Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
License:
File size: 4,488 Bytes
f831a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27e0a4
3ecc27e
 
f27e0a4
 
f831a6a
 
 
f27e0a4
3ecc27e
f27e0a4
3ecc27e
f27e0a4
3ecc27e
f831a6a
819b804
f831a6a
819b804
 
 
 
f831a6a
 
 
 
 
 
819b804
f831a6a
819b804
f831a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819b804
 
f831a6a
 
 
 
562a4bd
 
f831a6a
 
 
 
 
 
 
 
 
 
819b804
f831a6a
 
 
 
 
 
 
 
 
819b804
f831a6a
 
 
 
 
 
 
 
819b804
f831a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819b804
 
 
 
 
 
 
 
 
 
 
f831a6a
3ecc27e
 
f27e0a4
3ecc27e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: apache-2.0
dataset_info:
  features:
  - name: task_id
    dtype: string
  - name: prompt
    dtype: string
  - name: entry_point
    dtype: string
  - name: test
    dtype: string
  - name: description
    dtype: string
  - name: language
    dtype: string
  - name: canonical_solution
    sequence: string
  splits:
  - name: train
    num_bytes: 505355
    num_examples: 161
  download_size: 174830
  dataset_size: 505355
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Benchmark summary

We introduce HumanEval for Kotlin, created from scratch by human experts.
Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin. 
The tests we implement are eqivalent to the original HumanEval tests for Python.

# How to use 

The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.

When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures.

The code for running an example model on the benchmark using the early stopping and post-processing is available below.

```python
import json
import re

from datasets import load_dataset
import jsonlines
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    StoppingCriteria,
    StoppingCriteriaList,
)
from tqdm import tqdm 
from mxeval.evaluation import evaluate_functional_correctness


class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops, tokenizer):
        (StoppingCriteria.__init__(self),)
        self.stops = rf"{stops}"
        self.tokenizer = tokenizer

    def __call__(
        self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
    ) -> bool:
        last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
        decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)

        return bool(re.search(self.stops, decoded_last_three_tokens))


def generate(problem):
    criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
    stopping_criteria = StoppingCriteriaList([criterion])
    
    problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
    sample = model.generate(
        problem,
        max_new_tokens=256,
        min_new_tokens=128,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=False,
        num_beams=1,
        stopping_criteria=stopping_criteria,
    )
    
    answer = tokenizer.decode(sample[0], skip_special_tokens=True)
    return answer


def clean_asnwer(code):
    # Clean comments
    code_without_line_comments = re.sub(r"//.*", "", code)
    code_without_all_comments = re.sub(
        r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
    )
    #Clean signatures
    lines = code.split("\n")
    for i, line in enumerate(lines):
        if line.startswith("fun "):
            return "\n".join(lines[i + 1:])
            
    return code


model_name = "JetBrains/CodeLlama-7B-Kexer"
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
problem_dict = {problem['task_id']: problem for problem in dataset}

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
tokenizer = AutoTokenizer.from_pretrained(model_name)

output = []
for key in tqdm(list(problem_dict.keys()), leave=False):
    problem = problem_dict[key]["prompt"]
    answer = generate(problem)
    answer = clean_asnwer(answer)
    output.append({"task_id": key, "completion": answer, "language": "kotlin"})

output_file = f"answers"
with jsonlines.open(output_file, mode="w") as writer:
    for line in output:
        writer.write(line)

evaluate_functional_correctness(
    sample_file=output_file,
    k=[1],
    n_workers=16,
    timeout=15,
    problem_file=problem_dict,
)

with open(output_file + '_results.jsonl') as fp:
    total = 0
    correct = 0
    for line in fp:
        sample_res = json.loads(line)
        print(sample_res)
        total += 1
        correct += sample_res['passed']

print(f'Pass rate: {correct/total}')

```


# Results

We evaluated multiple coding models using this benchmark, and the results are presented in the table below.