File size: 6,581 Bytes
71a2ed4 aaf60c4 71a2ed4 aaf60c4 71a2ed4 aaf60c4 71a2ed4 aaf60c4 71a2ed4 aaf60c4 71a2ed4 aaf60c4 71a2ed4 aaf60c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from pathlib import Path
import datasets
from datasets.tasks import ImageClassification
import numpy as np
_CITATION = """\
@article{FeiFei2004LearningGV,
title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
author={Li Fei-Fei and Rob Fergus and Pietro Perona},
journal={Computer Vision and Pattern Recognition Workshop},
year={2004},
}
"""
_DESCRIPTION = """\
Pictures of objects belonging to 101 categories.
About 40 to 800 images per category.
Most categories have about 50 images.
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato.
The size of each image is roughly 300 x 200 pixels.
"""
_HOMEPAGE = "https://data.caltech.edu/records/20086"
_LICENSE = "CC BY 4.0"
# _DATA_URL = "brand_new_data/caltech-101.zip"
_DATA_URL = "brand_new_data/caltech-101/101_ObjectCategories.tar.gz"
_NAMES = [
"accordion",
"airplanes",
"anchor",
"ant",
"background_google",
"barrel",
"bass",
"beaver",
"binocular",
"bonsai",
"brain",
"brontosaurus",
"buddha",
"butterfly",
"camera",
"cannon",
"car_side",
"ceiling_fan",
"cellphone",
"chair",
"chandelier",
"cougar_body",
"cougar_face",
"crab",
"crayfish",
"crocodile",
"crocodile_head",
"cup",
"dalmatian",
"dollar_bill",
"dolphin",
"dragonfly",
"electric_guitar",
"elephant",
"emu",
"euphonium",
"ewer",
"faces",
"faces_easy",
"ferry",
"flamingo",
"flamingo_head",
"garfield",
"gerenuk",
"gramophone",
"grand_piano",
"hawksbill",
"headphone",
"hedgehog",
"helicopter",
"ibis",
"inline_skate",
"joshua_tree",
"kangaroo",
"ketch",
"lamp",
"laptop",
"leopards",
"llama",
"lobster",
"lotus",
"mandolin",
"mayfly",
"menorah",
"metronome",
"minaret",
"motorbikes",
"nautilus",
"octopus",
"okapi",
"pagoda",
"panda",
"pigeon",
"pizza",
"platypus",
"pyramid",
"revolver",
"rhino",
"rooster",
"saxophone",
"schooner",
"scissors",
"scorpion",
"sea_horse",
"snoopy",
"soccer_ball",
"stapler",
"starfish",
"stegosaurus",
"stop_sign",
"strawberry",
"sunflower",
"tick",
"trilobite",
"umbrella",
"watch",
"water_lilly",
"wheelchair",
"wild_cat",
"windsor_chair",
"wrench",
"yin_yang",
]
_TRAIN_POINTS_PER_CLASS = 30
class Caltech101(datasets.GeneratorBasedBuilder):
"""Caltech 101 dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=ImageClassification(
image_column="image", label_column="label"
),
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir, # TODO: change accordingly
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir, # TODO: change accordingly
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# Same stratagy as the one proposed in TF datasets
is_train_split = (split == "train")
data_dir = Path(filepath) / "101_ObjectCategories"
# Sets random seed so the random partitioning of files is the same when
# called for the train and test splits.
numpy_original_state = np.random.get_state()
np.random.seed(1234)
for class_dir in data_dir.iterdir():
fnames = [image_path for image_path in class_dir.iterdir() if image_path.name.endswith(".jpg")]
assert [image_path for image_path in class_dir.iterdir() if not image_path.name.endswith(".jpg")] == []
# _TRAIN_POINTS_PER_CLASS datapoints are sampled for the train split,
# the others constitute the test split.
if _TRAIN_POINTS_PER_CLASS > len(fnames):
raise ValueError("Fewer than {} ({}) points in class {}".format(
_TRAIN_POINTS_PER_CLASS, len(fnames), class_dir.name))
train_fnames = np.random.choice(
fnames, _TRAIN_POINTS_PER_CLASS, replace=False)
test_fnames = set(fnames).difference(train_fnames)
fnames_to_emit = train_fnames if is_train_split else test_fnames
for image_file in fnames_to_emit:
record = {
"image": str(image_file),
"label": class_dir.name.lower(),
}
yield "%s/%s" % (class_dir.name.lower(), image_file), record
# Resets the seeds to their previous states.
np.random.set_state(numpy_original_state)
|