File size: 4,862 Bytes
aa368ec d09ca16 aa368ec d09ca16 aa368ec d09ca16 aa368ec d9a5c5b d09ca16 d9a5c5b d09ca16 d9a5c5b d09ca16 d9a5c5b aa368ec d09ca16 aa368ec d9a5c5b aa368ec d9a5c5b aa368ec d09ca16 aa368ec d9a5c5b aa368ec d09ca16 aa368ec d09ca16 d9a5c5b aa368ec d09ca16 aa368ec d09ca16 aa368ec d09ca16 aa368ec d09ca16 e32ab64 d09ca16 aa368ec d09ca16 e32ab64 d09ca16 e32ab64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
from Bio import SeqIO
import datasets
# TODO: Add BibTeX citation
_CITATION = ''
# """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
_DESCRIPTION = """\
This dataset comprises the various supervised learning tasks considered in the agro-nt
paper. The task types include binary classification,multi-label classification,
regression,and multi-output regression. The actual underlying genomic tasks range from
predicting regulatory features, RNA processing sites, and gene expression values.
"""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_TASK_NAMES = ['poly_a|arabidopsis_thaliana',
'poly_a|oryza_sativa_indica_group',
'poly_a|trifolium_pratense',
'poly_a|medicago_truncatula',
'poly_a|chlamydomonas_reinhardtii',
'poly_a|oryza_sativa_japonica_group']
_TASK_NAME_TO_TYPE = {'poly_a':'binary',
'lncrna':'binary',
'splice_site':'binary',}
class AgroNtTasksConfig(datasets.BuilderConfig):
"""BuilderConfig for the Agro NT supervised learning tasks dataset."""
def __init__(self, *args, task_name: str, **kwargs):
"""BuilderConfig downstream tasks dataset.
Args:
task (:obj:`str`): Task name.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name=f"{task_name}",
**kwargs,
)
self.task,self.name = task_name.split("|")
self.task_type = _TASK_NAME_TO_TYPE[self.task]
class AgroNtTasks(datasets.GeneratorBasedBuilder):
"""GeneratorBasedBuilder for the Agro NT supervised learning tasks dataset."""
BUILDER_CONFIGS = [AgroNtTasksConfig(task_name=TASK_NAME) for TASK_NAME
in _TASK_NAMES]
DEFAULT_CONFIG_NAME = _TASK_NAMES[0]
def _info(self):
if self.task_type == 'binary':
features = datasets.Features(
{
"sequence": datasets.Value("string"),
"name": datasets.Value("string"),
"labels": datasets.Value("int8"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
train_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.name + "_train.fa"))
test_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.name + "_test.fa"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train_file,
"split": "train",
},
),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": test_file,
# "split": "dev",
# },
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": test_file,
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, 'r') as f:
key = 0
for record in SeqIO.parse(f,'fasta'):
# Yields examples as (key, example) tuples
split_name = record.name.split("|")
name = split_name[0]
labels = split_name[1]
yield key, {
"sequence": str(record.seq),
"name": name,
"labels": labels,
}
key += 1 |