Datasets:
File size: 10,645 Bytes
c770e0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# SPDX-FileCopyrightText: Copyright © <2022> Idiap Research Institute <[email protected]>
#
# SPDX-FileContributor: Juan Zuluaga-Gomez <[email protected]>
#
# SPDX-License-Identifier: MIT-License
"""\
Script for loading air traffic control (ATC) speech datasets for automatic speech recognition (ASR).
This script has been designed for ATC datasets that are in Kaldi format
Required files: text, wav.scp and segments files
- Databases
- Training:
- ATCOSIM, LDC-ATCC or, UWB-ATCC corpora.
- Testing:
- ATCO2-test-set-1h or 4h, LDC-ATCC or, UWB-ATCC corpora.
"""
import os
import re
import datasets
import numpy as np
import soundfile as sf
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Vesel{\'y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}
@article{zuluaga2022does,
title={How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and others},
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
@article{zuluagabertraffic,
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications (submitted to @ SLT-2022)},
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
"""
_DESCRIPTION = """\
ATC speech DATASET. This DataLoader works with data in Kaldi format.
- We use the following files: text, segments and wav.scp
- text --> utt_id transcript
- segments --> utt_id recording_id t_begin t_end
- wav.scp --> recording_id /path/to/wav/
The default dataset is from ATCO2 project, a 1-hour sample: https://www.replaywell.com/atco2/download/ATCO2-ASRdataset-v1_beta.tgz
"""
_DATA_URL = "http://catalog.elra.info/en-us/repository/browse/ELRA-S0484/"
_HOMEPAGE = "https://github.com/idiap/w2v2-air-traffic"
logger = datasets.logging.get_logger(__name__)
# Our models work with audio data at 16kHZ,
_SAMPLING_RATE = int(16000)
class ATCDataASRConfig(datasets.BuilderConfig):
"""BuilderConfig for air traffic control datasets."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files required to read: json or wav.scp
**kwargs: keyword arguments forwarded to super.
"""
super(ATCDataASRConfig, self).__init__(**kwargs)
class ATCDataASR(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 256
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
# TRAIN, DEV AND TEST DATASETS
ATCDataASRConfig(name="train", description="ATC train dataset."),
ATCDataASRConfig(name="dev", description="ATC dev dataset."),
ATCDataASRConfig(name="test", description="ATC test dataset."),
# UNSUPERVISED DATASETS
ATCDataASRConfig(name="unsupervised", description="ATC unsupervised dataset."),
]
# provide some information about the Dataset we just gathered
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"file": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=_SAMPLING_RATE),
"text": datasets.Value("string"),
"segment_start_time": datasets.Value("float"),
"segment_end_time": datasets.Value("float"),
"duration": datasets.Value("float"),
}
),
supervised_keys=("audio", "text"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
AutomaticSpeechRecognition(
audio_column="audio", transcription_column="text"
)
],
)
def _split_generators(self, dlmanager):
"""Returns SplitGenerators."""
split = self.config.name
# UNSUPERVISED set (used only for decoding)
if "unsupervised" in split:
split_name = datasets.Split.TEST
elif "test" in split or "dev" in split or "dummy" in split:
split_name = datasets.Split.TEST
# The last option left is: Train set
else:
split_name = datasets.Split.TRAIN
# you need to pass a data directory where the Kaldi folder is stored
filepath = self.config.data_dir
return [
datasets.SplitGenerator(
name=split_name,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepath,
"split": split,
},
)
]
def _generate_examples(self, filepath, split):
"""You need to pass a path with the kaldi data, the folder should have
audio: wav.scp,
transcripts: text,
timing information: segments
"""
logger.info("Generating examples located in: %s", filepath)
text_file = os.path.join(filepath, "text")
wavscp = os.path.join(filepath, "wav.scp")
segments = os.path.join(filepath, "segments")
id_ = ""
text_dict, wav_dict = {}, {}
segments_dict, utt2wav_id = {}, {}
line = 0
# get the text file
with open(text_file) as text_f:
for line in text_f:
if len(line.split(" ")) > 1:
id_, transcript = line.split(" ", maxsplit=1)
transcript = _remove_special_characters(transcript)
if len(transcript.split(" ")) == 0:
continue
if len(transcript) < 2:
continue
text_dict[id_] = transcript
else: # line is empty
# if unsupervised set, then it's normal. else, continue
if not "test_unsup" in self.config.name:
continue
id_ = line.rstrip().split(" ")[0]
text_dict[id_] = ""
# get wav.scp and load data into memory
with open(wavscp) as text_f:
for line in text_f:
if line:
if len(line.split()) < 2:
continue
id_, wavpath = line.split(" ", maxsplit=1)
# only selects the part that ends of wav, flac or sph
wavpath = [
x
for x in wavpath.split(" ")
if ".wav" in x or ".WAV" in x or ".flac" in x or ".sph" in x
][0].rstrip()
# make the output
segment, sampling_rate = sf.read(wavpath, dtype=np.int16)
wav_dict[id_] = [wavpath.rstrip(), segment, sampling_rate]
# get segments dictionary
with open(segments) as text_f:
for line in text_f:
if line:
if len(line.split()) < 4:
continue
id_, wavid_, start, end = line.rstrip().split(" ")
segments_dict[id_] = start.rstrip(), end.rstrip()
utt2wav_id[id_] = wavid_
for rec_id, text in text_dict.items():
if rec_id in utt2wav_id and rec_id in segments_dict:
# get audio data from memory and the path of the file
wavpath, segment, sampling_rate = wav_dict[utt2wav_id[rec_id]]
# get timing information
seg_start, seg_end = segments_dict[rec_id]
seg_start, seg_end = float(seg_start), float(seg_end)
duration = round((seg_end - seg_start), 3)
# get the samples, bytes, already cropping by segment,
samples = _extract_audio_segment(
segment, sampling_rate, float(seg_start), float(seg_end)
)
# output data for given dataset
example = {
"audio": {
"path": wavpath,
"array": samples,
"sampling_rate": sampling_rate,
},
"id": rec_id,
"file": wavpath,
"text": text,
"segment_start_time": format(float(seg_start), ".3f"),
"segment_end_time": format(float(seg_end), ".3f"),
"duration": format(float(duration), ".3f"),
}
yield rec_id, example
def _remove_special_characters(text):
"""Function to remove some special chars/symbols from the given transcript"""
text = text.split(" ")
# first remove words between [] and <>
text = " ".join(
[
x
for x in text
if "[" not in x and "]" not in x and "<" not in x and ">" not in x
]
)
# regex with predifined symbols to ignore/remove,
chars_to_ignore_regex2 = '[\{\[\]\<\>\/\,\?\.\!\u00AC\;\:"\\%\\\]|[0-9]'
text = re.sub(chars_to_ignore_regex2, "", text).lower()
sentence = text.replace("\u2013", "-")
sentence = sentence.replace("\u2014", "-")
sentence = sentence.replace("\u2018", "'")
sentence = sentence.replace("\u201C", "")
sentence = sentence.replace("\u201D", "")
sentence = sentence.replace("ñ", "n")
sentence = sentence.replace(" - ", " ")
sentence = sentence.replace("-", "")
sentence = sentence.replace("'", " ")
return sentence.lower().rstrip()
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
# The dataset only contains mono audio.
start_sample = int(start_sec * sampling_rate)
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
samples = segment[start_sample:end_sample]
return samples
|