File size: 4,657 Bytes
e9d5152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
import json
import datasets
from datasets import BuilderConfig, Features, Value, Sequence
_DESCRIPTION = """
# νκ΅μ΄ μ§μνμ΅ λ°μ΄ν°μ
- quail λ°μ΄ν°μ
μ νκ΅μ΄λ‘ λ³μν λ°μ΄ν°μ
"""
_CITATION = """
@inproceedings{KITD,
title={μΈμ΄ λ²μ λͺ¨λΈμ ν΅ν νκ΅μ΄ μ§μ νμ΅ λ°μ΄ν° μΈνΈ ꡬμΆ},
author={μμμ, μΆνμ°½, κΉμ°, μ₯μ§μ, μ λ―Όμ, μ μ¬μ},
booktitle={μ 35ν νκΈ λ° νκ΅μ΄ μ 보μ²λ¦¬ νμ λν},
pages={591--595},
year={2023}
}
@inproceedings{KITD,
title={Korean Instruction Tuning Dataset},
author={Yeongseo Lim, HyeonChang Chu, San Kim, Jin Yea Jang, Minyoung Jung, Saim Shin},
booktitle={Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology},
pages={591--595},
year={2023}
}
"""
def _list(data_list):
result = list()
for data in data_list:
result.append(data)
return result
# quail
_QUAIL_FEATURES = Features({
"data_index_by_user": Value(dtype="int32"),
"id": Value(dtype="string"),
"context_id": Value(dtype="string"),
"question_id": Value(dtype="string"),
"domain": Value(dtype="string"),
"metadata": {
"author": Value(dtype="string"),
"title": Value(dtype="string"),
"url": Value(dtype="string"),
},
"context": Value(dtype="string"),
"question": Value(dtype="string"),
"question_type": Value(dtype="string"),
"answers": Sequence(Value(dtype="string")),
"correct_answer_id": Value(dtype="int32"),
})
def _parsing_quail(file_path):
with open(file_path, mode="r") as f:
dataset = json.load(f)
for _i, data in enumerate(dataset):
_data_index_by_user = data["data_index_by_user"]
_id = data["id"]
_context_id = data["context_id"]
_question_id = data["question_id"]
_domain = data["domain"]
_metadata = {
"author": data["metadata"]["author"],
"title": data["metadata"]["title"],
"url": data["metadata"]["url"]
}
_context = data["context"]
_question = data["question"]
_question_type = data["question_type"]
_answers = _list(data["_answers"])
_correct_answer_id = data["correct_answer_id"]
yield _i, {
"data_index_by_user": _data_index_by_user,
"id": _id,
"context_id": _context_id,
"question_id": _question_id,
"domain": _domain,
"metadata": _metadata,
"context": _context,
"question": _question,
"question_type": _question_type,
"answers": _answers,
"correct_answer_id": _correct_answer_id,
}
class QuailConfig(BuilderConfig):
def __init__(self, name, feature, reading_fn, parsing_fn, citation, **kwargs):
super(QuailConfig, self).__init__(
name = name,
version=datasets.Version("1.0.0"),
**kwargs)
self.feature = feature
self.reading_fn = reading_fn
self.parsing_fn = parsing_fn
self.citation = citation
class QUAIL(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
QuailConfig(
name = "base",
data_dir = "./quail",
feature = _QUAIL_FEATURES,
reading_fn = _parsing_quail,
parsing_fn = lambda x:x,
citation = _CITATION,
),
]
def _info(self) -> datasets.DatasetInfo:
"""Returns the dataset metadata."""
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_QUAIL_FEATURES,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators"""
path_kv = {
datasets.Split.TRAIN:[
os.path.join(dl_manager.manual_dir, f"train.json")
],
datasets.Split.VALIDATION:[
os.path.join(dl_manager.manual_dir, f"validation.json")
],
"challenge":[
os.path.join(dl_manager.manual_dir, f"challenge.json")
],
}
return [
datasets.SplitGenerator(name=k, gen_kwargs={"path_list": v})
for k, v in path_kv.items()
]
def _generate_examples(self, path_list):
"""Yields examples."""
for path in path_list:
try:
for example in iter(self.config.reading_fn(path)):
yield self.config.parsing_fn(example)
except Exception as e:
print(e) |