Datasets:

Modalities:
Text
License:
File size: 3,943 Bytes
06e7f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf70f9
06e7f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import json
import datasets
from datasets import BuilderConfig, Features, ClassLabel, Value, Sequence


_DESCRIPTION = """
# ν•œκ΅­μ–΄ μ§€μ‹œν•™μŠ΅ 데이터셋
- ai2_arc 데이터셋을 ν•œκ΅­μ–΄λ‘œ λ³€μ—­ν•œ 데이터셋
"""

_CITATION = """
@inproceedings{KITD,
  title={μ–Έμ–΄ λ²ˆμ—­ λͺ¨λΈμ„ ν†΅ν•œ ν•œκ΅­μ–΄ μ§€μ‹œ ν•™μŠ΅ 데이터 μ„ΈνŠΈ ꡬ좕},
  author={μž„μ˜μ„œ, μΆ”ν˜„μ°½, κΉ€μ‚°, μž₯μ§„μ˜ˆ, μ •λ―Όμ˜, μ‹ μ‚¬μž„},
  booktitle={제 35회 ν•œκΈ€ 및 ν•œκ΅­μ–΄ μ •λ³΄μ²˜λ¦¬ ν•™μˆ λŒ€νšŒ},
  pages={591--595},
  month=oct,
  year={2023}
}
"""

# BASE CODE
def _list(data_list):
    result = list()
    for data in data_list:
        result.append(data)
    return result

# ai2_arc
_AI2_ARC_FEATURES = Features({
    "data_index_by_user": Value(dtype="int32"),
    "id": Value(dtype="string"),
    "question": Value(dtype="string"),
    "choices": {
        "text": Sequence(Value(dtype="string")),
        "label": Sequence(Value(dtype="string")),
    },
    "answerKey": Value(dtype="string"),
})

def _parsing_ai2_arc(file_path):
    with open(file_path, mode="r") as f:
        dataset = json.load(f)
    for _idx, data in enumerate(dataset):
        _data_index_by_user = data["data_index_by_user"]
        _id = data["id"]
        _question = data["question"]
        _choices = {
            "text": _list(data["choices"]["text"]),
            "label": _list(data["choices"]["label"]),
        }
        _answerKey = data["answerKey"]
        
        yield _idx, {
            "data_index_by_user": _data_index_by_user,
            "id": _id,
            "question": _question,
            "choices": _choices,
            "answerKey": _answerKey,
        }

class Ai2_arcConfig(BuilderConfig):
    def __init__(self, name, feature, reading_fn, parsing_fn, citation, **kwargs):
        super(Ai2_arcConfig, self).__init__(
            name = name,
            version=datasets.Version("1.0.0"),
            **kwargs)
        self.feature = feature
        self.reading_fn = reading_fn
        self.parsing_fn = parsing_fn
        self.citation = citation

class AI2_ARC(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        Ai2_arcConfig(
            name = "ARC-Challenge",
            data_dir = "./ai2_arc",
            feature = _AI2_ARC_FEATURES,
            reading_fn = _parsing_ai2_arc,
            parsing_fn = lambda x:x,
            citation = _CITATION,
        ),
        Ai2_arcConfig(
            name = "ARC-Easy",
            data_dir = "./ai2_arc",
            feature = _AI2_ARC_FEATURES,
            reading_fn = _parsing_ai2_arc,
            parsing_fn = lambda x:x,
            citation = _CITATION,
        ),
    ]
    
    def _info(self) -> datasets.DatasetInfo:
        """Returns the dataset metadata."""
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=_AI2_ARC_FEATURES,
            citation=_CITATION,
        )
    
    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """Returns SplitGenerators"""
        path_kv = {
            datasets.Split.TRAIN:[
                os.path.join(dl_manager.manual_dir, f"{self.config.name}/train.json")
            ],
            datasets.Split.VALIDATION:[
                os.path.join(dl_manager.manual_dir, f"{self.config.name}/validation.json")
            ],
            datasets.Split.TEST:[
                os.path.join(dl_manager.manual_dir, f"{self.config.name}/test.json")
            ],
        }
        return [
            datasets.SplitGenerator(name=k, gen_kwargs={"path_list": v})
            for k, v in path_kv.items()
        ]
    
    def _generate_examples(self, path_list):
        """Yields examples."""
        for path in path_list:
            try:
                for example in iter(self.config.reading_fn(path)):
                    yield self.config.parsing_fn(example)
            except Exception as e:
                print(e)