Datasets:

Modalities:
Image
ArXiv:
License:
whlzy commited on
Commit
2ecc351
1 Parent(s): d648c4f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -4
README.md CHANGED
@@ -1,12 +1,22 @@
1
  # Fake Image Dataset
2
  Fake Image Dataset is now open-sourced at [huggingface (InfImagine Organization)](https://huggingface.co/datasets/InfImagine/FakeImageDataset/tree/main/ImageData/train). ↗ It consists of two folders, *ImageData* and *MetaData*. *ImageData* contains the compressed packages of the Fake Image Dataset, while *MetaData* contains the labeling information of the corresponding data indicating whether they are real or fake.
 
 
 
 
 
 
 
 
 
3
  ## How to Download
4
  ```shell
5
  git lfs install
6
  git clone https://huggingface.co/datasets/InfImagine/FakeImageDataset
7
  ```
8
 
9
- ## Fake2M Dataset
 
10
 
11
  | Dataset | SD-V1.5Real-dpms-25 | IF-V1.0-dpms++-25 | StyleGAN3 |
12
  | ----------- | :-----------: | :-----------: | :-----------: |
@@ -18,6 +28,24 @@ git clone https://huggingface.co/datasets/InfImagine/FakeImageDataset
18
  | MetaData Path | MetaData/train/SDv15R-CC1M.csv | MetaData/train/IF-CC1M.csv | MetaData/train/stylegan3-80K.csv |
19
 
20
 
21
- ---
22
- license: apache-2.0
23
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Fake Image Dataset
2
  Fake Image Dataset is now open-sourced at [huggingface (InfImagine Organization)](https://huggingface.co/datasets/InfImagine/FakeImageDataset/tree/main/ImageData/train). ↗ It consists of two folders, *ImageData* and *MetaData*. *ImageData* contains the compressed packages of the Fake Image Dataset, while *MetaData* contains the labeling information of the corresponding data indicating whether they are real or fake.
3
+
4
+ Why we need Fake Image Dataset and Sentry-Image?
5
+ * 🧐 Recent [study](https://arxiv.org/abs/2304.13023) have shown that humans struggle significantly to distinguish real photos from AI-generated ones, with a misclassification rate of **38.7%**.
6
+
7
+ * 🤗 To help people confirm whether the images they see are real images or AI-generated images, we launched the Sentry-Image project.
8
+
9
+ * 💻 Sentry-Image is an open source project which provides the SOTA fake image detection models in [Sentry-Image Leaderboard](http://sentry.infimagine.com/) to detect whether the image provided is an AI-generated or real image.
10
+
11
+ Stay tuned for this project! Feel free to contact [[email protected]]([email protected])! 😆
12
  ## How to Download
13
  ```shell
14
  git lfs install
15
  git clone https://huggingface.co/datasets/InfImagine/FakeImageDataset
16
  ```
17
 
18
+ ## Sub Dataset
19
+ ### Fake2M Dataset
20
 
21
  | Dataset | SD-V1.5Real-dpms-25 | IF-V1.0-dpms++-25 | StyleGAN3 |
22
  | ----------- | :-----------: | :-----------: | :-----------: |
 
28
  | MetaData Path | MetaData/train/SDv15R-CC1M.csv | MetaData/train/IF-CC1M.csv | MetaData/train/stylegan3-80K.csv |
29
 
30
 
31
+ ## License
32
+ This project is open-sourced under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0). These weights and datasets are fully open for academic research and can be used for commercial purposes with official written permission. If you find our open-source models and datasets useful for your business, we welcome your donation to support the development of the next-generation Sentry-Image model. Please contact [[email protected]]([email protected]) for commercial licensing and donation inquiries.
33
+ ## Citation
34
+ The code and model in this repository is mostly developed for or derived from the paper below. Please cite it if you find the repository helpful.
35
+ ```
36
+ @misc{sentry-image-leaderboard,
37
+ title = {Sentry-Image Leaderboard},
38
+ author = {Zeyu Lu, Di Huang, Chunli Zhang, Chengyue Wu, Xihui Liu, Lei Bai, Wanli Ouyang},
39
+ year = {2023},
40
+ publisher = {InfImagine, Shanghai AI Laboratory},
41
+ howpublished = "\url{https://github.com/Inf-imagine/Sentry}"
42
+ },
43
+ @misc{lu2023seeing,
44
+ title = {Seeing is not always believing: Benchmarking Human and Model Perception of AI-Generated Images},
45
+ author = {Zeyu Lu, Di Huang, Lei Bai, Jingjing Qu, Chengyue Wu, Xihui Liu, Wanli Ouyang},
46
+ year = {2023},
47
+ eprint = {2304.13023},
48
+ archivePrefix = {arXiv},
49
+ primaryClass = {cs.AI}
50
+ }
51
+ ```