Datasets:
File size: 5,548 Bytes
d14c888 f605a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
dataset_info:
features:
- name: id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: segment_start_time
dtype: float32
- name: segment_end_time
dtype: float32
- name: duration
dtype: float32
splits:
- name: test
num_bytes: 113872168.0
num_examples: 871
download_size: 113467762
dataset_size: 113872168.0
---
# Dataset Card for ATCO2 test set corpus (1hr set)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages and Other Details](#languages-and-other-details)
- [Dataset Structure](#dataset-structure)
- [Data Fields](#data-fields)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [ATCO2 project homepage](https://www.atco2.org/)
- **Repository:** [ATCO2 corpus](https://github.com/idiap/atco2-corpus)
- **Paper:** [ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications](https://arxiv.org/abs/2211.04054)
### Dataset Summary
ATCO2 project aims at developing a unique platform allowing to collect, organize and pre-process air-traffic control (voice communication) data from air space. This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 864702. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.
The project collected the real-time voice communication between air-traffic controllers and pilots available either directly through publicly accessible radio frequency channels or indirectly from air-navigation service providers (ANSPs). In addition to the voice communication data, contextual information is available in a form of metadata (i.e. surveillance data). The dataset consists of two distinct packages:
- A corpus of 5000+ hours (pseudo-transcribed) of air-traffic control speech collected across different airports (Sion, Bern, Zurich, etc.) in .wav format for speech recognition. Speaker distribution is 90/10% between males and females and the group contains native and non-native speakers of English.
- A corpus of 4 hours (transcribed) of air-traffic control speech collected across different airports (Sion, Bern, Zurich, etc.) in .wav format for speech recognition. Speaker distribution is 90/10% between males and females and the group contains native and non-native speakers of English. This corpus has been transcribed with orthographic information in XML format with speaker noise information, SNR values and others. Read Less
- A free sample of the 4 hours transcribed data is in [ATCO2 project homepage](https://www.atco2.org/data)
### Supported Tasks and Leaderboards
- `automatic-speech-recognition`. Already adapted/fine-tuned models are available here --> [Wav2Vec 2.0 LARGE mdel](https://huggingface.co/Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc-and-atcosim).
### Languages and other details
The text and the recordings are in English. For more information see Table 3 and Table 4 of [ATCO2 corpus paper](https://arxiv.org/abs/2211.04054)
## Dataset Structure
### Data Fields
- `id (string)`: a string of recording identifier for each example, corresponding to its.
- `audio (audio)`: audio data for the given ID
- `text (string)`: transcript of the file already normalized. Follow these repositories for more details [w2v2-air-traffic](https://github.com/idiap/w2v2-air-traffic) and [bert-text-diarization-atc](https://github.com/idiap/bert-text-diarization-atc)
- `segment_start_time (float32)`: segment start time (normally 0)
- `segment_end_time (float32): segment end time
- `duration (float32)`: duration of the recording, compute as segment_end_time - segment_start_time
## Additional Information
### Licensing Information
The licensing status of the ATCO2-test-set-1h corpus is in the file **ATCO2-ASRdataset-v1_beta - End-User Data Agreement** in the data folder. Download the data in [ATCO2 project homepage](https://www.atco2.org/data)
### Citation Information
Contributors who prepared, processed, normalized and uploaded the dataset in HuggingFace:
```
@article{zuluaga2022how,
title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
@article{zuluaga2022bertraffic,
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}
```
|