File size: 6,744 Bytes
d904c86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Dungeons and Data: A Large-Scale NetHack Dataset. """
import glob
import h5py
import json
import os
import datasets
# from datasets.download.streaming_download_manager import xopen
_CITATION = """\
"""
_DESCRIPTION = """\
3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021.
"""
_HOMEPAGE = ""
_LICENSE = ""
# _TOTAL_EPISODES = 1934
# _URLS = {
# "data": [f"data/{i}.hdf5" for i in range(1, _TOTAL_EPISODES)],
# "metadata": ["metadata.json"],
# }
class NleHfDataset(datasets.GeneratorBasedBuilder):
"""Dungeons and Data: A Large-Scale NetHack Dataset."""
VERSION = datasets.Version("1.0.0")
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="data", version=VERSION, description="Data for all episodes"),
# datasets.BuilderConfig(name="metadata", version=VERSION, description="Metadata for all episodes"),
# ]
# DEFAULT_CONFIG_NAME = "metadata"
def _info(self):
features = datasets.Features(
{
"data": {
"tty_chars": datasets.Array3D(shape=(None, 24, 80), dtype="uint8"),
"tty_colors": datasets.Array3D(shape=(None, 24, 80), dtype="int8"),
"tty_cursor": datasets.Array2D(shape=(None, 2), dtype="int16"),
"actions": datasets.Sequence(datasets.Value("int16")),
"rewards": datasets.Sequence(datasets.Value("int32")),
"dones": datasets.Sequence(datasets.Value("bool")),
},
"metadata": {
"gameid": datasets.Value("int32"),
"version": datasets.Value("string"),
"points": datasets.Value("int32"),
"deathdnum": datasets.Value("int32"),
"deathlev": datasets.Value("int32"),
"maxlvl": datasets.Value("int32"),
"hp": datasets.Value("int32"),
"maxhp": datasets.Value("int32"),
"deaths": datasets.Value("int32"),
"deathdate": datasets.Value("int32"),
"birthdate": datasets.Value("int32"),
"uid": datasets.Value("int32"),
"role": datasets.Value("string"),
"race": datasets.Value("string"),
"gender": datasets.Value("string"),
"align": datasets.Value("string"),
"name": datasets.Value("string"),
"death": datasets.Value("string"),
"conduct": datasets.Value("string"),
"turns": datasets.Value("int32"),
"achieve": datasets.Value("string"),
"realtime": datasets.Value("int64"),
"starttime": datasets.Value("int64"),
"endtime": datasets.Value("int64"),
"gender0": datasets.Value("string"),
"align0": datasets.Value("string"),
"flags": datasets.Value("string")
}
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# data_file = dl_manager.download_and_extract(f"data/data-{self.config.name}-any.hdf5.zip")
data_file = dl_manager.download(f"data/data-{self.config.name}-any.hdf5")
metadata_file = dl_manager.download(f"data/metadata-{self.config.name}-any.json")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_file,
"metadata_file": metadata_file,
"dl_manager": dl_manager
}
)
]
def _generate_examples(self, data_file, metadata_file, dl_manager):
with h5py.File(data_file, "r") as df, open(metadata_file, "r") as f:
meta = json.load(f)
for i, (ep_key, ep_meta) in enumerate(zip(df["/"], meta)):
print(ep_key, ep_meta["gameid"])
assert int(ep_key) == int(ep_meta["gameid"])
yield i, {
"data": {
"tty_chars": df[f"{ep_key}/tty_chars"][()],
"tty_colors": df[f"{ep_key}/tty_colors"][()],
"tty_cursor": df[f"{ep_key}/tty_cursor"][()],
"actions": df[f"{ep_key}/actions"][()],
"rewards": df[f"{ep_key}/rewards"][()],
"dones": df[f"{ep_key}/dones"][()]
},
"metadata": ep_meta
}
# if self.config.name == "metadata":
# assert len(filepaths) == 1
# assert not dl_manager.is_streaming
# yield from self.__generate_metadata(filepaths[0])
# else:
# yield from self.__generate_data(filepaths, dl_manager)
# def __generate_metadata(self, filepath):
# with open(filepath, "r") as f:
# data = json.load(f)
# for i, line in enumerate(data):
# yield i, line
# def __generate_data(self, filepaths, dl_manager):
# for i, filepath in enumerate(filepaths):
# if dl_manager.is_streaming:
# filepath = xopen(filepath, "rb")
# with h5py.File(filepath, "r") as f:
# yield i, {
# "tty_chars": f["tty_chars"][()],
# "tty_colors": f["tty_colors"][()],
# "tty_cursor": f["tty_cursor"][()],
# "actions": f["actions"][()],
# "rewards": f["rewards"][()],
# "dones": f["dones"][()]
# }
# if dl_manager.is_streaming:
# filepath.close()
|