File size: 6,581 Bytes
71a2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf60c4
71a2ed4
 
 
aaf60c4
71a2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf60c4
 
71a2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf60c4
71a2ed4
 
 
aaf60c4
71a2ed4
 
 
 
aaf60c4
71a2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf60c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from pathlib import Path

import datasets
from datasets.tasks import ImageClassification
import numpy as np

_CITATION = """\
@article{FeiFei2004LearningGV,
  title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
  author={Li Fei-Fei and Rob Fergus and Pietro Perona},
  journal={Computer Vision and Pattern Recognition Workshop},
  year={2004},
}
"""

_DESCRIPTION = """\
Pictures of objects belonging to 101 categories. 
About 40 to 800 images per category. 
Most categories have about 50 images. 
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. 
The size of each image is roughly 300 x 200 pixels. 
"""

_HOMEPAGE = "https://data.caltech.edu/records/20086"

_LICENSE = "CC BY 4.0"

# _DATA_URL = "brand_new_data/caltech-101.zip"
_DATA_URL = "brand_new_data/caltech-101/101_ObjectCategories.tar.gz"

_NAMES = [
    "accordion",
    "airplanes",
    "anchor",
    "ant",
    "background_google",
    "barrel",
    "bass",
    "beaver",
    "binocular",
    "bonsai",
    "brain",
    "brontosaurus",
    "buddha",
    "butterfly",
    "camera",
    "cannon",
    "car_side",
    "ceiling_fan",
    "cellphone",
    "chair",
    "chandelier",
    "cougar_body",
    "cougar_face",
    "crab",
    "crayfish",
    "crocodile",
    "crocodile_head",
    "cup",
    "dalmatian",
    "dollar_bill",
    "dolphin",
    "dragonfly",
    "electric_guitar",
    "elephant",
    "emu",
    "euphonium",
    "ewer",
    "faces",
    "faces_easy",
    "ferry",
    "flamingo",
    "flamingo_head",
    "garfield",
    "gerenuk",
    "gramophone",
    "grand_piano",
    "hawksbill",
    "headphone",
    "hedgehog",
    "helicopter",
    "ibis",
    "inline_skate",
    "joshua_tree",
    "kangaroo",
    "ketch",
    "lamp",
    "laptop",
    "leopards",
    "llama",
    "lobster",
    "lotus",
    "mandolin",
    "mayfly",
    "menorah",
    "metronome",
    "minaret",
    "motorbikes",
    "nautilus",
    "octopus",
    "okapi",
    "pagoda",
    "panda",
    "pigeon",
    "pizza",
    "platypus",
    "pyramid",
    "revolver",
    "rhino",
    "rooster",
    "saxophone",
    "schooner",
    "scissors",
    "scorpion",
    "sea_horse",
    "snoopy",
    "soccer_ball",
    "stapler",
    "starfish",
    "stegosaurus",
    "stop_sign",
    "strawberry",
    "sunflower",
    "tick",
    "trilobite",
    "umbrella",
    "watch",
    "water_lilly",
    "wheelchair",
    "wild_cat",
    "windsor_chair",
    "wrench",
    "yin_yang",
]

_TRAIN_POINTS_PER_CLASS = 30


class Caltech101(datasets.GeneratorBasedBuilder):
    """Caltech 101 dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=ImageClassification(
                image_column="image", label_column="label"
            ),
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_DATA_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,  # TODO: change accordingly
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,  # TODO: change accordingly
                    "split": "test",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # Same stratagy as the one proposed in TF datasets 
        is_train_split = (split == "train")
        data_dir = Path(filepath) / "101_ObjectCategories"
        # Sets random seed so the random partitioning of files is the same when
        # called for the train and test splits.
        numpy_original_state = np.random.get_state()
        np.random.seed(1234)

        for class_dir in data_dir.iterdir():
            fnames = [image_path for image_path in class_dir.iterdir() if image_path.name.endswith(".jpg")]
            assert [image_path for image_path in class_dir.iterdir() if not image_path.name.endswith(".jpg")] == []
            # _TRAIN_POINTS_PER_CLASS datapoints are sampled for the train split,
            # the others constitute the test split.
            if _TRAIN_POINTS_PER_CLASS > len(fnames):
                raise ValueError("Fewer than {} ({}) points in class {}".format(
                    _TRAIN_POINTS_PER_CLASS, len(fnames), class_dir.name))
            train_fnames = np.random.choice(
                fnames, _TRAIN_POINTS_PER_CLASS, replace=False)
            test_fnames = set(fnames).difference(train_fnames)
            fnames_to_emit = train_fnames if is_train_split else test_fnames

            for image_file in fnames_to_emit:
                record = {
                    "image": str(image_file),
                    "label": class_dir.name.lower(),
                }
                yield "%s/%s" % (class_dir.name.lower(), image_file), record
        # Resets the seeds to their previous states.
        np.random.set_state(numpy_original_state)