelerator() - model = torch.nn.Transformer().to(device) + model = torch.nn.Transformer() optimizer = torch.optim.Adam(model.parameters()) dataset = load_dataset('my_dataset') data = torch.utils.data.DataLoader(dataset, shuffle=True) + model, optimizer, data = accelerator.prepare(model, optimizer, data) model.train() for epoch in range(10): for source, targets in data: - source = source.to(device) - targets = targets.to(device) optimizer.zero_grad() output = model(source) loss = F.cross_entropy(output, targets) - loss.backward() + accelerator.backward(loss) optimizer.step() ``` Want to learn more? Check out the [documentation](https://huggingface.co/docs/accelerate) or have a look at our [examples](https://github.com/huggingface/accelerate/tree/main/examples). ## Launching script 🤗 Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use `torch.distributed.run` or to write a specific launcher for TPU training! On your machine(s) just run: ```bash accelerate config ``` and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run the GLUE example on the MRPC task (from the root of the repo): ```bash accelerate launch examples/nlp_example.py ``` This CLI tool is **optional**, and you can still use `python my_script.py` or `python -m torchrun my_script.py` at your convenience. You can also directly pass in the arguments you would to `torchrun` as arguments to `accelerate launch` if you wish to not run` accelerate config`. For example, here is how to launch on two GPUs: ```bash accelerate launch --multi_gpu --num_processes 2 examples/nlp_example.py ``` To learn more, check the CLI documentation available [here](https://huggingface.co/docs/accelerate/package_reference/cli). ## Launching multi-CPU run using MPI 🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well. Once you have MPI setup on your cluster, just run: ```bash accelerate config ``` Answer the questions that are asked, selecting to run using multi-CPU, and answer "yes" when asked if you want accelerate to launch mpirun. Then, use `accelerate launch` with your script like: ```bash accelerate launch examples/nlp_example.py ``` Alternatively, you can use mpirun directly, without using the CLI like: ```bash mpirun -np 2 python examples/nlp_example.py ``` ## Launching training using DeepSpeed 🤗 Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just `accelerate config`. However, if you desire to tweak your DeepSpeed related args from your Python script, we provide you the `DeepSpeedPlugin`. ```python from accelerate import Accelerator, DeepSpeedPlugin # deepspeed needs to know your gradient accumulation steps beforehand, so don't forget to pass it # Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2) accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin) # How to save your 🤗 Transformer? accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model)) ``` Note: DeepSpeed support is experimental for now. In case you get into some problem, please open an issue. ## Launching your training from a notebook 🤗 Accelerate also provides a `notebook_launcher` function you can use in a notebook to launch a distributed training. This is especially useful for Colab or Kaggle notebooks with a TPU backend. Just define your training loop in a `training_function` then in your last cell, add: ```python from accelerate import notebook_launcher notebook_launcher(training_function) ``` An example can be found in [this notebook](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) ## Why should I use 🤗 Accelerate? You should use 🤗 Accelerate when you want to easily run your training scripts in a distributed environment without having to renounce full control over your training loop. This is not a high-level framework above PyTorch, just a thin wrapper so you don't have to learn a new library. In fact, the whole API of 🤗 Accelerate is in one class, the `Accelerator` object. ## Why shouldn't I use 🤗 Accelerate? You shouldn't use 🤗 Accelerate if you don't want to write a training loop yourself. There are plenty of high-level libraries above PyTorch that will offer you that, 🤗 Accelerate is not one of them. ## Frameworks using 🤗 Accelerate If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below: * [Amphion](https://github.com/open-mmlab/Amphion) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development. * [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76). * [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic. * [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms. * [Finetuner](https://github.com/jina-ai/finetuner) is a service that enables models to create higher-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses. * [InvokeAI](https://github.com/invoke-ai/InvokeAI) is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products. * [Kornia](https://kornia.readthedocs.io/en/latest/get-started/introduction.html) is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a [Trainer](https://kornia.readthedocs.io/en/latest/x.html#kornia.x.Trainer) with the specific purpose to train and fine-tune the supported deep learning algorithms within the library. * [Open Assistant](https://projects.laion.ai/Open-Assistant/) is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so. * [pytorch-accelerated](https://github.com/Chris-hughes10/pytorch-accelerated) is a lightweight training library, with a streamlined feature set centered around a general-purpose [Trainer](https://pytorch-accelerated.readthedocs.io/en/latest/trainer.html), that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves! * [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion. * [torchkeras](https://github.com/lyhue1991/torchkeras) is a simple tool for training pytorch model just in a keras style, a dynamic and beautiful plot is provided in notebook to monitor your loss or metric. * [transformers](https://github.com/huggingface/transformers) as a tool for helping train state-of-the-art machine learning models in PyTorch, Tensorflow, and JAX. (Accelerate is the backend for the PyTorch side). ## Installation This repository is tested on Python 3.8+ and PyTorch 1.10.0+ You should install 🤗 Accelerate in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). First, create a virtual environment with the version of Python you're going to use and activate it. Then, you will need to install PyTorch: refer to the [official installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform. Then 🤗 Accelerate can be installed using pip as follows: ```bash pip install accelerate ``` ## Supported integrations - CPU only - multi-CPU on one node (machine) - multi-CPU on several nodes (machines) - single GPU - multi-GPU on one node (machine) - multi-GPU on several nodes (machines) - TPU - FP16/BFloat16 mixed precision - FP8 mixed precision with [Transformer Engine](https://github.com/NVIDIA/TransformerEngine) - DeepSpeed support (Experimental) - PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental) - Megatron-LM support (Experimental) ## Citing 🤗 Accelerate If you use 🤗 Accelerate in your publication, please cite it by using the following BibTeX entry. ```bibtex @Misc{accelerate, title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.}, author = {Sylvain Gugger and Lysandre Debut and Thomas Wolf and Philipp Schmid and Zachary Mueller and Sourab Mangrulkar and Marc Sun and Benjamin Bossan}, howpublished = {\url{https://github.com/huggingface/accelerate}}, year = {2022} } ```
accelerate/README.md/0
{ "file_path": "accelerate/README.md", "repo_id": "accelerate", "token_count": 4493 }
1
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TPU training A [TPU (Tensor Processing Unit)](https://cloud.google.com/tpu/docs/intro-to-tpu) is a type of hardware specifically designed for training models efficiently. Accelerate supports TPU training, but there are a few things you should be aware of, namely graph compilation. This tutorial briefly discusses compilation, and for more details, take a look at the [Training on TPUs with Accelerate](../concept_guides/training_tpu) guide. ## Compilation A TPU creates a graph of all the operations in the training step such as the forward pass, backward pass and optimizer step. This is why the first training step always takes a while because building and compiling this graph takes time. But once compilation is complete, it is cached and all subsequent steps are much faster. The key is to avoid compiling your code again or else training is super slow. This means all your operations must be exactly the same: * all tensors in your batches must have the same length (for example, no dynamic padding for NLP tasks) * your code must be static (for example, no layers with for loops that have different lengths depending on the input such as a LSTM) ## Weight tying A common language model design is to tie the weights of the embedding and softmax layers. However, moving the model to a TPU (either yourself or passing it to the [`~Accelerator.prepare`] method) breaks the weight tying and you'll need to retie the weights. To add special behavior (like weight tying) in your script for TPUs, set [`~Accelerator.distributed_type`] to `DistributedType.TPU` first. Then you can use the [`~transformers.PreTrainedModel.tie_weights`] method to tie the weights. ```py if accelerator.distributed_type == DistributedType.TPU: model.tie_weights() ```
accelerate/docs/source/basic_tutorials/tpu.md/0
{ "file_path": "accelerate/docs/source/basic_tutorials/tpu.md", "repo_id": "accelerate", "token_count": 629 }
2
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Fully Sharded Data Parallel To accelerate training huge models on larger batch sizes, we can use a fully sharded data parallel model. This type of data parallel paradigm enables fitting more data and larger models by sharding the optimizer states, gradients and parameters. To read more about it and the benefits, check out the [Fully Sharded Data Parallel blog](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/). We have integrated the latest PyTorch's Fully Sharded Data Parallel (FSDP) training feature. All you need to do is enable it through the config. ## How it works out of the box On your machine(s) just run: ```bash accelerate config ``` and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run `examples/nlp_example.py` (from the root of the repo) with FSDP enabled: ```bash compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_forward_prefetch: false fsdp_cpu_ram_efficient_loading: true fsdp_offload_params: false fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ```bash accelerate launch examples/nlp_example.py ``` Currently, `Accelerate` supports the following config through the CLI: `fsdp_sharding_strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD (DDP), [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy), [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy). For more information, please refer the official [PyTorch docs](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.ShardingStrategy). `fsdp_offload_params` : Decides Whether to offload parameters and gradients to CPU `fsdp_auto_wrap_policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP `fsdp_transformer_layer_cls_to_wrap`: Only applicable for 🤗 Transformers. When using `fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP`, a user may provide a comma-separated string of transformer layer class names (case-sensitive) to wrap, e.g., `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`. This is important because submodules that share weights (e.g., embedding layers) should not end up in different FSDP wrapped units. Using this policy, wrapping happens for each block containing Multi-Head Attention followed by a couple of MLP layers. Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit. Therefore, use this for transformer-based models. You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to `Do you want to use the model's `_no_split_modules` to wrap. It will try to use `model._no_split_modules` when possible. `fsdp_min_num_params`: minimum number of parameters when using `fsdp_auto_wrap_policy=SIZE_BASED_WRAP`. `fsdp_backward_prefetch_policy`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH `fsdp_forward_prefetch`: if True, then FSDP explicitly prefetches the next upcoming all-gather while executing in the forward pass. Should only be used for static-graph models since the prefetching follows the first iteration’s execution order. i.e., if the sub-modules' order changes dynamically during the model's execution do not enable this feature. `fsdp_state_dict_type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT `fsdp_use_orig_params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. This setting is useful in cases such as parameter-efficient fine-tuning as discussed in [this post](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). This option also allows one to have multiple optimizer param groups. This should be `True` when creating an optimizer before preparing/wrapping the model with FSDP. `fsdp_cpu_ram_efficient_loading`: Only applicable for 🤗 Transformers models. If True, only the first process loads the pretrained model checkpoint while all other processes have empty weights. This should be set to False if you experience errors when loading the pretrained 🤗 Transformers model via `from_pretrained` method. When this setting is True `fsdp_sync_module_states` also must to be True, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training. For this to work, make sure the distributed process group is initialized before calling Transformers `from_pretrained` method. When using 🤗 Trainer API, the distributed process group is initialized when you create an instance of `TrainingArguments` class. `fsdp_sync_module_states`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0. For additional and more nuanced control, you can specify other FSDP parameters via `FullyShardedDataParallelPlugin`. When creating `FullyShardedDataParallelPlugin` object, pass it the parameters that weren't part of the accelerate config or if you want to override them. The FSDP parameters will be picked based on the accelerate config file or launch command arguments and other parameters that you will pass directly through the `FullyShardedDataParallelPlugin` object will set/override that. Below is an example: ```py from accelerate import FullyShardedDataParallelPlugin from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig fsdp_plugin = FullyShardedDataParallelPlugin( state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False), optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=False, rank0_only=False), ) accelerator = Accelerator(fsdp_plugin=fsdp_plugin) ``` ## Saving and loading The new recommended way of checkpointing when using FSDP models is to use `SHARDED_STATE_DICT` as `StateDictType` when setting up the accelerate config. Below is the code snippet to save using `save_state` utility of accelerate. ```py accelerator.save_state("ckpt") ``` Inspect the checkpoint folder to see model and optimizer as shards per process: ``` ls ckpt # optimizer_0 pytorch_model_0 random_states_0.pkl random_states_1.pkl scheduler.bin cd ckpt ls optimizer_0 # __0_0.distcp __1_0.distcp ls pytorch_model_0 # __0_0.distcp __1_0.distcp ``` To load them back for resuming the training, use the `load_state` utility of accelerate ```py accelerator.load_state("ckpt") ``` When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict. Below is an example: ```diff unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, + state_dict=accelerator.get_state_dict(model), ) ``` ### State Dict `accelerator.get_state_dict` will call the underlying `model.state_dict` implementation using `FullStateDictConfig(offload_to_cpu=True, rank0_only=True)` context manager to get the state dict only for rank 0 and it will be offloaded to CPU. You can then pass `state` into the `save_pretrained` method. There are several modes for `StateDictType` and `FullStateDictConfig` that you can use to control the behavior of `state_dict`. For more information, see the [PyTorch documentation](https://pytorch.org/docs/stable/fsdp.html). ## Mapping between FSDP sharding strategies and DeepSpeed ZeRO Stages * `FULL_SHARD` maps to the DeepSpeed `ZeRO Stage-3`. Shards optimizer states, gradients and parameters. * `SHARD_GRAD_OP` maps to the DeepSpeed `ZeRO Stage-2`. Shards optimizer states and gradients. * `NO_SHARD` maps to `ZeRO Stage-0`. No sharding wherein each GPU has full copy of model, optimizer states and gradients. * `HYBRID_SHARD` maps to `ZeRO++ Stage-3` wherein `zero_hpz_partition_size=<num_gpus_per_node>`. Here, this will shard optimizer states, gradients and parameters within each node while each node has full copy. ## A few caveats to be aware of - In case of multiple models, pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour. - This feature is incompatible with `--predict_with_generate` in the `run_translation.py` script of 🤗 `Transformers` library. For more control, users can leverage the `FullyShardedDataParallelPlugin`. After creating an instance of this class, users can pass it to the Accelerator class instantiation. For more information on these options, please refer to the PyTorch [FullyShardedDataParallel](https://github.com/pytorch/pytorch/blob/0df2e863fbd5993a7b9e652910792bd21a516ff3/torch/distributed/fsdp/fully_sharded_data_parallel.py#L236) code.
accelerate/docs/source/usage_guides/fsdp.md/0
{ "file_path": "accelerate/docs/source/usage_guides/fsdp.md", "repo_id": "accelerate", "token_count": 3064 }
3
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 # New Code # # We need a different `get_dataloaders` function that will build dataloaders by index def get_fold_dataloaders( accelerator: Accelerator, dataset: DatasetDict, train_idxs: List[int], valid_idxs: List[int], batch_size: int = 16 ): """ Gets a set of train, valid, and test dataloaders for a particular fold Args: accelerator (`Accelerator`): The main `Accelerator` object train_idxs (list of `int`): The split indices for the training dataset valid_idxs (list of `int`): The split indices for the validation dataset batch_size (`int`): The size of the minibatch. Default is 16 """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = DatasetDict( { "train": dataset["train"].select(train_idxs), "validation": dataset["train"].select(valid_idxs), "test": dataset["validation"], } ) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) test_dataloader = DataLoader( tokenized_datasets["test"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader, test_dataloader def training_function(config, args): # New Code # test_predictions = [] # Download the dataset datasets = load_dataset("glue", "mrpc") # Create our splits kfold = StratifiedKFold(n_splits=int(args.num_folds)) # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE set_seed(seed) # New Code # # Create our folds: folds = kfold.split(np.zeros(datasets["train"].num_rows), datasets["train"]["label"]) test_references = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(folds): train_dataloader, eval_dataloader, test_dataloader = get_fold_dataloaders( accelerator, datasets, train_idxs, valid_idxs, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) # New Code # # We also run predictions on the test set at the very end fold_predictions = [] for step, batch in enumerate(test_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) fold_predictions.append(predictions.cpu()) if i == 0: # We need all of the test predictions test_references.append(references.cpu()) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(fold_predictions, dim=0)) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: test_references = torch.cat(test_references, dim=0) preds = torch.stack(test_predictions, dim=0).sum(dim=0).div(int(args.num_folds)).argmax(dim=-1) test_metric = metric.compute(predictions=preds, references=test_references) accelerator.print("Average test metrics from all folds:", test_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") # New Code # parser.add_argument("--num_folds", type=int, default=3, help="The number of splits to perform across the dataset") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/by_feature/cross_validation.py/0
{ "file_path": "accelerate/examples/by_feature/cross_validation.py", "repo_id": "accelerate", "token_count": 4458 }
4
{ "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "overlap_comm": true, "contiguous_gradients": true, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "sub_group_size": 1e9, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": "auto" }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
accelerate/examples/deepspeed_config_templates/zero_stage3_config.json/0
{ "file_path": "accelerate/examples/deepspeed_config_templates/zero_stage3_config.json", "repo_id": "accelerate", "token_count": 657 }
5
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage4(Scene): def construct(self): mem = Rectangle(height=0.5,width=0.5) fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0) meta_mem = Rectangle(height=0.25,width=0.25) cpu_left_col_base = [mem.copy() for i in range(6)] cpu_right_col_base = [mem.copy() for i in range(6)] cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0) cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0) cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0) cpu_text = Text("CPU", font_size=24) cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) cpu.move_to([-2.5,-.5,0]) self.add(cpu) gpu_base = [mem.copy() for i in range(4)] gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0) gpu_text = Text("GPU", font_size=24) gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) gpu.move_to([-1,-1,0]) self.add(gpu) model_base = [mem.copy() for i in range(6)] model_rect = VGroup(*model_base).arrange(RIGHT,buff=0) model_text = Text("Model", font_size=24) model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) model.move_to([3, -1., 0]) self.add(model) model_cpu_arr = [] model_meta_arr = [] for i,rect in enumerate(model_base): rect.set_stroke(YELLOW) cpu_target = Rectangle(height=0.46/4,width=0.46/3).set_stroke(width=0.).set_fill(YELLOW, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN+LEFT), buff=0.02, direction=UP) cpu_target.set_x(cpu_target.get_x()+0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=UP, buff=0.) else: cpu_target.next_to(model_cpu_arr[i-1], direction=RIGHT, buff=0.) self.add(cpu_target) model_cpu_arr.append(cpu_target) self.add(*model_cpu_arr, *model_meta_arr) disk_left_col_base = [meta_mem.copy() for i in range(6)] disk_right_col_base = [meta_mem.copy() for i in range(6)] disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0) disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0) disk_rects = VGroup(disk_left_col,disk_right_col).arrange(RIGHT, buff=0) disk_text = Text("Disk", font_size=24) disk = Group(disk_rects,disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) disk.move_to([-4.,-1.25,0]) self.add(disk_text, disk_rects) cpu_disk_arr = [] for i in range(6): target = fill.copy().set_fill(BLUE, opacity=0.8) target.move_to(disk_left_col_base[i]).scale(0.5) cpu_disk_arr.append(target) self.add(*cpu_disk_arr) key = Square(side_length=2.2) key.move_to([-5, 2, 0]) key_text = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(key_text, key) blue_text = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(key_text, DOWN*2.4, aligned_edge=key_text.get_left()) self.add(blue_text) step_5 = MarkupText( f'The offloaded weights are all sent to the CPU.', font_size=24 ) step_5.move_to([2, 2, 0]) self.play(Write(step_5, run_time=3)) for i in range(6): rect = cpu_disk_arr[i] cp2 = rect.copy().set_fill(BLUE, opacity=0.8).scale(2.0) cp2.generate_target() cp2.target.move_to(model_base[i]) if i == 0: rect.set_fill(BLUE, opacity=0.8) rect.generate_target() rect.target.move_to(cpu_left_col_base[0]).scale(2.0) self.remove(*model_meta_arr, *model_cpu_arr, ) else: rect.generate_target() rect.target.move_to(cpu_left_col_base[i]).scale(2.0) self.play( MoveToTarget(rect), MoveToTarget(cp2), model_base[i].animate.set_stroke(WHITE) ) self.play(FadeOut(step_5)) step_5 = MarkupText( f'Finally, hooks are added to each weight in the model\nto transfer the weights from CPU to GPU\n\t\tand back when needed.', font_size=24 ) step_5.move_to([2, 2, 0]) self.play(Write(step_5, run_time=3)) arrows = [] animations = [] for i in range(6): a = Arrow(start=UP, end=DOWN, color=RED, buff=.5) a.next_to(model_base[i].get_left(), UP, buff=0.2) arrows.append(a) animations.append(Write(a)) self.play(*animations) self.wait()
accelerate/manim_animations/big_model_inference/stage_4.py/0
{ "file_path": "accelerate/manim_animations/big_model_inference/stage_4.py", "repo_id": "accelerate", "token_count": 2919 }
6
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_boto3_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_boto3_available(): import boto3 # noqa: F401 def _create_iam_role_for_sagemaker(role_name): iam_client = boto3.client("iam") sagemaker_trust_policy = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2) ) policy_document = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=role_name, PolicyName=f"{role_name}_policy_permission", PolicyDocument=json.dumps(policy_document, indent=2), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one") def _get_iam_role_arn(role_name): iam_client = boto3.client("iam") return iam_client.get_role(RoleName=role_name)["Role"]["Arn"] def get_sagemaker_input(): credentials_configuration = _ask_options( "How do you want to authorize?", ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "], int, ) aws_profile = None if credentials_configuration == 0: aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default") os.environ["AWS_PROFILE"] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) aws_access_key_id = _ask_field("AWS Access Key ID: ") os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id aws_secret_access_key = _ask_field("AWS Secret Access Key: ") os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1") os.environ["AWS_DEFAULT_REGION"] = aws_region role_management = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?", ["Provide IAM Role name", "Create new IAM role using credentials"], int, ) if role_management == 0: iam_role_name = _ask_field("Enter your IAM role name: ") else: iam_role_name = "accelerate_sagemaker_execution_role" print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials') _create_iam_role_for_sagemaker(iam_role_name) is_custom_docker_image = _ask_field( "Do you want to use custom Docker image? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) docker_image = None if is_custom_docker_image: docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower()) is_sagemaker_inputs_enabled = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) sagemaker_inputs_file = None if is_sagemaker_inputs_enabled: sagemaker_inputs_file = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ", lambda x: str(x).lower(), ) is_sagemaker_metrics_enabled = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) sagemaker_metrics_file = None if is_sagemaker_metrics_enabled: sagemaker_metrics_file = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ", lambda x: str(x).lower(), ) distributed_type = _ask_options( "What is the distributed mode?", ["No distributed training", "Data parallelism"], _convert_sagemaker_distributed_mode, ) dynamo_config = {} use_dynamo = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_dynamo: prefix = "dynamo_" dynamo_config[prefix + "backend"] = _ask_options( "Which dynamo backend would you like to use?", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) use_custom_options = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_custom_options: dynamo_config[prefix + "mode"] = _ask_options( "Which mode do you want to use?", TORCH_DYNAMO_MODES, lambda x: TORCH_DYNAMO_MODES[int(x)], default="default", ) dynamo_config[prefix + "use_fullgraph"] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) dynamo_config[prefix + "use_dynamic"] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) ec2_instance_query = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: ec2_instance_type = _ask_options( ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)] ) else: ec2_instance_query += "? [ml.p3.2xlarge]:" ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge") debug = False if distributed_type != SageMakerDistributedType.NO: debug = _ask_field( "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) num_machines = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): num_machines = _ask_field( "How many machines do you want use? [1]: ", int, default=1, ) mixed_precision = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?", ["no", "fp16", "bf16", "fp8"], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=docker_image, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=distributed_type, use_cpu=False, dynamo_config=dynamo_config, ec2_instance_type=ec2_instance_type, profile=aws_profile, region=aws_region, iam_role_name=iam_role_name, mixed_precision=mixed_precision, num_machines=num_machines, sagemaker_inputs_file=sagemaker_inputs_file, sagemaker_metrics_file=sagemaker_metrics_file, debug=debug, )
accelerate/src/accelerate/commands/config/sagemaker.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/sagemaker.py", "repo_id": "accelerate", "token_count": 4784 }
7
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from types import MethodType from typing import Any, Dict, List, Optional, Tuple, Union from .state import PartialState from .utils import ( calculate_maximum_sizes, convert_bytes, copy_tensor_to_devices, ignorant_find_batch_size, infer_auto_device_map, is_pippy_available, pad_input_tensors, send_to_device, ) if is_pippy_available(): from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points from pippy.PipelineStage import PipelineStage def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None, max_memory: dict = None): """ Calculates the device map for `model` with an offset for PiPPy """ if num_processes == 1: return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False) if max_memory is None: model_size, shared = calculate_maximum_sizes(model) # Split into `n` chunks for each GPU memory = (model_size + shared[0]) / num_processes memory = convert_bytes(memory) value, ending = memory.split(" ") # Add a chunk to deal with potential extra shared memory instances memory = math.ceil(float(value)) * 1.1 memory = f"{memory} {ending}" max_memory = {i: memory for i in range(num_processes)} device_map = infer_auto_device_map( model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, clean_result=False, ) return device_map def find_pippy_batch_size(args, kwargs): found_batch_size = None if args is not None: for arg in args: found_batch_size = ignorant_find_batch_size(arg) if found_batch_size is not None: break if kwargs is not None and found_batch_size is None: for kwarg in kwargs.values(): found_batch_size = ignorant_find_batch_size(kwarg) if found_batch_size is not None: break return found_batch_size def build_pipeline(model, split_points, args, kwargs, num_chunks): """ Attaches the split points to the model based on `self.device_map` and generates a `PipelineStage`. Requires passing in needed `args` and `kwargs` as the model needs on the CPU. Users can pass in custom `num_chunks` as an optional hyper-parameter. By default will use `AcceleratorState.num_processes` """ # We need to annotate the split points in the model for PiPPy state = PartialState() annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points}) found_batch_size = find_pippy_batch_size(args, kwargs) if found_batch_size != num_chunks: if args is not None: args = pad_input_tensors(args, found_batch_size, num_chunks) if kwargs is not None: kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks) pipe = Pipe.from_tracing(model, num_chunks=num_chunks, example_args=args, example_kwargs=kwargs) stage = PipelineStage(pipe, state.local_process_index, device=state.device) return stage def pippy_forward(forward, num_chunks, gather_output, *args, **kwargs): state = PartialState() output = None if state.num_processes == 1: output = forward(*args, **kwargs) elif state.is_local_main_process: found_batch_size = find_pippy_batch_size(args, kwargs) if found_batch_size is None: raise ValueError("Could not find batch size from args or kwargs") else: if found_batch_size != num_chunks: args = pad_input_tensors(args, found_batch_size, num_chunks) kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks) forward(*args, **kwargs) elif state.is_last_process: output = forward() else: forward() if gather_output: # Each node will get a copy of the full output which is only on the last GPU output = copy_tensor_to_devices(output) return output def prepare_pippy( model, split_points: Optional[Union[str, List[str]]] = "auto", no_split_module_classes: Optional[List[str]] = None, example_args: Optional[Tuple[Any]] = (), example_kwargs: Optional[Dict[str, Any]] = None, num_chunks: Optional[int] = None, gather_output: Optional[bool] = False, ): """ Wraps `model` for pipeline parallel inference. Args: model (`torch.nn.Module`): A model we want to split for pipeline-parallel inference split_points (`str` or `List[str]`, defaults to 'auto'): How to generate the split points and chunk the model across each GPU. 'auto' will find the best balanced split given any model. Should be a list of layer names in the model to split by otherwise. no_split_module_classes (`List[str]`): A list of class names for layers we don't want to be split. example_args (tuple of model inputs): The expected inputs for the model that uses order-based inputs. Recommended to use this method if possible. example_kwargs (dict of model inputs) The expected inputs for the model that uses dictionary-based inputs. This is a *highly* limiting structure that requires the same keys be present at *all* inference calls. Not recommended unless the prior condition is true for all cases. num_chunks (`int`, defaults to the number of available GPUs): The number of different stages the Pipeline will have. By default it will assign one chunk per GPU, but this can be tuned and played with. In general one should have num_chunks >= num_gpus. gather_output (`bool`, defaults to `False`): If `True`, the output from the last GPU (which holds the true outputs) is sent across to all GPUs. """ if not is_pippy_available(): raise ImportError( "`pippy` was not found to be installed on your system. Please " "install using `pip install torchpippy` or ensure you have at least version 0.2.0" ) state = PartialState() example_args = send_to_device(example_args, "cpu") example_kwargs = send_to_device(example_kwargs, "cpu") if num_chunks is None: num_chunks = state.num_processes if split_points == "auto": device_map = generate_device_map(model, num_chunks, no_split_module_classes=no_split_module_classes) split_points = [] for i in range(1, num_chunks): split_points.append(next(k for k, v in device_map.items() if v == i)) model.hf_split_points = split_points stage = build_pipeline(model, split_points, example_args, example_kwargs, num_chunks) model._original_forward = model.forward model._original_call = model.__call__ model.pippy_stage = stage model.hf_split_points = split_points def forward(*args, **kwargs): return pippy_forward(stage.forward, num_chunks, gather_output, *args, **kwargs) # To act like a decorator so that it can be popped when doing `extract_model_from_parallel` # Note: creates an infinite recursion loop with `generate` model_forward = MethodType(forward, model) forward.__wrapped__ = model_forward model.forward = forward return model
accelerate/src/accelerate/inference.py/0
{ "file_path": "accelerate/src/accelerate/inference.py", "repo_id": "accelerate", "token_count": 2991 }
8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torchvision.models import resnet34 from transformers import ( BertConfig, BertForMaskedLM, GPT2Config, GPT2ForSequenceClassification, T5Config, T5ForConditionalGeneration, ) from accelerate import PartialState from accelerate.inference import prepare_pippy from accelerate.utils import DistributedType, send_to_device, set_seed model_to_config = { "t5": (T5ForConditionalGeneration, T5Config, 1024), "bert": (BertForMaskedLM, BertConfig, 512), "gpt2": (GPT2ForSequenceClassification, GPT2Config, 1024), } def get_model_and_data_for_text(model_name, device, num_processes: int = 2): initializer, config, seq_len = model_to_config[model_name] config_args = {} # Eventually needed for batch inference tests on gpt-2 when bs != 1 # if model_name == "gpt2": # config_args["pad_token_id"] = 0 model_config = config(**config_args) model = initializer(model_config) return model, torch.randint( low=0, high=model_config.vocab_size, size=(num_processes, seq_len), device=device, dtype=torch.int64, requires_grad=False, ) def test_gpt2(batch_size: int = 2): set_seed(42) state = PartialState() model, inputs = get_model_and_data_for_text("gpt2", "cpu", batch_size) model = prepare_pippy(model, example_args=(inputs,), no_split_module_classes=model._no_split_modules) # For inference args need to be a tuple inputs = inputs.to("cuda") with torch.no_grad(): output = model(inputs) # Zach: Check that we just grab the real outputs we need at the end if not state.is_last_process: assert output is None, "Output was not generated on just the last process!" else: assert output is not None, "Output was not generated in the last process!" def test_t5(batch_size: int = 2): set_seed(42) state = PartialState() model, inputs = get_model_and_data_for_text("t5", "cpu", batch_size) example_inputs = {"input_ids": inputs, "decoder_input_ids": inputs} model = prepare_pippy( model, no_split_module_classes=model._no_split_modules, example_kwargs=example_inputs, ) # For inference args need to be a tuple inputs = send_to_device(example_inputs, "cuda:0") with torch.no_grad(): output = model(*inputs.values()) # Zach: Check that we just grab the real outputs we need at the end if not state.is_last_process: assert output is None, "Output was not generated on just the last process!" else: assert output is not None, "Output was not generated in the last process!" def test_resnet(batch_size: int = 2): set_seed(42) state = PartialState() model = resnet34() input_tensor = torch.rand(batch_size, 3, 224, 224) model = prepare_pippy( model, example_args=(input_tensor,), ) inputs = send_to_device(input_tensor, "cuda:0") with torch.no_grad(): output = model(inputs) # Zach: Check that we just grab the real outputs we need at the end if not state.is_last_process: assert output is None, "Output was not generated on just the last process!" else: assert output is not None, "Output was not generated in the last process!" if __name__ == "__main__": state = PartialState() state.print("Testing pippy integration...") if state.distributed_type == DistributedType.MULTI_GPU: state.print("Testing GPT2...") test_gpt2() # Issue: When modifying the tokenizer for batch GPT2 inference, there's an issue # due to references # NameError: cannot access free variable 'chunk_args_list' where it is not associated with a value in enclosing scope # test_gpt2(3) state.print("Testing T5...") test_t5() test_t5(1) test_t5(3) state.print("Testing CV model...") test_resnet() test_resnet(3) else: print("Less than two GPUs found, not running tests!")
accelerate/src/accelerate/test_utils/scripts/external_deps/test_pippy.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/external_deps/test_pippy.py", "repo_id": "accelerate", "token_count": 1729 }
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from ..logging import get_logger from .constants import FSDP_MODEL_NAME, FSDP_PYTORCH_VERSION, OPTIMIZER_NAME from .imports import is_torch_distributed_available from .modeling import is_peft_model from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType logger = get_logger(__name__) def _get_model_state_dict(model, adapter_only=False): if adapter_only and is_peft_model(model): from peft import get_peft_model_state_dict return get_peft_model_state_dict(model, adapter_name=model.active_adapter) else: return model.state_dict() def _set_model_state_dict(model, state_dict, adapter_only=False): if adapter_only and is_peft_model(model): from peft import set_peft_model_state_dict return set_peft_model_state_dict(model, state_dict, adapter_name=model.active_adapter) else: return model.load_state_dict(state_dict) def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0, adapter_only=False): os.makedirs(output_dir, exist_ok=True) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT # so, only enable it when num_processes>1 is_multi_process = accelerator.num_processes > 1 fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process fsdp_plugin.state_dict_config.rank0_only = is_multi_process with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): state_dict = _get_model_state_dict(model, adapter_only=adapter_only) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" output_model_file = os.path.join(output_dir, weights_name) if accelerator.process_index == 0: logger.info(f"Saving model to {output_model_file}") torch.save(state_dict, output_model_file) logger.info(f"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: weights_name = ( f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) output_model_file = os.path.join(output_dir, weights_name) logger.info(f"Saving model to {output_model_file}") torch.save(state_dict, output_model_file) logger.info(f"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}") os.makedirs(ckpt_dir, exist_ok=True) logger.info(f"Saving model to {ckpt_dir}") state_dict = {"model": state_dict} dist_cp.save_state_dict( state_dict=state_dict, storage_writer=dist_cp.FileSystemWriter(ckpt_dir), planner=DefaultSavePlanner(), ) logger.info(f"Model saved to {ckpt_dir}") def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0, adapter_only=False): accelerator.wait_for_everyone() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: # FSDP raises error when single GPU is used with `offload_to_cpu=True` for FULL_STATE_DICT # so, only enable it when num_processes>1 is_multi_process = accelerator.num_processes > 1 fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process fsdp_plugin.state_dict_config.rank0_only = is_multi_process with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(model) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" input_model_file = os.path.join(input_dir, weights_name) logger.info(f"Loading model from {input_model_file}") state_dict = torch.load(input_model_file) logger.info(f"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: weights_name = ( f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) input_model_file = os.path.join(input_dir, weights_name) logger.info(f"Loading model from {input_model_file}") state_dict = torch.load(input_model_file) logger.info(f"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: ckpt_dir = ( os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}") if f"{FSDP_MODEL_NAME}" not in input_dir else input_dir ) logger.info(f"Loading model from {ckpt_dir}") state_dict = {"model": _get_model_state_dict(model, adapter_only=adapter_only)} dist_cp.load_state_dict( state_dict=state_dict, storage_reader=dist_cp.FileSystemReader(ckpt_dir), planner=DefaultLoadPlanner(), ) state_dict = state_dict["model"] logger.info(f"Model loaded from {ckpt_dir}") load_result = _set_model_state_dict(model, state_dict, adapter_only=adapter_only) return load_result def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0): os.makedirs(output_dir, exist_ok=True) with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): optim_state = FSDP.optim_state_dict(model, optimizer) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: optim_state_name = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) output_optimizer_file = os.path.join(output_dir, optim_state_name) logger.info(f"Saving Optimizer state to {output_optimizer_file}") torch.save(optim_state, output_optimizer_file) logger.info(f"Optimizer state saved in {output_optimizer_file}") else: ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") os.makedirs(ckpt_dir, exist_ok=True) logger.info(f"Saving Optimizer state to {ckpt_dir}") dist_cp.save_state_dict( state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(ckpt_dir), planner=DefaultSavePlanner(), ) logger.info(f"Optimizer state saved in {ckpt_dir}") def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0, adapter_only=False): accelerator.wait_for_everyone() with FSDP.state_dict_type( model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: optim_state = None if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: optimizer_name = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) input_optimizer_file = os.path.join(input_dir, optimizer_name) logger.info(f"Loading Optimizer state from {input_optimizer_file}") optim_state = torch.load(input_optimizer_file) logger.info(f"Optimizer state loaded from {input_optimizer_file}") else: ckpt_dir = ( os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") if f"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(f"Loading Optimizer from {ckpt_dir}") optim_state = load_sharded_optimizer_state_dict( model_state_dict=_get_model_state_dict(model, adapter_only=adapter_only), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(ckpt_dir), ) optim_state = optim_state["optimizer"] logger.info(f"Optimizer loaded from {ckpt_dir}") flattened_osd = FSDP.optim_state_dict_to_load(model=model, optim=optimizer, optim_state_dict=optim_state) optimizer.load_state_dict(flattened_osd)
accelerate/src/accelerate/utils/fsdp_utils.py/0
{ "file_path": "accelerate/src/accelerate/utils/fsdp_utils.py", "repo_id": "accelerate", "token_count": 4830 }
10
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto", "torch_adam": true, "adam_w_mode": true } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": "auto" }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
accelerate/tests/deepspeed/ds_config_zero3.json/0
{ "file_path": "accelerate/tests/deepspeed/ds_config_zero3.json", "repo_id": "accelerate", "token_count": 825 }
11
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import torch import torch.nn as nn from torch.fx import symbolic_trace from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class PreForwardHook(ModelHook): def pre_forward(self, module, *args, **kwargs): return (args[0] + 1,) + args[1:], kwargs class PostForwardHook(ModelHook): def post_forward(self, module, output): return output + 1 class HooksModelTester(unittest.TestCase): def test_add_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) assert test_model._hf_hook == test_hook assert hasattr(test_model, "_old_forward") # Check adding the hook did not change the name or the signature assert test_model.forward.__name__ == "forward" assert list(inspect.signature(test_model.forward).parameters) == ["x"] remove_hook_from_module(test_model) assert not hasattr(test_model, "_hf_hook") assert not hasattr(test_model, "_old_forward") def test_append_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) add_hook_to_module(test_model, test_hook, append=True) assert isinstance(test_model._hf_hook, SequentialHook) is True assert len(test_model._hf_hook.hooks) == 2 assert hasattr(test_model, "_old_forward") # Check adding the hook did not change the name or the signature assert test_model.forward.__name__ == "forward" assert list(inspect.signature(test_model.forward).parameters) == ["x"] remove_hook_from_module(test_model) assert not hasattr(test_model, "_hf_hook") assert not hasattr(test_model, "_old_forward") def test_pre_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) expected = test_model(x + 1) expected2 = test_model(x + 2) test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, expected, atol=1e-5) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, expected, atol=1e-5) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PreForwardHook(), PreForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, expected2, atol=1e-5) def test_post_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1), atol=1e-5) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1), atol=1e-5) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PostForwardHook(), PostForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, output + 2, atol=1e-5) def test_no_grad_in_hook(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1)) assert output1.requires_grad test_hook.no_grad = True output1 = test_model(x) assert not output1.requires_grad @require_multi_gpu def test_align_devices_as_model_parallelism(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices add_hook_to_module(model.linear1, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.linear2, AlignDevicesHook(execution_device=1)) assert model.linear1.weight.device == torch.device(0) assert model.batchnorm.weight.device == torch.device(0) assert model.batchnorm.running_mean.device == torch.device(0) assert model.linear2.weight.device == torch.device(1) # We can still make a forward pass. The input does not need to be on any particular device x = torch.randn(2, 3) output = model(x) assert output.device == torch.device(1) # We can add a general hook to put back output on same device as input. add_hook_to_module(model, AlignDevicesHook(io_same_device=True)) x = torch.randn(2, 3).to(0) output = model(x) assert output.device == torch.device(0) def test_align_devices_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices hook_kwargs = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(hook_kwargs["execution_device"]) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload hook_kwargs = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_attach_align_device_hook_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices execution_device = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(model, execution_device=execution_device, offload=True) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=True) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_attach_align_device_hook_as_cpu_offload_with_weight_map(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices execution_device = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict(), offload_buffers=True, ) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_add_remove_hook_fx_graph_module(self): with torch.no_grad(): test_model = ModelForTest() test_hook = ModelHook() x = torch.randn(2, 3) output1 = test_model(x) graph_model = symbolic_trace(test_model) output2 = graph_model(x) assert torch.allclose(output1, output2) add_hook_to_module(graph_model, test_hook) remove_hook_from_module(graph_model, recurse=True) # We want to make sure that `add_hook_to_module` and `remove_hook_from_module` yields back an fx.GraphModule # that behaves correctly (for example that is not frozen, see https://github.com/huggingface/accelerate/pull/2369). # For that, we add a sigmoid node to the FX graph and make sure that the new output (output3 below) is different than # the original model's output. linear2_node = None for node in graph_model.graph.nodes: if node.name == "linear2": linear2_node = node assert linear2_node is not None graph_model.graph.inserting_after(linear2_node) new_node = graph_model.graph.create_node( op="call_function", target=torch.sigmoid, args=(linear2_node,), name="relu" ) output_node = None for node in graph_model.graph.nodes: if node.name == "output": output_node = node assert output_node is not None output_node.replace_input_with(linear2_node, new_node) graph_model.graph.lint() graph_model.recompile() output3 = graph_model(x) # Now the output is expected to be different since we modified the graph. assert not torch.allclose(output1, output3)
accelerate/tests/test_hooks.py/0
{ "file_path": "accelerate/tests/test_hooks.py", "repo_id": "accelerate", "token_count": 6551 }
12
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import logging import os import re import subprocess import tempfile import unittest import zipfile from pathlib import Path from typing import Optional from unittest import mock import numpy as np import torch # We use TF to parse the logs from accelerate import Accelerator from accelerate.test_utils.testing import ( MockingTestCase, TempDirTestCase, require_clearml, require_comet_ml, require_dvclive, require_pandas, require_tensorboard, require_wandb, skip, ) from accelerate.tracking import CometMLTracker, GeneralTracker from accelerate.utils import ( ProjectConfiguration, is_comet_ml_available, is_dvclive_available, is_tensorboard_available, ) if is_comet_ml_available(): from comet_ml import OfflineExperiment if is_tensorboard_available(): import struct import tensorboard.compat.proto.event_pb2 as event_pb2 if is_dvclive_available(): from dvclive.plots.metric import Metric from dvclive.serialize import load_yaml from dvclive.utils import parse_metrics logger = logging.getLogger(__name__) @require_tensorboard class TensorBoardTrackingTest(unittest.TestCase): def test_init_trackers(self): project_name = "test_project_with_config" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers(project_name, config) accelerator.end_training() for child in Path(f"{dirpath}/{project_name}").glob("*/**"): log = list(filter(lambda x: x.is_file(), child.iterdir()))[0] assert str(log) != "" def test_log(self): project_name = "test_project_with_log" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath) accelerator.init_trackers(project_name) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() # Logged values are stored in the outermost-tfevents file and can be read in as a TFRecord # Names are randomly generated each time log = list(filter(lambda x: x.is_file(), Path(f"{dirpath}/{project_name}").iterdir()))[0] assert str(log) != "" def test_log_with_tensor(self): project_name = "test_project_with_log" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath) accelerator.init_trackers(project_name) values = {"tensor": torch.tensor(1)} accelerator.log(values, step=0) accelerator.end_training() # Logged values are stored in the outermost-tfevents file and can be read in as a TFRecord # Names are randomly generated each time log = list(filter(lambda x: x.is_file(), Path(f"{dirpath}/{project_name}").iterdir()))[0] # Reading implementation based on https://github.com/pytorch/pytorch/issues/45327#issuecomment-703757685 with open(log, "rb") as f: data = f.read() found_tensor = False while data: header = struct.unpack("Q", data[:8]) event_str = data[12 : 12 + int(header[0])] # 8+4 data = data[12 + int(header[0]) + 4 :] event = event_pb2.Event() event.ParseFromString(event_str) if event.HasField("summary"): for value in event.summary.value: if value.simple_value == 1.0 and value.tag == "tensor": found_tensor = True assert found_tensor, "Converted tensor was not found in the log file!" def test_project_dir(self): with self.assertRaisesRegex(ValueError, "Logging with `tensorboard` requires a `logging_dir`"): _ = Accelerator(log_with="tensorboard") with tempfile.TemporaryDirectory() as dirpath: _ = Accelerator(log_with="tensorboard", project_dir=dirpath) def test_project_dir_with_config(self): config = ProjectConfiguration(total_limit=30) with tempfile.TemporaryDirectory() as dirpath: _ = Accelerator(log_with="tensorboard", project_dir=dirpath, project_config=config) @require_wandb @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) class WandBTrackingTest(TempDirTestCase, MockingTestCase): def setUp(self): super().setUp() # wandb let's us override where logs are stored to via the WANDB_DIR env var self.add_mocks(mock.patch.dict(os.environ, {"WANDB_DIR": self.tmpdir})) @staticmethod def parse_log(log: str, section: str, record: bool = True): """ Parses wandb log for `section` and returns a dictionary of all items in that section. Section names are based on the output of `wandb sync --view --verbose` and items starting with "Record" in that result """ # Big thanks to the W&B team for helping us parse their logs pattern = rf"{section} ([\S\s]*?)\n\n" if record: pattern = rf"Record: {pattern}" cleaned_record = re.findall(pattern, log)[0] # A config if section == "config" or section == "history": cleaned_record = re.findall(r'"([a-zA-Z0-9_.,]+)', cleaned_record) return {key: val for key, val in zip(cleaned_record[0::2], cleaned_record[1::2])} # Everything else else: return dict(re.findall(r'(\w+): "([^\s]+)"', cleaned_record)) @skip def test_wandb(self): project_name = "test_project_with_config" accelerator = Accelerator(log_with="wandb") config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} kwargs = {"wandb": {"tags": ["my_tag"]}} accelerator.init_trackers(project_name, config, kwargs) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() # The latest offline log is stored at wandb/latest-run/*.wandb for child in Path(f"{self.tmpdir}/wandb/latest-run").glob("*"): if child.is_file() and child.suffix == ".wandb": cmd = ["wandb", "sync", "--view", "--verbose", str(child)] content = subprocess.check_output(cmd, encoding="utf8", errors="ignore") break # Check HPS through careful parsing and cleaning logged_items = self.parse_log(content, "config") assert logged_items["num_iterations"] == "12" assert logged_items["learning_rate"] == "0.01" assert logged_items["some_boolean"] == "false" assert logged_items["some_string"] == "some_value" assert logged_items["some_string"] == "some_value" # Run tags logged_items = self.parse_log(content, "run", False) assert logged_items["tags"] == "my_tag" # Actual logging logged_items = self.parse_log(content, "history") assert logged_items["total_loss"] == "0.1" assert logged_items["iteration"] == "1" assert logged_items["my_text"] == "some_value" assert logged_items["_step"] == "0" # Comet has a special `OfflineExperiment` we need to use for testing def offline_init(self, run_name: str, tmpdir: str): self.run_name = run_name self.writer = OfflineExperiment(project_name=run_name, offline_directory=tmpdir) logger.info(f"Initialized offline CometML project {self.run_name}") logger.info("Make sure to log any initial configurations with `self.store_init_configuration` before training!") @require_comet_ml @mock.patch.object(CometMLTracker, "__init__", offline_init) class CometMLTest(unittest.TestCase): @staticmethod def get_value_from_key(log_list, key: str, is_param: bool = False): "Extracts `key` from Comet `log`" for log in log_list: j = json.loads(log)["payload"] if is_param and "param" in j.keys(): if j["param"]["paramName"] == key: return j["param"]["paramValue"] if "log_other" in j.keys(): if j["log_other"]["key"] == key: return j["log_other"]["val"] if "metric" in j.keys(): if j["metric"]["metricName"] == key: return j["metric"]["metricValue"] def test_init_trackers(self): with tempfile.TemporaryDirectory() as d: tracker = CometMLTracker("test_project_with_config", d) accelerator = Accelerator(log_with=tracker) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers(None, config) accelerator.end_training() log = os.listdir(d)[0] # Comet is nice, it's just a zip file here # We parse the raw logs p = os.path.join(d, log) archive = zipfile.ZipFile(p, "r") log = archive.open("messages.json").read().decode("utf-8") list_of_json = log.split("\n")[:-1] assert self.get_value_from_key(list_of_json, "num_iterations", True) == 12 assert self.get_value_from_key(list_of_json, "learning_rate", True) == 0.01 assert self.get_value_from_key(list_of_json, "some_boolean", True) is False assert self.get_value_from_key(list_of_json, "some_string", True) == "some_value" def test_log(self): with tempfile.TemporaryDirectory() as d: tracker = CometMLTracker("test_project_with_config", d) accelerator = Accelerator(log_with=tracker) accelerator.init_trackers(None) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() log = os.listdir(d)[0] # Comet is nice, it's just a zip file here # We parse the raw logs p = os.path.join(d, log) archive = zipfile.ZipFile(p, "r") log = archive.open("messages.json").read().decode("utf-8") list_of_json = log.split("\n")[:-1] assert self.get_value_from_key(list_of_json, "curr_step", True) == 0 assert self.get_value_from_key(list_of_json, "total_loss") == 0.1 assert self.get_value_from_key(list_of_json, "iteration") == 1 assert self.get_value_from_key(list_of_json, "my_text") == "some_value" @require_clearml class ClearMLTest(TempDirTestCase, MockingTestCase): def setUp(self): super().setUp() # ClearML offline session location is stored in CLEARML_CACHE_DIR self.add_mocks(mock.patch.dict(os.environ, {"CLEARML_CACHE_DIR": self.tmpdir})) @staticmethod def _get_offline_dir(accelerator): from clearml.config import get_offline_dir return get_offline_dir(task_id=accelerator.get_tracker("clearml", unwrap=True).id) @staticmethod def _get_metrics(offline_dir): metrics = [] with open(os.path.join(offline_dir, "metrics.jsonl")) as f: json_lines = f.readlines() for json_line in json_lines: metrics.extend(json.loads(json_line)) return metrics def test_init_trackers(self): from clearml import Task from clearml.utilities.config import text_to_config_dict Task.set_offline(True) accelerator = Accelerator(log_with="clearml") config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers("test_project_with_config", config) offline_dir = ClearMLTest._get_offline_dir(accelerator) accelerator.end_training() with open(os.path.join(offline_dir, "task.json")) as f: offline_session = json.load(f) clearml_offline_config = text_to_config_dict(offline_session["configuration"]["General"]["value"]) assert config == clearml_offline_config def test_log(self): from clearml import Task Task.set_offline(True) accelerator = Accelerator(log_with="clearml") accelerator.init_trackers("test_project_with_log") values_with_iteration = {"should_be_under_train": 1, "eval_value": 2, "test_value": 3.1, "train_value": 4.1} accelerator.log(values_with_iteration, step=1) single_values = {"single_value_1": 1.1, "single_value_2": 2.2} accelerator.log(single_values) offline_dir = ClearMLTest._get_offline_dir(accelerator) accelerator.end_training() metrics = ClearMLTest._get_metrics(offline_dir) assert (len(values_with_iteration) + len(single_values)) == len(metrics) for metric in metrics: if metric["metric"] == "Summary": assert metric["variant"] in single_values assert metric["value"] == single_values[metric["variant"]] elif metric["metric"] == "should_be_under_train": assert metric["variant"] == "train" assert metric["iter"] == 1 assert metric["value"] == values_with_iteration["should_be_under_train"] else: values_with_iteration_key = metric["variant"] + "_" + metric["metric"] assert values_with_iteration_key in values_with_iteration assert metric["iter"] == 1 assert metric["value"] == values_with_iteration[values_with_iteration_key] def test_log_images(self): from clearml import Task Task.set_offline(True) accelerator = Accelerator(log_with="clearml") accelerator.init_trackers("test_project_with_log_images") base_image = np.eye(256, 256, dtype=np.uint8) * 255 base_image_3d = np.concatenate((np.atleast_3d(base_image), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2) images = { "base_image": base_image, "base_image_3d": base_image_3d, } accelerator.get_tracker("clearml").log_images(images, step=1) offline_dir = ClearMLTest._get_offline_dir(accelerator) accelerator.end_training() images_saved = Path(os.path.join(offline_dir, "data")).rglob("*.jpeg") assert len(list(images_saved)) == len(images) def test_log_table(self): from clearml import Task Task.set_offline(True) accelerator = Accelerator(log_with="clearml") accelerator.init_trackers("test_project_with_log_table") accelerator.get_tracker("clearml").log_table( "from lists with columns", columns=["A", "B", "C"], data=[[1, 3, 5], [2, 4, 6]] ) accelerator.get_tracker("clearml").log_table("from lists", data=[["A2", "B2", "C2"], [7, 9, 11], [8, 10, 12]]) offline_dir = ClearMLTest._get_offline_dir(accelerator) accelerator.end_training() metrics = ClearMLTest._get_metrics(offline_dir) assert len(metrics) == 2 for metric in metrics: assert metric["metric"] in ("from lists", "from lists with columns") plot = json.loads(metric["plot_str"]) if metric["metric"] == "from lists with columns": print(plot["data"][0]) self.assertCountEqual(plot["data"][0]["header"]["values"], ["A", "B", "C"]) self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]]) else: self.assertCountEqual(plot["data"][0]["header"]["values"], ["A2", "B2", "C2"]) self.assertCountEqual(plot["data"][0]["cells"]["values"], [[7, 8], [9, 10], [11, 12]]) @require_pandas def test_log_table_pandas(self): import pandas as pd from clearml import Task Task.set_offline(True) accelerator = Accelerator(log_with="clearml") accelerator.init_trackers("test_project_with_log_table_pandas") accelerator.get_tracker("clearml").log_table( "from df", dataframe=pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}), step=1 ) offline_dir = ClearMLTest._get_offline_dir(accelerator) accelerator.end_training() metrics = ClearMLTest._get_metrics(offline_dir) assert len(metrics) == 1 assert metrics[0]["metric"] == "from df" plot = json.loads(metrics[0]["plot_str"]) self.assertCountEqual(plot["data"][0]["header"]["values"], [["A"], ["B"], ["C"]]) self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]]) class MyCustomTracker(GeneralTracker): "Basic tracker that writes to a csv for testing" _col_names = [ "total_loss", "iteration", "my_text", "learning_rate", "num_iterations", "some_boolean", "some_string", ] name = "my_custom_tracker" requires_logging_directory = False def __init__(self, dir: str): self.f = open(f"{dir}/log.csv", "w+") self.writer = csv.DictWriter(self.f, fieldnames=self._col_names) self.writer.writeheader() @property def tracker(self): return self.writer def store_init_configuration(self, values: dict): logger.info("Call init") self.writer.writerow(values) def log(self, values: dict, step: Optional[int]): logger.info("Call log") self.writer.writerow(values) def finish(self): self.f.close() class CustomTrackerTestCase(unittest.TestCase): def test_init_trackers(self): with tempfile.TemporaryDirectory() as d: tracker = MyCustomTracker(d) accelerator = Accelerator(log_with=tracker) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers("Some name", config) accelerator.end_training() with open(f"{d}/log.csv") as f: data = csv.DictReader(f) data = next(data) truth = { "total_loss": "", "iteration": "", "my_text": "", "learning_rate": "0.01", "num_iterations": "12", "some_boolean": "False", "some_string": "some_value", } assert data == truth def test_log(self): with tempfile.TemporaryDirectory() as d: tracker = MyCustomTracker(d) accelerator = Accelerator(log_with=tracker) accelerator.init_trackers("Some name") values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() with open(f"{d}/log.csv") as f: data = csv.DictReader(f) data = next(data) truth = { "total_loss": "0.1", "iteration": "1", "my_text": "some_value", "learning_rate": "", "num_iterations": "", "some_boolean": "", "some_string": "", } assert data == truth @require_dvclive @mock.patch("dvclive.live.get_dvc_repo", return_value=None) class DVCLiveTrackingTest(unittest.TestCase): def test_init_trackers(self, mock_repo): project_name = "test_project_with_config" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="dvclive") config = { "num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value", } init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}} accelerator.init_trackers(project_name, config, init_kwargs) accelerator.end_training() live = accelerator.trackers[0].live params = load_yaml(live.params_file) assert params == config def test_log(self, mock_repo): project_name = "test_project_with_log" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="dvclive", project_dir=dirpath) init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}} accelerator.init_trackers(project_name, init_kwargs=init_kwargs) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} # Log step 0 accelerator.log(values) # Log step 1 accelerator.log(values) # Log step 3 (skip step 2) accelerator.log(values, step=3) accelerator.end_training() live = accelerator.trackers[0].live logs, latest = parse_metrics(live) assert latest.pop("step") == 3 assert latest == values scalars = os.path.join(live.plots_dir, Metric.subfolder) for val in values.keys(): val_path = os.path.join(scalars, f"{val}.tsv") steps = [int(row["step"]) for row in logs[val_path]] assert steps == [0, 1, 3]
accelerate/tests/test_tracking.py/0
{ "file_path": "accelerate/tests/test_tracking.py", "repo_id": "accelerate", "token_count": 10034 }
13
# Model arguments model_name_or_path: mistralai/Mistral-7B-v0.1 model_revision: main torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" dataset_mixer: HuggingFaceH4/grok-conversation-harmless: 0.15 HuggingFaceH4/ultrachat_200k: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 12 # SFT trainer config bf16: true do_eval: true do_train: true evaluation_strategy: epoch # One of ["no", "steps", "epoch"] gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: mistral-7b-sft-constitutional-ai hub_strategy: every_save learning_rate: 2.0e-05 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 1 output_dir: data/mistral-7b-sft-constitutional-ai overwrite_output_dir: true per_device_eval_batch_size: 8 per_device_train_batch_size: 8 push_to_hub: true remove_unused_columns: true report_to: - tensorboard save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/constitutional-ai/sft/config_grok.yaml/0
{ "file_path": "alignment-handbook/recipes/constitutional-ai/sft/config_grok.yaml", "repo_id": "alignment-handbook", "token_count": 610 }
14
# Model arguments model_name_or_path: mistralai/Mistral-7B-v0.1 model_revision: main torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" dataset_mixer: HuggingFaceH4/ultrachat_200k: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 12 # SFT trainer config bf16: true do_eval: true evaluation_strategy: epoch gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: zephyr-7b-sft-full hub_strategy: every_save learning_rate: 2.0e-05 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 1 output_dir: data/zephyr-7b-sft-full overwrite_output_dir: true per_device_eval_batch_size: 8 per_device_train_batch_size: 16 push_to_hub: true remove_unused_columns: true report_to: - tensorboard save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/zephyr-7b-beta/sft/config_full.yaml/0
{ "file_path": "alignment-handbook/recipes/zephyr-7b-beta/sft/config_full.yaml", "repo_id": "alignment-handbook", "token_count": 568 }
15
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import packaging.version REPLACE_PATTERNS = { "init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), "setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), } REPLACE_FILES = { "init": "src/alignment/__init__.py", "setup": "setup.py", } README_FILE = "README.md" def update_version_in_file(fname, version, pattern): """Update the version in one file using a specific pattern.""" with open(fname, "r", encoding="utf-8", newline="\n") as f: code = f.read() re_pattern, replace = REPLACE_PATTERNS[pattern] replace = replace.replace("VERSION", version) code = re_pattern.sub(replace, code) with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) def global_version_update(version, patch=False): """Update the version in all needed files.""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) def get_version(): """Reads the current version in the __init__.""" with open(REPLACE_FILES["init"], "r") as f: code = f.read() default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch=False): """Do all the necessary pre-release steps.""" # First let's get the default version: base version if we are in dev, bump minor otherwise. default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: default_version = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. version = input(f"Which version are you releasing? [{default_version}]") if len(version) == 0: version = default_version print(f"Updating version to {version}.") global_version_update(version, patch=patch) def post_release_work(): """Do all the necessary post-release steps.""" # First let's get the current version current_version = get_version() dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0" current_version = current_version.base_version # Check with the user we got that right. version = input(f"Which version are we developing now? [{dev_version}]") if len(version) == 0: version = dev_version print(f"Updating version to {version}.") global_version_update(version) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
alignment-handbook/src/alignment/release.py/0
{ "file_path": "alignment-handbook/src/alignment/release.py", "repo_id": "alignment-handbook", "token_count": 1384 }
16
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
candle/LICENSE-APACHE/0
{ "file_path": "candle/LICENSE-APACHE", "repo_id": "candle", "token_count": 3168 }
17
# Porting a custom kernel
candle/candle-book/src/cuda/porting.md/0
{ "file_path": "candle/candle-book/src/cuda/porting.md", "repo_id": "candle", "token_count": 7 }
18
# Simplified ## How its works This program implements a neural network to predict the winner of the second round of elections based on the results of the first round. Basic moments: 1. A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons. 2. The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage. 3. The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose. 4. For training, samples with real data on the results of the first and second stages of different elections are used. 5. The model is trained by backpropagation using gradient descent and the cross-entropy loss function. 6. Model parameters (weights of neurons) are initialized randomly, then optimized during training. 7. After training, the model is tested on a deferred sample to evaluate the accuracy. 8. If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated. Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data. ```rust,ignore {{#include ../simplified.rs:book_training_simplified1}} ``` ```rust,ignore {{#include ../simplified.rs:book_training_simplified2}} ``` ```rust,ignore {{#include ../simplified.rs:book_training_simplified3}} ``` ## Example output ```bash Trying to train neural network. Epoch: 1 Train loss: 4.42555 Test accuracy: 0.00% Epoch: 2 Train loss: 0.84677 Test accuracy: 33.33% Epoch: 3 Train loss: 2.54335 Test accuracy: 33.33% Epoch: 4 Train loss: 0.37806 Test accuracy: 33.33% Epoch: 5 Train loss: 0.36647 Test accuracy: 100.00% real_life_votes: [13, 22] neural_network_prediction_result: 0.0 ```
candle/candle-book/src/training/simplified.md/0
{ "file_path": "candle/candle-book/src/training/simplified.md", "repo_id": "candle", "token_count": 530 }
19
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT}; use crate::{CpuStorage, DType, Layout, Result, Shape}; pub trait BackendStorage: Sized { type Device: BackendDevice; fn try_clone(&self, _: &Layout) -> Result<Self>; fn dtype(&self) -> DType; fn device(&self) -> &Self::Device; // Maybe this should return a Cow instead so that no copy is done on the cpu case. fn to_cpu_storage(&self) -> Result<CpuStorage>; fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self>; fn powf(&self, _: &Layout, _: f64) -> Result<Self>; fn elu(&self, _: &Layout, _: f64) -> Result<Self>; fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self>; fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self>; fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self>; fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self>; fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self>; fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self>; fn conv1d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &crate::conv::ParamsConv1D, ) -> Result<Self>; fn conv_transpose1d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &crate::conv::ParamsConvTranspose1D, ) -> Result<Self>; fn conv2d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &crate::conv::ParamsConv2D, ) -> Result<Self>; fn conv_transpose2d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &crate::conv::ParamsConvTranspose2D, ) -> Result<Self>; fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>; fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>; fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self>; fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self>; fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>; fn scatter_add( &self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout, _: usize, ) -> Result<Self>; fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self>; fn index_add( &self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout, _: usize, ) -> Result<Self>; fn matmul( &self, _: &Self, _: (usize, usize, usize, usize), _: &Layout, _: &Layout, ) -> Result<Self>; fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>; #[allow(clippy::too_many_arguments)] // Similar to cudaMemcpy2D, though values are in elements and not in bytes. fn copy2d( &self, _: &mut Self, _d1: usize, _d2: usize, _src_stride1: usize, _dst_stride1: usize, _src_offset: usize, _dst_offset: usize, ) -> Result<()>; } pub trait BackendDevice: Sized + std::fmt::Debug + Clone { type Storage: BackendStorage; // TODO: Make the usize generic and part of a generic DeviceLocation. fn new(_: usize) -> Result<Self>; fn location(&self) -> crate::DeviceLocation; fn same_device(&self, _: &Self) -> bool; fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>; fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>; fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>; fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>; fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>; fn set_seed(&self, _: u64) -> Result<()>; }
candle/candle-core/src/backend.rs/0
{ "file_path": "candle/candle-core/src/backend.rs", "repo_id": "candle", "token_count": 1920 }
20
#![allow(dead_code)] use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT}; use crate::{CpuStorage, DType, Error, Layout, Result, Shape}; #[derive(Debug, Clone)] pub struct CudaDevice; #[derive(Debug)] pub struct CudaStorage; macro_rules! fail { () => { unimplemented!("cuda support has not been enabled, add `cuda` feature to enable.") }; } impl crate::backend::BackendStorage for CudaStorage { type Device = CudaDevice; fn try_clone(&self, _: &Layout) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn dtype(&self) -> DType { fail!() } fn device(&self) -> &Self::Device { fail!() } fn to_cpu_storage(&self) -> Result<CpuStorage> { Err(Error::NotCompiledWithCudaSupport) } fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn powf(&self, _: &Layout, _: f64) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn elu(&self, _: &Layout, _: f64) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn conv1d( &self, _: &Layout, _: &Self, _: &Layout, _: &crate::conv::ParamsConv1D, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn conv_transpose1d( &self, _: &Layout, _: &Self, _: &Layout, _: &crate::conv::ParamsConvTranspose1D, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn conv2d( &self, _: &Layout, _: &Self, _: &Layout, _: &crate::conv::ParamsConv2D, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn conv_transpose2d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &crate::conv::ParamsConvTranspose2D, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn scatter_add( &self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout, _: usize, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn index_add( &self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout, _: usize, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn matmul( &self, _: &Self, _: (usize, usize, usize, usize), _: &Layout, _: &Layout, ) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> { Err(Error::NotCompiledWithCudaSupport) } fn copy2d( &self, _: &mut Self, _: usize, _: usize, _: usize, _: usize, _: usize, _: usize, ) -> Result<()> { Err(Error::NotCompiledWithCudaSupport) } fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } } impl crate::backend::BackendDevice for CudaDevice { type Storage = CudaStorage; fn new(_: usize) -> Result<Self> { Err(Error::NotCompiledWithCudaSupport) } fn set_seed(&self, _: u64) -> Result<()> { Err(Error::NotCompiledWithCudaSupport) } fn location(&self) -> crate::DeviceLocation { fail!() } fn same_device(&self, _: &Self) -> bool { fail!() } fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> { Err(Error::NotCompiledWithCudaSupport) } fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> { Err(Error::NotCompiledWithCudaSupport) } fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> { Err(Error::NotCompiledWithCudaSupport) } fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> { Err(Error::NotCompiledWithCudaSupport) } fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> { Err(Error::NotCompiledWithCudaSupport) } }
candle/candle-core/src/dummy_cuda_backend.rs/0
{ "file_path": "candle/candle-core/src/dummy_cuda_backend.rs", "repo_id": "candle", "token_count": 2782 }
21
//! Support for the GGUF file format. //! //! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md use super::{GgmlDType, QTensor}; use crate::{Device, Result}; use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt}; use std::collections::HashMap; pub const DEFAULT_ALIGNMENT: u64 = 32; #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum Magic { Gguf, } impl TryFrom<u32> for Magic { type Error = crate::Error; fn try_from(value: u32) -> Result<Self> { let magic = match value { 0x46554747 | 0x47475546 => Self::Gguf, _ => crate::bail!("unknown magic 0x{value:08x}"), }; Ok(magic) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum VersionedMagic { GgufV1, GgufV2, GgufV3, } impl VersionedMagic { fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> { let magic = reader.read_u32::<LittleEndian>()?; let magic = Magic::try_from(magic)?; let version = reader.read_u32::<LittleEndian>()?; let versioned_magic = match (magic, version) { (Magic::Gguf, 1) => Self::GgufV1, (Magic::Gguf, 2) => Self::GgufV2, (Magic::Gguf, 3) => Self::GgufV3, _ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"), }; Ok(versioned_magic) } } #[derive(Debug)] pub struct TensorInfo { pub ggml_dtype: GgmlDType, pub shape: crate::Shape, pub offset: u64, } impl TensorInfo { pub fn read<R: std::io::Seek + std::io::Read>( &self, reader: &mut R, tensor_data_offset: u64, device: &Device, ) -> Result<QTensor> { let tensor_elems = self.shape.elem_count(); let block_size = self.ggml_dtype.block_size(); if tensor_elems % block_size != 0 { crate::bail!( "the number of elements {tensor_elems} is not divisible by the block size {block_size}" ) } let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size(); let mut raw_data = vec![0u8; size_in_bytes]; reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?; reader.read_exact(&mut raw_data)?; super::ggml_file::qtensor_from_ggml( self.ggml_dtype, &raw_data, self.shape.dims().to_vec(), device, ) } } #[derive(Debug)] pub struct Content { pub magic: VersionedMagic, pub metadata: HashMap<String, Value>, pub tensor_infos: HashMap<String, TensorInfo>, pub tensor_data_offset: u64, } fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> { let len = match magic { VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize, VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => { reader.read_u64::<LittleEndian>()? as usize } }; let mut v = vec![0u8; len]; reader.read_exact(&mut v)?; // GGUF strings are supposed to be non-null terminated but in practice this happens. while let Some(0) = v.last() { v.pop(); } // GGUF strings are utf8 encoded but there are cases that don't seem to be valid. Ok(String::from_utf8_lossy(&v).into_owned()) } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ValueType { // The value is a 8-bit unsigned integer. U8, // The value is a 8-bit signed integer. I8, // The value is a 16-bit unsigned little-endian integer. U16, // The value is a 16-bit signed little-endian integer. I16, // The value is a 32-bit unsigned little-endian integer. U32, // The value is a 32-bit signed little-endian integer. I32, // The value is a 64-bit unsigned little-endian integer. U64, // The value is a 64-bit signed little-endian integer. I64, // The value is a 32-bit IEEE754 floating point number. F32, // The value is a 64-bit IEEE754 floating point number. F64, // The value is a boolean. // 1-byte value where 0 is false and 1 is true. // Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy. Bool, // The value is a UTF-8 non-null-terminated string, with length prepended. String, // The value is an array of other values, with the length and type prepended. /// // Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes. Array, } #[derive(Debug, Clone)] pub enum Value { U8(u8), I8(i8), U16(u16), I16(i16), U32(u32), I32(i32), U64(u64), I64(i64), F32(f32), F64(f64), Bool(bool), String(String), Array(Vec<Value>), } impl Value { pub fn value_type(&self) -> ValueType { match self { Self::U8(_) => ValueType::U8, Self::I8(_) => ValueType::I8, Self::U16(_) => ValueType::U16, Self::I16(_) => ValueType::I16, Self::U32(_) => ValueType::U32, Self::I32(_) => ValueType::I32, Self::U64(_) => ValueType::U64, Self::I64(_) => ValueType::I64, Self::F32(_) => ValueType::F32, Self::F64(_) => ValueType::F64, Self::Bool(_) => ValueType::Bool, Self::String(_) => ValueType::String, Self::Array(_) => ValueType::Array, } } pub fn to_u8(&self) -> Result<u8> { match self { Self::U8(v) => Ok(*v), v => crate::bail!("not a u8 {v:?}"), } } pub fn to_i8(&self) -> Result<i8> { match self { Self::I8(v) => Ok(*v), v => crate::bail!("not a i8 {v:?}"), } } pub fn to_u16(&self) -> Result<u16> { match self { Self::U16(v) => Ok(*v), v => crate::bail!("not a u16 {v:?}"), } } pub fn to_i16(&self) -> Result<i16> { match self { Self::I16(v) => Ok(*v), v => crate::bail!("not a i16 {v:?}"), } } pub fn to_u32(&self) -> Result<u32> { match self { Self::U32(v) => Ok(*v), v => crate::bail!("not a u32 {v:?}"), } } pub fn to_i32(&self) -> Result<i32> { match self { Self::I32(v) => Ok(*v), v => crate::bail!("not a i32 {v:?}"), } } pub fn to_u64(&self) -> Result<u64> { match self { Self::U64(v) => Ok(*v), v => crate::bail!("not a u64 {v:?}"), } } pub fn to_i64(&self) -> Result<i64> { match self { Self::I64(v) => Ok(*v), v => crate::bail!("not a i64 {v:?}"), } } pub fn to_f32(&self) -> Result<f32> { match self { Self::F32(v) => Ok(*v), v => crate::bail!("not a f32 {v:?}"), } } pub fn to_f64(&self) -> Result<f64> { match self { Self::F64(v) => Ok(*v), v => crate::bail!("not a f64 {v:?}"), } } pub fn to_bool(&self) -> Result<bool> { match self { Self::Bool(v) => Ok(*v), v => crate::bail!("not a bool {v:?}"), } } pub fn to_vec(&self) -> Result<&Vec<Value>> { match self { Self::Array(v) => Ok(v), v => crate::bail!("not a vec {v:?}"), } } pub fn to_string(&self) -> Result<&String> { match self { Self::String(v) => Ok(v), v => crate::bail!("not a string {v:?}"), } } fn read<R: std::io::Read>( reader: &mut R, value_type: ValueType, magic: &VersionedMagic, ) -> Result<Self> { let v = match value_type { ValueType::U8 => Self::U8(reader.read_u8()?), ValueType::I8 => Self::I8(reader.read_i8()?), ValueType::U16 => Self::U16(reader.read_u16::<LittleEndian>()?), ValueType::I16 => Self::I16(reader.read_i16::<LittleEndian>()?), ValueType::U32 => Self::U32(reader.read_u32::<LittleEndian>()?), ValueType::I32 => Self::I32(reader.read_i32::<LittleEndian>()?), ValueType::U64 => Self::U64(reader.read_u64::<LittleEndian>()?), ValueType::I64 => Self::I64(reader.read_i64::<LittleEndian>()?), ValueType::F32 => Self::F32(reader.read_f32::<LittleEndian>()?), ValueType::F64 => Self::F64(reader.read_f64::<LittleEndian>()?), ValueType::Bool => match reader.read_u8()? { 0 => Self::Bool(false), 1 => Self::Bool(true), b => crate::bail!("unexpected bool value {b}"), }, ValueType::String => Self::String(read_string(reader, magic)?), ValueType::Array => { let value_type = reader.read_u32::<LittleEndian>()?; let value_type = ValueType::from_u32(value_type)?; let len = match magic { VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize, VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => { reader.read_u64::<LittleEndian>()? as usize } }; let mut vs = Vec::with_capacity(len); for _ in 0..len { vs.push(Value::read(reader, value_type, magic)?) } Self::Array(vs) } }; Ok(v) } fn write<W: std::io::Write>(&self, w: &mut W) -> Result<()> { match self { &Self::U8(v) => w.write_u8(v)?, &Self::I8(v) => w.write_i8(v)?, &Self::U16(v) => w.write_u16::<LittleEndian>(v)?, &Self::I16(v) => w.write_i16::<LittleEndian>(v)?, &Self::U32(v) => w.write_u32::<LittleEndian>(v)?, &Self::I32(v) => w.write_i32::<LittleEndian>(v)?, &Self::U64(v) => w.write_u64::<LittleEndian>(v)?, &Self::I64(v) => w.write_i64::<LittleEndian>(v)?, &Self::F32(v) => w.write_f32::<LittleEndian>(v)?, &Self::F64(v) => w.write_f64::<LittleEndian>(v)?, &Self::Bool(v) => w.write_u8(u8::from(v))?, Self::String(v) => write_string(w, v.as_str())?, Self::Array(v) => { // The `Value` type does not enforce that all the values in an Array have the same // type. let value_type = if v.is_empty() { // Doesn't matter, the array is empty. ValueType::U32 } else { let value_type: std::collections::HashSet<_> = v.iter().map(|elem| elem.value_type()).collect(); if value_type.len() != 1 { crate::bail!("multiple value-types in the same array {value_type:?}") } value_type.into_iter().next().unwrap() }; w.write_u32::<LittleEndian>(value_type.to_u32())?; w.write_u64::<LittleEndian>(v.len() as u64)?; for elem in v.iter() { elem.write(w)? } } } Ok(()) } } impl ValueType { fn from_u32(v: u32) -> Result<Self> { let v = match v { 0 => Self::U8, 1 => Self::I8, 2 => Self::U16, 3 => Self::I16, 4 => Self::U32, 5 => Self::I32, 6 => Self::F32, 7 => Self::Bool, 8 => Self::String, 9 => Self::Array, 10 => Self::U64, 11 => Self::I64, 12 => Self::F64, v => crate::bail!("unrecognized value-type {v:#08x}"), }; Ok(v) } fn to_u32(self) -> u32 { match self { Self::U8 => 0, Self::I8 => 1, Self::U16 => 2, Self::I16 => 3, Self::U32 => 4, Self::I32 => 5, Self::F32 => 6, Self::Bool => 7, Self::String => 8, Self::Array => 9, Self::U64 => 10, Self::I64 => 11, Self::F64 => 12, } } } impl Content { pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Self> { let magic = VersionedMagic::read(reader)?; let tensor_count = match magic { VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize, VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => { reader.read_u64::<LittleEndian>()? as usize } }; let metadata_kv_count = match magic { VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize, VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => { reader.read_u64::<LittleEndian>()? as usize } }; let mut metadata = HashMap::new(); for _idx in 0..metadata_kv_count { let key = read_string(reader, &magic)?; let value_type = reader.read_u32::<LittleEndian>()?; let value_type = ValueType::from_u32(value_type)?; let value = Value::read(reader, value_type, &magic)?; metadata.insert(key, value); } let mut tensor_infos = HashMap::new(); for _idx in 0..tensor_count { let tensor_name = read_string(reader, &magic)?; let n_dimensions = reader.read_u32::<LittleEndian>()?; let mut dimensions: Vec<usize> = match magic { VersionedMagic::GgufV1 => { let mut dimensions = vec![0; n_dimensions as usize]; reader.read_u32_into::<LittleEndian>(&mut dimensions)?; dimensions.into_iter().map(|c| c as usize).collect() } VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => { let mut dimensions = vec![0; n_dimensions as usize]; reader.read_u64_into::<LittleEndian>(&mut dimensions)?; dimensions.into_iter().map(|c| c as usize).collect() } }; dimensions.reverse(); let ggml_dtype = reader.read_u32::<LittleEndian>()?; let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?; let offset = reader.read_u64::<LittleEndian>()?; tensor_infos.insert( tensor_name, TensorInfo { shape: crate::Shape::from(dimensions), offset, ggml_dtype, }, ); } let position = reader.stream_position()?; let alignment = match metadata.get("general.alignment") { Some(Value::U8(v)) => *v as u64, Some(Value::U16(v)) => *v as u64, Some(Value::U32(v)) => *v as u64, Some(Value::I8(v)) if *v >= 0 => *v as u64, Some(Value::I16(v)) if *v >= 0 => *v as u64, Some(Value::I32(v)) if *v >= 0 => *v as u64, _ => DEFAULT_ALIGNMENT, }; let tensor_data_offset = (position + alignment - 1) / alignment * alignment; Ok(Self { magic, metadata, tensor_infos, tensor_data_offset, }) } pub fn tensor<R: std::io::Seek + std::io::Read>( &self, reader: &mut R, name: &str, device: &Device, ) -> Result<QTensor> { let tensor_info = match self.tensor_infos.get(name) { Some(tensor_info) => tensor_info, None => crate::bail!("cannot find tensor info for {name}"), }; tensor_info.read(reader, self.tensor_data_offset, device) } } fn write_string<W: std::io::Write>(w: &mut W, str: &str) -> Result<()> { let bytes = str.as_bytes(); w.write_u64::<LittleEndian>(bytes.len() as u64)?; w.write_all(bytes)?; Ok(()) } pub fn write<W: std::io::Seek + std::io::Write>( w: &mut W, metadata: &[(&str, &Value)], tensors: &[(&str, &QTensor)], ) -> Result<()> { w.write_u32::<LittleEndian>(0x46554747)?; w.write_u32::<LittleEndian>(2)?; // version 2. w.write_u64::<LittleEndian>(tensors.len() as u64)?; w.write_u64::<LittleEndian>(metadata.len() as u64)?; for (name, value) in metadata.iter() { write_string(w, name)?; w.write_u32::<LittleEndian>(value.value_type().to_u32())?; value.write(w)?; } let mut offset = 0usize; let mut offsets = Vec::with_capacity(tensors.len()); for (name, tensor) in tensors.iter() { write_string(w, name)?; let dims = tensor.shape().dims(); w.write_u32::<LittleEndian>(dims.len() as u32)?; for &dim in dims.iter().rev() { w.write_u64::<LittleEndian>(dim as u64)?; } w.write_u32::<LittleEndian>(tensor.dtype().to_u32())?; w.write_u64::<LittleEndian>(offset as u64)?; offsets.push(offset); let size_in_bytes = tensor.storage_size_in_bytes(); let padding = 31 - (31 + size_in_bytes) % 32; offset += size_in_bytes + padding; } let pos = w.stream_position()? as usize; let padding = 31 - (31 + pos) % 32; w.write_all(&vec![0u8; padding])?; let tensor_start_pos = w.stream_position()? as usize; for (offset, (_name, tensor)) in offsets.iter().zip(tensors.iter()) { let pos = w.stream_position()? as usize; if tensor_start_pos + offset != pos { crate::bail!( "internal error, unexpected current position {tensor_start_pos} {offset} {pos}" ) } let data = tensor.data()?; let size_in_bytes = data.len(); w.write_all(&data)?; let padding = 31 - (31 + size_in_bytes) % 32; w.write_all(&vec![0u8; padding])?; } Ok(()) }
candle/candle-core/src/quantized/gguf_file.rs/0
{ "file_path": "candle/candle-core/src/quantized/gguf_file.rs", "repo_id": "candle", "token_count": 9397 }
22
// Variables are wrappers around tensors that can be modified, they are typically used for holding // weights and being modified by gradient descent. // We do not expose a public way to create variables as this would break the invariant that the // tensor within a variable is actually with `is_variable` set to `true`. use crate::{DType, Device, Error, Result, Shape, Tensor}; /// A variable is a wrapper around a tensor, however variables can have their content modified /// whereas tensors are immutable. #[derive(Clone, Debug)] pub struct Var(Tensor); impl std::fmt::Display for Var { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { std::fmt::Display::fmt(&self.0, f) } } impl std::ops::Deref for Var { type Target = Tensor; fn deref(&self) -> &Self::Target { self.0.as_ref() } } impl Var { pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::zeros_impl(shape, dtype, device, true)?; Ok(Self(inner)) } pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::ones_impl(shape, dtype, device, true)?; Ok(Self(inner)) } pub fn from_tensor(t: &Tensor) -> Result<Self> { let inner = t.make_var()?; Ok(Self(inner)) } pub fn rand_f64<S: Into<Shape>>( lo: f64, up: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_f64_impl(lo, up, s, dtype, device, true)?; Ok(Self(inner)) } pub fn randn_f64<S: Into<Shape>>( mean: f64, std: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_f64_impl(mean, std, s, dtype, device, true)?; Ok(Self(inner)) } pub fn rand<S: Into<Shape>, T: crate::FloatDType>( lo: T, up: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_impl(lo, up, s, device, true)?; Ok(Self(inner)) } pub fn randn<S: Into<Shape>, T: crate::FloatDType>( mean: T, std: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_impl(mean, std, s, device, true)?; Ok(Self(inner)) } /// Creates a new tensor on the specified device using the content and shape of the input. /// This is similar to `new` but the resulting tensor is a variable. pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> { let shape = array.shape()?; let inner = Tensor::new_impl(array, shape, device, true)?; Ok(Self(inner)) } pub fn from_vec<S: Into<Shape>, D: crate::WithDType>( data: Vec<D>, shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::from_vec_impl(data, shape, device, true)?; Ok(Self(inner)) } pub fn from_slice<S: Into<Shape>, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::new_impl(array, shape.into(), device, true)?; Ok(Self(inner)) } pub fn as_detached_tensor(&self) -> Tensor { self.0.detach() } pub fn as_tensor(&self) -> &Tensor { &self.0 } /// Consumes this `Var` and return the underlying tensor. pub fn into_inner(self) -> Tensor { self.0 } /// Sets the content of the inner tensor, this does not require a mutable reference as inner /// mutability is used. pub fn set(&self, src: &Tensor) -> Result<()> { if self.same_storage(src) { let msg = "cannot set a variable to a tensor that is derived from its value"; Err(Error::CannotSetVar { msg }.bt())? } let (mut dst, layout) = self.storage_mut_and_layout(); if !layout.is_contiguous() { let msg = "cannot set a non-contiguous variable"; Err(Error::CannotSetVar { msg }.bt())? } let (src, src_l) = src.storage_and_layout(); if layout.shape() != src_l.shape() { Err(Error::ShapeMismatchBinaryOp { lhs: layout.shape().clone(), rhs: src_l.shape().clone(), op: "set", } .bt())? } src.copy_strided_src(&mut dst, layout.start_offset(), src_l)?; Ok(()) } }
candle/candle-core/src/variable.rs/0
{ "file_path": "candle/candle-core/src/variable.rs", "repo_id": "candle", "token_count": 2057 }
23
# candle-bert Bert is a general large language model. In this example it can be used for two different tasks: - Compute sentence embeddings for a prompt. - Compute similarities between a set of sentences. ## Sentence embeddings Bert is used to compute the sentence embeddings for a prompt. The model weights are downloaded from the hub on the first run. ```bash cargo run --example bert --release -- --prompt "Here is a test sentence" > [[[ 0.0798, -0.0665, -0.0247, ..., -0.1082, -0.1000, -0.2751], > [ 0.4218, 0.2690, 0.2740, ..., 0.3889, 1.3503, 0.9908], > [ 0.0466, 0.3041, -0.1143, ..., 0.4427, 0.6926, -0.1515], > ... > [ 0.3396, 0.4320, -0.4408, ..., 0.9212, 0.2331, -0.6777], > [ 0.2789, 0.7539, 0.4306, ..., -0.0095, 0.3375, -1.7529], > [ 0.6737, 0.7882, 0.0548, ..., 0.1836, 0.7299, -0.6617]]] > Tensor[[1, 7, 384], f32] ``` ### Custom models You can specify different models, such as BGE, with the `--model-id` flag: ```bash cargo run --example bert --release -- \ --model-id BAAI/bge-large-zh-v1.5 \ --prompt "Here is a test sentence" Loaded and encoded 435.70775ms [[[ 3.0944e-1, -7.8455e-5, -1.2768e0, ..., 1.3755e-2, -3.2371e-1, 2.3819e-1], [-2.8506e-1, 1.9953e-1, -1.3076e0, ..., 6.9819e-2, 1.0833e-2, -1.1512e0], [ 3.9892e-1, 2.0000e-1, -9.3178e-1, ..., -4.1393e-1, -4.9644e-2, -3.3786e-1], ... [ 6.0345e-1, 3.5744e-1, -1.2672e0, ..., -6.9165e-1, -3.4973e-3, -8.4214e-1], [ 3.9218e-1, -3.2735e-1, -1.3123e0, ..., -4.9318e-1, -5.1334e-1, -3.6391e-1], [ 3.0978e-1, 2.5662e-4, -1.2773e0, ..., 1.3357e-2, -3.2390e-1, 2.3858e-1]]] Tensor[[1, 9, 1024], f32] Took 176.744667ms ``` ### Gelu approximation You can get a speedup by using an approximation of the gelu activation, with a small loss of precision, by passing the `--approximate-gelu` flag: ```bash $ cargo run --example bert --release -- \ --model-id BAAI/bge-large-zh-v1.5 \ --prompt "Here is a test sentence" \ --approximate-gelu Loaded and encoded 244.388042ms [[[ 3.1048e-1, -6.0339e-4, -1.2758e0, ..., 1.3718e-2, -3.2362e-1, 2.3775e-1], [-2.8354e-1, 1.9984e-1, -1.3077e0, ..., 6.9390e-2, 9.9681e-3, -1.1531e0], [ 3.9947e-1, 1.9917e-1, -9.3178e-1, ..., -4.1301e-1, -5.0719e-2, -3.3955e-1], ... [ 6.0499e-1, 3.5664e-1, -1.2642e0, ..., -6.9134e-1, -3.4581e-3, -8.4471e-1], [ 3.9311e-1, -3.2812e-1, -1.3105e0, ..., -4.9291e-1, -5.1270e-1, -3.6543e-1], [ 3.1082e-1, -2.6737e-4, -1.2762e0, ..., 1.3319e-2, -3.2381e-1, 2.3815e-1]]] Tensor[[1, 9, 1024], f32] Took 116.840791ms ``` ## Similarities In this example, Bert is used to compute the sentence embeddings for a set of sentences (hardcoded in the examples). Then cosine similarities are computed for each sentence pair and they are reported by decreasing values, hence the first reported pair contains the two sentences that have the highest similarity score. The sentence embeddings are computed using average pooling through all the sentence tokens, including some potential padding. ```bash cargo run --example bert --release > score: 0.85 'The new movie is awesome' 'The new movie is so great' > score: 0.61 'The cat sits outside' 'The cat plays in the garden' > score: 0.52 'I love pasta' 'Do you like pizza?' > score: 0.23 'The new movie is awesome' 'Do you like pizza?' > score: 0.22 'I love pasta' 'The new movie is awesome' ```
candle/candle-examples/examples/bert/README.md/0
{ "file_path": "candle/candle-examples/examples/bert/README.md", "repo_id": "candle", "token_count": 1564 }
24
# candle-distilbert DistilBert is a distiled version of the Bert model. ## Sentence embeddings DistilBert is used to compute the sentence embeddings for a prompt. The model weights are downloaded from the hub on the first run. ```bash cargo run --example distilbert --release -- --prompt "Here is a test sentence" > [[[ 0.5109, 0.1280, -0.2635, ..., 0.3462, -1.0434, 0.1441], > [ 0.1735, 0.0818, -0.5549, ..., 0.3472, -0.8264, -0.0244], > [ 0.0702, -0.1311, -0.4914, ..., 0.3483, -0.6194, 0.1829], > ... > [ 0.2993, -0.0106, -0.4640, ..., 0.2844, -0.6732, 0.0042], > [ 0.1066, -0.0081, -0.4299, ..., 0.3435, -0.7729, 0.0190], > [ 0.8903, 0.2055, -0.2541, ..., 0.3208, -0.6585, 0.0586]]] > Tensor[[1, 7, 768], f32] ```
candle/candle-examples/examples/distilbert/README.md/0
{ "file_path": "candle/candle-examples/examples/distilbert/README.md", "repo_id": "candle", "token_count": 367 }
25
README.md exists but content is empty.
Downloads last month
34